1
|
Hall B, Amin N, Veeranna, Hisanaga SI, Kulkarni AB. A Retrospective Tribute to Dr. Harish Pant (1938-2023) and His Seminal Work on Cyclin Dependent Kinase 5. Neurochem Res 2024; 49:3181-3186. [PMID: 39235580 PMCID: PMC11502590 DOI: 10.1007/s11064-024-04234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Dr. Harish Chandra Pant was Chief of the Section on Neuronal Cytoskeletal Protein Regulation within the National Institute of Neurological Disorders and Stroke at the NIH. A main focus of his group was understanding the mechanisms regulating neuronal cytoskeletal phosphorylation. Phosphorylation of neurofilaments can increase filament stability and confer resistance to proteolysis, but aberrant hyperphosphorylation of neurofilaments can be found in the neurofibrillary tangles that are seen with neurodegenerative diseases like Alzheimer disease (AD). Through his work, Harish would inevitably come across cyclin dependent kinase 5 (Cdk5), a key kinase that can phosphorylate neurofilaments at KSPXK motifs. Cdk5 differs from other Cdks in that its activity is mainly in post-mitotic neurons rather than being involved in the cell cycle in dividing cells. With continued interest in Cdk5, Harish and his group were instrumental in identifying important roles for this neuronal kinase in not only neuronal cytoskeleton phosphorylation but also in neuronal development, synaptogenesis, and neuronal survival. Here, we review the accomplishments of Harish in characterizing the functions of Cdk5 and its involvement in neuronal health and disease.
Collapse
Affiliation(s)
- Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, 20892, USA
| | - Niranjana Amin
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes and Health, Bethesda, MD, 20892, USA
| | - Veeranna
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes and Health, Bethesda, MD, 20892, USA
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Zhang XH, Anderson KM, Dong HM, Chopra S, Dhamala E, Emani PS, Margulies D, Holmes AJ. The Cellular Underpinnings of the Human Cortical Connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547828. [PMID: 37461642 PMCID: PMC10349999 DOI: 10.1101/2023.07.05.547828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
Collapse
Affiliation(s)
- Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Hao-Ming Dong
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, CT, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Prashant S. Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris, Paris, France
| | - Avram J. Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
George IA, Sathe G, Ghose V, Chougule A, Chandrani P, Patil V, Noronha V, Venkataramanan R, Limaye S, Pandey A, Prabhash K, Kumar P. Integrated proteomics and phosphoproteomics revealed druggable kinases in neoadjuvant chemotherapy resistant tongue cancer. Front Cell Dev Biol 2022; 10:957983. [PMID: 36393868 PMCID: PMC9651967 DOI: 10.3389/fcell.2022.957983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/04/2022] [Indexed: 03/27/2024] Open
Abstract
Tongue squamous cell carcinoma is an aggressive oral cancer with a high incidence of metastasis and poor prognosis. Most of the oral cavity cancer patients present in clinics with locally advanced unresectable tumors. Neoadjuvant treatment is beneficial for these individuals as it reduces the tumor size aiding complete resection. However, patients develop therapy resistance to the drug regimen. In this study, we explored the differential expression of proteins and altered phosphorylation in the neoadjuvant chemotherapy resistant tongue cancer patients. We integrated the proteomic and phosphoproteomic profiles of resistant (n = 4) and sensitive cohorts (n = 4) and demonstrated the differential expression and phosphorylation of proteins in the primary tissue of the respective subject groups. We observed differential and extensive phosphorylation of keratins such as KRT10 and KRT1 between the two cohorts. Furthermore, our study revealed a kinase signature associated with neoadjuvant chemotherapy resistance. Kinases such as MAPK1, AKT1, and MAPK3 are predicted to regulate the resistance in non-responders. Pathway analysis showed enrichment of Rho GTPase signaling and hyperphosphosphorylation of proteins involved in cell motility, invasion, and drug resistance. Targeting the kinases could help with the clinical management of neoadjuvant chemotherapy-resistant tongue cancer.
Collapse
Affiliation(s)
- Irene A. George
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Gajanan Sathe
- Institute of Bioinformatics, Bangalore, India
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vivek Ghose
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | | | | | | | | | | | - Sewanti Limaye
- Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Prashant Kumar
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Karkinos Healthcare Pvt Ltd., Mumbai, India
| |
Collapse
|
4
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
5
|
Bracher L, Ferro I, Pulido-Quetglas C, Ruepp MD, Johnson R, Polacek N. Human vtRNA1-1 Levels Modulate Signaling Pathways and Regulate Apoptosis in Human Cancer Cells. Biomolecules 2020; 10:biom10040614. [PMID: 32316166 PMCID: PMC7226377 DOI: 10.3390/biom10040614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory non-protein coding RNAs perform a remarkable variety of complex biological functions. Previously, we demonstrated a role of the human non-coding vault RNA1-1 (vtRNA1-1) in inhibiting intrinsic and extrinsic apoptosis in several cancer cell lines. Yet on the molecular level, the function of the vtRNA1-1 is still not fully clear. Here, we created HeLa knock-out cell lines revealing that prolonged starvation triggers elevated levels of apoptosis in the absence of vtRNA1-1 but not in vtRNA1-3 knock-out cells. Next-generation deep sequencing of the mRNome identified the PI3K/Akt pathway and the ERK1/2 MAPK cascade, two prominent signaling axes, to be misregulated in the absence of vtRNA1-1 during starvation-mediated cell death conditions. Expression of vtRNA1-1 mutants identified a short stretch of 24 nucleotides of the vtRNA1-1 central domain as being essential for successful maintenance of apoptosis resistance. This study describes a cell signaling-dependent contribution of the human vtRNA1-1 to starvation-induced programmed cell death.
Collapse
Affiliation(s)
- Lisamaria Bracher
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland;
| | - Iolanda Ferro
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
| | - Carlos Pulido-Quetglas
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland;
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland;
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- United Kingdom Dementia Research Institute, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9NU, UK
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland;
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- Correspondence:
| |
Collapse
|
6
|
Joshi V, Subbanna S, Shivakumar M, Basavarajappa BS. CB1R regulates CDK5 signaling and epigenetically controls Rac1 expression contributing to neurobehavioral abnormalities in mice postnatally exposed to ethanol. Neuropsychopharmacology 2019; 44:514-525. [PMID: 30143782 PMCID: PMC6333777 DOI: 10.1038/s41386-018-0181-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) represent a wide array of defects that arise from ethanol exposure during development. However, the underlying molecular mechanisms are limited. In the current report, we aimed to further evaluate the cannabinoid receptor type 1 (CB1R)-mediated mechanisms in a postnatal ethanol-exposed animal model. We report that the exposure of postnatal day 7 (P7) mice to ethanol generates p25, a CDK5-activating peptide, in a time- and CB1R-dependent manner in the hippocampus and neocortex brain regions. Pharmacological inhibition of CDK5 activity before ethanol exposure prevented accumulation of cleaved caspase-3 (CC3) and hyperphosphorylated tau (PHF1) (a marker for neurodegeneration) in neonatal mice and reversed cAMP response element-binding protein (CREB) activation and activity-regulated cytoskeleton-associated protein (Arc) expression. We also found that postnatal ethanol exposure caused a loss of RhoGTPase-related, Rac1, gene expression in a CB1R and CDK5 activity-dependent manner, which persisted to adulthood. Our epigenetic analysis of the Rac1 gene promoter suggested that persistent suppression of Rac1 expression is mediated by enhanced histone H3 lysine 9 dimethylation (H3K9me2), a repressive chromatin state, via G9a recruitment. The inhibition of CDK5/p25 activity before postnatal ethanol exposure rescued CREB activation, Arc, chromatin remodeling and Rac1 expression, spatial memory, and long-term potentiation (LTP) abnormalities in adult mice. Together, these findings propose that the postnatal ethanol-induced CB1R-mediated activation of CDK5 suppresses Arc and Rac1 expression in the mouse brain and is responsible for persistent synaptic plasticity and learning and memory defects in adult mice. This CB1R-mediated activation of CDK5 signaling during active synaptic development may slow down the maturation of synaptic circuits and may cause neurobehavioral defects, as found in this FASD animal model.
Collapse
Affiliation(s)
- Vikram Joshi
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Shivakumar Subbanna
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Madhu Shivakumar
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Balapal S. Basavarajappa
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA ,0000 0000 8499 1112grid.413734.6New York State Psychiatric Institute, New York, NY 10032 USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA ,0000 0001 2109 4251grid.240324.3Department of Psychiatry, New York University Langone Medical Center, New York, NY USA
| |
Collapse
|
7
|
Dixit AB, Banerjee J, Tripathi M, Sarkar C, Chandra PS. Synaptic roles of cyclin-dependent kinase 5 & its implications in epilepsy. Indian J Med Res 2018. [PMID: 28639593 PMCID: PMC5501049 DOI: 10.4103/ijmr.ijmr_1249_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is an urgent need to understand the molecular mechanisms underlying epilepsy to find novel prognostic/diagnostic biomarkers to prevent epilepsy patients at risk. Cyclin-dependent kinase 5 (CDK5) is involved in multiple neuronal functions and plays a crucial role in maintaining homeostatic synaptic plasticity by regulating intracellular signalling cascades at synapses. CDK5 deregulation is shown to be associated with various neurodegenerative diseases such as Alzheimer's disease. The association between chronic loss of CDK5 and seizures has been reported in animal models of epilepsy. Genetic expression of CDK5 at transcriptome level has been shown to be abnormal in intractable epilepsy. In this review various possible mechanisms by which deregulated CDK5 may alter synaptic transmission and possibly lead to epileptogenesis have been discussed. Further, CDK5 has been proposed as a potential biomarker as well as a pharmacological target for developing treatments for epilepsy.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center for Excellence in Epilepsy, A Joint National Brain Research Centre (NBRC)- All India Institute of Medical Sciences (AIIMS) Collaboration, NBRC, Gurugram, India
| | - Jyotirmoy Banerjee
- Center for Excellence in Epilepsy, A Joint National Brain Research Centre (NBRC)- All India Institute of Medical Sciences (AIIMS) Collaboration, NBRC, Gurugram, India
| | | | | | | |
Collapse
|
8
|
Shah K, Rossie S. Tale of the Good and the Bad Cdk5: Remodeling of the Actin Cytoskeleton in the Brain. Mol Neurobiol 2017; 55:3426-3438. [PMID: 28502042 DOI: 10.1007/s12035-017-0525-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Cdk5 kinase, a cyclin-dependent kinase family member, is a key regulator of cytoskeletal remodeling in the brain. Cdk5 is essential for brain development during embryogenesis. After birth, it is essential for numerous neuronal processes such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity is deregulated in various brain disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and ischemic stroke, resulting in profound remodeling of the neuronal cytoskeleton, loss of synapses, and ultimately neurodegeneration. This review focuses on the "good and bad" Cdk5 in the brain and its pleiotropic contribution in regulating neuronal actin cytoskeletal remodeling. A vast majority of physiological and pathological Cdk5 substrates are associated with the actin cytoskeleton. Thus, our special emphasis is on the numerous Cdk5 substrates identified in the past two decades such as ephexin1, p27, Mst3, CaMKv, kalirin-7, RasGRF2, Pak1, WAVE1, neurabin-1, TrkB, 5-HT6R, talin, drebrin, synapsin I, synapsin III, CRMP1, GKAP, SPAR, PSD-95, and LRRK2. These substrates have unraveled the molecular mechanisms by which Cdk5 plays divergent roles in regulating neuronal actin cytoskeletal dynamics both in healthy and diseased states.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry and Purdue University Center of Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - Sandra Rossie
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Chang TY, Cheng PL. Relay of cyclin-dependent kinases in the regulation of axonal growth. Exp Neurol 2015; 271:259-61. [PMID: 26102184 DOI: 10.1016/j.expneurol.2015.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 01/18/2023]
Abstract
One of the most perplexing problems in neuronal morphogenesis is how local polarity signals echo genetic instructions to establish structural and functional asymmetry of neuronal compartments, i.e., axons, dendrites, and synapses. However studying these phenomena is complicated because both genes and the local environment influence the phenotype of developing neurons. Cell cycle-associated nuclear transcription regulators involved in axon extension, for example Cdk12 and Cdk13, thus provide ideal models for connecting spatially separated events at specific developmental time points.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Institute of Molecular Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| |
Collapse
|
10
|
Posada-Duque RA, López-Tobón A, Piedrahita D, González-Billault C, Cardona-Gomez GP. p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem 2015; 134:354-70. [PMID: 25864429 DOI: 10.1111/jnc.13127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 01/27/2023]
Abstract
CDK5 plays an important role in neurotransmission and synaptic plasticity in the normal function of the adult brain, and dysregulation can lead to Tau hyperphosphorylation and cognitive impairment. In a previous study, we demonstrated that RNAi knock down of CDK5 reduced the formation of neurofibrillary tangles (NFT) and prevented neuronal loss in triple transgenic Alzheimer's mice. Here, we report that CDK5 RNAi protected against glutamate-mediated excitotoxicity using primary hippocampal neurons transduced with adeno-associated virus 2.5 viral vector eGFP-tagged scrambled or CDK5 shRNA-miR during 12 days. Protection was dependent on a concomitant increase in p35 and was reversed using p35 RNAi, which affected the down-stream Rho GTPase activity. Furthermore, p35 over-expression and constitutively active Rac1 mimicked CDK5 silencing-induced neuroprotection. In addition, 3xTg-Alzheimer's disease mice (24 months old) were injected in the hippocampus with scrambled or CDK5 shRNA-miR, and spatial learning and memory were performed 3 weeks post-injection using 'Morris' water maze test. Our data showed that CDK5 knock down induced an increase in p35 protein levels and Rac activity in triple transgenic Alzheimer's mice, which correlated with the recovery of cognitive function; these findings confirm that increased p35 and active Rac are involved in neuroprotection. In summary, our data suggest that p35 acts as a mediator of Rho GTPase activity and contributes to the neuroprotection induced by CDK5 RNAi.
Collapse
Affiliation(s)
- Rafael Andres Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| | - Alejandro López-Tobón
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| | - Diego Piedrahita
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Laboratory of Cell and Neuronal Dynamics, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Gloria Patricia Cardona-Gomez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
11
|
Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632450. [PMID: 25879033 PMCID: PMC4388020 DOI: 10.1155/2015/632450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
Collapse
|
12
|
Ke K, Shen J, Song Y, Cao M, Lu H, Liu C, Shen J, Li A, Huang J, Ni H, Chen X, Liu Y. CDK5 Contributes to Neuronal Apoptosis via Promoting MEF2D Phosphorylation in Rat Model of Intracerebral Hemorrhage. J Mol Neurosci 2014; 56:48-59. [DOI: 10.1007/s12031-014-0466-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
|
13
|
Binukumar BK, Zheng YL, Shukla V, Amin ND, Grant P, Pant HC. TFP5, a peptide derived from p35, a Cdk5 neuronal activator, rescues cortical neurons from glucose toxicity. J Alzheimers Dis 2014; 39:899-909. [PMID: 24326517 DOI: 10.3233/jad-131784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Multiple lines of evidence link the incidence of diabetes to the development of Alzheimer's disease (AD). Patients with diabetes have a 50 to 75% increased risk of developing AD. Cyclin dependent kinase 5 (Cdk5) is a serine/threonine protein kinase, which forms active complexes with p35 or p39, found principally in neurons and in pancreatic β cells. Recent studies suggest that Cdk5 hyperactivity is a possible link between neuropathology seen in AD and diabetes. Previously, we identified P5, a truncated 24-aa peptide derived from the Cdk5 activator p35, later modified as TFP5, so as to penetrate the blood-brain barrier after intraperitoneal injections in AD model mice. This treatment inhibited abnormal Cdk5 hyperactivity and significantly rescued AD pathology in these mice. The present study explores the potential of TFP5 peptide to rescue high glucose (HG)-mediated toxicity in rat embryonic cortical neurons. HG exposure leads to Cdk5-p25 hyperactivity and oxidative stress marked by increased reactive oxygen species production, and decreased glutathione levels and superoxide dismutase activity. It also induces hyperphosphorylation of tau, neuroinflammation as evident from the increased expression of inflammatory cytokines like TNF-α, IL-1β, and IL-6, and apoptosis. Pretreatment of cortical neurons with TFP5 before HG exposure inhibited Cdk5-p25 hyperactivity and significantly attenuated oxidative stress by decreasing reactive oxygen species levels, while increasing superoxide dismutase activity and glutathione. Tau hyperphosphorylation, inflammation, and apoptosis induced by HG were also considerably reduced by pretreatment with TFP5. These results suggest that TFP5 peptide may be a novel candidate for type 2 diabetes therapy.
Collapse
Affiliation(s)
- B K Binukumar
- Laboratory of Neuronal Cytoskeletal protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ya-Li Zheng
- Laboratory of Neuronal Cytoskeletal protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA Department of Nephrology, Ningxia People's Hospital, Yinchuan, Ningxia Province, China
| | - Varsha Shukla
- Laboratory of Neuronal Cytoskeletal protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D Amin
- Laboratory of Neuronal Cytoskeletal protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- Laboratory of Neuronal Cytoskeletal protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harish C Pant
- Laboratory of Neuronal Cytoskeletal protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Ito Y, Asada A, Kobayashi H, Takano T, Sharma G, Saito T, Ohta Y, Amano M, Kaibuchi K, Hisanaga SI. Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia. Mol Cell Neurosci 2014; 61:34-45. [PMID: 24877974 DOI: 10.1016/j.mcn.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 01/15/2023] Open
Abstract
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family that plays a role in various neuronal activities including brain development, synaptic regulation, and neurodegeneration. Cdk5 requires the neuronal specific activators, p35 and p39 for subcellular compartmentalization. However, it is not known how active Cdk5 is recruited to F-actin cytoskeleton, which is a Cdk5 target. Here we found p35 and p39 localized to F-actin rich regions of the plasma membrane and investigated the underlying targeting mechanism in vitro by expressing them with Rho family GTPases in Neuro2A cells. Both p35 and p39 accumulated at the cell peripheral lamellipodia and perinuclear regions, where active Rac1 is localized. Interestingly, p35 and p39 displayed different localization patterns as p35 was found more at the perinuclear region and p39 was found more in peripheral lamellipodia. We then confirmed this distinct localization in primary hippocampal neurons. We also determined that the localization of p39 to lamellipodia requires myristoylation and Lys clusters within the N-terminal p10 region. Additionally, we found that p39-Cdk5, but not p35-Cdk5 suppressed lamellipodia formation by reducing Rac1 activity. These results suggest that p39-Cdk5 has a dominant role in Rac1-dependent lamellipodial activity.
Collapse
Affiliation(s)
- Yuki Ito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Akiko Asada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroyuki Kobayashi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Takano
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara 252-0373, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
15
|
Vadodaria KC, Jessberger S. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases. Front Synaptic Neurosci 2013; 5:4. [PMID: 23986696 PMCID: PMC3752586 DOI: 10.3389/fnsyn.2013.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/29/2013] [Indexed: 01/28/2023] Open
Abstract
Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps, from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1, and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus (DG) circuitry.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | | |
Collapse
|
16
|
Li Y, Xu J, Chen H, Zhao Z, Li S, Bai J, Wu A, Jiang C, Wang Y, Su B, Li X. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues. PLoS One 2013; 8:e65871. [PMID: 23776563 PMCID: PMC3680465 DOI: 10.1371/journal.pone.0065871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/29/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. RESULTS In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. CONCLUSIONS We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci 2012; 32:1020-34. [PMID: 22262900 DOI: 10.1523/jneurosci.5177-11.2012] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The deregulation of cyclin-dependent kinase 5 (Cdk5) by p25 has been shown to contribute to the pathogenesis in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD). In particular, p25/Cdk5 has been shown to produce hyperphosphorylated tau, neurofibrillary tangles as well as aberrant amyloid precursor protein processing found in AD. Neuroinflammation has been observed alongside the pathogenic process in these neurodegenerative diseases, however the precise mechanism behind the induction of neuroinflammation and the significance in the AD pathogenesis has not been fully elucidated. In this report, we uncover a novel pathway for p25-induced neuroinflammation where p25 expression induces an early trigger of neuroinflammation in vivo in mice. Lipidomic mass spectrometry, in vitro coculture and conditioned media transfer experiments show that the soluble lipid mediator lysophosphatidylcholine (LPC) is released by p25 overexpressing neurons to initiate astrogliosis, neuroinflammation and subsequent neurodegeneration. Reverse transcriptase PCR and gene silencing experiments show that cytosolic phospholipase 2 (cPLA2) is the key enzyme mediating the p25-induced LPC production and cPLA2 upregulation is critical in triggering the p25-mediated inflammatory and neurodegenerative process. Together, our findings delineate a potential therapeutic target for the reduction of neuroinflammation in neurodegenerative diseases including AD.
Collapse
|
18
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifaceted serine/threonine kinase protein with important roles in the nervous system. Two related proteins, p35 and p39, activate Cdk5 upon direct binding. Over the past decade, Cdk5 activity has been demonstrated to regulate many events during brain development, including neuronal migration as well as axon and dendrite development. Recent evidence also suggests a pivotal role for Cdk5 in synaptic plasticity, behavior, and cognition. Dysfunction of Cdk5 has been implicated in a number of neurological disorders and neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick type C disease, and ischemia. Hyperactivation of Cdk5 due to the conversion of p35 to p25 by the calcium-dependent protease calpain during neurotoxicity also contributes to the pathological state. This review surveys recent literature surrounding Cdk5 in synaptic plasticity and homeostasis, with particular emphasis on Cdk5 kinase activity under neurodegenerative conditions.
Collapse
Affiliation(s)
- Susan C Su
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
19
|
Ye T, Fu AK, Ip NY. Cyclin-Dependent Kinase 5 in Axon Growth and Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [DOI: 10.1016/b978-0-12-398309-1.00006-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Abstract
Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of guanine nucleotide exchange factors (GEFs). The main isoforms, p140-GRF1 and p135-GRF2, have 2 GEF domains that give them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. GRF1 and GRF2 proteins are found predominantly in adult neurons of the central nervous system, although they can also be detected in a limited number of other tissues. p140-GRF1 and p135-GRF2 contain calcium/calmodulin-binding IQ domains that allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. p140-GRF1 also mediates the action of dopamine receptors that signal through cAMP. Although p140-GRF1 and p135-GRF2 have similar functional domains, studies of GRF knockout mice show that they can play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. In addition, the function of GRF proteins may vary in different regions of the brain. Alternative splice variants yielding smaller GRF1 gene isoforms with fewer functional domains also exist; however, their distinct roles in neurons have not been revealed. Continuing studies of these proteins should yield important insights into the biochemical basis of brain function as well as novel concepts to explain how complex signal transduction proteins, like Ras-GRFs, integrate multiple upstream signals into specific downstream outputs to control brain function.
Collapse
Affiliation(s)
- Larry A Feig
- Departments of Biochemistry and Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Hassan M, Sallam H, Hassan Z. The Role of Pharmacokinetics and Pharmacodynamics in Early Drug Development with reference to the Cyclin-dependent Kinase (Cdk) Inhibitor - Roscovitine. Sultan Qaboos Univ Med J 2011; 11:165-178. [PMID: 21969887 PMCID: PMC3121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/02/2010] [Accepted: 11/24/2010] [Indexed: 05/31/2023] Open
Abstract
Pharmacokinetics, pharmacodynamics and pharmacogenetics play an important role in drug discovery and contribute to treatment success. This is an essential issue in cancer treatment due to its high toxicity. During the last decade, cyclin-dependent kinase inhibitors were recognised as a new class of compounds that was introduced for the treatment of several diseases including cancer. Cyclin-dependent kinases (Cdks) play a key role in the regulation of cell cycle progression and ribonucleic acid transcription. Deregulation of Cdks has been associated with several malignancies, neurodegenerative disorders, viral and protozoa infections, glomerulonephritis and inflammatory diseases. (R)-roscovitine is a synthetic tri-substituted purine that inhibits selectively Cdk1, 2, 5, 7 and 9. Roscovitine has shown promising cytotoxicity in cell lines and tumor xenografts. In this paper, we present several aspects of pharmacokinetics (PK) and pharmacodynamics (PD) of roscovitine. We present also some of our investigations including bioanalysis, haematotoxicity, age dependent kinetics, PK and effects on Cdks in the brain. Unfavourable kinetic parameters in combination with poor distribution to the bone marrow compartment could explain the absence of myelosuppression in vivo despite the efficacy in vitro. Higher plasma and brain exposure and longer elimination half-life found in rat pups compared to adult rats may indicate that roscovitine can be a potential candidate for the treatment of brain tumours in children. Cdk5 inhibition and Erk1/2 activation that was detected in brain of rat pups may suggest the use of roscovitine in neurodegenerative diseases. Early pharmacokinetic/pharmacodynamic studies are important issues in drug discovery and may affect further development of promising drug candidates.
Collapse
Affiliation(s)
- Moustapha Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Centrum, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Hatem Sallam
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Centrum, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
22
|
Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat Neurosci 2011; 14:324-30. [PMID: 21278733 PMCID: PMC3069133 DOI: 10.1038/nn.2747] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 01/14/2023]
Abstract
Positive and negative regulation of neurotransmitter receptor aggregation on the postsynaptic membrane is a critical event during synapse formation. Acetylcholine (ACh) and agrin are two opposing signals that regulate ACh receptor (AChR) clustering during neuromuscular junction (NMJ) development. ACh induces dispersion of AChR clusters that are not stabilized by agrin via a cyclin-dependent kinase 5 (Cdk5)-mediated mechanism, but regulation of Cdk5 activation is poorly understood. Here we show that the intermediate filament protein nestin physically interacts with Cdk5 and is required for ACh-induced association of p35, the co-activator of Cdk5, with the muscle membrane. Blockade of nestin-dependent signaling inhibits ACh-induced Cdk5 activation and the dispersion of AChR clusters in cultured myotubes. Similar to the effects of Cdk5 gene inactivation, knockdown of nestin in agrin-deficient embryos significantly restores AChR clusters. These results suggest that nestin is required for ACh-induced, Cdk5-dependent dispersion of AChR clusters during NMJ development.
Collapse
|
23
|
Deregulation of Cytoskeletal Protein Phosphorylation and Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Fernández-Medarde A, Santos E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta Rev Cancer 2010; 1815:170-88. [PMID: 21111786 DOI: 10.1016/j.bbcan.2010.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/14/2010] [Indexed: 12/31/2022]
Abstract
RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.
Collapse
|
25
|
Liebl J, Weitensteiner SB, Vereb G, Takács L, Fürst R, Vollmar AM, Zahler S. Cyclin-dependent kinase 5 regulates endothelial cell migration and angiogenesis. J Biol Chem 2010; 285:35932-43. [PMID: 20826806 DOI: 10.1074/jbc.m110.126177] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis contributes to various pathological conditions. Due to the resistance against existing antiangiogenic therapy, an urgent need exists to understand the molecular basis of vessel growth and to identify new targets for antiangiogenic therapy. Here we show that cyclin-dependent kinase 5 (Cdk5), an important modulator of neuronal processes, regulates endothelial cell migration and angiogenesis, suggesting Cdk5 as a novel target for antiangiogenic therapy. Inhibition or knockdown of Cdk5 reduces endothelial cell motility and blocks angiogenesis in vitro and in vivo. We elucidate a specific signaling of Cdk5 in the endothelium; in contrast to neuronal cells, the motile defects upon inhibition of Cdk5 are not caused by an impaired function of focal adhesions or microtubules but by the reduced formation of lamellipodia. Inhibition or down-regulation of Cdk5 decreases the activity of the small GTPase Rac1 and results in a disorganized actin cytoskeleton. Constitutive active Rac1 compensates for the inhibiting effects of Cdk5 knockdown on migration, suggesting that Cdk5 exerts its effects in endothelial cell migration via Rac1. Our work elucidates Cdk5 as a pivotal new regulator of endothelial cell migration and angiogenesis. It suggests Cdk5 as a novel, pharmacologically accessible target for antiangiogenic therapy and provides the basis for a new therapeutic application of Cdk5 inhibitors as antiangiogenic agents.
Collapse
Affiliation(s)
- Johanna Liebl
- Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Cdk5-mediated phosphorylation of delta-catenin regulates its localization and GluR2-mediated synaptic activity. J Neurosci 2010; 30:8457-67. [PMID: 20573893 DOI: 10.1523/jneurosci.6062-09.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation plays an important role in proper synaptic function and transmission. Loss of Cdk5 activity results in abnormal development of the nervous system accompanied by massive disruptions in cortical migration and lamination, therefore impacting synaptic activity. The Cdk5 activator p35 associates with delta-catenin, the synaptic adherens junction protein that serves as part of the anchorage complex of AMPA receptor at the postsynaptic membrane. However, the implications of Cdk5-mediated phosphorylation of delta-catenin have not been fully elucidated. Here we show that Cdk5-mediated phosphorylation of delta-catenin regulates its subcellular localization accompanied by changes in dendritic morphogenesis and synaptic activity. We identified two Cdk5 phosphorylation sites in mouse delta-catenin, serines 300 and 357, and report that loss of Cdk5 phosphorylation of delta-catenin increased its localization to the membrane. Furthermore, mutations of the serines 300 and 357 to alanines to mimic nonphosphorylated delta-catenin resulted in increased dendritic protrusions accompanied by increased AMPA receptor subunit GluR2 localization at the membrane. Consistent with these observations, loss of Cdk5 phosphorylation of delta-catenin increased the AMPA/NMDA ratio. This study reveals how Cdk5 phosphorylation of the synaptic mediator protein delta-catenin can alter its localization at the synapse to impact neuronal synaptic activity.
Collapse
|
27
|
Kiraly DD, Eipper-Mains JE, Mains RE, Eipper BA. Synaptic plasticity, a symphony in GEF. ACS Chem Neurosci 2010; 1:348-365. [PMID: 20543890 DOI: 10.1021/cn100012x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the mammalian forebrain. While many spines display great stability, others change shape in a matter of seconds to minutes. These rapid alterations in dendritic spine number and size require tight control of the actin cytoskeleton, the main structural component of dendritic spines. The ability of neurons to alter spine number and size is essential for the expression of neuronal plasticity. Within spines, guanine nucleotide exchange factors (GEFs) act as critical regulators of the actin cytoskeleton by controlling the activity of Rho-GTPases. In this review we focus on the Rho-GEFs expressed in the nucleus accumbens and localized to the postsynaptic density, and thus positioned to effect rapid alterations in the structure of dendritic spines. We review literature that ties these GEFs to different receptor systems and intracellular signaling cascades and discuss the effects these interactions are likely to have on synaptic plasticity.
Collapse
Affiliation(s)
- Drew D. Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Jodi E. Eipper-Mains
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A. Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
28
|
Feldmann G, Mishra A, Hong SM, Bisht S, Strock CJ, Ball DW, Goggins M, Maitra A, Nelkin BD. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer Res 2010; 70:4460-9. [PMID: 20484029 DOI: 10.1158/0008-5472.can-09-1107] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers in which it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers in which metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration, and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in the profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer.
Collapse
Affiliation(s)
- Georg Feldmann
- Departments of Pathology, Oncology, and Medicine, and The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kanungo J, Zheng YL, Amin ND, Pant HC. Targeting Cdk5 activity in neuronal degeneration and regeneration. Cell Mol Neurobiol 2010; 29:1073-80. [PMID: 19455415 DOI: 10.1007/s10571-009-9410-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
The major priming event in neurodegeneration is loss of neurons. Loss of neurons by apoptotic mechanisms is a theme for studies focused on determining therapeutic strategies. Neurons following an insult, activate a number of signal transduction pathways, of which, kinases are the leading members. Cyclin-dependent kinase 5 (Cdk5) is one of the kinases that have been linked to neurodegeneration. Cdk5 along with its principal activator p35 is involved in multiple cellular functions ranging from neuronal differentiation and migration to synaptic transmission. However, during neurotoxic stress, intracellular rise in Ca(2+) activates calpain, which cleaves p35 to generate p25. The long half-life of Cdk5/p25 results in a hyperactive, aberrant Cdk5 that hyperphosphorylates Tau, neurofilament and other cytoskeletal proteins. These hyperphosphorylated cytoskeletal proteins set the groundwork to forming neurofibrillary tangles and aggregates of phosphorylated proteins, hallmarks of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Amyotropic Lateral Sclerosis. Attempts to selectively target Cdk5/p25 activity without affecting Cdk5/p35 have been largely unsuccessful. A polypeptide inhibitor, CIP (Cdk5 inhibitory peptide), developed in our laboratory, successfully inhibits Cdk5/p25 activity in vitro, in cultured primary neurons, and is currently undergoing validation tests in mouse models of neurodegeneration. Here, we discuss the therapeutic potential of CIP in regenerating neurons that are exposed to neurodegenerative stimuli.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
30
|
Jessberger S, Gage FH, Eisch AJ, Lagace DC. Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends Neurosci 2009; 32:575-82. [PMID: 19782409 DOI: 10.1016/j.tins.2009.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 01/02/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) has been implicated in the migration, maturation and survival of neurons born during embryonic development. New evidence suggests that Cdk5 has comparable but also distinct functions in adult neurogenesis. Here we summarize accumulating evidence on the role of Cdk5 in regulation of the cell cycle, migration, survival, maturation and neuronal integration. We specifically highlight the many similarities and few tantalizing differences in the roles of Cdk5 in the embryonic and adult brain. We discuss the signaling pathways that might contribute to Cdk5 action in regulating embryonic and adult neurogenesis, highlighting future research directions that will help to clarify the mechanisms underlying lifelong neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Sebastian Jessberger
- Institute of Cell Biology, Department of Biology, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland.
| | | | | | | |
Collapse
|
31
|
Brinkkoetter PT, Olivier P, Wu JS, Henderson S, Krofft RD, Pippin JW, Hockenbery D, Roberts JM, Shankland SJ. Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. J Clin Invest 2009; 119:3089-101. [PMID: 19729834 DOI: 10.1172/jci37978] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 06/24/2009] [Indexed: 12/15/2022] Open
Abstract
Cyclin I is an atypical cyclin because it is most abundant in postmitotic cells. We previously showed that cyclin I does not regulate proliferation, but rather controls survival of podocytes, terminally differentiated epithelial cells that are essential for the structural and functional integrity of kidney glomeruli. Here, we investigated the mechanism by which cyclin I safeguards against apoptosis and found that cyclin I bound and activated cyclin-dependent kinase 5 (Cdk5) in isolated mouse podocytes and neurons. Cdk5 activity was reduced in glomeruli and brain lysates from cyclin I-deficient mice, and inhibition of Cdk5 increased in vitro the susceptibility to apoptosis in response to cellular damage. In addition, levels of the prosurvival proteins Bcl-2 and Bcl-XL were reduced in podocytes and neurons from cyclin I-deficient mice, and restoration of Bcl-2 or Bcl-XL expression prevented injury-induced apoptosis. Furthermore, we found that levels of phosphorylated MEK1/2 and ERK1/2 were decreased in cyclin I-deficient podocytes and that inhibition of MEK1/2 restored Bcl2 and Bcl-XL protein levels. Of interest, this pathway was also defective in mice with experimental glomerulonephritis. Taken together, these data suggest that a cyclin I-Cdk5 complex forms a critical antiapoptotic factor in terminally differentiated cells that functions via MAPK signaling to modulate levels of the prosurvival proteins Bcl-2 and Bcl-XL.
Collapse
Affiliation(s)
- Paul T Brinkkoetter
- Division of Nephrology, University of Washington, Seattle, Washington 98195-6521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rudrabhatla P, Zheng YL, Amin ND, Kesavapany S, Albers W, Pant HC. Pin1-dependent prolyl isomerization modulates the stress-induced phosphorylation of high molecular weight neurofilament protein. J Biol Chem 2008; 283:26737-47. [PMID: 18635547 PMCID: PMC2546547 DOI: 10.1074/jbc.m801633200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/30/2008] [Indexed: 11/06/2022] Open
Abstract
Aberrant phosphorylation of neuronal cytoskeletal proteins is a key pathological event in neurodegenerative disorders such as Alzheimer disease (AD) and amyotrophic lateral sclerosis, but the underlying mechanisms are still unclear. Previous studies have shown that Pin1, a peptidylprolyl cis/trans-isomerase, may be actively involved in the regulation of Tau hyperphosphorylation in AD. Here, we show that Pin1 modulates oxidative stress-induced NF-H phosphorylation. In an in vitro kinase assay, the addition of Pin1 substantially increased phosphorylation of NF-H KSP repeats by proline-directed kinases, Erk1/2, Cdk5/p35, and JNK3 in a concentration-dependent manner. In vivo, dominant-negative (DN) Pin1 and Pin1 small interfering RNA inhibited epidermal growth factor-induced NF-H phosphorylation. Because oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, we studied the role of Pin1 in stressed cortical neurons and HEK293 cells. Both hydrogen peroxide (H(2)O(2)) and heat stresses induce phosphorylation of NF-H in transfected HEK293 cells and primary cortical cultures. Knockdown of Pin1 by transfected Pin1 short interference RNA and DN-Pin1 rescues the effect of stress-induced NF-H phosphorylation. The H(2)O(2) and heat shock induced perikaryal phospho-NF-H accumulations, and neuronal apoptosis was rescued by inhibition of Pin1 in cortical neurons. JNK3, a brain-specific JNK isoform, is activated under oxidative and heat stresses, and inhibition of Pin1 by Pin1 short interference RNA and DN-Pin1 inhibits this pathway. These results implicate Pin1 as a possible modulator of stress-induced NF-H phosphorylation as seen in neurodegenerative disorders like AD and amyotrophic lateral sclerosis. Thus, Pin1 may be a potential therapeutic target for these diseases.
Collapse
Affiliation(s)
- Parvathi Rudrabhatla
- Laboratory of Neurochemistry,
NINDS, National Institutes of Health, Bethesda, Maryland 20892 and the
Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7
02-03, Singapore 117697
| | - Ya-Li Zheng
- Laboratory of Neurochemistry,
NINDS, National Institutes of Health, Bethesda, Maryland 20892 and the
Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7
02-03, Singapore 117697
| | - Niranjana D. Amin
- Laboratory of Neurochemistry,
NINDS, National Institutes of Health, Bethesda, Maryland 20892 and the
Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7
02-03, Singapore 117697
| | - Sashi Kesavapany
- Laboratory of Neurochemistry,
NINDS, National Institutes of Health, Bethesda, Maryland 20892 and the
Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7
02-03, Singapore 117697
| | - Wayne Albers
- Laboratory of Neurochemistry,
NINDS, National Institutes of Health, Bethesda, Maryland 20892 and the
Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7
02-03, Singapore 117697
| | - Harish C. Pant
- Laboratory of Neurochemistry,
NINDS, National Institutes of Health, Bethesda, Maryland 20892 and the
Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7
02-03, Singapore 117697
| |
Collapse
|
33
|
Xin X, Wang Y, Ma XM, Rompolas P, Keutmann HT, Mains RE, Eipper BA. Regulation of Kalirin by Cdk5. J Cell Sci 2008; 121:2601-11. [PMID: 18628310 DOI: 10.1242/jcs.016089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kalirin, one of the few Rho guanine nucleotide exchange factors (GEFs) that contains spectrin-like repeats, plays a critical role in axon extension and maintenance of dendritic spines. PC12 cells were used to determine whether Cdk5, a critical participant in both processes, regulates the action of Kalirin. Expression of Kalirin-7 in nondifferentiated PC12 cells caused GEF-activity-dependent extension of broad cytoplasmic protrusions; coexpression of dominant-negative Cdk5 largely eliminated this response. The spectrin-like repeat region of Kalirin plays an essential role in this response, which is not mimicked by the GEF domain alone. Thr1590, which follows the first GEF domain of Kalirin, is the only Cdk5 phosphorylation site in Kalirin-7. Although mutant Kalirin-7 with Ala1590 retains GEF activity, it is unable to cause extension of protrusions. Kalirin-7 with an Asp1590 mutation has slightly increased GEF activity and dominant-negative Cdk5 fails to block its ability to cause extension of protrusions. Phosphorylation of Thr1590 causes a slight increase in GEF activity and Kalirin-7 solubility. Dendritic spines formed by cortical neurons in response to the expression of Kalirin-7 with Ala1590 differ in shape from those formed in response to wild-type Kalirin-7 or Kalirin-7 containing Asp1590. The presence of Thr1590 in each major Kalirin isoform would allow Cdk5 to regulate Kalirin function throughout development.
Collapse
Affiliation(s)
- Xiaonan Xin
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Asada A, Yamamoto N, Gohda M, Saito T, Hayashi N, Hisanaga SI. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J Neurochem 2008; 106:1325-36. [PMID: 18507738 DOI: 10.1111/j.1471-4159.2008.05500.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cdk5 is a member of the cyclin-dependent kinases (Cdks), activated by the neuron-specific activator p39 or p35. The activators also determine the cytoplasmic distribution of active Cdk5, but the mechanism is not yet known. In particular, little is known for p39. p39 and p35 contain localization motifs, such as a second Gly for myristoylation and Lys clusters in the N-terminal p10 region. Using mutant constructs, we investigated the cellular distribution mechanism. We observed that p39 localizes the active Cdk5 complex in the perinuclear region and at the plasma membrane as does p35. We demonstrated the myristoylation of both p39 and p35, and found that it is a major determinant of their membrane association. Plasma membrane targeting depends on the amino acid sequence containing the Lys-cluster in the N-terminal p10 region. In contrast, a non-myristoylated Ala mutant (p39G2A or p35G2A) showed nuclear localization with stronger accumulation of p39G2A than p35G2A. These results indicate that myristoylation regulates the membrane association of p39 as well as p35 and that the Lys cluster controls their trafficking to the plasma membrane. The differential nuclear accumulation of p39 and p35 suggests their segregated functions, p35-Cdk5 in the cytoplasm and p39-Cdk5 in the nucleus.
Collapse
Affiliation(s)
- Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J Neurosci 2008; 28:3631-43. [PMID: 18385322 DOI: 10.1523/jneurosci.0453-08.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is predominantly expressed in the nervous system, where it is involved in neuronal migration, synaptic transmission, and survival. The role of Cdk5 in synaptic transmission is mediated by regulating the cellular functions of presynaptic proteins such as synapsin, Munc18, and dynamin 1. Its multifunctional role at the synapse is complex and probably involves other novel substrates. To explore this possibility, we used a yeast two-hybrid screen of a human cDNA library with p35 as bait and isolated human septin 5 (SEPT5), known also as hCDCrel-1, as an interacting clone. Here we report that p35 associates with SEPT5 in GST (glutathione S-transferase)-pull-down and coimmunoprecipitation assays. We confirmed that Cdk5/p35 phosphorylates SEPT5 in vitro and in vivo and identified S327 of SEPT5 as a major phosphorylation site. A serine (S)-to-alanine (A) 327 mutant of SEPT5 bound syntaxin more efficiently than SEPT5 wild type. Additionally, coimmunoprecipitation from synaptic vesicle fractions and Cdk5 wild-type and knock-out lysates showed that phosphorylation of septin 5 by Cdk5/p35 decreases its binding to syntaxin-1. Moreover, mutant nonphosphorylated SEPT5 potentiated regulated exocytosis more than the wild type when each was expressed in PC12 cells. These data suggest that Cdk5 phosphorylation of human septin SEPT5 at S327 plays a role in modulating exocytotic secretion.
Collapse
|
36
|
Abstract
Since the isolation of cyclin-dependent kinase 5 (Cdk5), this proline-directed serine/threonine kinase has been demonstrated as an important regulator of neuronal migration, neuronal survival and synaptic functions. Recently, a number of players implicated in dendrite and synapse development have been identified as Cdk5 substrates. Neurite extension, synapse and spine maturation are all modulated by a myriad of extracellular guidance cues or trophic factors. Cdk5 was recently demonstrated to regulate signaling downstream of some of these extracellular factors, in addition to modulating Rho GTPase activity, which regulates cytoskeletal dynamics. In this communication, we summarize our existing knowledge on the pathways and mechanisms through which Cdk5 affects dendrite, synapse and spine development.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
37
|
Causeret F, Jacobs T, Terao M, Heath O, Hoshino M, Nikolić M. Neurabin-I is phosphorylated by Cdk5: implications for neuronal morphogenesis and cortical migration. Mol Biol Cell 2007; 18:4327-42. [PMID: 17699587 PMCID: PMC2043560 DOI: 10.1091/mbc.e07-04-0372] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The correct morphology and migration of neurons, which is essential for the normal development of the nervous system, is enabled by the regulation of their cytoskeletal elements. We reveal that Neurabin-I, a neuronal-specific F-actin-binding protein, has an essential function in the developing forebrain. We show that gain and loss of Neurabin-I expression affect neuronal morphology, neurite outgrowth, and radial migration of differentiating cortical and hippocampal neurons, suggesting that tight regulation of Neurabin-I function is required for normal forebrain development. Importantly, loss of Neurabin-I prevents pyramidal neurons from migrating into the cerebral cortex, indicating its essential role during early stages of corticogenesis. We demonstrate that in neurons Rac1 activation is affected by the expression levels of Neurabin-I. Furthermore, the Cdk5 kinase, a key regulator of neuronal migration and morphology, directly phosphorylates Neurabin-I and controls its association with F-actin. Mutation of the Cdk5 phosphorylation site reduces the phenotypic consequences of Neurabin-I overexpression both in vitro and in vivo, suggesting that Neurabin-I function depends, at least in part, on its phosphorylation status. Together our findings provide new insight into the signaling pathways responsible for controlled changes of the F-actin cytoskeleton that are required for normal development of the forebrain.
Collapse
Affiliation(s)
- Frédéric Causeret
- *Department of Cellular and Molecular Neuroscience, Imperial College School of Medicine, Charing Cross Campus, London W6 8RP, United Kingdom; and
| | - Tom Jacobs
- *Department of Cellular and Molecular Neuroscience, Imperial College School of Medicine, Charing Cross Campus, London W6 8RP, United Kingdom; and
| | - Mami Terao
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Owen Heath
- *Department of Cellular and Molecular Neuroscience, Imperial College School of Medicine, Charing Cross Campus, London W6 8RP, United Kingdom; and
| | - Mikio Hoshino
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Margareta Nikolić
- *Department of Cellular and Molecular Neuroscience, Imperial College School of Medicine, Charing Cross Campus, London W6 8RP, United Kingdom; and
| |
Collapse
|
38
|
Kesavapany S, Patel V, Zheng YL, Pareek TK, Bjelogrlic M, Albers W, Amin N, Jaffe H, Gutkind JS, Strong MJ, Grant P, Pant HC. Inhibition of Pin1 reduces glutamate-induced perikaryal accumulation of phosphorylated neurofilament-H in neurons. Mol Biol Cell 2007; 18:3645-55. [PMID: 17626162 PMCID: PMC1951754 DOI: 10.1091/mbc.e07-03-0237] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Under normal conditions, the proline-directed serine/threonine residues of neurofilament tail-domain repeats are exclusively phosphorylated in axons. In pathological conditions such as amyotrophic lateral sclerosis (ALS), motor neurons contain abnormal perikaryal accumulations of phosphorylated neurofilament proteins. The precise mechanisms for this compartment-specific phosphorylation of neurofilaments are not completely understood. Although localization of kinases and phosphatases is certainly implicated, another possibility involves Pin1 modulation of phosphorylation of the proline-directed serine/threonine residues. Pin1, a prolyl isomerase, selectively binds to phosphorylated proline-directed serine/threonine residues in target proteins and isomerizes cis isomers to more stable trans configurations. In this study we show that Pin1 associates with phosphorylated neurofilament-H (p-NF-H) in neurons and is colocalized in ALS-affected spinal cord neuronal inclusions. To mimic the pathology of neurodegeneration, we studied glutamate-stressed neurons that displayed increased p-NF-H in perikaryal accumulations that colocalized with Pin1 and led to cell death. Both effects were reduced upon inhibition of Pin1 activity by the use of an inhibitor juglone and down-regulating Pin1 levels through the use of Pin1 small interfering RNA. Thus, isomerization of lys-ser-pro repeat residues that are abundant in NF-H tail domains by Pin1 can regulate NF-H phosphorylation, which suggests that Pin1 inhibition may be an attractive therapeutic target to reduce pathological accumulations of p-NF-H.
Collapse
Affiliation(s)
| | - Vyomesh Patel
- Laboratory of Oral and Pharyngeal Cancer, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | | | - Tej K. Pareek
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | - Howard Jaffe
- Protein and Peptide Facility, National Institute of Neurological Disorders and Stroke, and
| | - J. Silvio Gutkind
- Laboratory of Oral and Pharyngeal Cancer, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
39
|
Kino T, Ichijo T, Amin ND, Kesavapany S, Wang Y, Kim N, Rao S, Player A, Zheng YL, Garabedian MJ, Kawasaki E, Pant HC, Chrousos GP. Cyclin-dependent kinase 5 differentially regulates the transcriptional activity of the glucocorticoid receptor through phosphorylation: clinical implications for the nervous system response to glucocorticoids and stress. Mol Endocrinol 2007; 21:1552-68. [PMID: 17440046 DOI: 10.1210/me.2006-0345] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system and influence diverse functions of neuronal cells. We found that cyclin-dependent kinase 5 (CDK5), which plays important roles in the morphogenesis and functions of the nervous system and whose aberrant activation is associated with development of neurodegenerative disorders, interacted with the ligand-binding domain of the glucocorticoid receptor (GR) through its activator p35 or its active proteolytic fragment p25. CDK5 phosphorylated GR at multiple serines, including Ser203 and Ser211 of its N-terminal domain, and suppressed the transcriptional activity of this receptor on glucocorticoid-responsive promoters by attenuating attraction of transcriptional cofactors to DNA. In microarray analyses using rat cortical neuronal cells, the CDK5 inhibitor roscovitine differentially regulated the transcriptional activity of the GR on more than 90% of the endogenous glucocorticoid-responsive genes tested. Thus, CDK5 exerts some of its biological activities in neuronal cells through the GR, dynamically modulating GR transcriptional activity in a target promoter-dependent fashion.
Collapse
Affiliation(s)
- Tomoshige Kino
- Reproductive Biology and Medicine Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory.
Collapse
Affiliation(s)
- Marco Angelo
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
41
|
Zheng YL, Li BS, Kanungo J, Kesavapany S, Amin N, Grant P, Pant HC. Cdk5 Modulation of mitogen-activated protein kinase signaling regulates neuronal survival. Mol Biol Cell 2006; 18:404-13. [PMID: 17108320 PMCID: PMC1783783 DOI: 10.1091/mbc.e06-09-0851] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cdk5, a cyclin-dependent kinase, is critical for neuronal development, neuronal migration, cortical lamination, and survival. Its survival role is based, in part, on "cross-talk" interactions with apoptotic and survival signaling pathways. Previously, we showed that Cdk5 phosphorylation of mitogen-activated protein kinase kinase (MEK)1 inhibits transient activation induced by nerve growth factor (NGF) in PC12 cells. To further explore the nature of this inhibition, we studied the kinetics of NGF activation of extracellular signal-regulated kinase (Erk)1/2 in cortical neurons with or without roscovitine, an inhibitor of Cdk5. NGF alone induced an Erk1/2-transient activation that peaked in 15 min and declined rapidly to baseline. Roscovitine, alone or with NGF, reached peak Erk1/2 activation in 30 min that was sustained for 48 h. Moreover, the sustained Erk1/2 activation induced apoptosis in cortical neurons. Significantly, pharmacological application of the MEK1 inhibitor PD98095 to roscovitine-treated cortical neurons prevented apoptosis. These results were also confirmed by knocking down Cdk5 activity in cortical neurons with Cdk5 small interference RNA. Apoptosis was correlated with a significant shift of phosphorylated tau and neurofilaments from axons to neuronal cell bodies. These results suggest that survival of cortical neurons is also dependent on tight Cdk5 modulation of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Bing-Sheng Li
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Jyotshna Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Sashi Kesavapany
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Niranjana Amin
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip Grant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
García-Bonilla L, Burda J, Piñeiro D, Ayuso I, Gómez-Calcerrada M, Salinas M. Calpain-induced proteolysis after transient global cerebral ischemia and ischemic tolerance in a rat model. Neurochem Res 2006; 31:1433-41. [PMID: 17089194 DOI: 10.1007/s11064-006-9195-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/05/2006] [Indexed: 12/16/2022]
Abstract
The activation of the [Ca(2+)]-dependent cysteine protease calpain plays an important role in ischemic injury. Here, the levels of two calpain-specific substrates, p35 protein and eukaryotic initiation factor 4G (eIF4G), as well as its physiological regulator calpastatin, were investigated in a rat model of transient global cerebral ischemia with or without ischemic tolerance (IT). Extracts of the cerebral cortex, whole hippocampus and hippocampal subregions after 30 min of ischemia and different reperfusion times (30 min and 4 h) were used. In rats without IT, the p35 levels slightly decreased after ischemia or reperfusion, whereas the levels of p25 (the truncated form of p35) were much higher than those in sham control rats after ischemia and remained elevated during reperfusion. The eIF4G levels deeply diminished after reperfusion and the decrease was significantly greater in CA1 and the rest of the hippocampus than in the cortex. By contrast, the calpastatin levels did not significantly decrease during ischemia or early reperfusion, but were upregulated after 4 h of reperfusion in the cortex. Although IT did not promote significant changes in p35 and p25 levels, it induced a slight increase in calpastatin and eIF4G levels in the hippocampal subregions after 4 h of reperfusion.
Collapse
Affiliation(s)
- L García-Bonilla
- Servicio de Bioquímica, Departamento de Investigación, Hospital Ramón y Cajal, Ctra Colmenar Km 9, 28034, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Kesavapany S, Pareek TK, Zheng YL, Amin N, Gutkind JS, Ma W, Kulkarni AB, Grant P, Pant HC. Neuronal nuclear organization is controlled by cyclin-dependent kinase 5 phosphorylation of Ras Guanine nucleotide releasing factor-1. Neurosignals 2006; 15:157-73. [PMID: 16921254 DOI: 10.1159/000095130] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/25/2006] [Indexed: 11/19/2022] Open
Abstract
RasGRF1 is a member of the Ras guanine nucleotide exchange factor (RasGEF) family of proteins which are directly responsible for the activation of Ras and Rac GTPases. Originally identified as a phosphoprotein, RasGRF1 has been shown to be phosphorylated by protein kinase A and more recently, by the non-receptor tyrosine kinases Ack1 and Src. In this report we show that RasGRF1 interacts with and is phosphorylated by Cdk5 on serine 731 to regulate its steady state levels in mammalian cells as well as in neurons. Phosphorylation on this site by Cdk5 leads to RasGRF1 degradation through a calpain-dependent mechanism. Additionally, cortical neurons from Cdk5 knockout mice have higher levels of RasGRF1 which are reduced when wild-type Cdk5 is transfected into these neurons. In mitotic cells, nuclei become disorganized when RasGRF1 is overexpressed and this is rescued when RasGRF1 is co-expressed with active Cdk5. When RasGRF1 levels are elevated in neurons through overexpression of either the wild-type RasGRF1, or the phosphorylation mutant of RasGRF1 and by the transfection of a dominant negative Cdk5 construct, nuclei appeared condensed and fragmented. On the other hand, a reduction of RasGRF1 levels through p35/Cdk5 overexpression also leads to nuclear condensation in neurons. These data show that phosphorylation of RasGRF1 by Cdk5 tightly regulates its levels, which is essential for proper cellular organization.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheung ZH, Fu AKY, Ip NY. Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 2006; 50:13-8. [PMID: 16600851 DOI: 10.1016/j.neuron.2006.02.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Accumulating evidence indicates that cyclin dependent kinase 5 (Cdk5), through phosphorylating a plethora of pre- and postsynaptic proteins, functions as an essential modulator of synaptic transmission. Recent advances in the field of Cdk5 research have not only consolidated the in vivo importance of Cdk5 in neurotransmission but also suggest a pivotal role of Cdk5 in the regulation of higher cognitive functions and neurodegenerative diseases. In this review, we will discuss the recent findings on the emanating role of Cdk5 as a regulator of synaptic functions and plasticity.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | |
Collapse
|
45
|
Johansson JU, Lilja L, Chen XL, Higashida H, Meister B, Noda M, Zhong ZG, Yokoyama S, Berggren PO, Bark C. Cyclin-dependent kinase 5 activators p35 and p39 facilitate formation of functional synapses. ACTA ACUST UNITED AC 2005; 138:215-27. [PMID: 15908038 DOI: 10.1016/j.molbrainres.2005.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/21/2005] [Accepted: 04/18/2005] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) has emerged as a key coordinator of cell signaling in neurite outgrowth. Cdk5 needs to associate with one of the regulatory proteins p35 or p39 to be an active enzyme. To investigate if Cdk5 plays a role in the establishment of functional synapses, we have characterized the expression of Cdk5, p35, and p39 in the neuroblastoma-glioma cell line NG108-15, and recorded postsynaptic activity in myotubes in response to presynaptic overexpression of Cdk5, p35, and p39. Endogenous Cdk5 and p35 protein levels increased with cellular differentiation and preferentially distributed to soluble pools, whereas the level of p39 protein remained low and primarily was present in membrane and cytoskeletal fractions. Transient transfection of a dominant-negative mutant of Cdk5 in NG108-15 cells and subsequent culturing on differentiating muscle cells resulted in a significant reduction in synaptic activity, as measured by postsynaptic miniature endplate potentials (mEPPs). Overexpression of either Cdk5/p35 or Cdk5/p39 resulted in a substantial increase in synaptic structures that displayed postsynaptic activities, as well as mEPP frequency. These findings demonstrate that Cdk5, p35, and p39 are endogenously expressed in NG108-15 cells, exhibit distinct subcellular localizations, and that both Cdk5/p35 and Cdk5/p39 are central in formation of functional synapses.
Collapse
Affiliation(s)
- Jenny U Johansson
- Department of Molecular Medicine, The Rolf Luft Center for Diabetes Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6:167-80. [PMID: 15688002 DOI: 10.1038/nrm1587] [Citation(s) in RCA: 1347] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to diverse extracellular stimuli, and ultimately regulate numerous cellular responses such as proliferation, differentiation and movement. With 69 distinct homologues, Dbl-related GEFs represent the largest family of direct activators of Rho GTPases in humans, and they activate Rho GTPases within particular spatio-temporal contexts. The failure to do so can have significant consequences and is reflected in the aberrant function of Dbl-family GEFs in some human diseases.
Collapse
Affiliation(s)
- Kent L Rossman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
47
|
Zheng YL, Kesavapany S, Gravell M, Hamilton RS, Schubert M, Amin N, Albers W, Grant P, Pant HC. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 2004; 24:209-20. [PMID: 15592431 PMCID: PMC544899 DOI: 10.1038/sj.emboj.7600441] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 09/20/2004] [Indexed: 11/09/2022] Open
Abstract
The extracellular aggregation of amyloid beta (Abeta) peptides and the intracellular hyperphosphorylation of tau at specific epitopes are pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). Cdk5 phosphorylates tau at AD-specific phospho-epitopes when it associates with p25. p25 is a truncated activator, which is produced from the physiological Cdk5 activator p35 upon exposure to Abeta peptides. We show that neuronal infections with Cdk5 inhibitory peptide (CIP) selectively inhibit p25/Cdk5 activity and suppress the aberrant tau phosphorylation in cortical neurons. Furthermore, Abeta(1-42)-induced apoptosis of these cortical neurons was also reduced by coinfection with CIP. Of particular importance is our finding that CIP did not inhibit endogenous or transfected p35/Cdk5 activity, nor did it inhibit the other cyclin-dependent kinases such as Cdc2, Cdk2, Cdk4 and Cdk6. These results, therefore, provide a strategy to address, and possibly ameliorate, the pathology of neurodegenerative diseases that may be a consequence of aberrant p25 activation of Cdk5, without affecting 'normal' Cdk5 activity.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sashi Kesavapany
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maneth Gravell
- Laboratory of Molecular Virology and Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca S Hamilton
- Laboratory of Molecular Virology and Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Schubert
- Laboratory of Molecular Virology and Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Wayne Albers
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harish C Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 4D04, 36 Convent Drive, Bethesda, MD 20892-4130, USA. Tel.: +1 301 402 2124; Fax: +1 301 496 1339; E-mail:
| |
Collapse
|