1
|
Deep A, Bhat A, Perumal V, Kumar S. i-Motifs as regulatory switches: Mechanisms and implications for gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102474. [PMID: 40034208 PMCID: PMC11875178 DOI: 10.1016/j.omtn.2025.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
i-Motifs, cytosine-tetrads, or C-quadruplexes are intercalated structures formed by base pairing between cytosine and protonated cytosine. These structures demonstrate increased stability in acidic environments due to the presence of the latter cytosinium group (i.e., the protonated cytosine). Research has shown that i-motifs are typically disrupted or destabilized at physiological pH levels (7.0-7.4), which makes their potential formation in the nucleus and their biological relevance uncertain. However, in 2018, it was demonstrated that i-motifs exist within the nucleus under physiological conditions, with various intracellular factors contributing to their stability. Identification of i-motifs in the nucleus and their association with gene promoters-particularly with those of proto-oncogenes-has generated significant interest in their potential regulatory functions. Additionally, recent studies suggest that i-motifs may function as switches for gene expression, influencing gene regulation through their folding and stabilization or unfolding and destabilization. This review aims to delve into these mechanisms to improve our understanding of the physiological significance of i-motifs.
Collapse
Affiliation(s)
- Auroni Deep
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Anjali Bhat
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Vivekanandan Perumal
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| |
Collapse
|
2
|
Ge X, Wang Z, Song Y, Meng H. Effect of bariatric surgery on mitochondrial remodeling in human skeletal muscle: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1488715. [PMID: 39655345 PMCID: PMC11625573 DOI: 10.3389/fendo.2024.1488715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
In the context of obesity epidemic as a major global public health challenge, bariatric surgery stands out for its significant and long-lasting effectiveness in addressing severe obesity and its associated comorbidities. Skeletal muscle mitochondrial function, which is crucial for maintaining metabolic health, tends to deteriorate with obesity. This review summarized current evidence on the effects of bariatric surgery on skeletal muscle mitochondrial function, with a focus on mitochondrial content, mitochondrial dynamics, mitochondrial respiration and mitochondrial markers in glucolipid metabolism. In conclusion, bariatric surgery impacts skeletal muscle through pathways related to mitochondrial function and induces mitochondrial remodeling in skeletal muscle in various aspects. Future studies should focus on standardized methodologies, larger sample sizes, and better control of confounding factors to further clarify the role of mitochondrial remodeling in the therapeutic benefits of bariatric surgery.
Collapse
Affiliation(s)
- Xiaochuan Ge
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China
| | - Zhe Wang
- Department of General Surgery & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Yafeng Song
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China
| | - Hua Meng
- Department of General Surgery & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Kang S, Kim H, Bang C, Park JH, Go GW. The Herbal Blend of Sphaeranthus indicus and Garcinia mangostana Reduces Adiposity in High-Fat Diet Obese Mice. Foods 2024; 13:3013. [PMID: 39335940 PMCID: PMC11431088 DOI: 10.3390/foods13183013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is swiftly becoming a global epidemic, leading to numerous metabolic disorders and substantial socio-economic burdens. Investigating natural bioactive compounds is crucial to support the use of traditional anti-obesity medications while mitigating the adverse effects. This study posited that a combination of Sphaeranthus indicus and Garcinia mangostana (Meratrim) could prevent fat accumulation in obese mice. We used 4-week-old C57BL/6NTac mice, dividing them into six groups: (1) normal diet (ND); (2) high-fat diet (HFD, 45% kcal from fat); (3-5) Meratrim150, Meratrim300, and Meratrim450 (HFD with 150, 300, and 450 mg/kg bw of Meratrim); and (6) Metformin (HFD with 150 mg/kg bw of metformin). Meratrim was administered orally each day for 20 weeks. The group receiving 450 mg/kg of Meratrim showed a significant reduction in body weight and fat mass without changes in food consumption. The Meratrim450 group had markedly lower triglyceride levels in both serum and liver. Importantly, Meratrim-supplemented mice improved lipid homeostasis by inhibiting hepatic de novo lipogenesis and activating energy catabolic pathways such as non-shivering thermogenesis in brown adipose tissue. Our results suggest that the herbal mixture of Sphaeranthus indicus and Garcinia mangostana (Meratrim) is a promising natural anti-obesity agent, owing to its efficacy in reducing body fat and enhancing lipid homeostasis.
Collapse
Affiliation(s)
- Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaeyoung Bang
- Green Store Inc., R&D Center, Seoul 08501, Republic of Korea
| | - Jung Hyeon Park
- Green Store Inc., R&D Center, Seoul 08501, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Pei X, Bai T, Luo Y, Zhang Z, Li S, Fan Y, Liu TX. Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. INSECT SCIENCE 2024; 31:387-404. [PMID: 37486126 DOI: 10.1111/1744-7917.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
Collapse
Affiliation(s)
- Xiaojin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Tiantian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Zhanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Madan K, Paliwal S, Sharma S, Kesar S, Chauhan N, Madan M. QSAR Studies and Scaffold Optimization of Predicted Novel ACC 2 Inhibitors to Treat Metabolic Syndrome. Curr Drug Discov Technol 2024; 21:e010923220643. [PMID: 37680153 DOI: 10.2174/1570163820666230901144003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Metabolic syndrome is one of the major non-communicable global health hazards of the modern world owing to its amplifying prevalence. Acetyl coenzyme-A carboxylase 2 (ACC 2) is one of the most crucial enzymes involved in the manifestation of this disease because of its regulatory role in fatty acid metabolism. OBJECTIVE To find novel potent ACC 2 inhibitors as therapeutic potential leads for combating metabolic syndrome. METHODS In the present study, a two-dimensional quantitative structure-activity relationship (2D QSAR) approach was executed on biologically relevant thiazolyl phenyl ether derivatives as ACC 2 inhibitors for structural optimization. The physiochemical descriptors were calculated and thus a correlation was derived between the observed and predicted activity by the regression equation. The significant descriptors i.e. log P (Whole Molecule) and Number of H-bond Donors (Substituent 1) obtained under study were considered for the design of new compounds and their predicted biological activity was calculated from the regression equation of the developed model. The compounds were further validated by docking studies with the prepared ACC 2 receptor. RESULTS The most promising predicted leads with the absence of an H-bond donor group at the substituted phenyl ether moiety yet increased overall lipophilicity exhibited excellent amino acid binding affinity with the receptor and showed predicted inhibitory activity of 0.0025 μM and 0.0027 μM. The newly designed compounds were checked for their novelty. Lipinski's rule of five was applied to check their druggability and no violation of this rule was observed. CONCLUSION The compounds designed in the present study have tremendous potential to yield orally active ACC 2 inhibitors to treat metabolic syndrome.
Collapse
Affiliation(s)
- Kirtika Madan
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Seema Kesar
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Neha Chauhan
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Mansi Madan
- Medical Department, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
6
|
Zhu C, Qi Y, Wang X, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, Shi B, Hu J. Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. Int J Mol Sci 2023; 24:15488. [PMID: 37895167 PMCID: PMC10607073 DOI: 10.3390/ijms242015488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acetyl-CoA carboxylase beta (ACACB) is a functional candidate gene that impacts fat deposition. In the present study, we sequenced exon 37-intron 37, exon 46-intron 46, and intron 47 of yak ACACB using hybrid pool sequencing to search for variants and genotyped the gene in 593 Gannan yaks via Kompetitive allele-specific polymerase chain (KASP) reaction to determine the effect of ACACB variants on carcass and meat quality traits. Seven single nucleotide polymorphisms were detected in three regions. Eight effective haplotypes and ten diplotypes were constructed. Among them, a missense variation g.50421 A > G was identified in exon 37 of ACACB, resulting in an amino acid shift from serine to glycine. Correlation analysis revealed that this variation was associated with the cooking loss rate and yak carcass weight (p = 0.024 and 0.012, respectively). The presence of haplotypes H5 and H6 decreased Warner-Bratzler shear force (p = 0.049 and 0.006, respectively), whereas that of haplotypes H3 and H4 increased cooking loss rate and eye muscle area (p = 0.004 and 0.034, respectively). Moreover, the presence of haplotype H8 decreased the drip loss rate (p = 0.019). The presence of one and two copies of haplotypes H1 and H8 decreased the drip loss rate (p = 0.028 and 0.004, respectively). However, haplotype H1 did not decrease hot carcass weight (p = 0.011), whereas H3 increased the cooking loss rate (p = 0.007). The presence of one and two copies of haplotype H6 decreased Warner-Bratzler shear force (p = 0.014). The findings of the present study suggest that genetic variations in ACACB can be a preferable biomarker for improving yak meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| |
Collapse
|
7
|
Akbarabadi A, Ismaili A, Nazarian Firouzabadi F, Ercisli S, Kahrizi D. Assessment of ACC and P450 Genes Expression in Wild Oat (Avena ludoviciana) in Different Tissues Under Herbicide Application. Biochem Genet 2023; 61:1867-1879. [PMID: 36877417 DOI: 10.1007/s10528-023-10357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
Target-site resistance (TSR) and non-target-site resistance (NTSR) to herbicides in arable weeds are increasing rapidly all over the world and threatening universal food safety. Resistance to herbicides that inhibit ACCase activity has been identified in wild oat. In this study, expression of ACC1, ACC2, CYP71R4 and CYP81B1 genes under herbicide stress conditions were studied in two TSR (resistant in the residue Ile1781-Leu and Ile2041-Asn of ACCase) biotypes, two NTSR biotypes and one susceptible biotype of A. ludoviciana for the first time. Treated and untreated biotypes with ACCase-inhibitor clodinafop propargyl herbicide were sampled from the stem and leaf tissues at 24 h after treatment. Our results showed an increase in gene expression levels in different tissues of both types of resistance biotypes that occurred under herbicide treatment compared with non-herbicide treatment. In all samples, the expression levels of leaf tissue in all studied genes were higher than in stem tissue. The results of ACC gene expression showed that the expression level of ACC1 was significantly higher than that of ACC2. Also, expression levels of TSR biotypes were higher than NTSR biotypes for the ACC1 gene. For both CYP71R4 and CYP81B1 genes, the expression ratio increased significantly in TSR and NTSR biotypes in different tissues after herbicide treatment. In contrast, the expression levels of CYP genes in NTSR biotypes were higher than in TSR biotypes. Our results support the hypothesis that the reaction of plants to herbicide is carried out through a different regulation of genes, which can be the result of the interaction of resistance type in the target or non-target-site.
Collapse
Affiliation(s)
- Ali Akbarabadi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Danial Kahrizi
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Jin M, Yuan C, Duan S, Zeng B, Pan L. Downregulation of ACC expression suppresses cell viability and migration in the malignant progression of breast cancer. Exp Ther Med 2023; 26:445. [PMID: 37614434 PMCID: PMC10443050 DOI: 10.3892/etm.2023.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/16/2023] [Indexed: 08/25/2023] Open
Abstract
Exploring new diagnostic biomarkers and molecular targets is of great importance in breast cancer treatment. The present study investigated the effects of acetyl-CoA carboxylase (ACC) expression interference on the malignant progression of breast cancer cells. ACC expression was knocked down using a lentiviral vector and this was verified by quantitative polymerase chain reaction and western blotting. MCF-7 and MDA-MB-231 breast cancer cells were randomly allocated into the following groups: Normal breast cancer cells (control), breast cancer cells transduced with a negative control lentiviral vector and breast cancer cells transduced with an ACC knockdown lentiviral vector. Screening for stable transgenic strains was successful. Cell viability, apoptosis and migration were determined using Cell Counting Kit-8, flow cytometry and scratch test, respectively. The protein expression levels of N-cadherin, Vimentin and Bax were detected by western blotting. In addition, a nude mouse model of subcutaneous metastatic tumor was established using MCF-7 breast cancer cells, and tumor volume was assessed. Furthermore, pathological condition and apoptosis were detected using hematoxylin and eosin, and TUNEL staining, respectively. The protein expression levels of N-cadherin, Vimentin and Bax were detected by western blotting. The in vitro experiments showed that knockdown of ACC expression significantly decreased the viability and migration, and increased the apoptosis of MCF-7 and MDA-MB-231 breast cancer cells. In vivo experiments revealed that ACC knockdown effectively reduced the tumor volume in nude mice, and promoted tumor cell apoptosis. Both in vitro and in vivo experiments showed that ACC knockdown can reduce the protein expression levels of N-cadherin and Vimentin, and increase Bax expression. These findings suggested that downregulation of ACC expression may significantly reduce the malignant progression of breast cancer, and could be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Mei Jin
- Department of Galactophore, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunlei Yuan
- Department of Galactophore Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sijia Duan
- Department of Galactophore Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Zeng
- Department of General Surgery, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China
| | - Lingjuan Pan
- Department of General Surgery, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, P.R. China
| |
Collapse
|
9
|
Nandanpawar P, Sahoo L, Sahoo B, Murmu K, Chaudhari A, Pavan kumar A, Das P. Identification of differentially expressed genes and SNPs linked to harvest body weight of genetically improved rohu carp, Labeo rohita. Front Genet 2023; 14:1153911. [PMID: 37359361 PMCID: PMC10285081 DOI: 10.3389/fgene.2023.1153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits. In the present study, muscle transcriptome sequencing of two groups of individuals, with significant difference in breeding value, belonging to the tenth generation of rohu carp was performed using the Illumina HiSeq 2000 platform. A total of 178 million paired-end raw reads were generated to give rise to 173 million reads after quality control and trimming. The genome-guided transcriptome assembly and differential gene expression produced 11,86,119 transcripts and 451 upregulated and 181 downregulated differentially expressed genes (DEGs) between high-breeding value and low-breeding value (HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated transcripts, eight were associated with cellular growth and proliferation and harbored 13 SNPs. The gene expression pattern was observed to be positively correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of 26 miRNA target interactions were also identified to be associated with significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-CoA linked to higher harvest body weight may serve as candidate genes in marker-assisted breeding and SNP array construction for genome-wide association studies and genomic selection.
Collapse
Affiliation(s)
- P. Nandanpawar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - L. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - B. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K. Murmu
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - A. Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - A. Pavan kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - P. Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Approaches to Measuring the Activity of Major Lipolytic and Lipogenic Enzymes In Vitro and Ex Vivo. Int J Mol Sci 2022; 23:ijms231911093. [PMID: 36232405 PMCID: PMC9570359 DOI: 10.3390/ijms231911093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Since the 1950s, one of the goals of adipose tissue research has been to determine lipolytic and lipogenic activity as the primary metabolic pathways affecting adipocyte health and size and thus representing potential therapeutic targets for the treatment of obesity and associated diseases. Nowadays, there is a relatively large number of methods to measure the activity of these pathways and involved enzymes, but their applicability to different biological samples is variable. Here, we review the characteristics of mean lipogenic and lipolytic enzymes, their inhibitors, and available methodologies for assessing their activity, and comment on the advantages and disadvantages of these methodologies and their applicability in vivo, ex vivo, and in vitro, i.e., in cells, organs and their respective extracts, with the emphasis on adipocytes and adipose tissue.
Collapse
|
11
|
Ali I, Khan A, Fa Z, Khan T, Wei DQ, Zheng J. Crystal structure of Acetyl-CoA carboxylase (AccB) from Streptomyces antibioticus and insights into the substrate-binding through in silico mutagenesis and biophysical investigations. Comput Biol Med 2022; 145:105439. [PMID: 35344865 DOI: 10.1016/j.compbiomed.2022.105439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/18/2022]
Abstract
Acetyl-CoA carboxylase (ACC) is crucial for polyketides biosynthesis and acts as an essential metabolic checkpoint. It is also an attractive drug target against obesity, cancer, microbial infections, and diabetes. However, the lack of knowledge, particularly sequence-structure function relationship to narrate ligand-enzyme binding, has hindered the progress of ACC-specific therapeutics and unnatural "natural" polyketides. Structural characterization of such enzymes will boost the opportunity to understand the substrate binding, designing new inhibitors and information regarding the molecular rules which control the substrate specificity of ACCs. To understand the substrate specificity, we determined the crystal structure of AccB (Carboxyl-transferase, CT) from Streptomyces antibioticus with a resolution of 2.3 Å and molecular modeling approaches were employed to unveil the molecular mechanism of acetyl-CoA recognition and processing. The CT domain of S. antibioticus shares a similar structural organization with the previous structures and the two steps reaction was confirmed by enzymatic assay. Furthermore, to reveal the key hotspots required for the substrate recognition and processing, in silico mutagenesis validated only three key residues (V223, Q346, and Q514) that help in the fixation of the substrate. Moreover, we also presented atomic level knowledge on the mechanism of the substrate binding, which unveiled the terminal loop (500-514) function as an opening and closing switch and pushes the substrate inside the cavity for stable binding. A significant decline in the hydrogen bonding half-life was observed upon the alanine substitution. Consequently, the presented structural data highlighted the potential key interacting residues for substrate recognition and will also help to re-design ACCs active site for proficient substrate specificity to produce diverse polyketides.
Collapse
Affiliation(s)
- Imtiaz Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhang Fa
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
12
|
Lou X, Zhou X, Li H, Lu X, Bao X, Yang K, Liao X, Chen H, Fang H, Yang Y, Lyu J, Zheng H. Biallelic Mutations in ACACA Cause a Disruption in Lipid Homeostasis That Is Associated With Global Developmental Delay, Microcephaly, and Dysmorphic Facial Features. Front Cell Dev Biol 2021; 9:618492. [PMID: 34552920 PMCID: PMC8450402 DOI: 10.3389/fcell.2021.618492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
Objective We proposed that the deficit of ACC1 is the cause of patient symptoms including global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. We evaluated the possible disease-causing role of the ACACA gene in developmental delay and investigated the pathogenesis of ACC1 deficiency. Methods A patient who presented with global developmental delay with unknown cause was recruited. Detailed medical records were collected and reviewed. Whole exome sequencing found two variants of ACACA with unknown significance. ACC1 mRNA expression level, protein expression level, and enzyme activity level were detected in patient-derived cells. Lipidomic analysis, and in vitro functional studies including cell proliferation, apoptosis, and the migratory ability of patient-derived cells were evaluated to investigate the possible pathogenic mechanism of ACC1 deficiency. RNAi-induced ACC1 deficiency fibroblasts were established to assess the causative role of ACC1 deficit in cell migratory disability in patient-derived cells. Palmitate supplementation assays were performed to assess the effect of palmitic acid on ACC1 deficiency-induced cell motility deficit. Results The patient presented with global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. A decreased level of ACC1 and ACC1 enzyme activity were detected in patient-derived lymphocytes. Lipidomic profiles revealed a disruption in the lipid homeostasis of the patient-derived cell lines. In vitro functional studies revealed a deficit of cell motility in patient-derived cells and the phenotype was further recapitulated in ACC1-knockdown (KD) fibroblasts. The cell motility deficit in both patient-derived cells and ACC1-KD were attenuated by palmitate. Conclusion We report an individual with biallelic mutations in ACACA, presenting global development delay. In vitro studies revealed a disruption of lipid homeostasis in patient-derived lymphocytes, further inducing the deficit of cell motility capacity and that the deficiency could be partly attenuated by palmitate.
Collapse
Affiliation(s)
- Xiaoting Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiyue Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiyan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangpeng Lu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xinzhu Bao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiqiang Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Liao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hanxiao Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hong Zheng
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
13
|
Hliwa A, Ramos-Molina B, Laski D, Mika A, Sledzinski T. The Role of Fatty Acids in Non-Alcoholic Fatty Liver Disease Progression: An Update. Int J Mol Sci 2021; 22:ijms22136900. [PMID: 34199035 PMCID: PMC8269415 DOI: 10.3390/ijms22136900] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem worldwide. NAFLD (both simple steatosis and steatohepatitis) is characterized by alterations in hepatic lipid metabolism, which may lead to the development of severe liver complications including cirrhosis and hepatocellular carcinoma. Thus, an exhaustive examination of lipid disorders in the liver of NAFLD patients is much needed. Mass spectrometry-based lipidomics platforms allow for in-depth analysis of lipid alterations in a number of human diseases, including NAFLD. This review summarizes the current research on lipid alterations associated with NAFLD and related complications, with special emphasis on the changes in long-chain and short-chain fatty acids levels in both serum and liver tissue, as well as in the hepatic expression of genes encoding the enzymes catalyzing lipid interconversions.
Collapse
Affiliation(s)
- Aleksandra Hliwa
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (A.H.); (A.M.)
| | - Bruno Ramos-Molina
- Obesity and Metabolism Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain;
| | - Dariusz Laski
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (A.H.); (A.M.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (A.H.); (A.M.)
- Correspondence: ; Tel.: +48-58-3491479
| |
Collapse
|
14
|
Fatty acid synthesis and cancer: Aberrant expression of the ACACA and ACACB genes increases the risk for cancer. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Abstract
The worldwide prevalence of non-alcoholic fatty liver disease is around 25%, and that of nonalcoholic steatohepatitis (NASH) ranges from 1.5% to 6.45%. Patients with NASH, especially those with fibrosis, are at higher risk for adverse outcomes such as cirrhosis and liver-related mortality. Although vitamin E, pioglitazone, and liraglutide improved liver histology in randomized trials, there are currently no Food and Drug Administration-approved drugs for NASH. Five pharmacologic agents-obeticholic acid, elafibranor, cenicriviroc, resmetirom, and aramchol-are being evaluated in large, histology-based phase 3 trials. Within 2 to 4 years, new and effective drugs for the treatment of NASH are expected. Additionally, many phase 2 trials are ongoing for various agents. Based on the results of phase 2 and 3 trials, combination treatments are also being investigated. Future treatment strategies will comprise drug combinations and precision medicine based on the different phenotypes of NASH and treatment response of the individual patient.
Collapse
Affiliation(s)
- Soung Won Jeong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
- Corresponding author: Soung Won Jeong Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesagwan-ro, Yongsan-gu, Seoul 04401, Korea E-mail:
| |
Collapse
|
16
|
Kelly KL, Reagan WJ, Sonnenberg GE, Clasquin M, Hales K, Asano S, Amor PA, Carvajal-Gonzalez S, Shirai N, Matthews MD, Li KW, Hellerstein MK, Vera NB, Ross TT, Cappon G, Bergman A, Buckeridge C, Sun Z, Qejvanaj EZ, Schmahai T, Beebe D, Pfefferkorn JA, Esler WP. De novo lipogenesis is essential for platelet production in humans. Nat Metab 2020; 2:1163-1178. [PMID: 32929234 DOI: 10.1038/s42255-020-00272-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the first step of de novo lipogenesis (DNL). Pharmacologic inhibition of ACC has been of interest for therapeutic intervention in a wide range of diseases. We demonstrate here that ACC and DNL are essential for platelet production in humans and monkeys, but in not rodents or dogs. During clinical evaluation of a systemically distributed ACC inhibitor, unexpected dose-dependent reductions in platelet count were observed. While platelet count reductions were not observed in rat and dog toxicology studies, subsequent studies in cynomolgus monkeys recapitulated these platelet count reductions with a similar concentration response to that in humans. These studies, along with ex vivo human megakaryocyte maturation studies, demonstrate that platelet lowering is a consequence of DNL inhibition likely to result in impaired megakaryocyte demarcation membrane formation. These observations demonstrate that while DNL is a minor quantitative contributor to global lipid balance in humans, DNL is essential to specific lipid pools of physiological importance.
Collapse
Affiliation(s)
- Kenneth L Kelly
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - William J Reagan
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Gabriele E Sonnenberg
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Michelle Clasquin
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Shoh Asano
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Paul A Amor
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | - Norimitsu Shirai
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Marcy D Matthews
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Kelvin W Li
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Nicholas B Vera
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Gregg Cappon
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Arthur Bergman
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Clare Buckeridge
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Zhongyuan Sun
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Enida Ziso Qejvanaj
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | - David Beebe
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jeffrey A Pfefferkorn
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| |
Collapse
|
17
|
Wang D, Hiebl V, Schachner D, Ladurner A, Heiss EH, Atanasov AG, Dirsch VM. Soraphen A enhances macrophage cholesterol efflux via indirect LXR activation and ABCA1 upregulation. Biochem Pharmacol 2020; 177:114022. [DOI: 10.1016/j.bcp.2020.114022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
|
18
|
Liu T, Gou L, Yan S, Huang T. Inhibition of acetyl-CoA carboxylase by PP-7a exerts beneficial effects on metabolic dysregulation in a mouse model of diet-induced obesity. Exp Ther Med 2020; 20:521-529. [PMID: 32550887 PMCID: PMC7296295 DOI: 10.3892/etm.2020.8700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Acetyl-coenzyme A carboxylase (ACC) is a critical regulator of fatty acid metabolism and represents a promising therapeutic target for metabolic diseases, including obesity, type 2 diabetes and non-alcoholic fatty liver disease. Recently, a novel ACC inhibitor, PP-7a, was developed by our group by utilizing a structure-based drug design. In the present study, the pharmacological effects of PP-7a on the metabolic dysregulation in mice with high-fat diet (HFD)-induced obesity and the underlying mechanisms were investigated. The inhibitory effect on ACC activities was confirmed by assessing the level of malonyl-CoA, a product synthesized by the catalyzation of ACC. Following 16 weeks of being fed an HFD, the mice were administered PP-7a (15, 45 or 75 mg/kg) for 4 weeks. The effects of PP-7a on weight gain, glucose intolerance, hepatic lipid accumulation and the increase of serum triglyceride (TG), total cholesterol (TC) and free fatty acids (FFA) in mice were assessed. CP-640186 was used as a positive control drug and administered in the same manner as PP-7a. Chronic administration of PP-7a lowered the malonyl-CoA levels in liver and heart tissues of mice in the HFD group. In addition, HFD-induced weight gain and glucose intolerance were improved by PP-7a treatment in the mice fed the HFD. Furthermore, PP-7a suppressed hepatic lipid accumulation and the increase in TG, TC and FFA levels. Taken together, these results suggest that ACC inhibition by PP-7a may have a beneficial effect on metabolic dysregulation in obese mice.
Collapse
Affiliation(s)
- Tianya Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lingshan Gou
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Shirong Yan
- Jiangsu Province Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Tonghui Huang
- Jiangsu Province Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
19
|
Esler WP, Tesz GJ, Hellerstein MK, Beysen C, Sivamani R, Turner SM, Watkins SM, Amor PA, Carvajal-Gonzalez S, Geoly FJ, Biddle KE, Purkal JJ, Fitch M, Buckeridge C, Silvia AM, Griffith DA, Gorgoglione M, Hassoun L, Bosanac SS, Vera NB, Rolph TP, Pfefferkorn JA, Sonnenberg GE. Human sebum requires de novo lipogenesis, which is increased in acne vulgaris and suppressed by acetyl-CoA carboxylase inhibition. Sci Transl Med 2020; 11:11/492/eaau8465. [PMID: 31092695 DOI: 10.1126/scitranslmed.aau8465] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/05/2019] [Indexed: 12/28/2022]
Abstract
Sebum plays important physiological roles in human skin. Excess sebum production contributes to the pathogenesis of acne vulgaris, and suppression of sebum production reduces acne incidence and severity. We demonstrate that sebum production in humans depends on local flux through the de novo lipogenesis (DNL) pathway within the sebocyte. About 80 to 85% of sebum palmitate (16:0) and sapienate (16:1n10) were derived from DNL, based on stable isotope labeling, much higher than the contribution of DNL to triglyceride palmitate in circulation (~20%), indicating a minor contribution by nonskin sources to sebum lipids. This dependence on local sebocyte DNL was not recapitulated in two widely used animal models of sebum production, Syrian hamsters and Göttingen minipigs. Confirming the importance of DNL for human sebum production, an acetyl-CoA carboxylase inhibitor, ACCi-1, dose-dependently suppressed DNL and blocked synthesis of fatty acids, triglycerides, and wax esters but not free sterols in human sebocytes in vitro. ACCi-1 dose-dependently suppressed facial sebum excretion by ~50% (placebo adjusted) in human individuals dosed orally for 2 weeks. Sebum triglycerides, wax esters, and free fatty acids were suppressed by ~66%, whereas non-DNL-dependent lipid species, cholesterol, and squalene were not reduced, confirming selective modulation of DNL-dependent lipids. Last, individuals with acne vulgaris exhibited increased sebum production rates relative to individuals with normal skin, with >80% of palmitate and sapienate derived from DNL. These findings highlight the importance of local sebocyte DNL for human skin sebaceous gland biology and illuminate a potentially exploitable therapeutic target for the treatment of acne vulgaris.
Collapse
Affiliation(s)
- William P Esler
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA.
| | - Gregory J Tesz
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Marc K Hellerstein
- KineMed Inc., Emeryville, CA 94608, USA.,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Raja Sivamani
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA 95816, USA
| | | | | | - Paul A Amor
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Santos Carvajal-Gonzalez
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Frank J Geoly
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT 06340, USA
| | - Kathleen E Biddle
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT 06340, USA
| | - Julie J Purkal
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Clare Buckeridge
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Annette M Silvia
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - David A Griffith
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Matthew Gorgoglione
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Lauren Hassoun
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA 95816, USA
| | - Suzana S Bosanac
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA 95816, USA
| | - Nicholas B Vera
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Timothy P Rolph
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Jeffrey A Pfefferkorn
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Gabriele E Sonnenberg
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Recent development in acetyl-CoA carboxylase inhibitors and their potential as novel drugs. Future Med Chem 2020; 12:533-561. [PMID: 32048880 DOI: 10.4155/fmc-2019-0312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acetyl-CoA carboxylase (ACC), a critical enzyme in the regulation of fatty acid synthesis and metabolism, has emerged as an attractive target for a plethora of emerging diseases, such as diabetes mellitus, nonalcoholic fatty liver disease, cancer, bacterial infections and so on. With decades of efforts in medicinal chemistry, significant progress has been made toward the design and discovery of a considerable number of inhibitors of this enzyme. In this review, we not only clarify the role of ACC in emerging diseases, but also summarize recent developments of potent ACC inhibitors and discuss their molecular mechanisms of action and potentials as novel drugs as well as future perspectives toward the design and discovery of novel ACC inhibitors.
Collapse
|
21
|
Chen L, Duan Y, Wei H, Ning H, Bi C, Zhao Y, Qin Y, Li Y. Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opin Investig Drugs 2019; 28:917-930. [PMID: 31430206 DOI: 10.1080/13543784.2019.1657825] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: Acetyl-CoA Carboxylase (ACC) is an essential rate-limiting enzyme in fatty acid metabolism. For many years, ACC inhibitors have gained great attention for developing therapeutics for various human diseases including microbial infections, metabolic syndrome, obesity, diabetes, and cancer. Areas covered: We present a comprehensive review and update of ACC inhibitors. We look at the current advance of ACC inhibitors in clinical studies and the implications in drug discovery. We searched ScienceDirect ( https://www.sciencedirect.com/ ), ACS ( https://pubs.acs.org/ ), Wiley ( https://onlinelibrary.wiley.com/ ), NCBI ( https://www.ncbi.nlm.nih.gov/ ) and World Health Organization ( https://www.who.int/ ). The keywords used were Acetyl-CoA Carboxylase, lipid, inhibitors and metabolic syndrome. All documents were published before June 2019. Expert opinion: The key regulatory role of ACC in fatty acid synthesis and oxidation pathways makes it an attractive target for various metabolic diseases. In particular, the combination of ACC inhibitors with other drugs is a new strategy for the treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Expanding the clinical indications for ACC inhibitors will be one of the hot directions in the future. It is also worth looking forward to exploring safe and efficient inhibitors that act on the BC domain of ACC.
Collapse
Affiliation(s)
- Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Yuqing Duan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Huiqiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Hongxin Ning
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Changfen Bi
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Ying Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology , Chongqing , China
| | - Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| |
Collapse
|
22
|
Boutari C, Polyzos SA, Mantzoros CS. Of mice and men: Why progress in the pharmacological management of obesity is slower than anticipated and what could be done about it? Metabolism 2019; 96:vi-xi. [PMID: 30910448 DOI: 10.1016/j.metabol.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
23
|
Naini A, Sasse F, Brönstrup M. The intriguing chemistry and biology of soraphens. Nat Prod Rep 2019; 36:1394-1411. [PMID: 30950477 DOI: 10.1039/c9np00008a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering: up to the end of 2018Soraphens are a class of polyketide natural products discovered from the myxobacterial strain Sorangium cellulosum. The review is intended to provide an overview on the biosynthesis, chemistry and biological properties of soraphens, that represent a prime example to showcase the value of natural products as tools to decipher cell biology, but also to open novel therapeutic options. The prototype soraphen A is an inhibitor of acetyl coenzyme A carboxylase (ACC1/2), an enzyme that converts acetyl-CoA to malonyl-CoA and thereby controls essential cellular metabolic processes like lipogenesis and fatty acid oxidation. Soraphens illustrate how the inhibition of a single target (ACC1/2) may be explored to treat various pathological conditions: initially developed as a fungicide, efforts in the past decade were directed towards human diseases, including diabetes/obesity, cancer, hepatitis C, HIV, and autoimmune disease - and led to a synthetic molecule, discovered by virtual screening of the allosteric binding site of soraphen in ACC, that is currently in phase 2 clinical trials. We will summarize how structural analogs of soraphen A have been generated through extensive isolation efforts, genetic engineering of the biosynthetic gene cluster, semisynthesis as well as partial and total synthesis.
Collapse
Affiliation(s)
- Arun Naini
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. and Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| | - Florenz Sasse
- Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. and Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
24
|
Valente Duarte De Sousa IC. New and emerging drugs for the treatment of acne vulgaris in adolescents. Expert Opin Pharmacother 2019; 20:1009-1024. [DOI: 10.1080/14656566.2019.1584182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
ACC1 is overexpressed in liver cancers and contributes to the proliferation of human hepatoma Hep G2 cells and the rat liver cell line BRL 3A. Mol Med Rep 2019; 19:3431-3440. [PMID: 30816537 PMCID: PMC6472107 DOI: 10.3892/mmr.2019.9994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Acetyl-coenzyme A carboxylase 1 (ACC1) serves a major role in fatty acid synthesis. Previous reports have indicated that ACC1 is a promising drug target for treating human diseases, particularly cancers and metabolic diseases; however, the role of ACC1 in liver cancer and normal liver function remains unknown. In the present study, bioinformatics analysis indicated that ACC1 is overexpressed in liver cancer. Kaplan-Meier survival analysis revealed that the expression levels of ACC1 are highly associated with the prognosis of patients with liver cancer. To determine the role of ACC1 in cancer and normal liver cells, ACC1 expression was downregulated in human hepatoma Hep G2 cells and the rat liver cell line BRL 3A using RNA interference technology, which demonstrated that silencing of ACC1 significantly suppressed the cell viability in the two cell lines. Additionally, ACC1 knockdown decreased the mRNA and protein expression levels of the cell proliferation-associated genes MYCN, JUN, cyclin D1 (CCND1) and cyclin A2 (CCNA2) in BRL 3A. Furthermore, the number of cells in division phase (G2/M) was significantly reduced in the interference group, as detected by flow cytometry. Thus, ACC1 may bind and activate CCNA2, CCND1, MYCN and JUN to promote BRL 3A proliferation. In summary, the results of present study indicated that overexpression of ACC1 is significantly associated with the survival time of patients with liver cancer, and may provide insight into the association between ACC1 and cell proliferation in BRL 3A cells.
Collapse
|
26
|
Lawitz EJ, Coste A, Poordad F, Alkhouri N, Loo N, McColgan BJ, Tarrant JM, Nguyen T, Han L, Chung C, Ray AS, McHutchison JG, Subramanian GM, Myers RP, Middleton MS, Sirlin C, Loomba R, Nyangau E, Fitch M, Li K, Hellerstein M. Acetyl-CoA Carboxylase Inhibitor GS-0976 for 12 Weeks Reduces Hepatic De Novo Lipogenesis and Steatosis in Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol 2018; 16:1983-1991.e3. [PMID: 29705265 DOI: 10.1016/j.cgh.2018.04.042] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Increased de novo lipogenesis (DNL) contributes to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl-CoA carboxylase catalyzes the rate-limiting step in DNL. We evaluated the safety and efficacy of GS-0976, a small molecule inhibitor of acetyl-CoA carboxylase, in patients with NASH. METHODS In an open-label prospective study, patients with NASH (n = 10) received GS-0976 20 mg orally once daily for 12 weeks. NASH was diagnosed based on a proton density fat fraction estimated by magnetic resonance imaging (MRI-PDFF) ≥10% and liver stiffness by magnetic resonance elastography (MRE) ≥2.88 kPa. The contribution from hepatic DNL to plasma palmitate was measured by 14 days of heavy water labeling before and at the end of treatment. We performed the same labelling protocol in an analysis of healthy volunteers who were not given DNL (controls, n = 10). MRI-PDFF and MRE at baseline, and at weeks 4 and 12 of GS-0976 administration, were measured. We analyzed markers of liver injury and serum markers of fibrosis. RESULTS The contribution of hepatic DNL to plasma palmitate was significantly greater in patients with NASH compared with controls (43% vs 18%) (P = .003). After 12 weeks administration of GS-0976, the median hepatic DNL was reduced 22% from baseline in patients with NASH (P = .004). Compared with baseline, reductions in MRI-PDFF at week 12 (15.7% vs 9.1% at baseline; P = .006), liver stiffness by MRE (3.4 kPa vs 3.1 kPa at baseline; P = .049), TIMP metallopeptidase inhibitor 1 (275 ng/mL vs 244 ng/mL at baseline; P = .049), and serum level of alanine aminotransferase (101 U/L vs 57 U/L at baseline; P = .23) were consistent with decreased hepatic lipid content and liver injury. At week 12, 7 patients (70%) had a ≥30% decrease in MRI-PDFF. CONCLUSION In an open-label study, patients with NASH given GS-0976 for 12 weeks had reduced hepatic DNL, steatosis, and markers of liver injury. ClinicalTrials.gov no: NCT02856555.
Collapse
Affiliation(s)
- Eric J Lawitz
- Texas Liver Institute and University of Texas Health San Antonio, San Antonio, Texas.
| | - Angie Coste
- Texas Liver Institute and University of Texas Health San Antonio, San Antonio, Texas
| | - Fred Poordad
- Texas Liver Institute and University of Texas Health San Antonio, San Antonio, Texas
| | - Naim Alkhouri
- Texas Liver Institute and University of Texas Health San Antonio, San Antonio, Texas
| | - Nicole Loo
- Texas Liver Institute and University of Texas Health San Antonio, San Antonio, Texas
| | | | | | - Tuan Nguyen
- Gilead Sciences, Inc, Foster City, California
| | - Ling Han
- Gilead Sciences, Inc, Foster City, California
| | | | | | | | | | | | | | - Claude Sirlin
- University of California at San Diego, San Diego, California
| | - Rohit Loomba
- University of California at San Diego, San Diego, California
| | - Edna Nyangau
- University of California Berkeley, Berkeley, California
| | - Mark Fitch
- University of California Berkeley, Berkeley, California
| | - Kelvin Li
- University of California Berkeley, Berkeley, California
| | | |
Collapse
|
27
|
Resistance determination of the ACCase-inhibiting herbicide of clodinafop propargyl in Avena ludoviciana (Durieu), and study of their interaction using molecular docking and simulation. Mol Biol Rep 2018; 46:415-424. [PMID: 30448893 DOI: 10.1007/s11033-018-4489-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
Abstract
Structural mutations providing herbicide resistance may cause a modification of the three dimensional structure of a protein which will lead to a decrease in the herbicide efficacy. Wild oat (Avena ludoviciana Durieu.) is an increasingly disruptive weed in areas of intensive cereal production, thus the aim of this research was to identify mutations conferring resistance to ACCase-inhibitor herbicides at greenhouse, laboratory and in silico scales. Among the selected biotypes, No. 3 in the position 1781 (Ile1781-Leu) and No. 14 in the position 2041 (Ile2041-Asn), showed resistance to ACCase-inhibitor. The above mutations were confirmed using the specific primers and PCR-based methods. Analysis of molecular docking indicated that residues of Trp1948 and Pro2001 are important in the binding site and showed remarkable variation in the mutation types. Using molecular dynamic simulation analysis, we demonstrated that mutation types changed the conformation of the enzyme. These changes resulted in compressed conformation in the active site, which limited the availability of binding herbicide-enzyme. In present, no crystallography molecular structure and modeling reported on the ACCase of plants and this study investigated interactions of clodinafop propargyl and ACCase CT domain in A. ludoviciana by modeling, docking and simulations for the first time. Totally, bioinformatics analysis as well as PCR-based method confirmed that herbicide resistance conferred by nucleotide mutations in the gene sequence.
Collapse
|
28
|
Loomba R, Kayali Z, Noureddin M, Ruane P, Lawitz EJ, Bennett M, Wang L, Harting E, Tarrant JM, McColgan BJ, Chung C, Ray AS, Subramanian GM, Myers RP, Middleton MS, Lai M, Charlton M, Harrison SA. GS-0976 Reduces Hepatic Steatosis and Fibrosis Markers in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2018; 155:1463-1473.e6. [PMID: 30059671 PMCID: PMC6318218 DOI: 10.1053/j.gastro.2018.07.027] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/18/2018] [Accepted: 07/21/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS De novo lipogenesis is increased in livers of patients with nonalcoholic steatohepatitis (NASH). Acetyl-coenzyme carboxylase catalyzes the rate-limiting step in this process. We evaluated the safety and efficacy of GS-0976, an inhibitor of acetyl-coenzyme A carboxylase in liver, in a phase 2 randomized placebo-controlled trial of patients with NASH. METHODS We analyzed data from 126 patients with hepatic steatosis of at least 8%, based on the magnetic resonance imaging-estimated proton density fat fraction (MRI-PDFF), and liver stiffness of at least 2.5 kPa, based on magnetic resonance elastography measurement or historical biopsy result consistent with NASH and F1-F3 fibrosis. Patients were randomly assigned (2:2:1) to groups given GS-0976 20 mg, GS-0976 5 mg, or placebo daily for 12 weeks, from August 8, 2016 through July 18, 2017. Measures of hepatic steatosis, stiffness, serum markers of fibrosis, and plasma metabolomics were evaluated. The primary aims were to confirm previous findings and evaluate the relation between dose and efficacy. RESULTS A relative decrease of at least 30% from baseline in MRI-PDFF (PDFF response) occurred in 48% of patients given GS-0976 20 mg (P = .004 vs placebo), 23% given GS-0976 5 mg (P = .43 vs placebo), and 15% given placebo. Median relative decreases in MRI-PDFF were greater in patients given GS-0976 20 mg (decrease of 29%) than those given placebo (decrease of 8%; P = .002). Changes in magnetic resonance elastography-measured stiffness did not differ among groups, but a dose-dependent decrease in the fibrosis marker tissue inhibitor of metalloproteinase 1 was observed in patients given GS-0976 20 mg. Plasma levels of acylcarnitine species also decreased in patients with a PDFF response given GS-0976 20 mg. GS-0976 was safe, but median relative increases of 11% and 13% in serum levels of triglycerides were observed in patients given GS-0976. CONCLUSIONS In a randomized placebo-controlled trial of patients with NASH, we found 12-week administration of GS-0976 20 mg decreased hepatic steatosis, selected markers of fibrosis, and liver biochemistry. ClinicalTrials.gov ID NCT02856555.
Collapse
Affiliation(s)
- Rohit Loomba
- University of California at San Diego, La Jolla, California.
| | - Zeid Kayali
- Inland Empire Liver Foundation, Rialto, California
| | | | - Peter Ruane
- Ruane Medical and Liver Health Institute, Los Angeles, California
| | - Eric J. Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Michael Bennett
- Atlanta Gastroenterology Associates, Atlanta, Georgia; (6)Medical Research Associates Group, San Diego, California
| | - Lulu Wang
- Gilead Sciences, Inc, Foster City, California
| | | | | | | | | | | | | | | | | | - Michelle Lai
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
29
|
Liddie S, Okamoto H, Gromada J, Lawrence M. Characterization of glucose-stimulated insulin release protocols in african green monkeys (Chlorocebus aethiops). J Med Primatol 2018; 48:10-21. [PMID: 30357856 PMCID: PMC6587791 DOI: 10.1111/jmp.12374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
Abstract
Background Management of diabetes remains a major health and economic challenge, demanding test systems in which to develop new therapies. These studies assessed different methodologies for determining glucose tolerance in green monkeys. Methods Twenty‐eight African green monkeys between 4 and 24 years old underwent single or repeat intravenous glucose tolerance testing (IVGTT), oral glucose tolerance testing (OGTT), and/or graded glucose infusion testing. Results Geriatric monkeys exhibited glucose intolerance with impaired glucose‐stimulated insulin secretion following IVGTT. Repeat IVGTT and OGTT assessments were inconsistent. Monkeys with low glucose‐stimulated insulin secretion after graded glucose infusion exhibited elevated blood glucose levels. Conclusion IVGTT and graded glucose infusion protocols revealed differences in glucose tolerance among green monkeys at single time points, including age‐dependent differences suggestive of shifts in pancreatic beta‐cell functional capacity, but care should be applied to study design and the interpretation of data in the setting of longitudinal studies.
Collapse
Affiliation(s)
- Shervin Liddie
- RxGen Inc., New Haven, Connecticut.,St. Kitts Biomedical Research Foundation, Basseterre, St. Kitts W.I
| | | | | | - Matthew Lawrence
- RxGen Inc., New Haven, Connecticut.,St. Kitts Biomedical Research Foundation, Basseterre, St. Kitts W.I
| |
Collapse
|
30
|
Beysen C, Ruddy M, Stoch A, Mixson L, Rosko K, Riiff T, Turner SM, Hellerstein MK, Murphy EJ. Dose-dependent quantitative effects of acute fructose administration on hepatic de novo lipogenesis in healthy humans. Am J Physiol Endocrinol Metab 2018; 315:E126-E132. [PMID: 29558206 DOI: 10.1152/ajpendo.00470.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fructose feeding increases hepatic de novo lipogenesis (DNL) and is associated with nonalcoholic fatty liver disease. Little is known, however, about individual variation in susceptibility to fructose stimulation of DNL. In this three-period crossover study, 17 healthy male subjects were enrolled to evaluate the within- and between-subject variability of acute fructose feeding on hepatic fractional DNL. During each assessment, [1-13C1]acetate was infused to measure DNL in the fasting state and during fructose feeding. Subjects randomly received a high dose of fructose (10 mg·kg fat-free mass-1·min-1) on two occasions and a low dose (5 mg·kg fat-free mass-1·min-1) on another. Fructose solutions were administered orally every 30 min for 9.5 h. Ten subjects completed all three study periods. DNL was assessed as the fractional contribution of newly synthesized palmitate into very-low-density lipoprotein triglycerides using mass isotopomer distribution analysis. Mean fasting DNL was 5.3 ± 2.8%, with significant within- and between-subject variability. DNL increased dose dependently during fructose feeding to 15 ± 2% for low- and 29 ± 2% for high-dose fructose. The DNL response to high-dose fructose was very reproducible within an individual ( r = 0.93, P < 0.001) and independent of fasting DNL. However, it was variable between individuals and significantly correlated to influx of unlabeled acetyl-CoA ( r = 0.7, P < 0.001). Unlike fasting DNL, fructose-stimulated DNL is a robust and reproducible measure of hepatic lipogenic activity for a given individual and may be a useful indicator of metabolic disease susceptibility and treatment response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marc K Hellerstein
- KineMed, Emeryville, California
- Department of Nutritional Sciences, University of California Berkeley , Berkeley, California
| | - Elizabeth J Murphy
- KineMed, Emeryville, California
- Department of Medicine, University of California San Francisco, California
- Division of Endocrinology, Zuckerberg San Francisco General, San Francisco, California
| |
Collapse
|
31
|
He D, Sun X, Yang H, Li X, Yang D. TOFA induces cell cycle arrest and apoptosis in ACHN and 786-O cells through inhibiting PI3K/Akt/mTOR pathway. J Cancer 2018; 9:2734-2742. [PMID: 30087714 PMCID: PMC6072807 DOI: 10.7150/jca.26374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/02/2018] [Indexed: 12/25/2022] Open
Abstract
Cancer cells usually have a high requirement for fatty acids in order to meet the rapid proliferation and metabolism. Acetyl-CoA carboxylase-α(ACCA) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and has been a rate-limiting enzyme in the synthesis of long chain fatty acid and cellular energy storage. 5-tetradecyloxy-2-furoic acid (TOFA) is well known as an allosteric inhibitor of ACCA. In this study, we examined the functions of TOFA in human renal cell carcinoma (RCC) cell lines ACHN and 786-O. According to the results, TOFA inhibited ACHN and 786-O cell growth in a concentration and time dependent manner. The IC50 values of ACHN and 786-O cells were 6.06 and 5.36 µg/ml by the treatment of TOFA for 48 h, respectively. Flow cytometry analysis showed that TOFA markedly arrest cell cycle at G2/M phase and lead to cell apoptosis. In addition, Western blot results revealed that TOFA decreased the phosphorylation of proteinkinaseB(Akt), Mammalian target of rapamycin (mTOR) and p70 ribosomal protein S6 kinase (p70S6K). What's more, specific phosphoinositide 3-kinases (PI3K) phosphorylation inhibitor LY294002 potentiated TOFA anti-cancer activity. These results suggested that TOFA induces growth restraint and apoptosis via inhibiting the PI3K/Akt/mTOR pathway and TOFA may be a novel therapeutic strategy for RCC treatment.
Collapse
Affiliation(s)
- Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd ,Wuhan, 430060, China
| | - Xuan Sun
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd ,Wuhan, 430060, China
| | - Hongxia Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd ,Wuhan, 430060, China
| | - Xiaoli Li
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd ,Wuhan, 430060, China
| | - Dingping Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd ,Wuhan, 430060, China
| |
Collapse
|
32
|
Damiano F, Testini M, Tocci R, Gnoni GV, Siculella L. Translational control of human acetyl-CoA carboxylase 1 mRNA is mediated by an internal ribosome entry site in response to ER stress, serum deprivation or hypoxia mimetic CoCl 2. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:388-398. [PMID: 29343429 DOI: 10.1016/j.bbalip.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5' untranslated region (5' UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5' UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl2, up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5' UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Mariangela Testini
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Romina Tocci
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London, UK
| | - Gabriele V Gnoni
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luisa Siculella
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
33
|
Glatzel DK, Koeberle A, Pein H, Löser K, Stark A, Keksel N, Werz O, Müller R, Bischoff I, Fürst R. Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition. J Lipid Res 2017; 59:298-311. [PMID: 29208696 DOI: 10.1194/jlr.m080101] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.
Collapse
Affiliation(s)
- Daniel K Glatzel
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Konstantin Löser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Anna Stark
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Nelli Keksel
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| |
Collapse
|
34
|
Pan Y, Zhu E, Gao X, Nauen R, Xi J, Peng T, Wei X, Zheng C, Shang Q. Novel mutations and expression changes of acetyl-coenzyme A carboxylase are associated with spirotetramat resistance in Aphis gossypii Glover. INSECT MOLECULAR BIOLOGY 2017; 26:383-391. [PMID: 28370744 DOI: 10.1111/imb.12300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acetyl-coenzyme A carboxylase (ACC) catalyses the carboxylation of acetyl-coenzyme A (acetyl-CoA) to produce malonyl-CoA during the de novo synthesis of fatty acids. Spirotetramat, an inhibitor of ACC, is widely used to control a range of sucking insects, including the Aphis gossypii. In the present study, Reverse transcription quantitative real-time PCR (RT-qPCR) results demonstrated that ACC was significantly overexpressed in a laboratory-selected spirotetramat-resistant strain compared with the susceptible strain. ACC RNA interference significantly suppressed fecundity and led to cuticle formation deficiencies in resistant adults and nymphs compared with the control. The full-length ACC gene was sequenced from both resistant and susceptible cotton aphids, and a strong association was found between spirotetramat resistance and 14 amino acid substitutions in the biotin carboxylase domain and carboxyl transferase domain of the ACC gene. Furthermore, ACC activity was higher in resistant aphids than in the susceptible strain, and ACC in the resistant aphids exhibited significant insensitivity to spirotetramat and spirotetramat-enol. The results indicate that the overexpressed insensitive (mutated) ACC target played an important role in the high levels of spirotetramat resistance observed here. This association of amino acid substitution with resistance is the first report of a potential target site mechanism affecting spirotetramat in the cotton aphid.
Collapse
Affiliation(s)
- Y Pan
- College of Plant Science, Jilin University, Changchun, China
| | - E Zhu
- College of Plant Science, Jilin University, Changchun, China
| | - X Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - R Nauen
- Bayer CropScience AG, R&D Pest Control Biology, Monheim, Germany
| | - J Xi
- College of Plant Science, Jilin University, Changchun, China
| | - T Peng
- College of Plant Science, Jilin University, Changchun, China
| | - X Wei
- College of Plant Science, Jilin University, Changchun, China
| | - C Zheng
- College of Plant Science, Jilin University, Changchun, China
| | - Q Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
35
|
Stiede K, Miao W, Blanchette HS, Beysen C, Harriman G, Harwood HJ, Kelley H, Kapeller R, Schmalbach T, Westlin WF. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: A randomized, double-blind, crossover study. Hepatology 2017; 66:324-334. [PMID: 28470676 PMCID: PMC5599970 DOI: 10.1002/hep.29246] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED NDI-010976, an allosteric inhibitor of acetyl-coenzyme A carboxylases (ACC) ACC1 and ACC2, reduces hepatic de novo lipogenesis (DNL) and favorably affects steatosis, inflammation, and fibrosis in animal models of fatty liver disease. This study was a randomized, double-blind, placebo-controlled, crossover trial evaluating the pharmacodynamic effects of a single oral dose of NDI-010976 on hepatic DNL in overweight and/or obese but otherwise healthy adult male subjects. Subjects were randomized to receive either NDI-010976 (20, 50, or 200 mg) or matching placebo in period 1, followed by the alternate treatment in period 2; and hepatic lipogenesis was stimulated with oral fructose administration. Fractional DNL was quantified by infusing a stable isotope tracer, [1-13 C]acetate, and monitoring 13 C incorporation into palmitate of circulating very low-density lipoprotein triglyceride. Single-dose administration of NDI-010976 was well tolerated at doses up to and including 200 mg. Fructose administration over a 10-hour period stimulated hepatic fractional DNL an average of 30.9 ± 6.7% (mean ± standard deviation) above fasting DNL values in placebo-treated subjects. Subjects administered single doses of NDI-010976 at 20, 50, or 200 mg had significant inhibition of DNL compared to placebo (mean inhibition relative to placebo was 70%, 85%, and 104%, respectively). An inverse relationship between fractional DNL and NDI-010976 exposure was observed with >90% inhibition of fractional DNL associated with plasma concentrations of NDI-010976 >4 ng/mL. CONCLUSION ACC inhibition with a single dose of NDI-010976 is well tolerated and results in a profound dose-dependent inhibition of hepatic DNL in overweight adult male subjects. Therefore, NDI-010976 could contribute considerable value to the treatment algorithm of metabolic disorders characterized by dysregulated fatty acid metabolism, including nonalcoholic steatohepatitis. (Hepatology 2017;66:324-334).
Collapse
|
36
|
Hunt DW, Winters GC, Brownsey RW, Kulpa JE, Gilliland KL, Thiboutot DM, Hofland HE. Inhibition of Sebum Production with the Acetyl Coenzyme A Carboxylase Inhibitor Olumacostat Glasaretil. J Invest Dermatol 2017; 137:1415-1423. [DOI: 10.1016/j.jid.2016.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023]
|
37
|
Melnik BC. Olumacostat Glasaretil, a Promising Topical Sebum-Suppressing Agent that Affects All Major Pathogenic Factors of Acne Vulgaris. J Invest Dermatol 2017; 137:1405-1408. [PMID: 28647025 DOI: 10.1016/j.jid.2017.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
Hunt et al. show that olumacostat glasaretil, an inhibitor of acetyl coenzyme A carboxylase, reduces saturated and monounsaturated fatty acyl chains in sebaceous lipids. Topical olumacostat glasaretil application decreases hamster ear sebaceous gland size and shows efficacy in treating patients with acne vulgaris. Olumacostat glasaretil-mediated sebum suppression may reduce Propionibacterium acnes growth and biofilm formation, comedogenesis, and inflammation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine, Health Theory, Faculty of Human Sciences, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
38
|
Lazzari P, Serra V, Marcello S, Pira M, Mastinu A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur Neuropsychopharmacol 2017; 27:667-678. [PMID: 28377074 DOI: 10.1016/j.euroneuro.2017.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Weight gain is an important side effect of most atypical antipsychotic drugs such as olanzapine. Moreover, although many animal models with metabolic side effects have been well defined, the interaction with other pathways has to be considered. The endocannabinoid system and the CB1 receptor (CB1R) are among the most promising central and peripheral targets involved in weight and energy balance. In this study we developed a rat model based 15-days treatment with olanzapine that shows weight gain and an alteration of the blood parameters involved in the regulation of energy balance and glucose metabolism. Consequently, we analysed whether, and by which mechanism, a co-treatment with the novel CB1R neutral antagonist NESS06SM, could attenuate the adverse metabolic effects of olanzapine compared to the reference CB1R inverse agonist rimonabant. Our results showed alterations of the cannabinoid markers in the nucleus accumbens and of orexigenic/anorexigenic markers in the hypothalamus of female rats treated with olanzapine. These molecular modifications could explain the excessive food intake and the resulting weight gain. Moreover, we confirmed that a co-treatment with CB1R antagonist/inverse agonist compounds decreased food intake and weight increment and restored all blood parameters, without altering the positive effects of olanzapine on behaviour. Furthermore, rimonabant and NESS06SM restored the metabolic enzymes in the liver and fat tissue altered by olanzapine. Therefore, CB1 receptor antagonist/inverse agonist compounds could be good candidate agents for the treatment of weight gain induced by olanzapine.
Collapse
Affiliation(s)
- P Lazzari
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - V Serra
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - S Marcello
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - M Pira
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy.
| |
Collapse
|
39
|
Xie CL, Hwang CE, Oh CK, Yoon NA, Ryu JH, Jeong JY, Roh GS, Kim HJ, Cho GJ, Choi WS, Kang SS, Cho KM, Lee DH. Fermented soy-powder milk withLactobacillus plantarumP1201 protects against high-fat diet-induced obesity. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Cheng-liang Xie
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Chung Eun Hwang
- Department of Food Science; Gyeongnam National University of Science and Technology; Jinju 52729 Korea
| | - Cheol Kyu Oh
- Department of Urology; Haeundae Paik Hospital; Inje University College of Medicine; Busan 48108 Korea
| | - Nal Ae Yoon
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Jin Hyun Ryu
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Joo Yeon Jeong
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Kye Man Cho
- Department of Food Science; Gyeongnam National University of Science and Technology; Jinju 52729 Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| |
Collapse
|
40
|
Abel R, Mondal S, Masse C, Greenwood J, Harriman G, Ashwell MA, Bhat S, Wester R, Frye L, Kapeller R, Friesner RA. Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. Curr Opin Struct Biol 2017; 43:38-44. [DOI: 10.1016/j.sbi.2016.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023]
|
41
|
Singh U, Gangwal RP, Dhoke GV, Prajapati R, Damre M, Sangamwar AT. 3D-QSAR and molecular docking analysis of (4-piperidinyl)-piperazines as acetyl-CoA carboxylases inhibitors. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2012.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Bissonnette R, Poulin Y, Drew J, Hofland H, Tan J. Olumacostat glasaretil, a novel topical sebum inhibitor, in the treatment of acne vulgaris: A phase IIa, multicenter, randomized, vehicle-controlled study. J Am Acad Dermatol 2017; 76:33-39. [DOI: 10.1016/j.jaad.2016.08.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022]
|
43
|
Moshiri M, Mousavi SR, Etemad L. Hypoglycemia and revisable ST-elevation induced by Movento. Int J Appl Basic Med Res 2016; 6:284-286. [PMID: 27857899 PMCID: PMC5108108 DOI: 10.4103/2229-516x.192590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spirotetramat (STM), an active ingredient of insecticide Movento 100 suspension concentrate (M100), is an inhibitor of acetyl-CoA carboxylase (ACC). The ACC is catalyst of acetyl-CoA to malonyl-CoA (MCA) reaction. MCA is the rate limiting steps of fatty acid biosynthesis. An 18-years-old man, who was referred to our ward from a local hospital, ingested 100 ml of M100, 18 h before. When we visited him, he was confused with stable vital signs and complained of vomiting and epigastric discomfort. He experienced hypoglycemia (blood sugar = 31 mg/dl) that was treated by hypertonic 20% dextrose serum and continued by maintenance DW10% (100 ml/h) up to 3 h. The first electrocardiogram showed ST-elevation. The results of urgent bedside echocardiography findings were normal. His first troponin I value was 0.01 ng/ml and at 1 and 6 h later were zero. The elevated ST segment gradually returned to baseline through next 6 h. STM ingestion can cause hypoglycemia and ST changes.
Collapse
Affiliation(s)
- Mohammad Moshiri
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran; Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Reza Mousavi
- Medical Toxicology Research Centre, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Olivares-Rubio HF, Vega-López A. Fatty acid metabolism in fish species as a biomarker for environmental monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:297-312. [PMID: 27453357 DOI: 10.1016/j.envpol.2016.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Pollution by Organic Contaminants (OC) in aquatic environments is a relevant issue at the global scale. Lipids comprised of Fatty Acids (FA) play many important roles in the physiology and life history of fishes. Toxic effects of OC are partly dependent on its bioaccumulation in the lipids of aquatic organisms due its physicochemical properties. Therefore, there is an increasing interest to investigate the gene expression as well as the presence and activity of proteins involved in FA metabolism. The attention on Peroxisome Proliferation Activate Receptors (PPARs) also prevails in fish species exposed to OC and in the transport, biosynthesis and β-oxidation of FA. Several studies have been conducted under controlled conditions to evaluate these biological aspects of fish species exposed to OC, as fibrates, endocrine disrupting compounds, perfluoroalkyl acids, flame retardants, metals and mixtures of organic compounds associated with a polluted area. However, only fibrates, which are agonists of PPARs, induce biological responses suitable to be considered as biomarkers of exposure to these pollutants. According to the documented findings on this topic, it is unlikely that these physiological aspects are suitable to be employed as biomarkers with some noticeable exceptions, which depend on experimental design. This emphasises the need to investigate the responses in fish treated with mixtures of OC and in wild fish species from polluted areas to validate or refute the suitability of these biomarkers for environmental or fish health monitoring.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| |
Collapse
|
45
|
Wei X, Zheng C, Peng T, Pan Y, Xi J, Chen X, Zhang J, Yang S, Gao X, Shang Q. miR-276 and miR-3016-modulated expression of acetyl-CoA carboxylase accounts for spirotetramat resistance in Aphis gossypii Glover. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:S0965-1748(16)30158-8. [PMID: 27989834 DOI: 10.1016/j.ibmb.2016.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Acetyl-coenzyme A carboxylase (acetyl-CoA carboxylase, ACC) catalyses the carboxylation of acetyl-CoA to produce malonyl-CoA during de novo fatty acid synthesis. A laboratory-selected spirotetramat-resistant strain (SR) of cotton aphid was used in this study. RT-qPCR results demonstrated significant increases in the levels of ACC transcript in the resistant strain compared to the susceptible strain. Depletion of overexpressed ACC transcripts by RNAi also significantly enhanced the sensitivity of the resistant aphid to spirotetramat. We hypothesized that ACC gene expression is subject to post-transcriptional regulation. To investigate the underlying mechanism, the 66 known miRNAs of Aphis gossypii were used for target prediction, eight of which were predicted to target ACC. Validation identified two miRNAs, miR-276 and miR-3016, with abundance levels that were highly inversely correlated with ACC transcript levels. This result suggests that the miRNAs miR-276 and miR-3016 may play major roles in the post-transcriptional regulation of the ACC gene. Modulation of the abundance of miR-276 and miR-3016 through addition of inhibitors/mimics of miR-276 or miR-3016 to the artificial diet significantly altered both ACC transcript levels and the tolerance of A. gossypii to spirotetramat, thus confirming the roles of these two miRNAs in the regulation of spirotetramat resistance.
Collapse
Affiliation(s)
- Xiang Wei
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chao Zheng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
46
|
Vyas VK, Dabasia M, Qureshi G, Patel P, Ghate M. Molecular modeling study for the design of novel acetyl-CoA carboxylase inhibitors using 3D QSAR, molecular docking and dynamic simulations. J Biomol Struct Dyn 2016; 35:2003-2015. [DOI: 10.1080/07391102.2016.1204945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vivek K. Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Mohini Dabasia
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Gulamnizami Qureshi
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Palak Patel
- Institute of Science, Nirma University, S.G. Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
47
|
Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc Natl Acad Sci U S A 2016; 113:E1796-805. [PMID: 26976583 DOI: 10.1073/pnas.1520686113] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Simultaneous inhibition of the acetyl-CoA carboxylase (ACC) isozymes ACC1 and ACC2 results in concomitant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation and may favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver disease. Using structure-based drug design, we have identified a series of potent allosteric protein-protein interaction inhibitors, exemplified by ND-630, that interact within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibit the enzymatic activity of both ACC isozymes, reduce fatty acid synthesis and stimulate fatty acid oxidation in cultured cells and in animals, and exhibit favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia. When administered chronically to Zucker diabetic fatty rats, ND-630 reduces hepatic steatosis, improves glucose-stimulated insulin secretion, and reduces hemoglobin A1c (0.9% reduction). Together, these data suggest that ACC inhibition by representatives of this series may be useful in treating a variety of metabolic disorders, including metabolic syndrome, type 2 diabetes mellitus, and fatty liver disease.
Collapse
|
48
|
Khaire A, Rathod R, Kale A, Joshi S. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats. Prostaglandins Leukot Essent Fatty Acids 2015; 99:7-17. [PMID: 26003565 DOI: 10.1016/j.plefa.2015.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.
Collapse
Affiliation(s)
- Amrita Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Richa Rathod
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
49
|
Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 2015; 21:805-21. [PMID: 26039447 DOI: 10.1016/j.cmet.2015.05.014] [Citation(s) in RCA: 969] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetyl-coenzyme A (acetyl-CoA) is a central metabolic intermediate. The abundance of acetyl-CoA in distinct subcellular compartments reflects the general energetic state of the cell. Moreover, acetyl-CoA concentrations influence the activity or specificity of multiple enzymes, either in an allosteric manner or by altering substrate availability. Finally, by influencing the acetylation profile of several proteins, including histones, acetyl-CoA controls key cellular processes, including energy metabolism, mitosis, and autophagy, both directly and via the epigenetic regulation of gene expression. Thus, acetyl-CoA determines the balance between cellular catabolism and anabolism by simultaneously operating as a metabolic intermediate and as a second messenger.
Collapse
Affiliation(s)
- Federico Pietrocola
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| |
Collapse
|
50
|
Obesity and cancer progression: is there a role of fatty acid metabolism? BIOMED RESEARCH INTERNATIONAL 2015; 2015:274585. [PMID: 25866768 PMCID: PMC4383231 DOI: 10.1155/2015/274585] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.
Collapse
|