1
|
Helbing DL, Haas F, Cirri E, Rahnis N, Dau TTD, Kelmer Sacramento E, Oraha N, Böhm L, Lajqi T, Fehringer P, Morrison H, Bauer R. Impact of inflammatory preconditioning on murine microglial proteome response induced by focal ischemic brain injury. Front Immunol 2024; 15:1227355. [PMID: 38655254 PMCID: PMC11036884 DOI: 10.3389/fimmu.2024.1227355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Preconditioning with lipopolysaccharide (LPS) induces neuroprotection against subsequent cerebral ischemic injury, mainly involving innate immune pathways. Microglia are resident immune cells of the central nervous system (CNS) that respond early to danger signals through memory-like differential reprogramming. However, the cell-specific molecular mechanisms underlying preconditioning are not fully understood. To elucidate the distinct molecular mechanisms of preconditioning on microglia, we compared these cell-specific proteomic profiles in response to LPS preconditioning and without preconditioning and subsequent transient focal brain ischemia and reperfusion, - using an established mouse model of transient focal brain ischemia and reperfusion. A proteomic workflow, based on isolated microglia obtained from mouse brains by cell sorting and coupled to mass spectrometry for identification and quantification, was applied. Our data confirm that LPS preconditioning induces marked neuroprotection, as indicated by a significant reduction in brain infarct volume. The established brain cell separation method was suitable for obtaining an enriched microglial cell fraction for valid proteomic analysis. The results show a significant impact of LPS preconditioning on microglial proteome patterns by type I interferons, presumably driven by the interferon cluster regulator proteins signal transducer and activator of transcription1/2 (STAT1/2).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
- German Center for Mental Health (DZPG), Site Halle-Jena-Magdeburg, Jena, Germany
| | - Fabienne Haas
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | | | - Nova Oraha
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Leopold Böhm
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Pascal Fehringer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
2
|
Li L, Lei T, Xing C, Du H. Advances in microfluidic chips targeting toxic aggregation proteins for neurodegenerative diseases. Int J Biol Macromol 2024; 256:128308. [PMID: 37992921 DOI: 10.1016/j.ijbiomac.2023.128308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by nervous system damage, often influenced by genetic and aging factors. Pathological analysis frequently reveals the presence of aggregated toxic proteins. The intricate and poorly understood origins of these diseases have hindered progress in early diagnosis and drug development. The development of novel in-vitro and in-vivo models could enhance our comprehension of ND mechanisms and facilitate clinical treatment advancements. Microfluidic chips are employed to establish three-dimensional culture conditions, replicating the human ecological niche and creating a microenvironment conducive to neuronal cell survival. The incorporation of mechatronic controls unifies the chip, cells, and culture medium optimizing living conditions for the cells. This study provides a comprehensive overview of microfluidic chip applications in drug and biomarker screening for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Our Lab-on-a-Chip system releases toxic proteins to simulate the pathological characteristics of neurodegenerative diseases, encompassing β-amyloid, α-synuclein, huntingtin, TAR DNA-binding protein 43, and Myelin Basic Protein. Investigating molecular and cellular interactions in vitro can enhance our understanding of disease mechanisms while minimizing harmful protein levels and can aid in screening potential therapeutic agents. We anticipate that our research will promote the utilization of microfluidic chips in both fundamental research and clinical applications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Alexandris AS, Lee Y, Lehar M, Alam Z, McKenney J, Perdomo D, Ryu J, Welsbie D, Zack DJ, Koliatsos VE. Traumatic Axonal Injury in the Optic Nerve: The Selective Role of SARM1 in the Evolution of Distal Axonopathy. J Neurotrauma 2023; 40:1743-1761. [PMID: 36680758 PMCID: PMC10460965 DOI: 10.1089/neu.2022.0416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Traumatic axonal injury (TAI), thought to be caused by rotational acceleration of the head, is a prevalent neuropathology in traumatic brain injury (TBI). TAI in the optic nerve is a common finding in multiple blunt-force TBI models and hence a great model to study mechanisms and treatments for TAI, especially in view of the compartmentalized anatomy of the visual system. We have previously shown that the somata and the proximal, but not distal, axons of retinal ganglion cells (RGC) respond to DLK/LZK blockade after impact acceleration of the head (IA-TBI). Here, we explored the role of the sterile alpha and TIR-motif containing 1 (SARM1), the key driver of Wallerian degeneration (WD), in the progressive breakdown of distal and proximal segments of the optic nerve following IA-TBI with high-resolution morphological and classical neuropathological approaches. Wild type and Sarm1 knockout (KO) mice received IA-TBI or sham injury and were allowed to survive for 3, 7, 14, and 21 days. Ultrastructural and microscopic analyses revealed that TAI in the optic nerve is characterized by variable involvement of individual axons, ranging from apparent early disconnection of a subpopulation of axons to a range of ongoing axonal and myelin perturbations. Traumatic axonal injury resulted in the degeneration of a population of axons distal and proximal to the injury, along with retrograde death of a subpopulation of RGCs. Quantitative analyses on proximal and distal axons and RGC somata revealed that different neuronal domains exhibit differential vulnerability, with distal axon segments showing more severe degeneration compared with proximal segments and RGC somata. Importantly, we found that Sarm1 KO had a profound effect in the distal optic nerve by suppressing axonal degeneration by up to 50% in the first 2 weeks after IA-TBI, with a continued but lower effect at 3 weeks, while also suppressing microglial activation. Sarm1 KO had no evident effect on the initial traumatic disconnection and did not ameliorate the proximal optic axonopathy or the subsequent attrition of RGCs, indicating that the fate of different axonal segments in the course of TAI may depend on distinct molecular programs within axons.
Collapse
Affiliation(s)
| | - Youngrim Lee
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Lehar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zahra Alam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James McKenney
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dianela Perdomo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Derek Welsbie
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Donald J. Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Millet LJ, Jain A, Gillette MU. Less Is More: Oligomer Extraction and Hydrothermal Annealing Increase PDMS Adhesion Forces for Materials Studies and for Biology-Focused Microfluidic Applications. MICROMACHINES 2023; 14:214. [PMID: 36677275 PMCID: PMC9866318 DOI: 10.3390/mi14010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Cues in the micro-environment are key determinants in the emergence of complex cellular morphologies and functions. Primary among these is the presence of neighboring cells that form networks. For high-resolution analysis, it is crucial to develop micro-environments that permit exquisite control of network formation. This is especially true in cell science, tissue engineering, and clinical biology. We introduce a new approach for assembling polydimethylsiloxane (PDMS)-based microfluidic environments that enhances cell network formation and analyses. We report that the combined processes of PDMS solvent-extraction and hydrothermal annealing create unique conditions that produce high-strength bonds between solvent-extracted PDMS (E-PDMS) and glass-properties not associated with conventional PDMS. Extraction followed by hydrothermal annealing removes unbound oligomers, promotes polymer cross-linking, facilitates covalent bond formation with glass, and retains the highest biocompatibility. Herein, our extraction protocol accelerates oligomer removal from 5 to 2 days. Resulting microfluidic platforms are uniquely suited for cell-network studies owing to high adhesion forces, effectively corralling cellular extensions and eliminating harmful oligomers. We demonstrate the simple, simultaneous actuation of multiple microfluidic domains for invoking ATP- and glutamate-induced Ca2+ signaling in glial-cell networks. These E-PDMS modifications and flow manipulations further enable microfluidic technologies for cell-signaling and network studies as well as novel applications.
Collapse
Affiliation(s)
- Larry J. Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- The Center for Environmental Biotechnology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Anika Jain
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Luigetti M, Romano A, Guglielmino V, Sciarrone MA, Vitali F, Carbone C, Piro G, Sabino A, De Stefano N, Plantone D, Primiano G. Serum Inflammatory Profile in Hereditary Transthyretin Amyloidosis: Mechanisms and Possible Therapeutic Implications. Brain Sci 2022; 12:brainsci12121708. [PMID: 36552168 PMCID: PMC9775257 DOI: 10.3390/brainsci12121708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hereditary transthyretin (ATTRv) amyloidosis is a severe, progressive, and heterogeneous multisystemic condition due to mutations in the TTR gene. Although multiple aspects of its molecular pathophysiological mechanisms have been elucidated over the years, it is possible to hypothesize different pathogenetic pathways. Indeed, we extensively investigated the serum levels of several molecules involved in the immune response, in a cohort of ATTRv patients and healthy controls (HCs). Sixteen ATTRv patients and twenty-five HCs were included in the study. IFN-alpha levels were higher in ATTRv patients than in HCs, as well as IFN-gamma levels. By contrast, IL-7 levels were lower in ATTRv patients than in HCs. No significant difference between groups was found regarding IL-1Ra, IL-6, IL-2, IL-4, and IL-33 levels. Correlation analysis did not reveal any significant correlation between IFN-α, IFN-γ, IL-7, and demographic and clinical data. Larger and longitudinal studies using ultrasensitive methods to perform a full cytokine profiling are needed to better elucidate the role of inflammation in ATTRv pathogenesis and to test the reliability of these molecules as possible biomarkers in monitoring patients' progression.
Collapse
Affiliation(s)
- Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-30154435; Fax: +39-06-35501909
| | - Angela Romano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | | | | | - Carmine Carbone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Geny Piro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Sabino
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Centre of Precision and Translation Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Domenico Plantone
- Centre of Precision and Translation Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Cakir B, Kiral FR, Park IH. Advanced in vitro models: Microglia in action. Neuron 2022; 110:3444-3457. [PMID: 36327894 DOI: 10.1016/j.neuron.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
In the central nervous system (CNS), microglia carry out multiple tasks related to brain development, maintenance of brain homeostasis, and function of the CNS. Recent advanced in vitro model systems allow us to perform more detailed and specific analyses of microglial functions in the CNS. The development of human pluripotent stem cells (hPSCs)-based 2D and 3D cell culture methods, particularly advancements in brain organoid models, offers a better platform to dissect microglial function in various contexts. Despite the improvement of these methods, there are still definite restrictions. Understanding their drawbacks and benefits ensures their proper use. In this primer, we review current developments regarding in vitro microglial production and characterization and their use to address fundamental questions about microglial function in healthy and diseased states, and we discuss potential future improvements with a particular emphasis on brain organoid models.
Collapse
Affiliation(s)
- Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Megarity D, Vroman R, Kriek M, Downey P, Bushell TJ, Zagnoni M. A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience. LAB ON A CHIP 2022; 22:1989-2000. [PMID: 35466333 DOI: 10.1039/d2lc00115b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional in vitro models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex in vitro models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel in vitro studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex in vitro models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.
Collapse
Affiliation(s)
- D Megarity
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - R Vroman
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| | | | - P Downey
- UCB Biopharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - M Zagnoni
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| |
Collapse
|
8
|
Duan N, Zhang Y, Tan S, Sun J, Ye M, Gao H, Pu K, Wu M, Wang Q, Zhai Q. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol Dis 2022; 169:105739. [DOI: 10.1016/j.nbd.2022.105739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022] Open
|
9
|
Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling. Proc Natl Acad Sci U S A 2021; 118:2103087118. [PMID: 34663698 DOI: 10.1073/pnas.2103087118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
The patterning and ossification of the mammalian skeleton requires the coordinated actions of both intrinsic bone morphogens and extrinsic neurovascular signals, which function in a temporal and spatial fashion to control mesenchymal progenitor cell (MPC) fate. Here, we show the genetic inhibition of tropomyosin receptor kinase A (TrkA) sensory nerve innervation of the developing cranium results in premature calvarial suture closure, associated with a decrease in suture MPC proliferation and increased mineralization. In vitro, axons from peripheral afferent neurons derived from dorsal root ganglions (DRGs) of wild-type mice induce MPC proliferation in a spatially restricted manner via a soluble factor when cocultured in microfluidic chambers. Comparative spatial transcriptomic analysis of the cranial sutures in vivo confirmed a positive association between sensory axons and proliferative MPCs. SpatialTime analysis across the developing suture revealed regional-specific alterations in bone morphogenetic protein (BMP) and TGF-β signaling pathway transcripts in response to TrkA inhibition. RNA sequencing of DRG cell bodies, following direct, axonal coculture with MPCs, confirmed the alterations in BMP/TGF-β signaling pathway transcripts. Among these, the BMP inhibitor follistatin-like 1 (FSTL1) replicated key features of the neural-to-bone influence, including mitogenic and anti-osteogenic effects via the inhibition of BMP/TGF-β signaling. Taken together, our results demonstrate that sensory nerve-derived signals, including FSTL1, function to coordinate cranial bone patterning by regulating MPC proliferation and differentiation in the suture mesenchyme.
Collapse
|
10
|
Chen K, Lai C, Su Y, Bao WD, Yang LN, Xu PP, Zhu LQ. cGAS-STING-mediated IFN-I response in host defense and neuro-inflammatory diseases. Curr Neuropharmacol 2021; 20:362-371. [PMID: 34561985 PMCID: PMC9413793 DOI: 10.2174/1570159x19666210924110144] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
The presence of foreign or misplaced nucleic acids is a danger signal that triggers innate immune responses through activating cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and binding to its downstream signaling effector stimulator of interferon genes (STING). Then the cGAS-STING pathway activation links nucleic acid sensing to immune responses and pathogenic entities clearance. However, overactivation of this signaling pathway leads to fatal immune disorders and contributes to the progression of many human inflammatory diseases. Therefore, optimal activation of this pathway is crucial for the elimination of invading pathogens and the maintenance of immune homeostasis. In this review, we will summarize its fundamental roles in initiating host defense against invading pathogens and discuss its pathogenic roles in multiple neuro-inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Dai Bao
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liu Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping-Ping Xu
- Endoscopy Center, Wuhan Children's Hospital , Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Aldskogius H, Kozlova EN. Dorsal Root Injury-A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury. Cells 2021; 10:2185. [PMID: 34571835 PMCID: PMC8470715 DOI: 10.3390/cells10092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response closely resembling the one seen after direct spinal cord injury. In this review, we provide examples of previous research on dorsal root injury models and how these models can help future exploration of mechanisms and potential therapies for spinal cord injury repair.
Collapse
Affiliation(s)
- Håkan Aldskogius
- Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden;
| | | |
Collapse
|
12
|
Mouse primary microglia respond differently to LPS and poly(I:C) in vitro. Sci Rep 2021; 11:10447. [PMID: 34001933 PMCID: PMC8129154 DOI: 10.1038/s41598-021-89777-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia, CNS resident innate immune cells, respond strongly to activation of TLR3 and TLR4, which recognize viral dsRNA poly(I:C) and bacterial endotoxin LPS, respectively. However, few studies have thoroughly and parallelly compared functional phenotypes and downstream mechanisms between LPS- and poly(I:C)-exposed primary microglia. Here, we investigated the responses of mouse primary microglia upon LPS and poly(I:C) stimulation by detecting various phenotypes ranging from morphology, proliferation, secretion, chemotaxis, to phagocytosis. Furthermore, we explored their sequential gene expression and the downstream signal cascades. Interestingly, we found that the microglial activation pattern induced by LPS was distinguished from that induced by poly(I:C). Regarding microglial morphology, LPS caused an ameboid-like shape while poly(I:C) induced a bushy shape. Microglial proliferation was also facilitated by LPS but not by poly(I:C). In addition, LPS and poly(I:C) modulated microglial chemotaxis and phagocytosis differently. Furthermore, genome-wide analysis provided gene-level support to these functional differences, which may be associated with NF-κb and type I interferon pathways. Last, LPS- and poly(I:C)-activated microglia mediated neurotoxicity in a co-culture system. This study extends our understanding of TLR roles in microglia and provides insights into selecting proper inflammatory microglial models, which may facilitate identification of new targets for therapeutic application.
Collapse
|
13
|
Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4676. [PMID: 33925154 PMCID: PMC8125756 DOI: 10.3390/ijms22094676] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
With the world's population ageing, the incidence of Parkinson's disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.
Collapse
Affiliation(s)
- Katja Badanjak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Sonja Fixemer
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Luxembourg Centre for Neuropathology (LCNP), L-3555 Dudelange, Luxembourg
| | - Semra Smajić
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Department of Neuroscience, University California San Diego, La Jolla, CA 92093, USA
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
14
|
d'Angelo DM, Di Filippo P, Breda L, Chiarelli F. Type I Interferonopathies in Children: An Overview. Front Pediatr 2021; 9:631329. [PMID: 33869112 PMCID: PMC8044321 DOI: 10.3389/fped.2021.631329] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Notable advances in gene sequencing methods in recent years have permitted enormous progress in the phenotypic and genotypic characterization of autoinflammatory syndromes. Interferonopathies are a recent group of inherited autoinflammatory diseases, characterized by a dysregulation of the interferon pathway, leading to constitutive upregulation of its activation mechanisms or downregulation of negative regulatory systems. They are clinically heterogeneous, but some peculiar clinical features may lead to suspicion: a familial "idiopathic" juvenile arthritis resistant to conventional treatments, an early necrotizing vasculitis, a non-infectious interstitial lung disease, and a panniculitis associated or not with a lipodystrophy may represent the "interferon alarm bells." The awareness of this group of diseases represents a challenge for pediatricians because, despite being rare, a differential diagnosis with the most common childhood rheumatological and immunological disorders is mandatory. Furthermore, the characterization of interferonopathy molecular pathogenetic mechanisms is allowing important steps forward in other immune dysregulation diseases, such as systemic lupus erythematosus and inflammatory myositis, implementing the opportunity of a more effective target therapy.
Collapse
Affiliation(s)
| | | | - Luciana Breda
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Excellence on Aging, University of Chieti, Chieti, Italy
| |
Collapse
|
15
|
Understanding the appetite modulation pathways: The role of the FFA1 and FFA4 receptors. Biochem Pharmacol 2021; 186:114503. [PMID: 33711286 DOI: 10.1016/j.bcp.2021.114503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
Pharmaconutrition is an area of current interest, especially concerning the advances in the pharmacology of nutrient-sensing receptors, as have been accomplished in the last 20 years. The family of free fatty acid (FFA) receptors is composed of four members, sequentially named as FFA1 to FFA4, which are activated by the short to long-chain fatty acids. The affinity of the FFA1 and FFA4 receptors for the omega-3 polyunsaturated fatty acids prompted pre-clinical and clinical investigations regarding their involvement in metabolic diseases. The main studies have been focused on the receptors' expression analyses, the featuring of knockout mice, and the assessment of selective synthetic ligands. These clearly have indicated a relevant role for FFA1 and FFA4 in the peripheral and central circuits for the regulation of energetic metabolism. This review article aimed to discuss the relevance of the FFA1 and FFA4 receptors in appetite-related complications, mainly related to obesity, cancer cachexia, and anorexia in the elderly, emphasizing whether their pharmacological modulation might be useful for the management of these disorders.
Collapse
|
16
|
Epigenetics and Communication Mechanisms in Microglia Activation with a View on Technological Approaches. Biomolecules 2021; 11:biom11020306. [PMID: 33670563 PMCID: PMC7923060 DOI: 10.3390/biom11020306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Microglial cells, the immune cells of the central nervous system (CNS), play a crucial role for the proper brain development and function and in CNS homeostasis. While in physiological conditions, microglia continuously check the state of brain parenchyma, in pathological conditions, microglia can show different activated phenotypes: In the early phases, microglia acquire the M2 phenotype, increasing phagocytosis and releasing neurotrophic and neuroprotective factors. In advanced phases, they acquire the M1 phenotype, becoming neurotoxic and contributing to neurodegeneration. Underlying this phenotypic change, there is a switch in the expression of specific microglial genes, in turn modulated by epigenetic changes, such as DNA methylation, histones post-translational modifications and activity of miRNAs. New roles are attributed to microglial cells, including specific communication with neurons, both through direct cell–cell contact and by release of many different molecules, either directly or indirectly, through extracellular vesicles. In this review, recent findings on the bidirectional interaction between neurons and microglia, in both physiological and pathological conditions, are highlighted, with a focus on the complex field of microglia immunomodulation through epigenetic mechanisms and/or released factors. In addition, advanced technologies used to study these mechanisms, such as microfluidic, 3D culture and in vivo imaging, are presented.
Collapse
|
17
|
Abstract
Engineered human mini-brains, made possible by knowledge from the convergence of precision microengineering and cell biology, permit systematic studies of complex neurological processes and of pathogenesis beyond what can be done with animal models. By culturing human brain cells with physiological microenvironmental cues, human mini-brain models reconstitute the arrangement of structural tissues and some of the complex biological functions of the human brain. In this Review, we highlight the most significant developments that have led to microphysiological human mini-brain models. We introduce the history of mini-brain development, review methods for creating mini-brain models in static conditions, and discuss relevant state-of-the-art dynamic cell-culture systems. We also review human mini-brain models that reconstruct aspects of major neurological disorders under static or dynamic conditions. Engineered human mini-brains will contribute to advancing the study of the physiology and aetiology of neurological disorders, and to the development of personalized medicines for them.
Collapse
|
18
|
Agrahari R, Mohanty S, Vishwakarma K, Nayak SK, Samantaray D, Mohapatra S. "Update vision on COVID-19: Structure, immune pathogenesis, treatment and safety assessment". SENSORS INTERNATIONAL 2020; 2:100073. [PMID: 34766048 PMCID: PMC7722487 DOI: 10.1016/j.sintl.2020.100073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
The on-going SARS-CoV-2 causing COVID-19 discovered in December 2019, is responsible for a global pandemic. The virus belongs to the group of enveloped viruses containing linear, non-segmented, single stranded, positive sense strand RNA as genetic material. Already six different strains Coronaviruses are being reported to infect humans, however the seventh one is genetically similar to the SARS Coronavirus and termed as SARS-CoV-2. Specific crucial macromolecules such as membrane, nuclear, spike and enveloped proteins including HE esterase are present in the virus that interact with ACE2, APN, NEU-5, 9SC2 moiety of humans plays significant role in occurrence and transmission of the devastating disease. This review article summarizes the structure, histopathology, transmission of novel Coronavirus, its symptoms with preventive measures & currently prescribed drugs. Though various drugs and therapy have been administrated or implemented to restrict COVID-19, however it is imperative to develop an antidote against SARS-CoV-2 by the scientific or research community to save life.
Collapse
Affiliation(s)
- Rishabh Agrahari
- Amity Institute of Microbial Technology, Amity University, Uttar-pradesh, Noida, India
| | - Sonali Mohanty
- Department of Microbiology, CBSH, OUAT, Bhubaneswar, Odisha, India
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University, Uttar-pradesh, Noida, India
| | | | | | - Swati Mohapatra
- Amity Institute of Microbial Technology, Amity University, Uttar-pradesh, Noida, India
| |
Collapse
|
19
|
Cai H, Ao Z, Hu L, Moon Y, Wu Z, Lu HC, Kim J, Guo F. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer's disease. Analyst 2020; 145:6243-6253. [PMID: 32840509 PMCID: PMC7530134 DOI: 10.1039/d0an01373k] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuroinflammation plays a central role in the progression of many neurodegenerative diseases such as Alzheimer's disease, and challenges remain in modeling the complex pathological or physiological processes. Here, we report an acoustofluidic method that can rapidly construct 3D neurospheroids and inflammatory microenvironments for modeling microglia-mediated neuroinflammation in Alzheimer's disease. By incorporating a unique contactless and label-free acoustic assembly, this cell culture platform can assemble dissociated embryonic mouse brain cells into hundreds of uniform 3D neurospheroids with controlled cell numbers, composition (e.g. neurons, astrocytes, and microglia), and environmental components (e.g. amyloid-β aggregates) in hydrogel within minutes. Moreover, this platform can maintain and monitor the interaction among neurons, astrocytes, microglia, and amyloid-β aggregates in real-time for several days to weeks, after the integration of a high-throughput, time-lapse cell imaging approach. We demonstrated that our engineered 3D neurospheroids can represent the amyloid-β neurotoxicity, which is one of the main pathological features of Alzheimer's disease. Using this method, we also investigated the microglia migratory behaviors and activation in the engineered 3D inflammatory microenvironment at a high throughput manner, which is not easy to achieve in 2D neuronal cultures or animal models. Along with the simple fabrication and setup, the acoustofluidic technology is compatible with conventional Petri dishes and well-plates, supports the fine-tuning of the cellular and environmental components of 3D neurospheroids, and enables the high-throughput cellular interaction investigation. We believe our technology may be widely used to facilitate 3D in vitro brain models for modeling neurodegenerative diseases, discovering new drugs, and testing neurotoxicity.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Teixeira MI, Amaral MH, Costa PC, Lopes CM, Lamprou DA. Recent Developments in Microfluidic Technologies for Central Nervous System Targeted Studies. Pharmaceutics 2020; 12:E542. [PMID: 32545276 PMCID: PMC7356280 DOI: 10.3390/pharmaceutics12060542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDs) bear a lot of weight in public health. By studying the properties of the blood-brain barrier (BBB) and its fundamental interactions with the central nervous system (CNS), it is possible to improve the understanding of the pathological mechanisms behind these disorders and create new and better strategies to improve bioavailability and therapeutic efficiency, such as nanocarriers. Microfluidics is an intersectional field with many applications. Microfluidic systems can be an invaluable tool to accurately simulate the BBB microenvironment, as well as develop, in a reproducible manner, drug delivery systems with well-defined physicochemical characteristics. This review provides an overview of the most recent advances on microfluidic devices for CNS-targeted studies. Firstly, the importance of the BBB will be addressed, and different experimental BBB models will be briefly discussed. Subsequently, microfluidic-integrated BBB models (BBB/brain-on-a-chip) are introduced and the state of the art reviewed, with special emphasis on their use to study NDs. Additionally, the microfluidic preparation of nanocarriers and other compounds for CNS delivery has been covered. The last section focuses on current challenges and future perspectives of microfluidic experimentation.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO-REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.I.T.); (M.H.A.); (P.C.C.)
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Maria Helena Amaral
- UCIBIO-REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.I.T.); (M.H.A.); (P.C.C.)
| | - Paulo C. Costa
- UCIBIO-REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.I.T.); (M.H.A.); (P.C.C.)
| | - Carla M. Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
21
|
Morales Pantoja IE, Smith MD, Rajbhandari L, Cheng L, Gao Y, Mahairaki V, Venkatesan A, Calabresi PA, Fitzgerald KC, Whartenby KA. iPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS One 2020; 15:e0233980. [PMID: 32511247 PMCID: PMC7279569 DOI: 10.1371/journal.pone.0233980] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS) that results in variable severities of neurodegeneration. The understanding of MS has been limited by the inaccessibility of the affected cells and the lengthy timeframe of disease development. However, recent advances in stem cell technology have facilitated the bypassing of some of these challenges. Towards gaining a greater understanding of the innate potential of stem cells from people with varying degrees of disability, we generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells derived from stable and progressive MS patients, and then further differentiated them into oligodendrocyte (OL) lineage cells. We analyzed differentiation under both homeostatic and inflammatory conditions via sustained exposure to low-dose interferon gamma (IFNγ), a prominent cytokine in MS. We found that all iPSC lines differentiated into mature myelinating OLs, but chronic exposure to IFNγ dramatically inhibited differentiation in both MS groups, particularly if exposure was initiated during the pre-progenitor stage. Low-dose IFNγ was not toxic but led to an early upregulation of interferon response genes in OPCs followed by an apparent redirection in lineage commitment from OL to a neuron-like phenotype in a significant portion of the treated cells. Our results reveal that a chronic low-grade inflammatory environment may have profound effects on the efficacy of regenerative therapies.
Collapse
Affiliation(s)
- Itzy E. Morales Pantoja
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew D. Smith
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Linzhao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yongxing Gao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vasiliki Mahairaki
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathryn C. Fitzgerald
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Katharine A. Whartenby
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Maynard ME, Redell JB, Zhao J, Hood KN, Vita SM, Kobori N, Dash PK. Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury. Exp Neurol 2020; 327:113207. [PMID: 31962129 DOI: 10.1016/j.expneurol.2020.113207] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
One of the consistent pathologies associated with both clinical and experimental traumatic brain injury is axonal injury, especially following mild traumatic brain injury (or concussive injury). Several lines of experimental evidence have demonstrated a role for NAD+ metabolism in axonal degeneration. One of the enzymes that metabolizes NAD+ in axons is Sarm1 (Sterile Alpha and TIR Motif Containing 1), and its activity is thought to play a key role in axonal degeneration. Using a Sarm1 knock-out mouse, we examined if loss of Sarm1 offers axonal injury protection and improves cognitive outcome after repeated mild closed head injury (rmCHI). Our results indicate that rmCHI caused white matter damage that can be observed in the corpus callosum, cingulum bundle, alveus of the hippocampus, and fimbria of the fornix of wild-type mice. These pathological changes were markedly reduced in injured Sarm1-/- mice. Interestingly, the activation of astrocytes and microglia was also attenuated in the areas with white matter damage, suggesting reduced inflammation. Associated with these improved pathological outcomes, injured Sarm1-/- mice performed significantly better in both motor and cognitive tasks. Taken together, our results suggest that strategies aimed at inhibiting Sarm1 and/or restoring NAD+ levels in injured axons may have therapeutic utility.
Collapse
Affiliation(s)
- Mark E Maynard
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - John B Redell
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Jing Zhao
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Sydney M Vita
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America.
| |
Collapse
|
23
|
Choubey D. Type I interferon (IFN)-inducible Absent in Melanoma 2 proteins in neuroinflammation: implications for Alzheimer's disease. J Neuroinflammation 2019; 16:236. [PMID: 31771614 PMCID: PMC6880379 DOI: 10.1186/s12974-019-1639-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
Cumulative evidence indicates that activation of innate immune responses in the central nervous system (CNS) induces the expression of type 1 interferons (T1 IFNs), a family of cytokines. The T1 IFNs (IFN-α/β), through activation of the JAK/STAT-signaling in microglia, astrocytes, and neurons, induce the expression of IFN-inducible proteins, which mediate the pro- and anti-inflammatory functions of IFNs. Accordingly, T1 IFN-inducible Absent in Melanoma 2 proteins (murine Aim2 and human AIM2) negatively regulate the expression of TI IFNs and, upon sensing higher levels of cytosolic DNA, assemble the Aim2/AIM2 inflammasome, resulting in activation of caspase-1, pyroptosis, and the secretion of pro-inflammatory cytokines (e.g., IL-1β and IL-18). Of interest, studies have indicated a role for the Aim2/AIM2 proteins in neuroinflammation and neurodegenerative diseases, including Alzheimer's disease (AD). The ability of Aim2/AIM2 proteins to exert pro- and anti-inflammatory effects in CNS may depend upon age, sex hormones, cell-types, and the expression of species-specific negative regulators of the Aim2/AIM2 inflammasome. Therefore, we discuss the role of Aim2/AIM2 proteins in the development of AD. An improved understanding of the role of Absent in Melanoma 2 proteins in AD could identify new approaches to treat patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box 670056, Cincinnati, OH, 45267, USA.
| |
Collapse
|
24
|
McDonough A, Weinstein JR. The role of microglia in ischemic preconditioning. Glia 2019; 68:455-471. [PMID: 31386233 DOI: 10.1002/glia.23695] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
Abstract
Ischemic preconditioning (IPC) is an experimental phenomenon in which a brief ischemic stimulus confers protection against a subsequent prolonged ischemic event. Initially thought to be due to mechanistic changes in neurons, our understanding of IPC has evolved to encompass a global reprogramming of the Central Nervous System (CNS) after transient ischemia/reperfusion that requires innate immune signaling pathways including Toll-like receptors (TLRs) and Type I interferons. Microglia are the CNS resident neuroimmune cells that express these key innate immune receptors. Studies suggest that microglia are required for IPC-mediated neuronal and axonal protection. Multiple paradigms targeting TLRs have converged on a distinctive Type I interferon response in microglia that is critical for preconditioning-mediated protection against ischemia. These pathways can be targeted through administration of TLR agonists, cytokines including interferon-β, and pharmaceutical agents that induce preconditioning through cross-tolerance mechanisms. Transcriptomic analyses and single cell RNA studies point to specific gene expression signatures in microglia that functionally shift these mutable cells to an immunomodulatory or protective phenotype. Although there are technological challenges and gaps in knowledge to overcome, the targeting of specific molecular signaling pathways in microglia is a promising direction for development of novel and effective pharmacotherapies for stroke. Studies on preconditioning in animal models, including nonhuman primates, show promise as prophylactic preconditioning treatments for selected at risk patient populations. In addition, our growing understanding of the mechanisms of IPC-mediated protection is identifying novel cellular and molecular targets for therapeutic interventions that could apply broadly to both acute stroke and chronic vascular cognitive impairment patients.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington
| | - Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington.,Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Dagro A, Rajbhandari L, Orrego S, Kang SH, Venkatesan A, Ramesh KT. Quantifying the Local Mechanical Properties of Cells in a Fibrous Three-Dimensional Microenvironment. Biophys J 2019; 117:817-828. [PMID: 31421835 DOI: 10.1016/j.bpj.2019.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/28/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022] Open
Abstract
Measurements of the mechanical response of biological cells are critical for understanding injury and disease, for developing diagnostic tools, and for computational models in mechanobiology. Although it is well known that cells are sensitive to the topography of their microenvironment, the current paradigm in mechanical testing of adherent cells is mostly limited to specimens grown on flat two-dimensional substrates. In this study, we introduce a technique in which cellular indentation via optical trapping is performed on cells at a high spatial resolution to obtain their regional mechanical properties while they exist in a more favorable three-dimensional microenvironment. We combine our approach with nonlinear contact mechanics theory to consider the effects of a large deformation. This allows us to probe length scales that are relevant for obtaining overall cell stiffness values. The experimental results herein provide the hyperelastic material properties at both high (∼100 s-1) and low (∼1-10 s-1) strain rates of murine central nervous system glial cells. The limitations due to possible misalignment of the indenter in the three-dimensional space are examined using a computational model.
Collapse
Affiliation(s)
- Amy Dagro
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland.
| | | | - Santiago Orrego
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, Maryland
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Kaliat T Ramesh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
Fetah K, Tebon P, Goudie MJ, Eichenbaum J, Ren L, Barros N, Nasiri R, Ahadian S, Ashammakhi N, Dokmeci MR, Khademhosseini A. The emergence of 3D bioprinting in organ-on-chip systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2516-1091/ab23df] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Pavlov D, Bettendorff L, Gorlova A, Olkhovik A, Kalueff AV, Ponomarev ED, Inozemtsev A, Chekhonin V, Lesсh KP, Anthony DC, Strekalova T. Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:104-116. [PMID: 30472146 DOI: 10.1016/j.pnpbp.2018.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Emotional stress is a form of stress evoked by processing negative mental experience rather than an organic or physical disturbance and is a frequent cause of neuropsychiatric pathologies, including depression. Susceptibility to emotional stress is commonly regarded as a human-specific trait that is challenging to model in other species. Recently, we showed that a 3-week-long exposure to ultrasound of unpredictable alternating frequencies within the ranges of 20-25 kHz and 25-45 kHz can induce depression-like characteristics in laboratory mice and rats. In an anti-depressant sensitive manner, exposure decreases sucrose preference, elevates behavioural despair, increases aggression, and alters serotonin-related gene expression. To further investigate this paradigm, we studied depression/distress-associated markers of neuroinflammation, neuroplasticity, oxidative stress and the activity of glycogen synthase kinase-3 (GSK-3) isoforms in the hippocampus of male mice. Stressed mice exhibited a decreased density of Ki67-positive and DCX-positive cells in the subgranular zone of hippocampus, and altered expression of brain-derived neurotrophic factor (BDNF), its receptor TrkB, and anti-apoptotic protein kinase B phosphorylated at serine 473 (AktpSer473). The mice also exhibited increased densities of Iba-1-positive cells, increased oxidative stress, increased levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) in the hippocampus and plasma, and elevated activity of GSK-3 isoforms. Together, the results of our investigation have revealed that unpredictable alternating ultrasound evokes behavioural and molecular changes that are characteristic of the depressive syndrome and validates this new and simple method of modeling emotional stress in rodents.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow 125315, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium
| | - Anna Gorlova
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia
| | - Andrey Olkhovik
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St.Petersburg State University, Universitetskaya nab. 7-9, St.-Petersburg 199034, Russia
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anatoly Inozemtsev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, Kropotkinsky per 23, Moscow 119034, Russia
| | - Klaus-Peter Lesсh
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia; Division of Molecular Psychiatry, Center of Mental Health University of Wuerzburg, Josef-Schneider-Straße 2, Wuerzburg 97080, Germany
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3QT, UK.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow 125315, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia.
| |
Collapse
|
28
|
Nazmi A, Field RH, Griffin EW, Haugh O, Hennessy E, Cox D, Reis R, Tortorelli L, Murray CL, Lopez-Rodriguez AB, Jin L, Lavelle EC, Dunne A, Cunningham C. Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia 2019; 67:1254-1276. [PMID: 30680794 PMCID: PMC6520218 DOI: 10.1002/glia.23592] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Type I interferons (IFN‐I) are the principal antiviral molecules of the innate immune system and can be made by most cell types, including central nervous system cells. IFN‐I has been implicated in neuroinflammation during neurodegeneration, but its mechanism of induction and its consequences remain unclear. In the current study, we assessed expression of IFN‐I in murine prion disease (ME7) and examined the contribution of the IFN‐I receptor IFNAR1 to disease progression. The data indicate a robust IFNβ response, specifically in microglia, with evidence of IFN‐dependent genes in both microglia and astrocytes. This IFN‐I response was absent in stimulator of interferon genes (STING−/−) mice. Microglia showed increased numbers and activated morphology independent of genotype, but transcriptional signatures indicated an IFNAR1‐dependent neuroinflammatory phenotype. Isolation of microglia and astrocytes demonstrated disease‐associated microglial induction of Tnfα, Tgfb1, and of phagolysosomal system transcripts including those for cathepsins, Cd68, C1qa, C3, and Trem2, which were diminished in IFNAR1 and STING deficient mice. Microglial increases in activated cathepsin D, and CD68 were significantly reduced in IFNAR1−/− mice, particularly in white matter, and increases in COX‐1 expression, and prostaglandin synthesis were significantly mitigated. Disease progressed more slowly in IFNAR1−/− mice, with diminished synaptic and neuronal loss and delayed onset of neurological signs and death but without effect on proteinase K‐resistant PrP levels. Therefore, STING‐dependent IFN‐I influences microglial phenotype and influences neurodegenerative progression despite occurring secondary to initial degenerative changes. These data expand our mechanistic understanding of IFN‐I induction and its impact on microglial function during chronic neurodegeneration.
Collapse
Affiliation(s)
- Arshed Nazmi
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Robert H Field
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Eadaoin W Griffin
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Orla Haugh
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Edel Hennessy
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Donal Cox
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Renata Reis
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Carol L Murray
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Lei Jin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
29
|
Scheu S, Ali S, Mann-Nüttel R, Richter L, Arolt V, Dannlowski U, Kuhlmann T, Klotz L, Alferink J. Interferon β-Mediated Protective Functions of Microglia in Central Nervous System Autoimmunity. Int J Mol Sci 2019; 20:E190. [PMID: 30621022 PMCID: PMC6337097 DOI: 10.3390/ijms20010190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and axonal damage. It often affects young adults and can lead to neurological disability. Interferon β (IFNβ) preparations represent widely used treatment regimens for patients with relapsing-remitting MS (RRMS) with therapeutic efficacy in reducing disease progression and frequency of acute exacerbations. In mice, IFNβ therapy has been shown to ameliorate experimental autoimmune encephalomyelitis (EAE), an animal model of MS while genetic deletion of IFNβ or its receptor augments clinical severity of disease. However, the complex mechanism of action of IFNβ in CNS autoimmunity has not been fully elucidated. Here, we review our current understanding of the origin, phenotype, and function of microglia and CNS immigrating macrophages in the pathogenesis of MS and EAE. In addition, we highlight the emerging roles of microglia as IFNβ-producing cells and vice versa the impact of IFNβ on microglia in CNS autoimmunity. We finally discuss recent progress in unraveling the underlying molecular mechanisms of IFNβ-mediated effects in EAE.
Collapse
Affiliation(s)
- Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
- Cells in Motion, Cluster of Excellence, University of Münster, 48149 Münster, Germany.
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany.
| | - Luisa Klotz
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
- Cells in Motion, Cluster of Excellence, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
30
|
TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain Behav Immun 2018; 73:364-374. [PMID: 29852290 PMCID: PMC6129432 DOI: 10.1016/j.bbi.2018.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022] Open
Abstract
Hypothalamic inflammation is a key component of acute sickness behavior and cachexia, yet mechanisms of inflammatory signaling in the central nervous system remain unclear. Previous work from our lab and others showed that while MyD88 is an important inflammatory signaling pathway for sickness behavior, MyD88 knockout (MyD88KO) mice still experience sickness behavior after inflammatory stimuli challenge. We found that after systemic lipopolysaccharide (LPS) challenge, MyD88KO mice showed elevated expression of several cytokine and chemokine genes in the hypothalamus. We therefore assessed the role of an additional inflammatory signaling pathway, TRIF, in acute inflammation (LPS challenge) and in a chronic inflammatory state (cancer cachexia). TRIFKO mice resisted anorexia and weight loss after peripheral (intraperitoneal, IP) or central (intracerebroventricular, ICV) LPS challenge and in a model of pancreatic cancer cachexia. Compared to WT mice, TRIFKO mice showed attenuated upregulation of Il6, Ccl2, Ccl5, Cxcl1, Cxcl2, and Cxcl10 in the hypothalamus after IP LPS treatment, as well as attenuated microglial activation and neutrophil infiltration into the brain after ICV LPS treatment. Lastly, we found that TRIF was required for Ccl2 upregulation in the hypothalamus and induction of the catabolic genes, Mafbx, Murf1, and Foxo1 in gastrocnemius during pancreatic cancer. In summary, our results show that TRIF is an important inflammatory signaling mediator of sickness behavior and cachexia and presents a novel therapeutic target for these conditions.
Collapse
|
31
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
32
|
Stark DT, Anderson DMG, Kwong JMK, Patterson NH, Schey KL, Caprioli RM, Caprioli J. Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry. Invest Ophthalmol Vis Sci 2018; 59:212-222. [PMID: 29340649 PMCID: PMC5770179 DOI: 10.1167/iovs.17-22509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mammalian central nervous system axons fail to regenerate after injury. Contributing factors include limited intrinsic growth capacity and an inhibitory glial environment. Inflammation-induced optic nerve regeneration (IIR) is thought to boost retinal ganglion cell (RGC) intrinsic growth capacity through progrowth gene expression, but effects on the inhibitory glial environment of the optic nerve are unexplored. To investigate progrowth molecular changes associated with reactive gliosis during IIR, we developed an imaging mass spectrometry (IMS)-based approach that identifies discriminant molecular signals in and around optic nerve crush (ONC) sites. Methods ONC was performed in rats, and IIR was established by intravitreal injection of a yeast cell wall preparation. Optic nerves were collected at various postcrush intervals, and longitudinal sections were analyzed with matrix-assisted laser desorption/ionization (MALDI) IMS and data mining. Immunohistochemistry and confocal microscopy were used to compare discriminant molecular features with cellular features of reactive gliosis. Results IIR increased the area of the crush site that was occupied by a dense cellular infiltrate and mass spectral features consistent with lysosome-specific lipids. IIR also increased immunohistochemical labeling for microglia and macrophages. IIR enhanced clearance of lipid sulfatide myelin-associated inhibitors of axon growth and accumulation of simple GM3 gangliosides in a spatial distribution consistent with degradation of plasma membrane from degenerated axons. Conclusions IIR promotes a robust phagocytic response that improves clearance of myelin and axon debris. This growth-permissive molecular remodeling of the crush injury site extends our current understanding of IIR to include mechanisms extrinsic to the RGC.
Collapse
Affiliation(s)
- David T Stark
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - David M G Anderson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jacky M K Kwong
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Nathan Heath Patterson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Kevin L Schey
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard M Caprioli
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Joseph Caprioli
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
33
|
Mammone T, Chidlow G, Casson RJ, Wood JPM. Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension. Mol Cell Neurosci 2018; 88:270-291. [PMID: 29408550 DOI: 10.1016/j.mcn.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glaucoma is a leading cause of irreversible blindness manifesting as an age-related, progressive optic neuropathy with associated retinal ganglion cell (RGC) loss. Mitogen-activated protein kinases (MAPKs: p42/44 MAPK, SAPK/JNK, p38 MAPK) are activated in various retinal disease models and likely contribute to the mechanisms of RGC death. Although MAPKs play roles in the development of retinal pathology, their action in the optic nerve head (ONH), where the initial insult to RGC axons likely resides in glaucoma, remains unexplored. METHODS An experimental paradigm representing glaucoma was established by induction of chronic ocular hypertension (OHT) via laser-induced coagulation of the trabecular meshwork in Sprague-Dawley rats. MAPKs were subsequently investigated over the following days for expression and activity alterations, using RT-PCR, immunohistochemistry and Western immunoblot. RESULTS p42/44 MAPK expression was unaltered after intraocular pressure (IOP) elevation, but there was a significant activation of this enzyme in ONH astrocytes after 6-24 h. Activated SAPK/JNK isoforms were present throughout healthy RGC axons but after IOP elevation or optic nerve crush, they both accumulated at the ONH, likely due to RGC axon transport disruption, and were subject to additional activation. p38 MAPK was expressed by a population of microglia which were significantly more populous following IOP elevation. However it was only significantly activated in microglia after 3 days, and then only in the ONH and optic nerve; in the retina it was solely activated in RGC perikarya. CONCLUSIONS In conclusion, each of the MAPKs showed a specific spatio-temporal expression and activation pattern in the retina, ONH and optic nerve as a result of IOP elevation. These findings likely reflect the roles of the individual enzymes, and the cells in which they reside, in the developing pathology following IOP elevation. These data have implications for understanding the mechanisms of ocular pathology in diseases such as glaucoma.
Collapse
Affiliation(s)
- Teresa Mammone
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Robert J Casson
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - John P M Wood
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Shrirao AB, Kung FH, Omelchenko A, Schloss RS, Boustany NN, Zahn JD, Yarmush ML, Firestein BL. Microfluidic platforms for the study of neuronal injury in vitro. Biotechnol Bioeng 2018; 115:815-830. [PMID: 29251352 DOI: 10.1002/bit.26519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) affects 5.3 million people in the United States, and there are 12,500 new cases of spinal cord injury (SCI) every year. There is yet a significant need for in vitro models of TBI and SCI in order to understand the biological mechanisms underlying central nervous system (CNS) injury and to identify and test therapeutics to aid in recovery from neuronal injuries. While TBI or SCI studies have been aided with traditional in vivo and in vitro models, the innate limitations in specificity of injury, isolation of neuronal regions, and reproducibility of these models can decrease their usefulness in examining the neurobiology of injury. Microfluidic devices provide several advantages over traditional methods by allowing researchers to (1) examine the effect of injury on specific neural components, (2) fluidically isolate neuronal regions to examine specific effects on subcellular components, and (3) reproducibly create a variety of injuries to model TBI and SCI. These microfluidic devices are adaptable for modeling a wide range of injuries, and in this review, we will examine different methodologies and models recently utilized to examine neuronal injury. Specifically, we will examine vacuum-assisted axotomy, physical injury, chemical injury, and laser-based axotomy. Finally, we will discuss the benefits and downsides to each type of injury model and discuss how researchers can use these parameters to pick a particular microfluidic device to model CNS injury.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Frank H Kung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
35
|
Wang FX, Yang XL, Ma YS, Wei YJ, Yang MH, Chen X, Chen B, He Q, Yang QW, Yang H, Liu SY. TRIF contributes to epileptogenesis in temporal lobe epilepsy during TLR4 activation. Brain Behav Immun 2018; 67:65-76. [PMID: 28867282 DOI: 10.1016/j.bbi.2017.07.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence indicates that inflammatory processes play a crucial role in the etiopathology of epilepsy and seizure disorders. The Toll/IL-1R domain-containing adapter-inducing IFN-β (TRIF) activated several transcriptions leading to the production of pro-inflammatory cytokines in the central nervous system, which suggests a potential role for TRIF in the epileptogenesis of epilepsy. In this study, we investigated the roles of TRIF in human and mice epileptogenic tissues. Western blot and immunohistochemistry assays showed that the expression of TRIF was significantly upregulated in neurons and glial cells in both human epileptic tissues and mouse models, and positively correlated with seizure frequency. TRIF expression positively correlated with high-mobility group box 1 (HMGB1) expression. In TRIF-deficient mice, electroencephalograms displayed a significant decrease in seizure frequency and duration time, while KA induced seizures compared with wild-type (WT) mice. The number and duration time of spontaneous seizures were also decreased in the chronic KA-induced TRIF-deficient mouse models. In TLR4-deficient hippocampal neurons and mouse models, TRIF expression was lower compared with WT mice during HMGB1 and KA stimulation. Meanwhile, in KA-induced TRIF-deficient mouse models, microglia activation was significantly suppressed; pro-inflammatory factors including IL-1β, TNF-α, iNOS, HMGB1 and IFN-β were reduced; and the survival of the neurons in the hippocampus increased compared with WT mice. Our findings suggested that TRIF may be involved in the epileptogenesis of temporal lobe epilepsy, which would make it a potential therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Fa-Xiang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiao-Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuan-Shi Ma
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Mei-Hua Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Chen
- Department of Neurosurgery, Chengdu Military General Hospital, Sichuan 610083, China
| | - Bing Chen
- Department of Neurosurgery, Nanchong Central Hospital, Sichuan 637900, China
| | - Qian He
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qing-Wu Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
36
|
Abstract
Mechanisms of neuronal infection by varicella-zoster virus (VZV) have been challenging to study due to the relatively strict human tropism of the virus and the paucity of tractable experimental models. Cellular mitogen-activated protein kinases (MAPKs) have been shown to play a role in VZV infection of nonneuronal cells, with distinct consequences for infectivity in different cell types. Here, we utilize several human neuronal culture systems to investigate the role of one such MAPK, the c-Jun N-terminal kinase (JNK), in VZV lytic infection and reactivation. We find that the JNK pathway is specifically activated following infection of human embryonic stem cell-derived neurons and that this activation of JNK is essential for efficient viral protein expression and replication. Inhibition of the JNK pathway blocked viral replication in a manner distinct from that of acyclovir, and an acyclovir-resistant VZV isolate was as sensitive to the effects of JNK inhibition as an acyclovir-sensitive VZV isolate in neurons. Moreover, in a microfluidic-based human neuronal model of viral latency and reactivation, we found that inhibition of the JNK pathway resulted in a marked reduction in reactivation of VZV. Finally, we utilized a novel technique to efficiently generate cells expressing markers of human sensory neurons from neural crest cells and established a critical role for the JNK pathway in infection of these cells. In summary, the JNK pathway plays an important role in lytic infection and reactivation of VZV in physiologically relevant cell types and may provide an alternative target for antiviral therapy.IMPORTANCE Varicella-zoster virus (VZV) has infected over 90% of people worldwide. While primary infection leads to the typically self-limiting condition of chickenpox, the virus can remain dormant in the nervous system and may reactivate later in life, leading to shingles or inflammatory diseases of the nervous system and eye with potentially severe consequences. Here, we take advantage of newer stem cell-based technologies to study the mechanisms by which VZV infects human neurons. We find that the c-Jun N-terminal kinase (JNK) pathway is activated by VZV infection and that blockade of this pathway limits lytic replication (as occurs during primary infection). In addition, JNK inhibition limits viral reactivation, exhibiting parallels with herpes simplex virus reactivation. The identification of the role of the JNK pathway in VZV infection of neurons reveals potential avenues for the development of alternate antiviral drugs.
Collapse
|
37
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Microglial Interferon Signaling and White Matter. Neurochem Res 2017; 42:2625-2638. [PMID: 28540600 DOI: 10.1007/s11064-017-2307-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/17/2023]
Abstract
Microglia, the resident immune cells of the CNS, are primary regulators of the neuroimmune response to injury. Type I interferons (IFNs), including the IFNαs and IFNβ, are key cytokines in the innate immune system. Their activity is implicated in the regulation of microglial function both during development and in response to neuroinflammation, ischemia, and neurodegeneration. Data from numerous studies in multiple sclerosis (MS) and stroke suggest that type I IFNs can modulate the microglial phenotype, influence the overall neuroimmune milieu, regulate phagocytosis, and affect blood-brain barrier integrity. All of these IFN-induced effects result in numerous downstream consequences on white matter pathology and microglial reactivity. Dysregulation of IFN signaling in mouse models with genetic deficiency in ubiquitin specific protease 18 (USP18) leads to a severe neurological phenotype and neuropathological changes that include white matter microgliosis and pro-inflammatory gene expression in dystrophic microglia. A class of genetic disorders in humans, referred to as pseudo-TORCH syndrome (PTS) for the clinical resemblance to infection-induced TORCH syndrome, also show dysregulation of IFN signaling, which leads to severe neurological developmental disease. In these disorders, the excessive activation of IFN signaling during CNS development results in a destructive interferonopathy with similar induction of microglial dysfunction as seen in USP18 deficient mice. Other recent studies implicate "microgliopathies" more broadly in neurological disorders including Alzheimer's disease (AD) and MS, suggesting that microglia are a potential therapeutic target for disease prevention and/or treatment, with interferon signaling playing a key role in regulating the microglial phenotype.
Collapse
|
39
|
Thompson KK, Tsirka SE. The Diverse Roles of Microglia in the Neurodegenerative Aspects of Central Nervous System (CNS) Autoimmunity. Int J Mol Sci 2017; 18:ijms18030504. [PMID: 28245617 PMCID: PMC5372520 DOI: 10.3390/ijms18030504] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases of the central nervous system (CNS) involve inflammatory components and result in neurodegenerative processes. Microglia, the resident macrophages of the CNS, are the first responders after insults to the CNS and comprise a major link between the inflammation and neurodegeneration. Here, we will focus on the roles of microglia in two autoimmune diseases: the prevalent condition of multiple sclerosis (MS) and the much rarer Rasmussen’s encephalitis (RE). Although there is an abundance of evidence that microglia actively contribute to neuronal damage in pathological states such as MS and RE, there is also evidence of important reparative functions. As current research supports a more complex and diverse array of functions and phenotypes that microglia can assume, it is an especially interesting time to examine what is known about both the damaging and restorative roles that microglia can play in the inflammatory CNS setting. We will also discuss the pharmacological approaches to modulating microglia towards a more neuroprotective state.
Collapse
Affiliation(s)
- Kaitlyn K Thompson
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| | - Stella E Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
40
|
Harrison-Brown M, Liu GJ, Banati R. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. Int J Mol Sci 2016; 17:E2030. [PMID: 27918464 PMCID: PMC5187830 DOI: 10.3390/ijms17122030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as "assistants" in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several 'checkpoints' from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.
Collapse
Affiliation(s)
- Meredith Harrison-Brown
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Guo-Jun Liu
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Richard Banati
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DLJ, Rajbhandari L, Brushart TM, Minichiello L, Zhou F, Venkatesan A, Clemens TL. NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone. Cell Rep 2016; 16:2723-2735. [PMID: 27568565 DOI: 10.1016/j.celrep.2016.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 12/16/2022] Open
Abstract
Developing tissues dictate the amount and type of innervation they require by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase receptors. Here, we show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons were observed at perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers of incipient ossification. Inactivation of TrkA signaling during embryogenesis in TrkA(F592A) mice impaired innervation, delayed vascular invasion of the primary and secondary ossification centers, decreased numbers of Osx-expressing osteoprogenitors, and decreased femoral length and volume. These same phenotypic abnormalities were observed in mice following tamoxifen-induced disruption of NGF in Col2-expressing perichondrial osteochondral progenitors. We conclude that NGF serves as a skeletal neurotrophin to promote sensory innervation of developing long bones, a process critical for normal primary and secondary ossification.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zhi Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Qian Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Brian C Goh
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Thomas M Brushart
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Fengquan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
42
|
Rocha SM, Saraiva T, Cristóvão AC, Ferreira R, Santos T, Esteves M, Saraiva C, Je G, Cortes L, Valero J, Alves G, Klibanov A, Kim YS, Bernardino L. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 2016; 13:137. [PMID: 27260166 PMCID: PMC4893260 DOI: 10.1186/s12974-016-0600-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Background Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. Methods The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. Results We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Conclusions Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson’s disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced neuroinflammation. Importantly, our results also open promising new perspectives for the therapeutic use of H1R antagonists to treat or ameliorate neurodegenerative processes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0600-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra M Rocha
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tatiana Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana C Cristóvão
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago Santos
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Marta Esteves
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudia Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Goun Je
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luísa Cortes
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Jorge Valero
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Gilberto Alves
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Alexander Klibanov
- Division of Cardiovascular Medicine and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal. .,Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
43
|
Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 2016; 100:27-45. [PMID: 27162325 DOI: 10.1189/jlb.2ri1115-531r] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-dependent signaling is required for TLR-mediated production of type-I IFN and several other proinflammatory mediators. Various pathogens target the signaling molecules and transcriptional regulators acting in the TRIF pathway, thus demonstrating the importance of this pathway in host defense. Indeed, the TRIF pathway contributes to control of both viral and bacterial pathogens through promotion of inflammatory mediators and activation of antimicrobial responses. TRIF signaling also has both protective and pathologic roles in several chronic inflammatory disease conditions, as well as an essential function in wound-repair processes. Here, we review our current understanding of the regulatory mechanisms that control TRIF-dependent TLR signaling, the role of the TRIF pathway in different infectious and noninfectious pathologic states, and the potential for manipulating TRIF-dependent TLR signaling for therapeutic benefit.
Collapse
Affiliation(s)
- M Obayed Ullah
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia;
| |
Collapse
|
44
|
Sadaoka T, Depledge DP, Rajbhandari L, Venkatesan A, Breuer J, Cohen JI. In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency. Proc Natl Acad Sci U S A 2016; 113:E2403-12. [PMID: 27078099 PMCID: PMC4855584 DOI: 10.1073/pnas.1522575113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Varicella-zoster virus (VZV) establishes latency in human sensory and cranial nerve ganglia during primary infection (varicella), and the virus can reactivate and cause zoster after primary infection. The mechanism of how the virus establishes and maintains latency and how it reactivates is poorly understood, largely due to the lack of robust models. We found that axonal infection of neurons derived from hESCs in a microfluidic device with cell-free parental Oka (POka) VZV resulted in latent infection with inability to detect several viral mRNAs by reverse transcriptase-quantitative PCR, no production of infectious virus, and maintenance of the viral DNA genome in endless configuration, consistent with an episome configuration. With deep sequencing, however, multiple viral mRNAs were detected. Treatment of the latently infected neurons with Ab to NGF resulted in production of infectious virus in about 25% of the latently infected cultures. Axonal infection of neurons with vaccine Oka (VOka) VZV resulted in a latent infection similar to infection with POka; however, in contrast to POka, VOka-infected neurons were markedly impaired for reactivation after treatment with Ab to NGF. In addition, viral transcription was markedly reduced in neurons latently infected with VOka compared with POka. Our in vitro system recapitulates both VZV latency and reactivation in vivo and may be used to study viral vaccines for their ability to establish latency and reactivate.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel P Depledge
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College London, London WC1E 6BT, United Kingdom
| | - Labchan Rajbhandari
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Arun Venkatesan
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Judith Breuer
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College London, London WC1E 6BT, United Kingdom
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
45
|
Berry S, Mastorakos P, Zhang C, Song E, Patel H, Suk JS, Hanes J. Enhancing Intracranial Delivery of Clinically Relevant Non-viral Gene Vectors. RSC Adv 2016; 48:41665-41674. [PMID: 27642512 DOI: 10.1039/c6ra01546h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene therapy is a promising strategy for the management of various neurological disorders that do not respond adequately to conventional therapeutics. The development of gene vectors with favorable safety profiles that can achieve uniform distribution and high-level transgene expression in the brain remains challenging. The rod-shaped, non-viral gene delivery platform based on poly-L-lysine (PLL) conjugated to a single segment of polyethylene glycol (PEG) has shown safe transfection in human nares and mouse brains in vivo. However, we have previously demonstrated that a denser PEG coating is required for rapid diffusion of nanoparticles in the brain extracellular space. Here, we engineered a densely PEGylated version of this platform based on PLL polymers conjugated to branched PEG via alkyne-azide cycloaddition. We found that the newly developed gene vectors rapidly diffused in the brain parenchyma, providing significantly improved vector distribution and overall transgene expression in vivo compared to the previously developed platform. These brain-penetrating DNA nanoparticles exhibited enhanced cellular uptake presumably due to their ellipsoidal morphology. By simultaneously improving delivery to target cells and subsequent transfection, our densely PEGylated PLL DNA nanoparticles can provide widespread, high levels of transgene expression, essential for effective targeting of highly disseminated brain diseases.
Collapse
Affiliation(s)
- Sneha Berry
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Panagiotis Mastorakos
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clark Zhang
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric Song
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Himat Patel
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
46
|
Therapeutic depletion of monocyte-derived cells protects from long-term axonal loss in experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 290:36-46. [DOI: 10.1016/j.jneuroim.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 02/02/2023]
|
47
|
Costa GMF, de Oliveira AP, Martinelli PM, da Silva Camargos ER, Arantes RME, de Almeida-Leite CM. Demyelination/remyelination and expression of interleukin-1β, substance P, nerve growth factor, and glial-derived neurotrophic factor during trigeminal neuropathic pain in rats. Neurosci Lett 2015; 612:210-218. [PMID: 26687274 DOI: 10.1016/j.neulet.2015.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
The etiology of trigeminal neuropathic pain is not clear, but there is evidence that demyelination, expression of cytokines, neuropeptides, and neurotrophic factors are crucial contributors. In order to elucidate mechanisms underlying trigeminal neuropathic pain, we evaluated the time course of morphological changes in myelinated and unmyelinated trigeminal nerve fibers, expression of cytokine IL-1β, neuropeptide substance P (SP), nerve growth factor (NGF), and glial derived neurotrophic factor (GDNF) in peripheral and ganglion tissues, using a rat model of trigeminal neuropathic pain. Chronic constriction injury (CCI) of the infraorbital nerve (IoN), or a sham surgery, was performed. Mechanical allodynia was evaluated from day 3 to day 15 post-surgery. Trigeminal nerves were divided into 2 sections - distal to CCI and ganglion - for morphological analyses, immunohistochemistry (IL-1β, SP), and protein quantification by ELISA (NGF, GDNF). At early postoperative time points, decreased mechanical responses were observed, which were associated with demyelination, glial cell proliferation, increased immunoexpression of IL-1 β and SP, and impaired GDNF production. In the late postoperative period, mechanical allodynia was present with partial recovery of myelination, glial cell proliferation, and increased immunoreactivity of IL-1β and SP. Our data show that demyelination/remyelination processes are related to the development of pain behavior. IL-1β may have effects both in ganglia and nerves, while SP may be an important mediator at the nerve endings. Additionally, low levels of GDNF may produce impaired signaling, which may be involved in generation of pain.
Collapse
Affiliation(s)
- Grazielle Mara Ferreira Costa
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Patricia Massara Martinelli
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), UFMG, Brazil
| | | | - Rosa Maria Esteves Arantes
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Patologia Geral, ICB/UFMG, Brazil
| | - Camila Megale de Almeida-Leite
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), UFMG, Brazil.
| |
Collapse
|
48
|
Central Nervous System and its Disease Models on a Chip. Trends Biotechnol 2015; 33:762-776. [DOI: 10.1016/j.tibtech.2015.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 01/17/2023]
|
49
|
Halder SK, Matsunaga H, Ishii KJ, Ueda H. Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina. J Neurochem 2015; 135:1161-77. [PMID: 26364961 DOI: 10.1111/jnc.13356] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. Prothymosin-alpha preconditioning completely prevented the ischemia-induced loss of ganglion cells with partial survival of bipolar and photoreceptor cells, but not amacrine cells, in immunohistochemistry experiments. Prothymosin-alpha treatment in the absence of ischemia caused mild activation, proliferation, and migration of retinal microglia, whereas the ischemia-induced microglial activation was inhibited by prothymosin-alpha preconditioning. All these preventive effects of prothymosin-alpha preconditioning were abolished in TLR4 knock-out mice and by pre-treatments with anti-TLR4 antibodies or minocycline, a microglial inhibitor. Prothymosin-alpha preconditioning inhibited the retinal ischemia-induced up-regulation of TLR4-related injury genes, and increased expression of TLR4-related protective genes. Furthermore, the prothymosin-alpha preconditioning-induced prevention of retinal ischemic damage was abolished in TIR-domain-containing adapter-inducing interferon-β knock-out mice, but not in myeloid differentiation primary response gene 88 knock-out mice. Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: ProTα preconditioning-induced prevention of retinal ischemic damage is mediated by selective activation of the TIR-domain-containing adapter-inducing interferon-β (TRIF)- interferon regulatory factor 3 (IRF3) pathway downstream of toll-like receptor 4 (TLR4) in microglia, resulting in up-regulation of TRIF-IRF3-dependent protective genes and down-regulation of myeloid differentiation primary response gene 88 (MyD88)-Nuclear factor (NF)κB-dependent injury genes. Detailed investigations would be helpful to test the efficacy of ProTα as a therapeutic agent for the prevention of ischemic disorders.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
50
|
Goldmann T, Blank T, Prinz M. Fine-tuning of type I IFN-signaling in microglia--implications for homeostasis, CNS autoimmunity and interferonopathies. Curr Opin Neurobiol 2015; 36:38-42. [PMID: 26397019 PMCID: PMC7126514 DOI: 10.1016/j.conb.2015.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFN) are pleiotropic cytokines originally described as molecules used for communication between cells to trigger the protective defenses against viral infections. Upon activation, type I IFN can be produced locally in the central nervous system (CNS) from a number of different cell types including microglia, the CNS-resident macrophages. Increased type I IFN production and signaling in microglia are critically important to limit viral infection and disease progression in multiple sclerosis. However, recent findings suggest that even baseline levels of constitutive IFN expression and secretion are important for homeostasis of the CNS. In fact, in the absence of viral particles chronic elevation of IFN I may be tremendously harmful for the CNS, as assumed for patients suffering from Aicardi-Goutières syndrome, Cree encephalitis or other type I interferonopathies. The highly diverse nature of type I IFN for brain homeostasis during health and disease will be discussed in this report.
Collapse
Affiliation(s)
- Tobias Goldmann
- Institute of Neuropathology, University of Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, University of Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|