1
|
Guo T, Zhou L, Xiong M, Xiong J, Huang J, Li Y, Zhang G, Chen G, Wang Z, Xiao T, Hu D, Bao A, Zhang Z. N-homocysteinylation of DJ-1 promotes neurodegeneration in Parkinson's disease. Aging Cell 2024; 23:e14124. [PMID: 38380563 PMCID: PMC11113254 DOI: 10.1111/acel.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/31/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024] Open
Abstract
DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.
Collapse
Affiliation(s)
- Tao Guo
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lingyan Zhou
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Min Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jing Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juan Huang
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yiming Li
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guoxin Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guiqin Chen
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Hao Wang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tingting Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Dan Hu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Anyu Bao
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
2
|
Wan S, Dandu C, Han G, Guo Y, Ding Y, Song H, Meng R. Plasma inflammatory biomarkers in cerebral small vessel disease: A review. CNS Neurosci Ther 2022; 29:498-515. [PMID: 36478511 PMCID: PMC9873530 DOI: 10.1111/cns.14047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a group of pathological processes affecting small arteries, arterioles, capillaries, and small veins of the brain. It is one of the most common subtypes of cerebrovascular diseases, especially highly prevalent in elderly populations, and is associated with stroke occurrence and recurrence, cognitive impairment, gait disorders, psychological disturbance, and dysuria. Its diagnosis mainly depends on MRI, characterized by recent small subcortical infarcts, lacunes, white matter hyperintensities (WMHs), enlarged perivascular spaces (EPVS), cerebral microbleeds (CMBs), and brain atrophy. While the pathophysiological processes of CSVD are not fully understood at present, inflammation is noticed as playing an important role. Herein, we aimed to review the relationship between plasma inflammatory biomarkers and the MRI features of CSVD, to provide background for further research.
Collapse
Affiliation(s)
- Shuling Wan
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Chaitu Dandu
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Guangyu Han
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Yibing Guo
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Haiqing Song
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Ran Meng
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina,Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
3
|
Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci 2021; 22:6262. [PMID: 34200820 PMCID: PMC8230539 DOI: 10.3390/ijms22126262] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most frequently diagnosed carcinomas and one of the leading causes of cancer-related death worldwide. Metabolic reprogramming, a hallmark of cancer, is closely related to the initiation and progression of carcinomas, including CRC. Accumulating evidence shows that activation of oncogenic pathways and loss of tumor suppressor genes regulate the metabolic reprogramming that is mainly involved in glycolysis, glutaminolysis, one-carbon metabolism and lipid metabolism. The abnormal metabolic program provides tumor cells with abundant energy, nutrients and redox requirements to support their malignant growth and metastasis, which is accompanied by impaired metabolic flexibility in the tumor microenvironment (TME) and dysbiosis of the gut microbiota. The metabolic crosstalk between the tumor cells, the components of the TME and the intestinal microbiota further facilitates CRC cell proliferation, invasion and metastasis and leads to therapy resistance. Hence, to target the dysregulated tumor metabolism, the TME and the gut microbiota, novel preventive and therapeutic applications are required. In this review, the dysregulation of metabolic programs, molecular pathways, the TME and the intestinal microbiota in CRC is addressed. Possible therapeutic strategies, including metabolic inhibition and immune therapy in CRC, as well as modulation of the aberrant intestinal microbiota, are discussed.
Collapse
Affiliation(s)
| | | | | | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, University Hospital Jena, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
4
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
5
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
6
|
Borowczyk K, Piechocka J, Głowacki R, Dhar I, Midtun Ø, Tell GS, Ueland PM, Nygård O, Jakubowski H. Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial. J Intern Med 2019; 285:232-244. [PMID: 30193001 PMCID: PMC6378604 DOI: 10.1111/joim.12834] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES No individual homocysteine (Hcy) metabolite has been studied as a risk marker for coronary artery disease (CAD). Our objective was to examine Hcy-thiolactone, a chemically reactive metabolite generated by methionyl-tRNA synthetase and cleared by the kidney, as a risk predictor of incident acute myocardial infarction (AMI) in the Western Norway B-Vitamin Intervention Trial. DESIGN Single centre, prospective double-blind clinical intervention study, randomized in a 2 × 2 factorial design. SUBJECTS AND METHODS Patients with suspected CAD (n = 2049, 69.8% men; 61.2-year-old) were randomized to groups receiving daily (i) folic acid (0.8 mg)/vitamin B12 (0.4 mg)/vitamin B6 (40 mg); (ii) folic acid/vitamin B12 ; (iii) vitamin B6 or (iv) placebo. Urinary Hcy-thiolactone was quantified at baseline, 12 and 38 months. RESULTS Baseline urinary Hcy-thiolactone/creatinine was significantly associated with plasma tHcy, ApoA1, glomerular filtration rate, potassium and pyridoxal 5'-phosphate (positively) and with age, hypertension, smoking, urinary creatinine, plasma bilirubin and kynurenine (negatively). During median 4.7-years, 183 patients (8.9%) suffered an AMI. In Cox regression analysis, Hcy-thiolactone/creatinine was associated with AMI risk (hazard ratio = 1.58, 95% confidence interval = 1.10-2.26, P = 0.012 for trend; adjusted for age, gender, tHcy). This association was confined to patients with pyridoxic acid below median (adjusted HR = 2.72, 95% CI = 1.47-5.03, P = 0.0001; Pinteraction = 0.020). B-vitamin/folate treatments did not affect Hcy-thiolactone/creatinine and its AMI risk association. CONCLUSIONS Hcy-thiolactone/creatinine ratio is a novel AMI risk predictor in patients with suspected CAD, independent of traditional risk factors and tHcy, but modified by vitamin B6 catabolism. These findings lend a support to the hypothesis that Hcy-thiolactone is mechanistically involved in cardiovascular disease.
Collapse
Affiliation(s)
- K Borowczyk
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.,Department of Environmental Chemistry, Faculty of Chemistry, University of Łódź, Łódź, Poland
| | - J Piechocka
- Department of Environmental Chemistry, Faculty of Chemistry, University of Łódź, Łódź, Poland
| | - R Głowacki
- Department of Environmental Chemistry, Faculty of Chemistry, University of Łódź, Łódź, Poland
| | - I Dhar
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - G S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - P M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - O Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Institute of Medicine, University of Bergen, Bergen, Norway
| | - H Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.,Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Uzelac JJ, Stanić M, Krstić D, Čolović M, Djurić D. Effects of homocysteine and its related compounds on oxygen consumption of the rat heart tissue homogenate: the role of different gasotransmitters. Mol Cell Biochem 2017; 444:143-148. [DOI: 10.1007/s11010-017-3238-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
8
|
Tran C, Bonafé L, Nuoffer JM, Rieger J, Berger MM. Adult classical homocystinuria requiring parenteral nutrition: Pitfalls and management. Clin Nutr 2017; 37:1114-1120. [PMID: 28779878 DOI: 10.1016/j.clnu.2017.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/07/2017] [Accepted: 07/16/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Homocystinuria due to cystathionine beta synthase (CBS) deficiency presents with a wide clinical spectrum. Treatment by the enteral route aims at reducing homocysteine levels by using vitamin B6, possibly methionine-restricted diet, betaine and/or folate and vitamin B12 supplementation. Currently no nutritional guidelines exist regarding parenteral nutrition (PN) under acute conditions. METHODS Exhaustive literature search was performed, in order to identify the relevant studies describing the pathogenesis and nutritional intervention of adult classical homocystinuria requiring PN. Description of an illustrative case of an adult female with CBS deficiency and intestinal perforation, who required total PN due to contraindication to enteral nutrition. RESULTS Nutritional management of decompensated classical homocystinuria is complex and currently no recommendation exists regarding PN composition. Amino acid profile and monitoring of total homocysteine concentration are the main tools enabling a precise assessment of the severity of metabolic alterations. In case of contraindication to enteral nutrition, compounded PN will be required, as described in this paper, to ensure adequate low amounts of methionine and others essential amino acids and avoid potentially fatal toxic hypermethioninemia. CONCLUSIONS By reviewing the literature and reporting successful nutritional management of a decompensated CBS deficiency using tailored PN with limited methionine intake and n-3 PUFA addition, we would like to underscore the fact that standard PN solutions are not adapted for CBS deficient critical ill patients: new solutions are required. High methionine levels (>800 μmol/L) being potentially neurotoxic, there is an urgent need to improve our knowledge of acute nutritional therapy.
Collapse
Affiliation(s)
- Christel Tran
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| | - Luisa Bonafé
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University Children's Hospital, Inselspital AG Bern, University of Bern, Bern, Switzerland
| | - Julie Rieger
- Pharmacy, Lausanne University Hospital, Lausanne, Switzerland
| | - Mette M Berger
- Service of Adult Intensive Care and Burns Centre, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
9
|
Jakubowski H. Quantification of urinary S- and N-homocysteinylated protein and homocysteine-thiolactone in mice. Anal Biochem 2016; 508:118-23. [DOI: 10.1016/j.ab.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
|
10
|
Homocystinuria: Therapeutic approach. Clin Chim Acta 2016; 458:55-62. [PMID: 27059523 DOI: 10.1016/j.cca.2016.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/02/2016] [Accepted: 04/03/2016] [Indexed: 11/22/2022]
Abstract
Homocystinuria is a disorder of sulfur metabolism pathway caused by deficiency of cystathionine β-synthase (CBS). It is characterized by increased accumulation of homocysteine (Hcy) in the cells and plasma. Increased homocysteine results in various vascular and neurological complications. Present strategies to lower cellular and plasma homocysteine levels include vitamin B6 intake, dietary methionine restriction, betaine supplementation, folate and vitamin B12 administration. However, these strategies are inefficient for treatment of homocystinuria. In recent years, advances have been made towards developing new strategies to treat homocystinuria. These mainly include functional restoration to mutant CBS, enhanced clearance of Hcy from the body, prevention of N-homocysteinylation-induced toxicity and inhibition of homocysteine-induced oxidative stress. In this review, we have exclusively discussed the recent advances that have been achieved towards the treatment of homocystinuria. The review is an attempt to help clinicians in developing effective therapeutic strategies and designing novel drugs against homocystinuria.
Collapse
|
11
|
Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli. Protein Expr Purif 2015; 115:95-101. [DOI: 10.1016/j.pep.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/23/2022]
|
12
|
Vanzin CS, Mescka CP, Donida B, Hammerschimidt TG, Ribas GS, Kolling J, Scherer EB, Vilarinho L, Nogueira C, Coitinho AS, Wajner M, Wyse ATS, Vargas CR. Lipid, Oxidative and Inflammatory Profile and Alterations in the Enzymes Paraoxonase and Butyrylcholinesterase in Plasma of Patients with Homocystinuria Due CBS Deficiency: The Vitamin B12 and Folic Acid Importance. Cell Mol Neurobiol 2015; 35:899-911. [PMID: 25805165 PMCID: PMC11486249 DOI: 10.1007/s10571-015-0185-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Cystathionine-β-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.
Collapse
Affiliation(s)
- Camila Simioni Vanzin
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Caroline Paula Mescka
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Bruna Donida
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
| | - Tatiane Grazieli Hammerschimidt
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Graziela S. Ribas
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Janaína Kolling
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
| | - Emilene B. Scherer
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
| | - Laura Vilarinho
- Instituto Nacional de Saúde Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Célia Nogueira
- Instituto Nacional de Saúde Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Adriana Simon Coitinho
- Departamento de Microbiologa, Instituto de Ciências Básicas e da Saúde, Imunologia e Parasitologia da Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS 90050-170 Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Angela T. S. Wyse
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
13
|
Genoud V, Lauricella AM, Kordich LC, Quintana I. Impact of homocysteine-thiolactone on plasma fibrin networks. J Thromb Thrombolysis 2015; 38:540-5. [PMID: 24659173 DOI: 10.1007/s11239-014-1063-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiologic studies have shown that hyperhomocysteinemia is an independent risk factor for vascular disease. Homocysteine (Hcy) circulates as different species, mostly protein bound, and approximately 1% as its reduced form and the cyclic thioester homocysteine-thiolactone (HTL). Despite the level of plasma thiolactone being markedly low, detrimental effects are related to its high reactivity. HTL reacts with proteins by acylation of free basic amino groups; in particular, the epsilon-amino group of lysine residues forms adducts and induces structural and functional changes in plasma proteins. In order to assess the effects of HTL on plasma fibrin networks, a pool of normal plasma incubated with HTL (100, 500 and 1,000 μmol/L, respectively) was evaluated by global coagulation tests and fibrin formation kinetic assays, and the resulting fibrin was observed by scanning electron microscopy. HTL significantly prolonged global coagulation tests in a concentration-dependent manner with respect to control, and increases were up to 14.5%. Fibrin formation kinetic parameters displayed statistically significant differences between HTL-treated plasma and control in a concentration-dependent way, showing higher lag phase and lower maximum reaction velocity and final network optical density. Electron microscopy analysis of HTL plasma networks revealed a compact architecture, with more branches and shorter fibers than control. We can conclude that HTL induced a slower coagulation process, rendering more tightly packed fibrin clots. Since these features of the networks have been related to impaired fibrinolysis, the N-homocysteinylation reactions would be involved in the prothrombotic effects associated to hyperhomocysteinemia.
Collapse
Affiliation(s)
- Valeria Genoud
- Laboratory of Hemostasis and Thrombosis, Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids 2015; 47:1319-39. [PMID: 25802182 PMCID: PMC4458266 DOI: 10.1007/s00726-015-1956-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [−log(P value) = 20–31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [−log(P value)] = 4–11; also affected by Hcy-thiolactone, [−log(P value) = 8–14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was ‘atherosclerosis, coronary heart disease’ [−log(P value) = 9–16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34–40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24–35) were ‘small molecule biochemistry, neurological disease,’ and ‘cardiovascular system development and function’; and those affected by Hcy (score = 25–37) were ‘amino acid metabolism, lipid metabolism,’ ‘cellular movement, and cardiovascular and nervous system development and function.’ These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.
Collapse
|
15
|
Hyperhomocysteinemia abrogates fasting-induced cardioprotection against ischemia/reperfusion by limiting bioavailability of hydrogen sulfide anions. J Mol Med (Berl) 2015; 93:879-89. [DOI: 10.1007/s00109-015-1271-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 11/27/2022]
|
16
|
Eksin E, Erdem A. Electrochemical detection of N-homocysteinylated BSA in the fetal bovine serum medium. RSC Adv 2015. [DOI: 10.1039/c4ra13303j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The immobilization of bovine serum albumin (BSA), homocysteine-thiolactone (HTL) andN-homocysteinylated BSA (N-Hcy-BSA) onto the surface of each PGE was performed by passive adsorption and the electrochemical detection of these components was investigated individually.
Collapse
Affiliation(s)
- Ece Eksin
- Ege University
- Faculty of Pharmacy
- Analytical Chemistry Department
- Izmir
- Turkey
| | - Arzum Erdem
- Ege University
- Faculty of Pharmacy
- Analytical Chemistry Department
- Izmir
- Turkey
| |
Collapse
|
17
|
Sharma GS, Kumar T, Singh LR. N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS One 2014; 9:e116386. [PMID: 25551634 PMCID: PMC4281231 DOI: 10.1371/journal.pone.0116386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/06/2014] [Indexed: 12/23/2022] Open
Abstract
One of the proposed mechanisms of homocysteine toxicity in human is the modification of proteins by the metabolite of Hcy, homocysteine thilolactone (HTL). Incubation of proteins with HTL has earlier been shown to form covalent adducts with ε-amino group of lysine residues of protein (called N-homocysteinylation). It has been believed that protein N-homocysteinylation is the pathological hallmark of cardiovascular and neurodegenerative disorders as homocysteinylation induces structural and functional alterations in proteins. In the present study, reactivity of HTL towards proteins with different physico-chemical properties and hence their structural and functional alterations were studied using different spectroscopic approaches. We found that N-homocysteinylation has opposite consequences on acidic and basic proteins suggesting that pI of the protein determines the extent of homocysteinylation, and the structural and functional consequences due to homocysteinylation. Mechanistically, pI of protein determines the extent of N-homocysteinylation and the associated structural and functional alterations. The study suggests the role of HTL primarily targeting acidic proteins in eliciting its toxicity that could yield mechanistic insights for the associated neurodegeneration.
Collapse
Affiliation(s)
| | - Tarun Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | |
Collapse
|
18
|
Furmaniak P, Kubalczyk P, Głowacki R. Determination of homocysteine thiolactone in urine by field amplified sample injection and sweeping MEKC method with UV detection. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 961:36-41. [DOI: 10.1016/j.jchromb.2014.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 01/09/2023]
|
19
|
Hodgson NW, Waly MI, Al-Farsi YM, Al-Sharbati MM, Al-Farsi O, Ali A, Ouhtit A, Zang T, Zhou ZS, Deth RC. Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp Biol Med (Maywood) 2014; 239:697-706. [DOI: 10.1177/1535370214527900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic, nutrition, and environmental factors have each been implicated as sources of risk for autism. Oxidative stress, including low plasma levels of the antioxidant glutathione, has been reported by numerous autism studies, which can disrupt methylation-dependent epigenetic regulation of gene expression with neurodevelopmental consequences. We investigated the status of redox and methylation metabolites, as well as the level of protein homocysteinylation and hair mercury levels, in autistic and neurotypical control Omani children, who were previously shown to exhibit significant nutritional deficiencies in serum folate and vitamin B12. The serum level of glutathione in autistic subjects was significantly below control levels, while levels of homocysteine and S-adenosylhomocysteine were elevated, indicative of oxidative stress and decreased methionine synthase activity. Autistic males had lower glutathione and higher homocysteine levels than females, while homocysteinylation of serum proteins was increased in autistic males but not females. Mercury levels were markedly elevated in the hair of autistic subjects vs. control subjects, consistent with the importance of glutathione for its elimination. Thus, autism in Oman is associated with decreased antioxidant resources and decreased methylation capacity, in conjunction with elevated hair levels of mercury.
Collapse
Affiliation(s)
- Nathaniel W Hodgson
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mostafa I Waly
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Nutrition Department, High Institute of Public Health, Alexandria University, P.C. 165, El-Hadra, Alexandria, Egypt
| | - Yahya M Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Marwan M Al-Sharbati
- Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Omar Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Amanat Ali
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Allal Ouhtit
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Tianzhu Zang
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Genoud V, Castañon M, Lauricella AM, Quintana I. Characterization of N-homocysteinylated Albumin Adducts. Protein J 2014; 33:85-91. [DOI: 10.1007/s10930-013-9540-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Identification of N-homocysteinylation sites in plasma proteins. Amino Acids 2013; 46:235-44. [DOI: 10.1007/s00726-013-1617-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/29/2013] [Indexed: 11/27/2022]
|
22
|
Lakshman MR, Garige M, Gong MA, Leckey L, Varatharajalu R, Redman RS, Seth D, Haber PS, Hirsch K, Amdur R, Shah R. CYP2E1, oxidative stress, post-translational modifications and lipid metabolism. Subcell Biochem 2013; 67:199-233. [PMID: 23400923 DOI: 10.1007/978-94-007-5881-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chronic alcohol-mediated down-regulation of hepatic ST6Gal1 gene leads to defective glycosylation of lipid-carrying apolipoproteins such as apo E and apo J, resulting in defective VLDL assembly and intracellular lipid and lipoprotein transport, which in turn is responsible for alcoholic hepatosteatosis and ALD. The mechanism of ethanol action involves thedepletion of a unique RNA binding protein that specifically interacts with its 3'-UTR region of ST6Gal1 mRNA resulting in its destabilization and consequent appearance of asialoconjugates as alcohol biomarkers. With respect to ETOH effects on Cardio-Vascular Diseases, we conclude that CYP2E1 and ETOH mediated oxidative stress significantly down regulates not only the hepatic PON1 gene expression, but also serum PON1 and HCTLase activities accompanied by depletion of hepatic GSH, the endogenous antioxidant. These results strongly implicate the susceptibility of PON1 to increased ROS production. In contrast, betaine seems to be both hepatoprotective and atheroprotective by reducing hepatosteatosis and restoring not only liver GSH that quenches free radicals, but also the antiatherogenic PON1 gene expression and activity.
Collapse
Affiliation(s)
- M Raj Lakshman
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lakshman R, Garige M, Gong M, Leckey L, Varatharajalu R, Zakhari S. Is alcohol beneficial or harmful for cardioprotection? GENES AND NUTRITION 2012; 5:111-20. [PMID: 20012900 DOI: 10.1007/s12263-009-0161-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 11/18/2009] [Indexed: 11/26/2022]
Abstract
While the effects of chronic ethanol consumption on liver have been well studied and documented, its effect on the cardiovascular system is bimodal. Thus, moderate drinking in many population studies is related to lower prevalence of coronary artery disease (CAD). In contrast, heavy drinking correlates with higher prevalence of CAD. In several other studies of cardiovascular mortalities, abstainers and heavy drinkers are at higher risk than light or moderate drinkers. The composite of this disparate relation in several population studies of cardiovascular mortality has been a "U-" or "J-"shaped curve. Apart from its ability to eliminate cholesterol from the intima of the arteries by reverse cholesterol transport, another major mechanism by which HDL may have this cardioprotective property is by virtue of the ability of its component enzyme paraoxonase1 (PON1) to inhibit LDL oxidation and/or inactivate OxLDL. Therefore, PON1 plays a central role in the disposal of OxLDL and thus is antiatherogenic. Furthermore, PON1 is a multifunctional antioxidant enzyme that can also detoxify the homocysteine metabolite, homocysteine thiolactone (HTL), which can pathologically cause protein damage by homocysteinylation of the lysine residues, thereby leading to atherosclerosis. We demonstrated that moderate alcohol up regulates liver PON1 gene expression and serum activity, whereas heavy alcohol consumption had the opposite effects in both animal models and in humans. The increase in PON1 activity in light drinkers was not due to preferential distribution of high PON1 genotype in this group. It is well known that wine consumption in several countries shows a remarkable inverse correlation to local rates of CAD mortality. Significantly, apart from its alcohol content, red wine also has polyphenols such as quercetin and resveratrol that are also known to have cardioprotective effects. We have shown that quercetin also up regulates PON1 gene in rats and in human liver cells. The action of quercetin seems to be mediated via the active form of the nuclear lipogenic transcription factor, sterol-regulatory element-binding protein 2 (SREBP2) that is translocated from endoplasmic reticulum to the nucleus. However, the mechanism of action of ethanol-mediated up-regulation of PON1 gene remains to be elucidated. We conclude that both moderate ethanol and quercetin, the two major components of red wine, exhibit cardioprotective properties via the up-regulation of the antiatherogenic gene PON1.
Collapse
Affiliation(s)
- Raj Lakshman
- Lipid Research Laboratory, VA Medical Center, Washington, DC, 20422, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Malinowska J, Tomczynska M, Olas B. Changes of blood platelet adhesion to collagen and fibrinogen induced by homocysteine and its thiolactone. Clin Biochem 2012; 45:1225-8. [DOI: 10.1016/j.clinbiochem.2012.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 10/28/2022]
|
25
|
Stroylova YY, Chobert JM, Muronetz VI, Jakubowski H, Haertlé T. N-homocysteinylation of ovine prion protein induces amyloid-like transformation. Arch Biochem Biophys 2012; 526:29-37. [DOI: 10.1016/j.abb.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/01/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
|
26
|
Mazur P, Kozynacka A, Durajski L, Głowacki R, Pfitzner R, Fijorek K, Sadowski J, Undas A. Nɛ-homocysteinyl-lysine isopeptide is associated with progression of peripheral artery disease in patients treated with folic acid. Eur J Vasc Endovasc Surg 2012; 43:588-93. [PMID: 22436266 DOI: 10.1016/j.ejvs.2012.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/20/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Folic acid (FA) administration can reduce plasma total homocysteine (tHcy); however, it fails to decrease cardiovascular events and progression of peripheral artery disease (PAD). Nɛ-homocysteinyl-lysine isopeptide (Nɛ-Hcy-Lys) is formed during catabolism of homocysteinylated proteins. We sought to investigate factors that determine the presence of Nɛ-Hcy-Lys in PAD patients with hyperhomocysteinemia receiving FA. PATIENTS AND METHODS We studied 131 consecutive PAD patients with tHcy > 15 μmol l(-1) taking FA 0.4 mg d(-1) for 12 months. Serum Nɛ-Hcy-Lys was determined by high-performance liquid chromatography (HPLC). We also measured interleukin-6 (IL-6), plasminogen activator inhibitor-1 (PAI-1), asymmetric dimethylarginine (ADMA) and 8-iso-prostaglandin F(2α) (8-iso-PGF(2α)). RESULTS FA administration resulted in a 70.5% decrease in tHcy (p < 0.0001). However, serum Nɛ-Hcy-Lys was detectable in 28 (21.4%) patients on FA who were more frequently current smokers and survivors of ischaemic stroke (p < 0.001). They had higher tHcy by 46.0%, PAI-1 by 51.7%, 8-iso-PGF(2α) by 59.1% and ADMA by 26.4% (all, p < 0.0001). The presence of Nɛ-Hcy-Lys was associated with lower ankle-brachial index (ABI) values (p < 0.001) and higher prevalence of cardiovascular events (p < 0.001) following therapy. CONCLUSION The presence of Nɛ-Hcy-Lys in one-fifth of hyperhomocysteinemic individuals with PAD despite FA treatment is associated with progression of PAD and with increased ADMA formation, oxidative stress and hypofibrinolysis.
Collapse
Affiliation(s)
- P Mazur
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yilmaz N. Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Arch Med Sci 2012; 8:138-53. [PMID: 22457688 PMCID: PMC3309450 DOI: 10.5114/aoms.2012.27294] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/17/2011] [Accepted: 04/07/2011] [Indexed: 01/14/2023] Open
Abstract
Homocysteine (Hcy) is an accepted independent risk factor for several major pathologies including cardiovascular disease, birth defects, osteoporosis, Alzheimer's disease, and renal failure. Interestingly, many of the pathologies associated with homocysteine are also linked to oxidative stress. The enzyme paraoxonase (PON1) - so named because of its ability to hydrolyse the toxic metabolite of parathion, paraoxon - was also shown early after its identification to manifest arylesterase activity. Although the preferred endogenous substrate of PON1 remains unknown, lactones comprise one possible candidate class. Homocysteine-thiolactone can be disposed of by enzymatic hydrolysis by the serum Hcy-thiolactonase/paraoxonase carried on high-density lipoprotein (HDL). In this review, Hcy and the PON1 enzyme family were scrutinized from different points of view in the literature and the recent articles on these subjects were examined to determine whether these two molecular groups are related to each other like a coin with two different sides, so close and yet so different and so opposite.
Collapse
Affiliation(s)
- Necat Yilmaz
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya, Turkey
| |
Collapse
|
28
|
Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways. Toxicol Appl Pharmacol 2012; 260:89-94. [PMID: 22326992 DOI: 10.1016/j.taap.2012.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/21/2012] [Accepted: 01/27/2012] [Indexed: 11/20/2022]
Abstract
Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways.
Collapse
|
29
|
Tetrahydrocurcumin ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci 2012; 47:128-38. [PMID: 22212488 DOI: 10.1007/s12031-011-9695-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
High levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy), contribute to autophagy and ischemia/reperfusion injury (I/R). Previous studies have shown that I/R injury and HHcy cause increased cerebrovascular permeability; however, the associated mechanism remains obscure. Interestingly, during HHcy, cytochome-c becomes homocysteinylated (Hcy-cyto-c). Cytochrome-c (cyto-c) transports electrons and facilitates bioenergetics in the system. However, its role in autophagy during ischemia/reperfusion injury is unclear. Tetrahydrocurcumin (THC) is a major herbal antioxidant and anti-inflammatory agent. Therefore, the objective of this study was to determine whether THC ameliorates autophagy during ischemia/reperfusion injury by reducing homocysteinylation of cyto-c in hyperhomocysteinemia pathological condition. To test this hypothesis, we employed 8-10-week-old male cystathionine-beta-synthase heterozygote knockout (CBS⁺/⁻) mice (genetically hyperhomocystemic mice). Experimental group was: CBS⁺/⁻, CBS⁺/⁻ + THC (25 mg/kg in 0.1% DMSO dose); CBS ⁺/⁻/I/R, and CBS⁺/⁻/I/R + THC (25 mg/kg in 0.1% DMSO dose). Ischemia was performed for 30 min and reperfusion for 72 h. THC was injected intra-peritoneally (I.P.) once daily for a period of 3 days after 30 min of ischemia. The infarct area was measured using 2,3,5-triphenyltetrazolium chloride staining. Permeability was determined by brain edema and Evans Blue extravasation. The brain tissues were analyzed for oxidative stress, matrix metalloproteinase-9 (MMP-9), damage-regulated autophagy modulator (DRAM), and microtubule-associated protein 1 light chain 3 (LC3) by Western blot. The mRNA levels of S-adenosyl-L-homocysteine hydrolases (SAHH) and methylenetetrahydrofolate reductase (MTHFR) genes were measured by quantitative real-time polymerase chain reaction. Co-immunoprecipitation was used to determine the homocysteinylation of cyto-c. We found that brain edema and Evans Blue leakage were reduced in I/R + THC-treated groups as compared to sham-operated groups along with reduced brain infarct size. THC also decreased oxidative damage and ameliorated the homocysteinylation of cyto-c in-part by MMP-9 activation which leads to autophagy in I/R groups as compared to sham-operated groups. This study suggests a potential therapeutic role of dietary THC in cerebral ischemia.
Collapse
|
30
|
Jakubowski H, Głowacki R. Chemical biology of homocysteine thiolactone and related metabolites. Adv Clin Chem 2011; 55:81-103. [PMID: 22126025 DOI: 10.1016/b978-0-12-387042-1.00005-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein-related homocysteine (Hcy) metabolism produces Hcy-thiolactone, N-Hcy-protein, and N epsilon-homocysteinyl-lysine (N epsilon-Hcy-Lys). Hcy-thiolactone is generated in an error-editing reaction in protein biosynthesis when Hcy is erroneously selected in place of methionine by methionyl-tRNA synthetase. Hcy-thiolactone, an intramolecular thioester, is chemically reactive and forms isopeptide bonds with protein lysine residues in a process called N-homocysteinylation, which impairs or alters the protein's biological function. The resulting protein damage is exacerbated by a thiyl radical-mediated oxidation. N-Hcy-proteins undergo structural changes leading to aggregation and amyloid formation. These structural changes generate proteins, which are toxic and which induce an autoimmune response. Proteolytic degradation of N-Hcy-proteins generates N epsilon-Hcy-Lys. Levels of Hcy-thiolactone, N-Hcy-protein, and N epsilon-Hcy-Lys increase under pathological conditions in humans and mice and have been linked to cardiovascular and brain disorders. This chapter reviews fundamental biological chemistry of Hcy-thiolactone, N-Hcy-protein, and N epsilon-Hcy-Lys and discusses their clinical significance.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, New Jersey, USA.
| | | |
Collapse
|
31
|
Jakubowski H. Quality control in tRNA charging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:295-310. [PMID: 22095844 DOI: 10.1002/wrna.122] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Faithful translation of the genetic code during protein synthesis is fundamental to the growth, development, and function of living organisms. Aminoacyl-tRNA synthetases (AARSs), which define the genetic code by correctly pairing amino acids with their cognate tRNAs, are responsible for 'quality control' in the flow of information from a gene to a protein. When differences in binding energies of amino acids to an AARS are inadequate, editing is used to achieve high selectivity. Editing occurs at the synthetic active site by hydrolysis of noncognate aminoacyl-adenylates (pretransfer editing) and at a dedicated editing site located in a separate domain by deacylation of mischarged aminoacyl-tRNA (posttransfer editing). Access of nonprotein amino acids, such as homocysteine or ornithine, to the genetic code is prevented by the editing function of AARSs, which functionally partitions amino acids present in living cells into protein and nonprotein amino acids. Continuous editing is part of the tRNA aminoacylation process in living organisms from bacteria to human beings. Preventing mistranslation by the clearance of misactivated amino acids is crucial to cellular homeostasis and has a role in etiology of disease. Although there is a strong selective pressure to minimize mistranslation, some organisms possess error-prone AARSs that cause mistranslation. Elevated levels of mistranslation and the synthesis of statistical proteins can be beneficial for pathogens by increasing phenotypic variation essential for the evasion of host defenses.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.
| |
Collapse
|
32
|
Jakubowski H. The role of paraoxonase 1 in the detoxification of homocysteine thiolactone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 660:113-27. [PMID: 20221875 DOI: 10.1007/978-1-60761-350-3_11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The thioester homocysteine (Hcy)-thiolactone, product of an error-editing reaction in protein biosynthesis, forms when Hcy is mistakenly selected by methionyl-tRNA synthetase. Accumulating evidence suggests that Hcy-thiolactone plays an important role in atherothrombosis. The thioester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues, which impairs or alters protein function and has pathophysiological consequences including activation of an autoimmune response and enhanced thrombosis. Mammalian organisms, including human, have evolved the ability to eliminate Hcy-thiolactone. One such mechanism involves paraoxonase 1 (PON1), which has the ability to hydrolyze Hcy-thiolactone. This article outlines Hcy-thiolactone pathobiology and reviews evidence documenting the role of PON1 in minimizing Hcy-thiolactone and N-Hcy-protein accumulation.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland.
| |
Collapse
|
33
|
Undas A, Ariëns RAS. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011; 31:e88-99. [PMID: 21836064 DOI: 10.1161/atvbaha.111.230631] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The formation of fibrin clots that are relatively resistant to lysis represents the final step in blood coagulation. We discuss the genetic and environmental regulators of fibrin structure in relation to thrombotic disease. In addition, we discuss the implications of fibrin structure for treatment of thrombosis. Fibrin clots composed of compact, highly branched networks with thin fibers are resistant to lysis. Altered fibrin structure has consistently been reported in patients with several diseases complicated by thromboembolic events, including patients with acute or prior myocardial infarction, ischemic stroke, and venous thromboembolism. Relatives of patients with myocardial infarction or venous thromboembolism display similar fibrin abnormalities. Low-dose aspirin, statins, lowering of homocysteine, better diabetes control, smoking cessation, and suppression of inflammatory response increase clot permeability and susceptibility to lysis. Growing evidence indicates that abnormal fibrin properties represent a novel risk factor for arterial and venous thrombotic events, particularly of unknown etiology in young and middle-aged patients.
Collapse
Affiliation(s)
- Anetta Undas
- Institute of Cardiology, Jagiellonian University School of Medicine, Krakow, Poland
| | | |
Collapse
|
34
|
Balogh E, Bereczky Z, Katona E, Koszegi Z, Edes I, Muszbek L, Czuriga I. Interaction between homocysteine and lipoprotein(a) increases the prevalence of coronary artery disease/myocardial infarction in women: a case-control study. Thromb Res 2011; 129:133-8. [PMID: 21803402 DOI: 10.1016/j.thromres.2011.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Our aim was to investigate the association of elevated homocysteine (Hcy) and lipoprotein(a) Lp(a) with the prevalence of coronary artery disease (CAD) and myocardial infarction (MI) and to investigate their interaction in both genders. MATERIALS AND METHODS 955 (male/female: 578/377) consecutive patients admitted for coronary angiography were enrolled in the study. Lp(a), Hcy, vitamin B12, folic acid, MTHFR C677T polymorphism and traditional risk factors were determined. RESULTS 619 patients had significant (≥50%) stenosis (CAD+) and 341 had MI (MI+). CAD-MI- cases (n=302) were considered as controls. Adjusted Hcy levels were significantly elevated only in the female CAD+MI+group that was related to decreased vitamin B12 levels. Lp(a) was elevated in the CAD+MI+group of both genders. Folic acid levels and MTHFR T677 allele frequency did not show significant difference. Moderate hyperhomocysteinemia (Hcy >15μmol/L) or elevated Lp(a) (>300mg/L) increased the risk of CAD (OR 2.27, CI 1.36-3.80 and OR 1.64, CI 1.03-2.61, respectively) and MI (OR 2.52, CI 1.36-4.67 and OR 1.89, CI 1.06-3.38, respectively) only in women. Only simultaneous but not isolated elevation of Hcy and Lp(a) conferred a significant, 3.6-fold risk of CAD in females and even higher (11-fold) risk in young females, which suggested an interactive effect. CONCLUSIONS Moderate hyperhomocysteinemia or elevated Lp(a) level associated with a risk of CAD and MI only in women. While isolated elevation of one of the two parameters represented a mild risk of CAD, their combined elevation highly increased the risk in females. No such effect was observed in males.
Collapse
Affiliation(s)
- Emilia Balogh
- Department of Cardiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
35
|
Effect of resveratrol on hemostatic properties of human fibrinogen and plasma during model of hyperhomocysteinemia. Thromb Res 2011; 126:e379-82. [PMID: 20869101 DOI: 10.1016/j.thromres.2010.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/13/2022]
Abstract
Resveratrol (3,4', 5 - trihydroxystilben), a phenolic antioxidant synthesized in grapes and vegetables and presents in wine, has been supposed to be beneficial for the prevention of cardiovascular events. In this study the influence of resveratrol on the clot formation (using human plasma and purified fibrinogen) and the fibrin lysis during model of hyperhomocysteinemia was investigated. We induced this process using a reduced form of Hcys (at final dose of 0.1mM) and the most reactive form of Hcys - its cyclic thioester, homocysteine thiolactone (HTL, 0.5μM). The aim of our study in vitro was to investigate the modifications of human plasma total proteins after incubation with Hcys, HTL and resveratrol. We observed that HTL, like its precursor, Hcys stimulated polymerization of fibrinogen. Our present results also demonstrated that Hcys (0.1mM) and HLT at lower doses than Hcys (0.5μM) reduced the fibrin lysis in human plasma. Moreover, Hcys and HTL change the level of thiol and amino groups in plasma total proteins. Our results indicate that resveratrol reduced the toxicity action of Hcys and HTL on hemostatic properties of fibrinogen or plasma, suggesting its possible protector role in hyperhomocysteinemia - induced cardiovascular diseases.
Collapse
|
36
|
Effect of Homocysteine Thiolactone on Structure and Aggregation Propensity of Bovine Pancreatic Insulin. Protein J 2011; 30:299-307. [DOI: 10.1007/s10930-011-9333-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Kołodziejczyk J, Malinowska J, Olas B, Stochmal A, Oleszek W, Erler J. The polyphenol-rich extract from grape seeds suppresses toxicity of homocysteine and its thiolactone on the fibrinolytic system. Thromb Res 2011; 127:489-91. [DOI: 10.1016/j.thromres.2010.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/02/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
|
38
|
Morakinyo MK, Strongin RM, Simoyi RH. Modulation of homocysteine toxicity by S-nitrosothiol formation: a mechanistic approach. J Phys Chem B 2011; 114:9894-904. [PMID: 20666529 DOI: 10.1021/jp103679v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The metabolic conversion of homocysteine (HCYSH) to homocysteine thiolactone (HTL) has been reported as the major cause of HCYSH pathogenesis. It was hypothesized that inhibition of the thiol group of HCYSH by S-nitrosation will prevent its metabolic conversion to HTL. The kinetics, reaction dynamics, and mechanism of reaction of HCYSH and nitrous acid to produce S-nitrosohomocysteine (HCYSNO) was studied in mildly to highly acidic pHs. Transnitrosation of this non-protein-forming amino acid by S-nitrosoglutathione (GSNO) was also studied at physiological pH 7.4 in phosphate buffer. In both cases, HCYSNO formed quantitatively. Copper ions were found to play dual roles, catalyzing the rate of formation of HCYSNO as well as its rate of decomposition. In the presence of a transition-metal ions chelator, HCYSNO was very stable with a half-life of 198 h at pH 7.4. Nitrosation by nitrous acid occurred via the formation of more powerful nitrosating agents, nitrosonium cation (NO(+)) and dinitrogen trioxide (N(2)O(3)). In highly acidic environments, NO(+) was found to be the most effective nitrosating agent with a first-order dependence on nitrous acid. N(2)O(3) was the most relevant nitrosating agent in a mildly acidic environment with a second-order dependence on nitrous acid. The bimolecular rate constants for the direct reactions of HCYSH and nitrous acid, N(2)O(3), and NO(+) were 9.0 x 10(-2), 9.50 x 10(3), and 6.57 x 10(10) M(-1) s(-1), respectively. These rate constant values agreed with the electrophilic order of these nitrosating agents: HNO(2) < N(2)O(3) < NO(+). Transnitrosation of HCYSH by GSNO produced HCYSNO and other products including glutathione (reduced and oxidized) and homocysteine-glutathione mixed disulfide. A computer modeling involving eight reactions gave a good fit to the observed formation kinetics of HCYSNO. This study has shown that it is possible to modulate homocysteine toxicity by preventing its conversion to a more toxic HTL by S-nitrosation.
Collapse
Affiliation(s)
- Moshood K Morakinyo
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, USA
| | | | | |
Collapse
|
39
|
Zaąbczyk M, Głowacki R, Machnik A, Heród P, Kazek G, Jakubowski H, Undas A. Elevated concentrations of Nɛ-homocysteinyl-lysine isopeptide in acute myocardial infarction: links with ADMA formation. Clin Chem Lab Med 2011; 49:729-35. [DOI: 10.1515/cclm.2011.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Anal Biochem 2010; 405:132-4. [DOI: 10.1016/j.ab.2010.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/22/2022]
|
41
|
Leckey LC, Garige M, Varatharajalu R, Gong M, Nagata T, Spurney CF, Lakshman RM. Quercetin and ethanol attenuate the progression of atherosclerotic plaques with concomitant up regulation of paraoxonase1 (PON1) gene expression and PON1 activity in LDLR-/- mice. Alcohol Clin Exp Res 2010; 34:1535-42. [PMID: 20586760 PMCID: PMC2929280 DOI: 10.1111/j.1530-0277.2010.01238.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND As moderate wine drinking is atheroprotective, it is clinically relevant to elucidate its possible mechanism/s of action/s. Our objective is to demonstrate the potential benefits of the wine components, quercetin and ethanol, on the development of aortic plaques with parallel changes in antiatherogenic factors. METHODS AND RESULTS The effects of quercetin and ethanol on the development of aortic atherosclerotic lesions, liver PON1 gene expression, and serum PON1 activity were measured in LDLR(-/-) mice on an atherogenic diet for 4 and 8 weeks. Depending on the duration and dosage of these modulators, 12.5 to 25 mg/dl quercetin (12.5Q to 25Q) and 18 to 25% ethanol, the magnitude of decreases in aortic lesions caused by moderate ethanol and quercetin ranged from 20 to 70% (p < 0.05 to p < 0.001) based on ultrasound biomicroscopy (UBM) analyses, and from 18 to 61% (p < 0.05 to p < 0.001) based on morphometric analyses. The composite plot of all the UBM and morphometric data showed significant correlation between these 2 methods (p = 0.0001, Pearson r = 0.79 for 4-week treatment; p = 0.000004, Pearson r = 0.84 for 8-week treatment). Concomitantly, 4-week treatments with 12.5Q and 18% ethanol up regulated liver PON1 mRNA by 41% (p < 0.05) and 37% (p < 0.05), respectively, accompanied by 92% (p < 0.001) and 61% (p < 0.001) increases in serum PON1 activity, respectively. The corresponding values after 8-week treatment with 12.5Q and 18% ethanol were 23% (p < 0.05) and 40% (p < 0.02) with respect to the up regulation of liver PON1 mRNA expression, while the stimulations of serum PON1 activity were 75% (p < 0.001) and 90% (p < 0.001), respectively. CONCLUSIONS Based on these findings, we conclude that quercetin and moderate ethanol significantly inhibit the progression of atherosclerosis by up regulating the hepatic expression of the antiatherogenic gene, PON1, with concomitant increased serum PON1 activity.
Collapse
Affiliation(s)
- Leslie C Leckey
- The Lipid Research Laboratory, Veterans Affairs Medical Center, Washington, District of Columbia 20422, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Aléssio ACM, Santos CXC, Debbas V, Oliveira LC, Haddad R, Annichino-Bizzacchi JM. Evaluation of mild hyperhomocysteinemia during the development of atherosclerosis in apolipoprotein E-deficient and normal mice. Exp Mol Pathol 2010; 90:45-50. [PMID: 20696152 DOI: 10.1016/j.yexmp.2010.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 11/16/2022]
Abstract
We focused on the effect of mild hyperhomocysteinemia (HHcy) on the development of atherosclerosis, using apolipoprotein E-deficient (apoE(-/-)) and normal mice. Mice received diets enriched in methionine with low or high levels of folate, B(12) and B(6) (diets B and C, respectively), and diet only with low levels of folate, B(12) and B(6) (diets D), to induce mild HHcy. Normal mice fed on diets B, C and D presented mild HHcy, but they did not develop atherosclerotic lesions after 24 weeks of diet. In addition, increased endoplasmic reticulum stress was present in normal mice fed on diet B, compared to others groups. ApoE(-/-) mice fed on diet B for 20 weeks presented the greatest atherosclerotic lesion area at the aortic sinus than other groups. These results suggest that the methionine may have a toxic effect on endothelium, and the B-vitamins addition on diet may have a protective effect in the long term, despite the increase on homocysteine levels. Mild HHcy accelerated the development of atherosclerosis in apoE(-/-) mice, and supplementation with B-vitamins is important for prevention of vascular disease, principally in the long term.
Collapse
Affiliation(s)
- Ana C M Aléssio
- Hematology-Hemotherapy Center, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
43
|
Kołodziejczyk J, Malinowska J, Nowak P, Olas B. Comparison of the effect of homocysteine and its thiolactone on the fibrinolytic system using human plasma and purified plasminogen. Mol Cell Biochem 2010; 344:217-20. [PMID: 20658177 DOI: 10.1007/s11010-010-0545-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/14/2010] [Indexed: 01/14/2023]
Affiliation(s)
- Joanna Kołodziejczyk
- Department of General Biochemistry, Institute of Biochemistry, University of Łódź, Lodz, Poland
| | | | | | | |
Collapse
|
44
|
Paoli P, Sbrana F, Tiribilli B, Caselli A, Pantera B, Cirri P, De Donatis A, Formigli L, Nosi D, Manao G, Camici G, Ramponi G. Protein N-Homocysteinylation Induces the Formation of Toxic Amyloid-Like Protofibrils. J Mol Biol 2010; 400:889-907. [DOI: 10.1016/j.jmb.2010.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/14/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
|
45
|
Głowacki R, Bald E, Jakubowski H. An on-column derivatization method for the determination of homocysteine-thiolactone and protein N-linked homocysteine. Amino Acids 2010; 41:187-94. [DOI: 10.1007/s00726-010-0521-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/09/2010] [Indexed: 11/30/2022]
|
46
|
Sibrian-Vazquez M, Escobedo JO, Lim S, Samoei GK, Strongin RM. Homocystamides promote free-radical and oxidative damage to proteins. Proc Natl Acad Sci U S A 2010; 107:551-4. [PMID: 20080717 PMCID: PMC2818928 DOI: 10.1073/pnas.0909737107] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of homocysteine are associated with several major diseases. However, it is not clear whether homocysteine is a marker or a causative agent. The majority (ca. 80%) of the homocysteine present in humans is protein bound. The study of the posttranslational modification of proteins by homocysteine and its cyclic congener, homocysteine thiolactone, is emerging as an area of great current interest for unraveling the ongoing "mediator/marker controversy" [Jacobsen DW (2009) Clin Chem 55:1-2]. Interestingly, many of the pathologies associated with homocysteine are also linked to oxidative stress. In the current study, chemical evidence for a causal relationship between homocysteine-bound proteins and oxidative damage is presented. For example, a reproducible increase in protein carbonyl functionality occurs as a consequence of the reaction of human serum albumin with homocysteine thiolactone. This occurs at physiological temperature upon exposure to air without any added oxidants or free-radical initiators. Alpha-amino acid carbon-centered radicals, well-known precursors of protein carbonyls, are shown to form via a hydrogen atom transfer process involving thiolactone-derived homocystamides. Model peptides in buffer as well as native proteins in human blood plasma additionally exhibit properties in keeping with the homocystamide-facilitated hydrogen atom transfer and resultant carbon-centered radicals.
Collapse
Affiliation(s)
| | - Jorge O. Escobedo
- Department of Chemistry, Portland State University, Portland, OR 97201
| | - Soojin Lim
- Department of Chemistry, Portland State University, Portland, OR 97201
| | - George K. Samoei
- Department of Chemistry, Portland State University, Portland, OR 97201
| | | |
Collapse
|
47
|
Methotrexate-induced apoptosis is enhanced by altered expression of methylenetetrahydrofolate reductase. Anticancer Drugs 2009; 20:787-93. [PMID: 19593106 DOI: 10.1097/cad.0b013e32832f4aa8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Folates are essential for DNA synthesis and methylation reactions. The antifolate methotrexate (MTX) is a widely used chemotherapeutic drug which inhibits DNA synthesis and induces apoptosis. Changes in activity of a critical folate-metabolizing enzyme, methylenetetrahydrofolate reductase (MTHFR), might alter the chemosensitivity to MTX, as the MTHFR substrate is required for nucleotide synthesis and its product is used in homocysteine remethylation to methionine. Mild MTHFR deficiency is common in many populations due to a polymorphism at bp 677. We previously showed that altered expression of MTHFR enhanced MTX-induced myelosuppression in mice. To determine the cause of the impaired hematopoietic profile in mice with decreased or increased MTHFR expression, we evaluated MTX-induced apoptosis in the major hemolytic organ, spleen, using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining and caspase-3/7 activity assays, in MTHFR-deficient mice and in MTHFR-overexpressing mice after MTX administration. Decreased or increased expression of MTHFR in mice significantly increased TUNEL-positive cells and caspase-3/7 activities in MTX-treated spleen, compared with that of wild-type littermates. Plasma homocysteine levels correlated with apoptotic index in MTX-treated MTHFR-deficient mice and dUTP/dTTP ratios correlated with apoptotic index in MTX-treated MTHFR-overexpressing mice. The increased apoptosis may therefore relate to hyperhomocysteinemia and deoxyribonucleotide pool imbalances, respectively. Our results suggest that MTHFR underexpression and overexpression enhances MTX-induced apoptosis and myelosuppression, and that genotyping for the MTHFR polymorphism may have therapeutic implications.
Collapse
|
48
|
Varatharajalu R, Garige M, Leckey LC, Gong M, Lakshman MR. Betaine protects chronic alcohol and omega-3 PUFA-mediated down-regulations of PON1 gene, serum PON1 and homocysteine thiolactonase activities with restoration of liver GSH. Alcohol Clin Exp Res 2009; 34:424-31. [PMID: 20028357 DOI: 10.1111/j.1530-0277.2009.01107.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Paraoxonase (PON1) is an antioxidant enzyme that prevents LDL oxidation as well as detoxifies homocysteine thiolactone (HCTL), both of which can cause atherosclerosis. Chronic alcohol (ETOH) and high omega-3 polyunsaturated fatty acids (omega-3 PUFA) consumption may affect PON1 status presumably via reactive oxygen species by depleting liver glutathione (GSH), whereas betaine may counter their effects. Therefore, we investigated the influence of ETOH, omega-3 PUFA, and betaine on liver GSH, PON1 expression, lipid score, as well as serum PON1 and HCTLase activities. METHODS Experimental rats belonging to various dietary groups were pair-fed with Lieber-DeCarli low (2.8% the dietary calories as omega3-fatty acids) and high (13.8% the dietary calories as omega3-fatty acids) menhaden fish alcohol-liquid diets with and without betaine (10 g/l diet) for 8 weeks after which liver PON1 mRNA, GSH, lipid score, and serum PON1, HCTLase, and ALT activities were measured. RESULTS High omega-3 PUFA decreased liver PON1 mRNA expression, serum PON1, and HCTLase activity by 23% (p < 0.01), 20% (p < 0.05), and 28% (p < 0.05), respectively compared to the low omega-3 PUFA group. ETOH decreased PON1 mRNA expression by 25 and 30% (p < 0.01) with concomitant 27% (p < 0.05) and 38% (p < 0.01), decrease in liver GSH levels in low and high omega-3 PUFA groups, respectively. Correspondingly, serum PON1 activity decreased by 23% (p < 0.05) and 58% (p < 0.01) while serum HCTLase activity decreased by 25% (p < 0.05) and 59% (p < 0.01) in the low and high omega-3 PUFA ETOH groups, respectively. Betaine restored liver PON1 mRNA expressions in low and high omega-3 PUFA ETOH groups with parallel restorations of PON1 activity and liver GSH. Concomitantly, betaine reduced hepatosteatosis accompanied by alleviation of liver injury caused by chronic alcohol and high omega-3 PUFA. CONCLUSIONS Based on these results, we conclude that dietary betaine not only atheroprotective by restoring liver GSH that quenches free radicals, but also may alleviate liver injury by reducing hepatosteatosis.
Collapse
Affiliation(s)
- Ravi Varatharajalu
- Department of Biochemistry & Molecular Biology, Lipid Research Laboratory, Veterans Affairs Medical Center, The George Washington University, Washington, DC 20422, USA
| | | | | | | | | |
Collapse
|
49
|
Modification of human blood platelet proteins induced by homocysteine and its thiolactone in vitro. Thromb Res 2009; 124:689-94. [DOI: 10.1016/j.thromres.2009.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/22/2009] [Accepted: 06/30/2009] [Indexed: 11/20/2022]
|
50
|
Perla‐Kaján J, Jakubowski H. Paraoxonase 1 protects against protein
N
‐homocysteinylation in humans. FASEB J 2009; 24:931-6. [DOI: 10.1096/fj.09-144410] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joanna Perla‐Kaján
- Department of Microbiology and Molecular GeneticsUniversity of Medicine and Dentistry New Jersey‐New Jersey Medical SchoolInternational Center for Public HealthNewarkNew JerseyUSA
- Department of Biochemistry and BiotechnologyUniversity of Life SciencesPoznanPoland
| | - Hieronim Jakubowski
- Department of Microbiology and Molecular GeneticsUniversity of Medicine and Dentistry New Jersey‐New Jersey Medical SchoolInternational Center for Public HealthNewarkNew JerseyUSA
- Department of Biochemistry and BiotechnologyUniversity of Life SciencesPoznanPoland
- Institute of Bioorganic ChemistryPoznanPoland
| |
Collapse
|