1
|
Wang Y, Zhang Q, Fei F, Hu K, Wang F, Cheng H, Xu C, Xu L, Wu J, Parpura V, Chen Z, Wang Y. Septo-subicular cholinergic circuit promotes seizure development via astrocytic inflammation. Cell Rep 2025; 44:115712. [PMID: 40372911 DOI: 10.1016/j.celrep.2025.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/29/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025] Open
Abstract
The central dogma explaining epileptic seizures largely revolves around the classic theory of "excitability-inhibition" imbalance between glutamatergic and GABAergic transmission. Cholinergic neurons play a significant role in epilepsy; however, these neuronal populations are molecularly and structurally heterogeneous. Here, we show a subpopulation of subiculum-projecting septal cholinergic neurons that promote seizure development. Functionally, this subpopulation is suppressed during seizures. Selective manipulation of the septo-subicular cholinergic circuit bidirectionally regulates the development of hippocampal seizures. Notably, cholinergic signaling enhances subicular astrocytic caspase-1-mediated neuroinflammation via M3 muscarinic receptors, increasing excitatory synaptic transmission and promoting seizure development. Together, these results demonstrate that activation of the septo-subicular cholinergic circuits facilitates seizure development via astrocytic inflammation. Our findings provide insight into the cholinergic mechanism involved in epilepsy and suggest targeted therapeutic strategies for epilepsy treatment, focusing on the specific cholinergic neuronal subpopulation.
Collapse
Affiliation(s)
- Yu Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingyang Zhang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyu Hu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fei Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Heming Cheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lingyu Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiannong Wu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
3
|
Ishihara Y, Sato F, Guinet A, Grosser S, Vida I, Kubota Y, Takayama C. Number of subfields of the rat dorsal subiculum defined by NOS and PCP4 immunoreactivity changes according to different levels of observation. Neuroscience 2025; 568:285-297. [PMID: 39755232 DOI: 10.1016/j.neuroscience.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
The subiculum is the main output part of the hippocampal formation and is important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to brain regions related to spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), whereas the dorsal subiculum (dSub) seems to comprise only one region (Sub1). However, the connection studies have reported that the dSub contains two regions. Accordingly, we hypothesized that the dSub may indicate "one region" and "two regions" at different dorsoventral levels. To confirm this hypothesis, serial sections of the dSub were prepared and labeled for nitric oxide synthase and Purkinje cell protein 4 as markers dividing the subiculum. As a result, vSub showed two regions, Sub1 and Sub2, whereas the dorsal tip of the subiculum showed one region (Sub1), as shown in our previous studies. However, two regions were observed in the dorsal sections. Accordingly, the same dSub indicated a different number of regions at different observation levels. To avoid confusion, we propose dividing the subiculum into Sub1 and Sub2 by immunoreactivities for subicular markers, instead of a rough division into the distal/proximal parts or the dorsal/ventral parts. Furthermore, we confirmed that Sub2 projected to the lateral septum. This finding is consistent with the fact that the proximal-ventral subiculum are involved in emotional memory.
Collapse
Affiliation(s)
- Yoshihisa Ishihara
- Department of Anatomy, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota, Tokyo 143-8540, Japan; Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany; Supportive Center for Brain Research, Section of Electron Microscopy, Kubota Group, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Molecular Anatomy, School of Medicine University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0213, Japan.
| | - Fumi Sato
- Department of Anatomy, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota, Tokyo 143-8540, Japan
| | - Alix Guinet
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Sabine Grosser
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Imre Vida
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Yoshiyuki Kubota
- Supportive Center for Brain Research, Section of Electron Microscopy, Kubota Group, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
4
|
Lévesque M, Gnatkovsky V, Li FR, Scalmani P, Uva L, Avoli M, de Curtis M. Fast activity chirp patterns in focal seizures from patients and animal models. Epilepsia 2025; 66:621-631. [PMID: 39723840 PMCID: PMC11908669 DOI: 10.1111/epi.18245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Time-frequency analysis of focal seizure electroencephalographic signals performed with depth electrodes in human temporal lobe structures has revealed the occurrence at onset of oscillations at approximately 30-100 Hz that feature a monotonic rapid decay in frequency content. This seizure onset pattern, referred to as chirp, has been identified as a highly specific and sensitive marker of focal seizures that are characterized by low-voltage fast activity. We report that this chirp pattern is also observed in animal models of temporal lobe epilepsy in both in vivo and in vitro preparations. We propose here that chirps mirror the involvement of synchronous interneuron firing that is known to represent a specific cellular mechanism leading to the initiation of focal seizures, in particular those characterized by low-voltage fast activity.
Collapse
Affiliation(s)
- Maxime Lévesque
- Department of Neurology and NeurosurgeryMontreal Neurological Institute‐HospitalMontrealQuebecCanada
| | - Vadym Gnatkovsky
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
- Department of EpileptologyUniversitätsklinikum BonnBonnGermany
| | - Fei Ran Li
- Department of Neurology and NeurosurgeryMontreal Neurological Institute‐HospitalMontrealQuebecCanada
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Paolo Scalmani
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
| | - Laura Uva
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
| | - Massimo Avoli
- Department of Neurology and NeurosurgeryMontreal Neurological Institute‐HospitalMontrealQuebecCanada
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Marco de Curtis
- Epilepsy UnitFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
5
|
Subramanian M, Chiang CC, Levi C, Durand DM. Controlling the local extracellular electric field can suppress the generation and propagation of seizures and spikes in the hippocampus. Brain Stimul 2025; 18:225-234. [PMID: 39938862 PMCID: PMC12013223 DOI: 10.1016/j.brs.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVE Neural activity such as theta waves, epileptic spikes and seizures can cross a physical transection using electric fields thus propagating by ephaptic coupling and independently of synaptic transmission. Recruitment of neurons in epilepsy occurs in part due to electric field coupling in addition to synaptic mechanisms. Hence, controlling the local electric field could suppress or cancel the generation of these epileptic events. METHODS 4-aminopyridine (4-AP) was used to induce spontaneous epileptic spikes and seizures in longitudinal hippocampal slices in-vitro. Two extracellular recording electrodes were placed in the tissue, one at the edge of the slice on the temporal side at the focus of the epileptic activity and the other on the septal side to record the propagation. Two stimulating electrodes were placed outside the slice at the edge of the focal zone. An extracellular voltage clamp circuit maintained the voltage within the focus at 0V with respect to the bath ground. RESULTS Experiments showed that 100 % of the epileptic activity originated at the temporal region and propagated to the septal region of the slices thereby establishing the existence of a focus in the temporal end of the tissue. The clamp achieved 100 % suppression of all seizure activity in the tissue with current amplitudes between 70 and 250 nA. No spikes or seizures were observed in either the focus or the septal region when the clamp was "on". When the clamp was turned off, both the spikes and seizure events recovered immediately. CONCLUSIONS The experiments show that controlling the extracellular voltage within a focus can prevent the generation and the propagation of epileptiform activity from the focus with very low amplitudes currents.
Collapse
Affiliation(s)
- Muthumeenakshi Subramanian
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cedric Levi
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Chen Y, Yang SN, Fu GL, Liu XX, Xiao XL, Wu XL, Wu F, Ma YB, Ji SF, Zhou JS, Liu JX. Effects of MeCP2 on chronic seizures and cognitive function in mice with temporal lobe epilepsy. Epilepsy Res 2025; 210:107512. [PMID: 39848012 DOI: 10.1016/j.eplepsyres.2025.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus. This study aimed to (1) examine whether MeCP2 affects spontaneous recurrent seizures (SRSs) and cognitive deficits in mice with pilocarpine-induced epilepsy, and (2) profile MeCP2's downstream molecular events. In the dentate gyrus (DG), we found that over-expression or suppression of MeCP2 significantly reduced or increased the frequency, duration, and number of stage 5 seizures of SRSs during the chronic stage after the SE. Over-expression of MeCP2 improved cognitive deficits in TLE mice, while exacerbated cognitive performances were observed following MeCP2 knockdown. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-sequence analyses revealed that MeCP2-targeted genes have far‑reaching impacts on the pathophysiological events during epileptogenesis, including neuron differentiation, neurogenesis, axon guidance, and so on.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Shu-Nan Yang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Guan-Ling Fu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Xiao-Xuan Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Xin-Li Xiao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Xiao-Lin Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Feng Wu
- Center of Teaching and Experiment for Medical Postgraduates, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Yan-Bing Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Sheng-Feng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Jin-Song Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Jian-Xin Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China.
| |
Collapse
|
7
|
Segal M. Distinct Ventral Hippocampus Network Properties in Dissociated Cultures. Hippocampus 2024; 34:744-752. [PMID: 39487646 DOI: 10.1002/hipo.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
Extensive research has been focused in the past century on structural, physiological, and molecular attributes of the hippocampus. This interest was created by the unique involvement of the hippocampus in cognitive and affective functions of the brain. Functional analysis revealed that the hippocampus has divergent properties along its axial dimension to the extent that the dorsal sector (dorsal hippocampus, DH) has different connections with the rest of the brain than those of the ventral sector (VH). Still, longitudinal pathways connect the DH with the VH and dampen the functional differences between the sectors. To be able to identify the intrinsic functional difference between the DH and VH, we produced dissociated monolayer cultures from prenatal DH and VH and examined their properties at 10-20 days after plating by imaging the spontaneous activity of the network using Fluo-2 AM, a calcium indicator. Surprisingly, while DH and VH sectors produced dissociated cultures with similar morphological attributes, VH cultures were more active spontaneously than DH cultures. Furthermore, when stimulated to produce action potentials, VH neurons triggered network bursts in postsynaptic neurons more often than DH cultures. Finally, in both DH and VH cultures, electrical stimulation of single cells produced network bursts in response to a burst of action potentials rather than to single spikes. These experiments indicate that even in dissociated cultures, neurons of the VH are more excitable and sensitive to electrical stimulation than DH; hence, they are more likely to generate network bursts and epileptic seizures, as suggested for in vivo brains.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Brain Sciences, The Weizmann Institute, Rehovot, Israel
| |
Collapse
|
8
|
Liška K, Pant A, Jefferys JGR. Diaphragm relaxation causes seizure-related apnoeas in chronic and acute seizure models in rats. Neurobiol Dis 2024; 203:106735. [PMID: 39547479 DOI: 10.1016/j.nbd.2024.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Ictal central apnoea is a feature of focal temporal seizures. It is implicated as a risk factor for sudden unexpected death in epilepsy (SUDEP). Here we study seizure-related apnoeas in two different models of experimental seizures, one chronic and one acute, in adult genetically-unmodified rats, to determine mechanisms of seizure-related apnoeas. Under general anaesthesia rats receive sensors for nasal temperature, hippocampal and/or neocortical potentials, and ECG or EMG for subsequent tethered video-telemetry. Tetanus neurotoxin (TeNT), injected into hippocampus during surgery, induces a chronic epileptic focus. Other implanted rats receive intraperitoneal pentylenetetrazol (PTZ) to evoke acute seizures. In chronically epileptic rats, convulsive seizures cause apnoeas (9.9 ± 5.3 s; 331 of 730 convulsive seizures in 15 rats), associated with bradyarrhythmias. Absence of EEG and ECG biomarkers exclude obstructive apnoeas. All eight TeNT-rats with diaphragm EMG have apnoeas with no evidence of obstruction, and have apnoea EMGs significantly closer to expiratory relaxation than inspiratory contraction during pre-apnoeic respiration, which we term "atonic diaphragm". Consistent with atonic diaphragm is that the pre-apnoeic nasal airflow is expiration, as it is in human ictal central apnoea. Two cases of rat sudden death occur. One, with telemetry to the end, reveals a lethal apnoea, the other only has video during the final days, which reveals cessation of breathing shortly after the last clonic epileptic movement. Telemetry following acute systemic PTZ reveals repeated seizures and seizure-related apnoeas, culminating in lethal apnoeas; ictal apnoeas are central - in 8 of 35 cases diaphragms initially contract tonically for 8.5 ± 15.0 s before relaxing, in the 27 remaining cases diaphragms are atonic throughout apnoeas. All terminal apnoeas are atonic. Differences in types of apnoea due to systemic PTZ in rats (mainly atonic) and mice (tonic) are likely species-specific. Certain genetic mouse models have apnoeas caused by tonic contraction, potentially due to expression of epileptogenic mutations throughout the brain, including in respiratory centres, in contrast with acquired focal epilepsies. We conclude that ictal apnoeas in the rat TeNT model result from atonic diaphragms. Relaxed diaphragms could be particularly helpful for therapeutic stimulation of the diaphragm to help restore respiration.
Collapse
Affiliation(s)
- Karolína Liška
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 15000, Czech Republic
| | - Aakash Pant
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 15000, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 15000, Czech Republic; Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| |
Collapse
|
9
|
Garcia Cerqueira EM, de Medeiros RE, da Silva Fiorin F, de Arújo E Silva M, Hypolito Lima R, Azevedo Dantas AFO, Rodrigues AC, Delisle-Rodriguez D. Local field potential-based brain-machine interface to inhibit epileptic seizures by spinal cord electrical stimulation. Biomed Phys Eng Express 2024; 11:015016. [PMID: 39530641 DOI: 10.1088/2057-1976/ad9155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Objective.This study proposes a closed-loop brain-machine interface (BMI) based on spinal cord stimulation to inhibit epileptic seizures, applying a semi-supervised machine learning approach that learns from Local Field Potential (LFP) patterns acquired on the pre-ictal (preceding the seizure) condition.Approach.LFP epochs from the hippocampus and motor cortex are band-pass filtered from 1 to 13 Hz, to obtain the time-frequency representation using the continuous Wavelet transform, and successively calculate the phase lock values (PLV). As a novelty, theZ-score-based PLV normalization using both modifiedk-means and Davies-Bouldin's measure for clustering is proposed here. Consequently, a generic seizure's detector is calibrated for detecting seizures on the normalized PLV, and enables the spinal cord stimulation for periods of 30 s in a closed-loop, while the BMI system detects seizure events. To calibrate the proposed BMI, a dataset with LFP signals recorded on five Wistar rats during basal state and epileptic crisis was used. The epileptic crisis was induced by injecting pentylenetetrazol (PTZ). Afterwards, two experiments without/with our BMI were carried out, inducing epileptic crisis by PTZ in Wistar rats.Main results.Stronger seizure events of high LFP amplitudes and long time periods were observed in the rat, when the BMI system was not used. In contrast, short-time seizure events of relative low intensity were observed in the rat, using the proposed BMI. The proposed system detected on unseen data the synchronized seizure activity in the hippocampus and motor cortex, provided stimulation appropriately, and consequently decreased seizure symptoms.Significance.Low-frequency LFP signals from the hippocampus and motor cortex, and cord spinal stimulation can be used to develop accurate closed-loop BMIs for early epileptic seizures inhibition, as an alternative treatment.
Collapse
Affiliation(s)
- Erika Maria Garcia Cerqueira
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Raquel Emanuela de Medeiros
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Fernando da Silva Fiorin
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Mariane de Arújo E Silva
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Ramón Hypolito Lima
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | | | - Abner Cardoso Rodrigues
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Denis Delisle-Rodriguez
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| |
Collapse
|
10
|
Wang Z, Zheng X, Fong TH, Liu X, Gong Z, Zhou Q, Liao J, Zhang Y. Contribution of prefrontal cortex and ventral hippocampus to anxiety in young epileptic mice. Biochem Biophys Res Commun 2024; 734:150789. [PMID: 39369539 DOI: 10.1016/j.bbrc.2024.150789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Children with epilepsy are particularly vulnerable to anxiety disorders, where these disorders are frequently underdiagnosed and untreated. Despite the high prevalence of anxiety in epilepsy, the underlying neurobiological mechanisms are not fully understood. The medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) are key brain regions implicated in the genesis and modulation of anxiety, and their interactions play a crucial role in emotional processing including anxiety. We utilized a pilocarpine-induced epilepsy model in young mice (7 weeks old) to assess anxiety-like behaviors using the open field test (OFT), light/dark box, and elevated plus maze (EPM). Local field potential (LFP) recordings were conducted to examine theta power and coherence between the mPFC and vHPC. LFP recordings revealed significantly altered theta power variation in both the mPFC and vHPC during exposure to anxiogenic contexts, suggesting the involvement of these regions in anxiety in the young epileptic mice. Notably, theta-frequency synchrony between the mPFC and vHPC was not significantly altered in the young epileptic mice, indicating that altered theta power rather than inter-regional synchrony may underlie anxiety behaviors in young epileptic mice. Furthermore, we demonstrated that chemogenetic inhibition of excitatory neurons in the mPFC and vHPC reduced anxiety levels in young epileptic mice. Altogether, our findings highlight the critical contributions of mPFC and vHPC to the pathogenesis of comorbid anxiety in epilepsy. These findings underscore the potential therapeutic significance of modulating the activity in these two regions as means to alleviate anxiety in a youth epilepsy population.
Collapse
Affiliation(s)
- Zeyi Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaoye Zheng
- School of Medicine, Dali University, Dali, 671000, China
| | - Tsz Hei Fong
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xueqing Liu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiting Gong
- School of Medicine, Dali University, Dali, 671000, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jianxiang Liao
- Pediatric Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Yujie Zhang
- Pediatric Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| |
Collapse
|
11
|
El-Shafei SMA, El-Rahman AAA, Abuelsaad ASA, Al-Khalaf AA, Shehab GMG, Abdel-Aziz AM. Assessment of the potential protective effects of culture filtrate of Trichoderma harzianum to ameliorate the damaged histoarchitecture of brain in epileptic rats. Metab Brain Dis 2024; 39:1363-1385. [PMID: 39115642 DOI: 10.1007/s11011-024-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/14/2024] [Indexed: 10/29/2024]
Abstract
The simultaneous hyperexcitability of the neural network is the most well-known manifestation of epilepsy that causes recurrent seizures. The current study was aimed to examine any potential safety benefits of the culture filtrate of Trichoderma harzianum (ThCF) to ameliorate damaged histoarchitecture of the brain in epileptic rats by assessing seizure intensity scale and behavioral impairments and follow up the spontaneous motor seizures during status epilepticus phases in rats. Twenty-four rats were divided into four groups; control (C), epileptic (EP) valproic acid-treated epileptic (EP-VPA), and epileptic treated with T. harzianum cultured filtrate (ThCF). In addition to a seizure intensity score and behavioral tests, routine H&E and Golgi-Copsch histopathology, were used to examine the cell somas, dendrites, axons, and neural spines. ThCF treatment increased activity and recorded movements during grooming, rearing, and ambulation frequency. Brain tissues of epileptic rats exhibited detached meninges, hypercellularity, mild edema in the cortex and markedly degenerated neurons, degenerated glial cells, and microcyst formation in the hippocampus. Moreover, brains of EP-ThCF were noticed with average blood vessels, and increased dendritogenesis. The current data revealed some of negative effects of epileptogenesis brought on by seizure intensity score and retarded histopathological alterations in the hippocampus. Therefore, the study is forecasting to identify novel active components from the metabolites of T. harzianum with a crucial therapeutic role in various disorders.
Collapse
Affiliation(s)
- Sally M A El-Shafei
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, 61517, El-Minya, Egypt
| | - Atef A Abd El-Rahman
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, 61517, El-Minya, Egypt
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Areej A Al-Khalaf
- Plant Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Gaber M G Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ayman M Abdel-Aziz
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
12
|
Bower MR. Review: seizure-related consolidation and the network theory of epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1430934. [PMID: 39238837 PMCID: PMC11374659 DOI: 10.3389/fnetp.2024.1430934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
Epilepsy is a complex, multifaceted disease that affects patients in several ways in addition to seizures, including psychological, social, and quality of life issues, but epilepsy is also known to interact with sleep. Seizures often occur at the boundary between sleep and wake, patients with epilepsy often experience disrupted sleep, and the rate of inter-ictal epileptiform discharges increases during non-REM sleep. The Network Theory of Epilepsy did not address a role for sleep, but recent emphasis on the interaction between epilepsy and sleep suggests that post-seizure sleep may also be involved in the process by which seizures arise and become more severe with time ("epileptogenesis") by co-opting processes related to the formation of long-term memories. While it is generally acknowledged that recurrent seizures arise from the aberrant function of neural circuits, it is possible that the progression of epilepsy is aided by normal, physiological function of neural circuits during sleep that are driven by pathological signals. Studies recording multiple, single neurons prior to spontaneous seizures have shown that neural assemblies activated prior to the start of seizures were reactivated during post-seizure sleep, similar to the reactivation of behavioral neural assemblies, which is thought to be involved in the formation of long-term memories, a process known as Memory Consolidation. The reactivation of seizure-related neural assemblies during sleep was thus described as being a component of Seizure-Related Consolidation (SRC). These results further suggest that SRC may viewed as a network-related aspect of epilepsy, even in those seizures that have anatomically restricted neuroanatomical origins. As suggested by the Network Theory of Epilepsy as a means of interfering with ictogenesis, therapies that interfered with SRC may provide some anti-epileptogenic therapeutic benefit, even if the interference targeted structures that were not involved originally in the seizure. Here, we show how the Network Theory of Epilepsy can be expanded to include neural plasticity mechanisms associated with learning by providing an overview of Memory Consolidation, the mechanisms thought to underlie MC, their relation to Seizure-Related Consolidation, and suggesting novel, anti-epileptogenic therapies targeting interference with network activation in epilepsy following seizures during post-seizure sleep.
Collapse
Affiliation(s)
- Mark R Bower
- Department of Neurology, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
14
|
Wormuth C, Papazoglou A, Henseler C, Ehninger D, Broich K, Haenisch B, Hescheler J, Köhling R, Weiergräber M. A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. Neural Plast 2024; 2024:9946769. [PMID: 39104708 PMCID: PMC11300100 DOI: 10.1155/2024/9946769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Although several adult rat models of medial temporal lobe epilepsy (mTLE) have been described in detail, our knowledge of mTLE epileptogenesis in infant rats is limited. Here, we present a novel infant rat model of mTLE (InfRPil-mTLE) based on a repetitive, triphasic injection regimen consisting of low-dose pilocarpine administrations (180 mg/kg. i.p.) on days 9, 11, and 15 post partum (pp). The model had a survival rate of >80% and exhibited characteristic spontaneous recurrent electrographic seizures (SRES) in both the hippocampus and cortex that persisted into adulthood. Using implantable video-EEG radiotelemetry, we quantified a complex set of seizure parameters that demonstrated the induction of chronic electroencephalographic seizure activity in our InfRPil-mTLE model, which predominated during the dark cycle. We further analyzed selected candidate genes potentially relevant to epileptogenesis using a RT-qPCR approach. Several candidates, such as the low-voltage-activated Ca2+ channel Cav3.2 and the auxiliary subunits β 1 and β 2, which were previously reported to be upregulated in the hippocampus of the adult pilocarpine mTLE model, were found to be downregulated (together with Cav2.1, Cav2.3, M1, and M3) in the hippocampus and cortex of our InfRPil-mTLE model. From a translational point of view, our model could serve as a blueprint for childhood epileptic disorders and further contribute to antiepileptic drug research and development in the future.
Collapse
Affiliation(s)
- Carola Wormuth
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Translational BiogerontologyGerman Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Center for Translational MedicineMedical FacultyUniversity of Bonn, Bonn, Germany
| | - Jürgen Hescheler
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of PhysiologyUniversity of Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Marco Weiergräber
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| |
Collapse
|
15
|
Chvojka J, Kudláček J, Liska K, Pant A, Jefferys JG, Jiruska P. Dissociation Between the Epileptogenic Lesion and Primary Seizure Onset Zone in the Tetanus Toxin Model of Temporal Lobe Epilepsy. Physiol Res 2024; 73:435-447. [PMID: 39027960 PMCID: PMC11299775 DOI: 10.33549/physiolres.935281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/13/2024] [Indexed: 07/27/2024] Open
Abstract
Despite extensive temporal lobe epilepsy (TLE) research, understanding the specific limbic structures' roles in seizures remains limited. This weakness can be attributed to the complex nature of TLE and the existence of various TLE subsyndromes, including non-lesional TLE. Conventional TLE models like kainate and pilocarpine hinder precise assessment of the role of individual limbic structures in TLE ictogenesis due to widespread limbic damage induced by the initial status epilepticus. In this study, we used a non-lesional TLE model characterized by the absence of initial status and cell damage to determine the spatiotemporal profile of seizure initiation and limbic structure recruitment in TLE. Epilepsy was induced by injecting a minute dose of tetanus toxin into the right dorsal hippocampus in seven animals. Following injection, animals were implanted with bipolar recording electrodes in the amygdala, dorsal hippocampus, ventral hippocampus, piriform, perirhinal, and entorhinal cortices of both hemispheres. The animals were video-EEG monitored for four weeks. In total, 140 seizures (20 seizures per animal) were analyzed. The average duration of each seizure was 53.2+/-3.9 s. Seizure could initiate in any limbic structure. Most seizures initiated in the ipsilateral (41 %) and contralateral (18 %) ventral hippocampi. These two structures displayed a significantly higher probability of seizure initiation than by chance. The involvement of limbic structures in seizure initiation varied between individual animals. Surprisingly, only 7 % of seizures initiated in the injected dorsal hippocampus. The limbic structure recruitment into the seizure activity wasn't random and displayed consistent patterns of early recruitment of hippocampi and entorhinal cortices. Although ventral hippocampus represented the primary seizure onset zone, the study demonstrated the involvement of multiple limbic structures in seizure initiation in a non-lesional TLE model. The study also revealed the dichotomy between the primary epileptogenic lesion and main seizure onset zones and points to the central role of ventral hippocampi in temporal lobe ictogenesis.
Collapse
Affiliation(s)
- J Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 5, Czech Republic. or
| | | | | | | | | | | |
Collapse
|
16
|
Danis AB, Gallagher AA, Anderson AN, Isakharov A, Beeson KA, Schnell E. Altered Hippocampal Activation in Seizure-Prone CACNA2D2 Knock-out Mice. eNeuro 2024; 11:ENEURO.0486-23.2024. [PMID: 38749701 PMCID: PMC11097259 DOI: 10.1523/eneuro.0486-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.
Collapse
Affiliation(s)
- Alyssa B Danis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashlynn A Gallagher
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashley N Anderson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Arielle Isakharov
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Kathleen A Beeson
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
17
|
Kalogeropoulos K, Psarropoulou C. Immature Status Epilepticus Alters the Temporal Relationship between Hippocampal Interictal Epileptiform Discharges and High-frequency Oscillations. Neuroscience 2024; 543:108-120. [PMID: 38401712 DOI: 10.1016/j.neuroscience.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The aim was to investigate the long-term effects of a single episode of immature Status Epilepticus (SE) on the excitability of the septal and temporal hippocampus in vitro, by studying the relationship between interictal-like epileptiform discharges (IEDs) and high-frequency oscillations (HFOs; Ripples, Rs and Fast Ripples, FRs). A pentylenetetrazol-induced Status Epilepticus-(SE)-like generalized seizure was induced at postnatal day 20 in 22 male and female juvenile rats, sacrificed >40 days later to prepare hippocampal slices. Spontaneous IEDs induced by Mg2+-free ACSF were recorded from the CA3 area of temporal (T) or septal (S) slices. Recordings were band-pass filtered off-line revealing Rs and FRs and a series of measurements were conducted, with mean values compared with those obtained from age-matched controls (CTRs). In CTR S (vs T) slices, we recorded longer R & FR durations, a longer HFO-IED temporal overlap, higher FR peak power and more frequent FR initiation preceding IEDs (% events). Post-SE, in T slices all types of events duration (IED, R, FR) and the time lag between their onsets (R-IED, FR-IED, R-FR) increased, while FR/R peak power decreased; in S slices, the IED 1st population spike and the FR amplitudes, the R and FR peak power and the (percent) events where Rs or FRs preceded IEDs all decreased. The CA3 IED-HFO relationship offers insights to the septal-to-temporal synchronization patterns; its post-juvenile-SE changes indicate permanent modifications in the septotemporal excitability gradient. Moreover, these findings are in line to region-specific regulation of various currents post-SE, as reported in literature.
Collapse
Affiliation(s)
- Konstantinos Kalogeropoulos
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| |
Collapse
|
18
|
Dusing MR, LaSarge CL, Drake AW, Westerkamp GC, McCoy C, Hetzer SM, Kraus KL, Pedapati EV, Danzer SC. Transient Seizure Clusters and Epileptiform Activity Following Widespread Bilateral Hippocampal Interneuron Ablation. eNeuro 2024; 11:ENEURO.0317-23.2024. [PMID: 38575351 PMCID: PMC11036118 DOI: 10.1523/eneuro.0317-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Interneuron loss is a prominent feature of temporal lobe epilepsy in both animals and humans and is hypothesized to be critical for epileptogenesis. As loss occurs concurrently with numerous other potentially proepileptogenic changes, however, the impact of interneuron loss in isolation remains unclear. For the present study, we developed an intersectional genetic approach to induce bilateral diphtheria toxin-mediated deletion of Vgat-expressing interneurons from dorsal and ventral hippocampus. In a separate group of mice, the same population was targeted for transient neuronal silencing with DREADDs. Interneuron ablation produced dramatic seizure clusters and persistent epileptiform activity. Surprisingly, after 1 week seizure activity declined precipitously and persistent epileptiform activity disappeared. Occasional seizures (≈1/day) persisted to the end of the experiment at 4 weeks. In contrast to the dramatic impact of interneuron ablation, transient silencing produced large numbers of interictal spikes, a significant but modest increase in seizure occurrence and changes in EEG frequency band power. Taken together, findings suggest that the hippocampus regains relative homeostasis-with occasional breakthrough seizures-in the face of an extensive and abrupt loss of interneurons.
Collapse
Affiliation(s)
- Mary R Dusing
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Austin W Drake
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Grace C Westerkamp
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Carlie McCoy
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Shelby M Hetzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Kimberly L Kraus
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Ernest V Pedapati
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| |
Collapse
|
19
|
Zare M, Rezaei M, Nazari M, Kosarmadar N, Faraz M, Barkley V, Shojaei A, Raoufy MR, Mirnajafi‐Zadeh J. Effect of the closed-loop hippocampal low-frequency stimulation on seizure severity, learning, and memory in pilocarpine epilepsy rat model. CNS Neurosci Ther 2024; 30:e14656. [PMID: 38439573 PMCID: PMC10912795 DOI: 10.1111/cns.14656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
AIMS In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated. METHODS Epilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects' spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test. RESULTS Applying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre-ictal, ictal, and post-ictal periods. Meanwhile, DBS increased the post-ictal-to-pre-ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post-ictal-to-pre-ictal ratio of coherence. In addition, DBS increased the hippocampal-mPFC coupling in pre-ictal period and decreased the coupling in the ictal and post-ictal periods. CONCLUSION Applying closed-loop, low-frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low-frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non-seizure state in subjects that received DBS.
Collapse
Affiliation(s)
- Meysam Zare
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Milad Nazari
- Department of Technology, Electrical EngineeringSharif UniversityTehranIran
| | - Nastaran Kosarmadar
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Mona Faraz
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Victoria Barkley
- Department of Anesthesia and Pain Management, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
20
|
Courson J, Quoy M, Timofeeva Y, Manos T. An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control. Front Comput Neurosci 2024; 18:1360009. [PMID: 38468870 PMCID: PMC10925689 DOI: 10.3389/fncom.2024.1360009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain area and may or may not remain localized), with a specific focus on the hippocampal region known for its association with epileptic seizures. We then devise computational strategies to confine seizures (prevent widespread propagation), simulating medical-like treatments such as tissue resection and the application of an anti-seizure drugs or neurostimulation to suppress hyperexcitability. Through selectively removing (blocking) specific connections informed by the structural connectome and graph network measurements or by locally reducing outgoing connection weights of EZ areas, we demonstrate that seizures can be kept constrained around the EZ region. We successfully identified the minimal connections necessary to prevent widespread seizures, with a particular focus on minimizing surgical or medical intervention while simultaneously preserving the original structural connectivity and maximizing brain functionality.
Collapse
Affiliation(s)
- Juliette Courson
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, Cergy-Pontoise, France
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Mathias Quoy
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- IPAL CNRS Singapore, Singapore, Singapore
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thanos Manos
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
| |
Collapse
|
21
|
Huang L, Lai X, Liang X, Chen J, Yang Y, Xu W, Qin Q, Qin R, Huang X, Xie M, Chen L. A promise for neuronal repair: reprogramming astrocytes into neurons in vivo. Biosci Rep 2024; 44:BSR20231717. [PMID: 38175538 PMCID: PMC10830445 DOI: 10.1042/bsr20231717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Massive loss of neurons following brain injury or disease is the primary cause of central nervous system dysfunction. Recently, much research has been conducted on how to compensate for neuronal loss in damaged parts of the nervous system and thus restore functional connectivity among neurons. Direct somatic cell differentiation into neurons using pro-neural transcription factors, small molecules, or microRNAs, individually or in association, is the most promising form of neural cell replacement therapy available. This method provides a potential remedy for cell loss in a variety of neurodegenerative illnesses, and the development of reprogramming technology has made this method feasible. This article provides a comprehensive review of reprogramming, including the selection and methods of reprogramming starting cell populations as well as the signaling methods involved in this process. Additionally, we thoroughly examine how reprogramming astrocytes into neurons can be applied to treat stroke and other neurodegenerative diseases. Finally, we discuss the challenges of neuronal reprogramming and offer insights about the field.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
22
|
Morris G, Avoli M, Bernard C, Connor K, de Curtis M, Dulla CG, Jefferys JGR, Psarropoulou C, Staley KJ, Cunningham MO. Can in vitro studies aid in the development and use of antiseizure therapies? A report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2571-2585. [PMID: 37642296 DOI: 10.1111/epi.17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naïve wild-type) animals, and the integration of human cell/tissue-derived preparations.
Collapse
Affiliation(s)
- Gareth Morris
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| | - Kate Connor
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John G R Jefferys
- Department of Physiology, 2nd Medical School, Motol, Charles University, Prague, Czech Republic
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kevin J Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
23
|
Wang S, Lévesque M, Fisher TAJ, Kennedy TE, Avoli M. CA3 principal cell activation triggers hypersynchronous-onset seizures in a mouse model of mesial temporal lobe epilepsy. J Neurophysiol 2023; 130:1041-1052. [PMID: 37703488 DOI: 10.1152/jn.00244.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsy and it is characterized by seizures that are often refractory to medications. Seizures in MTLE have two main patterns of onset that have been termed hypersynchronous (HYP) and low-voltage fast (LVF) and are believed to mainly depend on the activity of excitatory principal cells and inhibitory interneurons, respectively. In this study, we investigated whether unilateral open-loop optogenetic activation of CaMKII-positive principal cells in the hippocampus CA3 region favors the generation of spontaneous HYP seizures in kainic acid-treated (KA) CaMKII-ChR2 mice. Optogenetic activation of CA3 principal cells (1 Hz, 180 s ON, 220 s OFF) was implemented for 15 days after KA-induced status epilepticus. We found that both LVF and HYP seizures occurred in nonstimulated CaMKII-ChR2 (n = 6) and stimulated CaMKII-Cre (n = 5) mice. In contrast, optogenetic activation of principal cells in CaMKII-ChR2 mice (n = 5) triggered only HYP seizures that were characterized by high fast ripple (250-500 Hz) rates during the pre-ictal and ictal periods. These results provide firm evidence that in MTLE spontaneous seizures with different onset patterns depend on distinct neuronal network mechanisms of generation. They also demonstrate that HYP seizures occurring in vivo along with their associated fast ripples depend on the activity of principal cells in the CA3 region.NEW & NOTEWORTHY Previous evidence suggested that different seizure onset patterns rely on the activity of distinct neuronal populations. In this study, we show for the first time that in vivo optogenetic stimulation of CaMKII principal cells in kainic acid-treated mice triggers hypersynchronous-onset seizures that are associated with fast ripples. Our findings indicate that in patients with predominant HYP-onset seizures, anticonvulsant treatments should be aimed at limiting the firing of principal neurons in the seizure onset zone.
Collapse
Affiliation(s)
- Siyan Wang
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Maxime Lévesque
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Teddy A J Fisher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Massimo Avoli
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
24
|
Burke CT, Vitko I, Straub J, Nylund EO, Gawda A, Blair K, Sullivan KA, Ergun L, Ottolini M, Patel MK, Perez-Reyes E. EpiPro, a Novel, Synthetic, Activity-Regulated Promoter That Targets Hyperactive Neurons in Epilepsy for Gene Therapy Applications. Int J Mol Sci 2023; 24:14467. [PMID: 37833914 PMCID: PMC10572392 DOI: 10.3390/ijms241914467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy. First, we assessed the activity dependence of EpiPro: initial electrophysiology studies found that EpiPro-driven GFP expression was associated with increased firing rates when compared with unlabeled neurons, and the assessment of EpiPro-driven GFP expression revealed that GFP expression was increased ~150× after status epilepticus. Following this, we compared EpiPro-driven GFP expression in two rodent models of epilepsy, rat lithium/pilocarpine and mouse electrical kindling. In rodents with chronic epilepsy, GFP expression was increased in most neurons, but particularly in dentate granule cells, providing in vivo evidence to support the "breakdown of the dentate gate" hypothesis of limbic epileptogenesis. Finally, we assessed the time course of EpiPro activation and found that it was rapidly induced after seizures, with inactivation following over weeks, confirming EpiPro's potential utility as a gene therapy driver for epilepsy.
Collapse
Affiliation(s)
- Cassidy T. Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elsa O. Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle A. Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lara Ergun
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
25
|
Che Has AT. The applications of the pilocarpine animal model of status epilepticus: 40 years of progress (1983-2023). Behav Brain Res 2023; 452:114551. [PMID: 37348654 DOI: 10.1016/j.bbr.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Status epilepticus is a neurological disorder that can result in various neuropathological conditions and presentations. Various studies involving animal models have been accomplished to understand and replicating its prominent manifestations including characteristics of related clinical cases. Up to these days, there are variety of methods and techniques to be utilized in inducing this disorder that can be chemically or electrically applied which depending on the experimental designs and targets of the studies. In particular, the chemically induced pilocarpine animal model of status epilepticus is a reliable choice which has evolved for 40 years from its initial discovery back in 1983. Although the development of the model can be considered as a remarkable breakthrough in understanding status epilepticus, several aspects of the model have been improved, throughout the years. Among the major issues in developing this model are the morbidity and mortality rates during induction process. Several modifications have been introduced in the process by different studies to tackle the related problems including application of dose fractionation, adaptation of pilocarpine to lithium-pilocarpine model and utilization of various drugs. Despite all challenges and drawbacks, this model has proven its pertinent and relevance with improvements that have been adapted since it was introduced 40 years ago. In this review, we emphasize on the evolution of this animal model from the beginning until now (1983 - 2023) and the related issues that have made this model still a popular choice in status epilepticus studies.
Collapse
Affiliation(s)
- Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
26
|
Valero-Aracama MJ, Zheng F, Alzheimer C. Dorsal-Ventral Gradient of Activin Regulates Strength of GABAergic Inhibition along Longitudinal Axis of Mouse Hippocampus in an Activity-Dependent Fashion. Int J Mol Sci 2023; 24:13145. [PMID: 37685952 PMCID: PMC10487617 DOI: 10.3390/ijms241713145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The functional and neurophysiological distinction between the dorsal and ventral hippocampus affects also GABAergic inhibition. In line with this notion, ventral CA1 pyramidal cells displayed a more dynamic and effective response to inhibitory input compared to their dorsal counterparts. We posit that this difference is effected by the dorsal-ventral gradient of activin A, a member of the transforming growth factor-β family, which is increasingly recognized for its modulatory role in brain regions involved in cognitive functions and affective behavior. Lending credence to this hypothesis, we found that in slices from transgenic mice expressing a dominant-negative mutant of activin receptor IB (dnActRIB), inhibitory transmission was enhanced only in CA1 neurons of the dorsal hippocampus, where the basal activin A level is much higher than in the ventral hippocampus. We next asked how a rise in endogenous activin A would affect GABAergic inhibition along the longitudinal axis of the hippocampus. We performed ex vivo recordings in wild-type and dnActRIB mice after overnight exposure to an enriched environment (EE), which engenders a robust increase in activin A levels in both dorsal and ventral hippocampi. Compared to control mice from standard cages, the behaviorally induced surge in activin A produced a decline in ventral inhibition, an effect that was absent in slices from dnActRIB mice. Underscoring the essential role of activin in the EE-associated modulation of ventral inhibition, this effect was mimicked by acute application of recombinant activin A in control slices. In summary, both genetic and behavioral manipulations of activin receptor signaling affected the dorsal-ventral difference in synaptic inhibition, suggesting that activin A regulates the strength of GABAergic inhibition in a region-specific fashion.
Collapse
|
27
|
Concepcion FA, Ekstrom NA, Khan MN, Estes OO, Poolos NP. Progressive Dysregulation of Tau Phosphorylation in an Animal Model of Temporal Lobe Epilepsy. Neuroscience 2023; 522:42-56. [PMID: 37142182 PMCID: PMC10330640 DOI: 10.1016/j.neuroscience.2023.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Tau is an intracellular protein known to undergo hyperphosphorylation and subsequent neuro-toxic aggregation in Alzheimer's disease (AD). Here, tau expression and phosphorylation at three canonical loci known to be hyperphosphorylated in AD (S202/T205, T181, and T231) were studied in the rat pilocarpine status epilepticus (SE) model of temporal lobe epilepsy (TLE). We measured tau expression at two time points of chronic epilepsy: two months and four months post-SE. Both time points parallel human TLE of at least several years. In the whole hippocampal formation at two months post-SE, we observed modestly reduced total tau levels compared to naïve controls, but no significant reduction in S202/T205 phosphorylation levels. In the whole hippocampal formation from four month post-SE rats, total tau expression had reverted to normal, but there was a significant reduction in S202/T205 tau phosphorylation levels that was also seen in CA1 and CA3. No change in phosphorylation was seen at the T181 and T231 tau loci. In somatosensory cortex, outside of the seizure onset zone, no changes in tau expression or phosphorylation were seen at the later time point. We conclude that total tau expression and phosphorylation in an animal model of TLE do not show hyperphosphorylation at the three AD canonical tau loci. Instead, the S202/T205 locus showed progressive dephosphorylation. This suggests that changes in tau expression may play a different role in epilepsy than in AD. Further study is needed to understand how these changes in tau may impact neuronal excitability in chronic epilepsy.
Collapse
Affiliation(s)
- F A Concepcion
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - N A Ekstrom
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - M N Khan
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - O O Estes
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - N P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|
28
|
Bando SY, Bertonha FB, Menezes PHN, Takahara AK, Khaled NA, Santos P, S Junqueira M, Cesar RM, Moreira-Filho CA. Transcriptomic analysis reveals distinct adaptive molecular mechanism in the hippocampal CA3 from rats susceptible or not-susceptible to hyperthermia-induced seizures. Sci Rep 2023; 13:10265. [PMID: 37355705 PMCID: PMC10290664 DOI: 10.1038/s41598-023-37535-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/23/2023] [Indexed: 06/26/2023] Open
Abstract
Febrile seizures during early childhood are a relevant risk factor for the development of mesial temporal lobe epilepsy. Nevertheless, the molecular mechanism induced by febrile seizures that render the brain susceptible or not-susceptible to epileptogenesis remain poorly understood. Because the temporal investigation of such mechanisms in human patients is impossible, rat models of hyperthermia-induced febrile seizures have been used for that purpose. Here we conducted a temporal analysis of the transcriptomic and microRNA changes in the ventral CA3 of rats that develop (HS group) or not-develop (HNS group) seizures after hyperthermic insult on the eleventh postnatal day. The selected time intervals corresponded to acute, latent, and chronic phases of the disease. We found that the transcriptional differences between the HS and the HNS groups are related to inflammatory pathways, immune response, neurogenesis, and dendritogenesis in the latent and chronic phases. Additionally, the HNS group expressed a greater number of miRNAs (some abundantly expressed) as compared to the HS group. These results indicate that HNS rats were able to modulate their inflammatory response after insult, thus presenting better tissue repair and re-adaptation. Potential therapeutic targets, including genes, miRNAs and signaling pathways involved in epileptogenesis were identified.
Collapse
Affiliation(s)
- Silvia Y Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil.
| | - Fernanda B Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Pedro H N Menezes
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - André K Takahara
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Nathália A Khaled
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Paula Santos
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Mara S Junqueira
- Department of Radiology and Oncology, Centro de Investigação Translacional em Oncologia-Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Roberto M Cesar
- Department of Computer Science, Instituto de Matemática e Estatística da Universidade de São Paulo, São Paulo, SP, 05508-040, Brazil
| | - Carlos A Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| |
Collapse
|
29
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
30
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
31
|
Lévesque M, Wang S, Macey-Dare ADB, Salami P, Avoli M. Evolution of interictal activity in models of mesial temporal lobe epilepsy. Neurobiol Dis 2023; 180:106065. [PMID: 36907521 DOI: 10.1016/j.nbd.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada.
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada
| | - Anežka D B Macey-Dare
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Pariya Salami
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, QC, Canada
| |
Collapse
|
32
|
Yang Y, Zhang F, Gao X, Feng L, Xu K. Progressive alterations in electrophysiological and epileptic network properties during the development of temporal lobe epilepsy in rats. Epilepsy Behav 2023; 141:109120. [PMID: 36868167 DOI: 10.1016/j.yebeh.2023.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE Refractory temporal lobe epilepsy (TLE) with recurring seizures causing continuing pathological changes in neural reorganization. There is an incomplete understanding of how spatiotemporal electrophysiological characteristics changes during the development of TLE. Long-term multi-site epilepsy patients' data is hard to obtain. Thus, our study relied on animal models to reveal the changes in electrophysiological and epileptic network characteristics systematically. METHODS Long-term local field potentials (LFPs) were recorded over a period of 1 to 4 months from 6 pilocarpine-treated TLE rats. We compared variations of seizure onset zone (SOZ), seizure onset pattern (SOP), the latency of seizure onsets, and functional connectivity network from 10-channel LFPs between the early and late stages. Moreover, three machine learning classifiers trained by early-stage data were used to test seizure detection performance in the late stage. RESULTS Compared to the early stage, the earliest seizure onset was more frequently detected in hippocampus areas in the late stage. The latency of seizure onsets between electrodes became shorter. Low-voltage fast activity (LVFA) was the most common SOP and the proportion of it increased in the late stage. Different brain states were observed during seizures using Granger causality (GC). Moreover, seizure detection classifiers trained by early-stage data were less accurate when tested in late-stage data. SIGNIFICANCE Neuromodulation especially closed-loop deep brain stimulation (DBS) is effective in the treatment of refractory TLE. Although the frequency or amplitude of the stimulation is generally adjusted in existing closed-loop DBS devices in clinical usage, the adjustment rarely considers the pathological progression of chronic TLE. This suggests that an important factor affecting the therapeutic effect of neuromodulation may have been overlooked. The present study reveals time-varying electrophysiological and epileptic network properties in chronic TLE rats and indicates that classifiers of seizure detection and neuromodulation parameters might be designed to adapt to the current state dynamically with the progression of epilepsy.
Collapse
Affiliation(s)
- Yufang Yang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
| | - Fang Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; Institute of Advanced Digital Technology and Instrument, Zhejiang University, Hangzhou, China.
| | | | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; The MOE Frontier Science Center for Brain Science and Brain-machine Integration, Hangzhou, China.
| |
Collapse
|
33
|
Dulko E, Beenhakker M. The Beginning of Everything: Finding the Seizure Onset. Epilepsy Curr 2023; 23:113-114. [PMID: 37122402 PMCID: PMC10131575 DOI: 10.1177/15357597221147360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ventral Hippocampal Formation Is the Primary Epileptogenic Zone in a Rat Model of Temporal Lobe Epilepsy Buckmaster PS, Reyes B, Kahn T, Wyeth M. J Neurosci . 2022;42(39):7482-7495. doi:10.1523/JNEUROSCI.0429-22.2022 . PMID: 35995562, PMCID: PMC9525166. Temporal lobe epilepsy is common, but mechanisms of seizure initiation are unclear. We evaluated seizure initiation in female and male rats that had been systemically treated with pilocarpine, a widely used model of temporal lobe epilepsy. Local field potential (LFP) recordings from many brain regions revealed variable sites of earliest recorded seizure activity, but mostly the ventral hippocampal formation. To test whether inactivation of the ventral hippocampal formation would reduce seizures, mini-osmotic pumps were used to continually and focally deliver TTX. High doses of TTX infused unilaterally into the ventral hippocampal formation blocked seizures reversibly but also reduced LFP amplitudes in remote brain regions, indicating distant effects. A lower dose did not reduce LFP amplitudes in remote brain regions but did not reduce seizures when infused unilaterally. Instead, seizures tended to initiate in the contralateral ventral hippocampal formation. Bilateral infusion of the lower dose into the ventral hippocampal formation reduced seizure frequency 85%. Similar bilateral treatment in the amygdala was not effective. Bilateral infusion of the dorsal hippocampus reduced seizure frequency, but only 17%. Together, these findings reveal that the ventral hippocampal formation is a primary bilaterally independent epileptogenic zone, and the dorsal hippocampus is a secondary epileptogenic zone in pilocarpine-treated rats. This is consistent with many human patients, and the results further validate the LFP method for identifying seizure onset zones. Finally, the findings are more consistent with a focal mechanism of ictogenesis rather than one involving a network of interdependent nodes.
Collapse
|
34
|
Hyder SK, Ghosh A, Forcelli PA. Optogenetic activation of the superior colliculus attenuates spontaneous seizures in the pilocarpine model of temporal lobe epilepsy. Epilepsia 2023; 64:524-535. [PMID: 36448878 PMCID: PMC10907897 DOI: 10.1111/epi.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Decades of studies have indicated that activation of the deep and intermediate layers of the superior colliculus can suppress seizures in a wide range of experimental models of epilepsy. However, prior studies have not examined efficacy against spontaneous limbic seizures. The present study aimed to address this gap through chronic optogenetic activation of the superior colliculus in the pilocarpine model of temporal lobe epilepsy. METHODS Sprague Dawley rats underwent pilocarpine-induced status epilepticus and were maintained until the onset of spontaneous seizures. Virus coding for channelrhodopsin-2 was injected into the deep and intermediate layers of the superior colliculus, and animals were implanted with head-mounted light-emitting diodes at the same site. Rats were stimulated with either 5- or 100-Hz light delivery. Seizure number, seizure duration, 24-h seizure burden, and behavioral seizure severity were monitored. RESULTS Both 5- and 100-Hz optogenetic stimulation of the deep and intermediate layers of the superior colliculus reduced daily seizure number and total seizure burden in all animals in the active vector group. Stimulation did not affect either seizure duration or behavioral seizure severity. Stimulation was without effect in opsin-negative control animals. SIGNIFICANCE Activation of the deep and intermediate layers of the superior colliculus reduces both the number of seizures and total daily seizure burden in the pilocarpine model of temporal lobe epilepsy. These novel data demonstrating an effect against chronic experimental seizures complement a long history of studies documenting the antiseizure efficacy of superior colliculus activation in a range of acute seizure models.
Collapse
Affiliation(s)
- Safwan K. Hyder
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
| | - Anjik Ghosh
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
| | - Patrick A. Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
- Department of Neuroscience, Georgetown University, Washington DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, USA
| |
Collapse
|
35
|
Wu Q, Wang H, Liu X, Zhao Y, Su P. Microglial activation and over pruning involved in developmental epilepsy. J Neuropathol Exp Neurol 2023; 82:150-159. [PMID: 36453895 DOI: 10.1093/jnen/nlac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To understand the potential role of microglia in synaptic pruning following status epilepticus (SE), we examined the time course of expression of Iba-1, and immune and neuroinflammatory regulators, including CD86, CD206, and CX3CR1, and TLR4/NF-κB after SE induced by pilocarpine in rats. Behavioral tests, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, immunohistochemical staining, Western blotting, PCR, and fluorescence double staining assessments were performed. The expression of Iba-1 protein was lowest in the control group, and peaked after 2 days (p < 0.001). CD86 and CD206 mRNA levels increased gradually in the microglia of the epilepsy group after 12 hours, 1 day, 2 days, and 3 days; peak expression was on the second day. The expression of the chemokine receptor CX3CR1 in microglia increased to varying degrees after SE, and expression of the presynaptic protein synapsin decreased. The expression of TLR4/NF-κB in microglia positively correlated with Iba-1 protein expression. These findings indicate that the TLR4/NF-κB signaling pathway may be involved in the activation and polarization of microglia in epilepsy and in excess synaptic pruning, which could lead to an increase in brain injury.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajuan Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Experimental Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Lippmann K, Klaft ZJ, Salar S, Hollnagel JO, Valero M, Maslarova A. Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum. Neurobiol Dis 2022; 175:105929. [DOI: 10.1016/j.nbd.2022.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
37
|
Buckmaster PS, Reyes B, Kahn T, Wyeth M. Ventral Hippocampal Formation Is the Primary Epileptogenic Zone in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2022; 42:7482-7495. [PMID: 35995562 PMCID: PMC9525166 DOI: 10.1523/jneurosci.0429-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/12/2023] Open
Abstract
Temporal lobe epilepsy is common, but mechanisms of seizure initiation are unclear. We evaluated seizure initiation in female and male rats that had been systemically treated with pilocarpine, a widely used model of temporal lobe epilepsy. Local field potential (LFP) recordings from many brain regions revealed variable sites of earliest recorded seizure activity, but mostly the ventral hippocampal formation. To test whether inactivation of the ventral hippocampal formation would reduce seizures, mini-osmotic pumps were used to continually and focally deliver TTX. High doses of TTX infused unilaterally into the ventral hippocampal formation blocked seizures reversibly but also reduced LFP amplitudes in remote brain regions, indicating distant effects. A lower dose did not reduce LFP amplitudes in remote brain regions but did not reduce seizures when infused unilaterally. Instead, seizures tended to initiate in the contralateral ventral hippocampal formation. Bilateral infusion of the lower dose into the ventral hippocampal formation reduced seizure frequency 85%. Similar bilateral treatment in the amygdala was not effective. Bilateral infusion of the dorsal hippocampus reduced seizure frequency, but only 17%. Together, these findings reveal that the ventral hippocampal formation is a primary bilaterally independent epileptogenic zone, and the dorsal hippocampus is a secondary epileptogenic zone in pilocarpine-treated rats. This is consistent with many human patients, and the results further validate the LFP method for identifying seizure onset zones. Finally, the findings are more consistent with a focal mechanism of ictogenesis rather than one involving a network of interdependent nodes.SIGNIFICANCE STATEMENT To better understand how seizures start, investigators need to know where seizures start in the animal models they study. In the widely used pilocarpine-treated rat model of temporal lobe epilepsy, earliest seizure activity was most frequently recorded in the ventral hippocampal formation. Confirming the primary role of the ventral hippocampal formation, seizure frequency was reduced most effectively when it was inactivated focally, bilaterally, and continually with infused TTX. These findings suggest that the ventral hippocampal formation is the primary site of seizure initiation in this animal model of temporal lobe epilepsy, consistent with findings in many human patients.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine
- Neurology & Neurological Sciences, Stanford University, Stanford, California 94305
| | - Bianca Reyes
- Departments of Comparative Medicine
- College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088
| | | | | |
Collapse
|
38
|
Jha J, Hashemi M, Vattikonda AN, Wang H, Jirsa V. Fully Bayesian estimation of virtual brain parameters with self-tuning Hamiltonian Monte Carlo. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac9037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Virtual brain models are data-driven patient-specific brain models integrating individual brain imaging data with neural mass modeling in a single computational framework, capable of autonomously generating brain activity and its associated brain imaging signals. Along the example of epilepsy, we develop an efficient and accurate Bayesian methodology estimating the parameters linked to the extent of the epileptogenic zone. State-of-the-art advances in Bayesian inference using Hamiltonian Monte Carlo (HMC) algorithms have remained elusive for large-scale differential-equations based models due to their slow convergence. We propose appropriate priors and a novel reparameterization to facilitate efficient exploration of the posterior distribution in terms of computational time and convergence diagnostics. The methodology is illustrated for in-silico dataset and then, applied to infer the personalized model parameters based on the empirical stereotactic electroencephalography (SEEG) recordings of retrospective patients. This improved methodology may pave the way to render HMC methods sufficiently easy and efficient to use, thus applicable in personalized medicine.
Collapse
|
39
|
Lévesque M, Wang S, Etter G, Williams S, Avoli M. Bilateral optogenetic activation of inhibitory cells favors ictogenesis. Neurobiol Dis 2022; 171:105794. [PMID: 35718264 DOI: 10.1016/j.nbd.2022.105794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal refractory epilepsy and is characterized by recurring seizures that are often refractory to medication. Since parvalbumin-positive (PV) interneurons were recently shown to play significant roles in ictogenesis, we established here how bilateral optogenetic stimulation of these interneurons in the hippocampus CA3 regions modulates seizures, interictal spikes and high-frequency oscillations (HFOs; ripples: 80-200 Hz, fast ripples: 250-500 Hz) in the pilocarpine model of MTLE. Bilateral optogenetic stimulation of CA3 PV-positive interneurons at 8 Hz (lasting 30 s, every 2 min) was implemented in PV-ChR2 mice for 8 consecutive days starting on day 7 (n = 8) or on day 13 (n = 6) after pilocarpine-induced status epilepticus (SE). Seizure occurrence was higher in both day 7 and day 13 groups of PV-ChR2 mice during periods of optogenetic stimulation ("ON"), compared to when stimulation was not performed ("OFF") (day 7 group = p < 0.01, day 13 group = p < 0.01). In the PV-ChR2 day 13 group, rates of seizures (p < 0.05), of interictal spikes associated with fast ripples (p < 0.01), and of isolated fast ripples (p < 0.01) during optogenetic stimulations were significantly higher than in the PV-ChR2 day 7 group. Our findings reveal that bilateral activation of PV-interneurons in the hippocampus (leading to a presumptive increase in GABA signaling) favors ictogenesis. These effects may also mirror the neuropathological changes that occur over time after SE in this animal model.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Guillaume Etter
- Douglas Mental Health University Institute, McGill University, 6875 Blvd Lasalle, Montréal, H4H 1R3, QC, Canada
| | - Sylvain Williams
- Douglas Mental Health University Institute, McGill University, 6875 Blvd Lasalle, Montréal, H4H 1R3, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada.
| |
Collapse
|
40
|
Seelman A, Vu K, Buckmaster P, Mackie K, Field C, Johnson S, Wyeth M. Cannabinoid receptor 1-labeled boutons in the sclerotic dentate gyrus of epileptic sea lions. Epilepsy Res 2022; 184:106965. [PMID: 35724601 DOI: 10.1016/j.eplepsyres.2022.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/03/2022]
Abstract
Pathology in the dentate gyrus, including sclerosis, is a hallmark of temporal lobe epilepsy, and reduced inhibition to dentate granule cells may contribute to epileptogenesis. The perisomatic-targeting axonal boutons of parvalbumin-expressing interneurons decrease in proportion with granule cells in temporal lobe epilepsy. In contrast, dendrite-targeting axonal boutons of somatostatin-expressing interneurons sprout exuberantly in temporal lobe epilepsy. A third major class of GABAergic interneurons expresses cannabinoid receptor type 1 (CB1) on their terminal boutons, but there is conflicting evidence as to whether these boutons are increased or decreased in temporal lobe epilepsy. Naturally occurring temporal lobe epilepsy in California sea lions, with unilateral or bilateral sclerosis, offers the benefit of neuroanatomy and neuropathology akin to humans, but with the advantage that the entirety of both hippocampi from control and epileptic brains can be studied. Stereological quantification in the dentate gyrus revealed that sclerotic hippocampi from epileptic sea lions had fewer CB1-labeled boutons than controls. However, the reduction in the number of granule cells was greater, resulting in increased CB1-labeled boutons per granule cell in sclerotic hippocampi at temporal levels. This suggests that although CB1-expressing boutons are decreased in sclerotic dentate gyri, surviving cells have enhanced innervation from these boutons in epileptic sea lions.
Collapse
Affiliation(s)
- Amanda Seelman
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Western University of Health Sciences, East 2nd Street, Pomona, CA 91766, USA
| | - Kristina Vu
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Paul Buckmaster
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA; Gill Centre for Biomolecular Science, Indiana University, 702 North Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Cara Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Shawn Johnson
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Megan Wyeth
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Multimodal, Multiscale Insights into Hippocampal Seizures Enabled by Transparent, Graphene-Based Microelectrode Arrays. eNeuro 2022; 9:ENEURO.0386-21.2022. [PMID: 35470227 PMCID: PMC9087744 DOI: 10.1523/eneuro.0386-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Hippocampal seizures are a defining feature of mesial temporal lobe epilepsy (MTLE). Area CA1 of the hippocampus is commonly implicated in the generation of seizures, which may occur because of the activity of endogenous cell populations or of inputs from other regions within the hippocampal formation. Simultaneously observing activity at the cellular and network scales in vivo remains challenging. Here, we present a novel technology for simultaneous electrophysiology and multicellular calcium imaging of CA1 pyramidal cells (PCs) in mice enabled by a transparent graphene-based microelectrode array (Gr MEA). We examine PC firing at seizure onset, oscillatory coupling, and the dynamics of the seizure traveling wave as seizures evolve. Finally, we couple features derived from both modalities to predict the speed of the traveling wave using bootstrap aggregated regression trees. Analysis of the most important features in the regression trees suggests a transition among states in the evolution of hippocampal seizures.
Collapse
|
42
|
Caron D, Canal-Alonso Á, Panuccio G. Mimicking CA3 Temporal Dynamics Controls Limbic Ictogenesis. BIOLOGY 2022; 11:371. [PMID: 35336745 PMCID: PMC8944954 DOI: 10.3390/biology11030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common partial complex epilepsy in adults and the most unresponsive to medications. Electrical deep brain stimulation (DBS) of the hippocampus has proved effective in controlling seizures in epileptic rodents and in drug-refractory MTLE patients. However, current DBS paradigms implement arbitrary fixed-frequency or patterned stimuli, disregarding the temporal profile of brain electrical activity. The latter, herein included hippocampal spontaneous firing, has been shown to follow lognormal temporal dynamics. Here, we present a novel paradigm to devise DBS protocols based on stimulation patterns fashioned as a surrogate brain signal. We focus on the interictal activity originating in the hippocampal subfield CA3, which has been shown to be anti-ictogenic. Using 4-aminopyridine-treated hippocampus-cortex slices coupled to microelectrode array, we pursue three specific aims: (1) address whether lognormal temporal dynamics can describe the CA3-driven interictal pattern, (2) explore the possibility of restoring the non-seizing state by mimicking the temporal dynamics of this anti-ictogenic pattern with electrical stimulation, and (3) compare the performance of the CA3-surrogate against periodic stimulation. We show that the CA3-driven interictal activity follows lognormal temporal dynamics. Further, electrical stimulation fashioned as a surrogate interictal pattern exhibits similar efficacy but uses less pulses than periodic stimulation. Our results support the possibility of mimicking the temporal dynamics of relevant brain signals as a straightforward DBS strategy to ameliorate drug-refractory epilepsy. Further, they herald a paradigm shift in neuromodulation, wherein a compromised brain signal can be recreated by the appropriate stimuli distribution to bypass trial-and-error studies and attain physiologically meaningful DBS operating modes.
Collapse
Affiliation(s)
- Davide Caron
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - Ángel Canal-Alonso
- BISITE Research Group, University of Salamanca, 37008 Salamanca, Spain;
- Institute for Biomedical Research of Salamanca, University of Salamanca, 37008 Salamanca, Spain
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| |
Collapse
|
43
|
Teran FA, Bravo E, Richerson GB. Sudden unexpected death in epilepsy: Respiratory mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:153-176. [PMID: 36031303 PMCID: PMC10191258 DOI: 10.1016/b978-0-323-91532-8.00012-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epilepsy is one of the most common chronic neurologic diseases, with a prevalence of 1% in the US population. Many people with epilepsy live normal lives, but are at risk of sudden unexpected death in epilepsy (SUDEP). This mysterious comorbidity of epilepsy causes premature death in 17%-50% of those with epilepsy. Most SUDEP occurs after a generalized seizure, and patients are typically found in bed in the prone position. Until recently, it was thought that SUDEP was due to cardiovascular failure, but patients who died while being monitored in hospital epilepsy units revealed that most SUDEP is due to postictal central apnea. Some cases may occur when seizures invade the amygdala and activate projections to the brainstem. Evidence suggests that the pathophysiology is linked to defects in the serotonin system and central CO2 chemoreception, and that there is considerable overlap with mechanisms thought to be involved in sudden infant death syndrome (SIDS). Future work is needed to identify biomarkers for patients at highest risk, improve ascertainment, develop methods to alert caregivers when SUDEP is imminent, and find effective approaches to prevent these fatal events.
Collapse
Affiliation(s)
- Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States.
| | - Eduardo Bravo
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
44
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|
45
|
Lack of Hyperinhibition of Oriens Lacunosum-Moleculare Cells by Vasoactive Intestinal Peptide-Expressing Cells in a Model of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0299-21.2021. [PMID: 34819310 PMCID: PMC8721516 DOI: 10.1523/eneuro.0299-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Temporal lobe epilepsy remains a common disorder with no cure and inadequate treatments, potentially because of an incomplete understanding of how seizures start. CA1 pyramidal cells and many inhibitory interneurons increase their firing rate in the seconds-minutes before a spontaneous seizure in epileptic rats. However, some interneurons fail to do so, including those identified as putative interneurons with somata in oriens and axons targeting lacunosum-moleculare (OLM cells). Somatostatin-containing cells, including OLM cells, are the primary target of inhibitory vasoactive intestinal polypeptide and calretinin-expressing (VIP/CR) bipolar interneuron-selective interneurons, type 3 (ISI-3). The objective of this study was to test the hypothesis that in epilepsy inhibition of OLM cells by ISI-3 is abnormally increased, potentially explaining the failure of OLM recruitment when needed most during the ramp up of activity preceding a seizure. Stereological quantification of VIP/CR cells in a model of temporal lobe epilepsy demonstrated that they survive in epileptic mice, despite a reduction in their somatostatin-expressing (Som) cell targets. Paired recordings of unitary IPSCs (uIPSCs) from ISI-3 to OLM cells did not show increased connection probability or increased connection strength, and failure rate was unchanged. When miniature postsynaptic currents in ISI-3 were compared, only mIPSC frequency was increased in epileptic hippocampi. Nevertheless, spontaneous and miniature postsynaptic potentials were unchanged in OLM cells of epileptic mice. These results are not consistent with the hypothesis of hyperinhibition from VIP/CR bipolar cells impeding recruitment of OLM cells in advance of a seizure.
Collapse
|
46
|
Eid T. Brain Energy Oscillations-A Possible Explanation for Seizure Periodicity in Epilepsy? Epilepsy Curr 2021; 21:447-448. [PMID: 34924854 PMCID: PMC8652326 DOI: 10.1177/15357597211043517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
47
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience 2021; 479:1-21. [PMID: 34710537 DOI: 10.1016/j.neuroscience.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
| |
Collapse
|
48
|
Neuroregenerative gene therapy to treat temporal lobe epilepsy in a rat model. Prog Neurobiol 2021; 208:102198. [PMID: 34852273 DOI: 10.1016/j.pneurobio.2021.102198] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is a common drug-resistant epilepsy associated with abundant cell death in the hippocampus. Here, we develop a novel gene therapy-mediated cell therapy that regenerates GABAergic neurons using internal hippocampal astrocytes to suppress seizure activity in a rat TLE model. We discovered that TLE-induced reactive astrocytes in the hippocampal CA1 region can be efficiently converted into GABAergic neurons after overexpressing a neural transcription factor NeuroD1. The astrocyte-converted neurons showed typical markers of GABAergic interneurons, fired action potentials, and formed functional synaptic connections with other neurons. Following NeuroD1-mediated astrocyte-to-neuron conversion, the number of hippocampal interneurons was significantly increased, and the spontaneous recurrent seizure (SRS) activity was significantly decreased. Moreover, NeuroD1 gene therapy treatment rescued total neuronal loss in the CA1 region and ameliorated the cognitive and mood dysfunctions in the TLE rat model. These results suggest that regeneration of GABAergic interneurons through gene therapy approach may provide a novel therapeutic intervention to treat drug-resistant TLE.
Collapse
|
49
|
Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy. J Neurosci 2021; 41:9669-9686. [PMID: 34620720 PMCID: PMC8612476 DOI: 10.1523/jneurosci.2439-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.
Collapse
|
50
|
Repeated hippocampal seizures lead to brain-wide reorganization of circuits and seizure propagation pathways. Neuron 2021; 110:221-236.e4. [PMID: 34706219 PMCID: PMC10402913 DOI: 10.1016/j.neuron.2021.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/18/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Repeated seizure activity can lead to long-term changes in seizure dynamics and behavior. However, resulting changes in brain-wide dynamics remain poorly understood. This is due partly to technical challenges in precise seizure control and in vivo whole-brain mapping of circuit dynamics. Here, we developed an optogenetic kindling model through repeated stimulation of ventral hippocampal CaMKII neurons in adult rats. We then combined fMRI with electrophysiology to track brain-wide circuit dynamics resulting from non-afterdischarge (AD)-generating stimulations and individual convulsive seizures. Kindling induced widespread increases in non-AD-generating stimulation response and ipsilateral functional connectivity and elevated anxiety. Individual seizures in kindled animals showed more significant increases in brain-wide activity and bilateral functional connectivity. Onset time quantification provided evidence for kindled seizure propagation from the ipsilateral to the contralateral hemisphere. Furthermore, a core of slow-migrating hippocampal activity was identified in both non-kindled and kindled seizures, revealing a novel mechanism of seizure sustainment and propagation.
Collapse
|