1
|
Yanai R, Mitani TT, Susaki EA, Minamihisamatsu T, Shimojo M, Saito Y, Mizuma H, Nitta N, Kaneda D, Hashizume Y, Matsumoto G, Tanemura K, Zhang MR, Higuchi M, Ueda HR, Sahara N. A novel tauopathy model mimicking molecular and spatial aspects of human tau pathology. Brain Commun 2024; 6:fcae326. [PMID: 39420962 PMCID: PMC11483584 DOI: 10.1093/braincomms/fcae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Creating a mouse model that recapitulates human tau pathology is essential for developing strategies to intervene in tau-induced neurodegeneration. However, mimicking the pathological features seen in human pathology often involves a trade-off with artificial effects such as unexpected gene insertion and neurotoxicity from the expression system. To overcome these issues, we developed the rTKhomo mouse model by combining a transgenic CaMKII-tTA system with a P301L mutated 1N4R human tau knock-in at the Rosa26 locus with a C57BL/6J background. This model closely mimics human tau pathology, particularly in the hippocampal CA1 region, showing age-dependent tau accumulation, neuronal loss and neuroinflammation. Notably, whole-brain 3D staining and light-sheet microscopy revealed a spatial gradient of tau deposition from the entorhinal cortex to the hippocampus, similar to the spatial distribution of Braak neurofibrillary tangle staging. Furthermore, [18F]PM-PBB3 positron emission tomography imaging enabled the quantification and live monitoring of tau deposition. The rTKhomo mouse model shows potential as a promising next-generation preclinical tool for exploring the mechanisms of tauopathy and for developing interventions targeting the spatial progression of tau pathology.
Collapse
Affiliation(s)
- Rin Yanai
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Tomoki T Mitani
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka, 565-0871, Japan
- Department of Systems Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Etsuo A Susaki
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka, 565-0871, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Nakatani Biomedical Spatialomics Hub, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Takeharu Minamihisamatsu
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masafumi Shimojo
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuri Saito
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Hiroshi Mizuma
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Nobuhiro Nitta
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Daita Kaneda
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Gen Matsumoto
- Department of Neurological Disease Control, Osaka Metropolitan University, School of Medicine, Osaka, 545-8585, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Science, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka, 565-0871, Japan
- Department of Systems Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Hughes AC, Pittman BG, Xu B, Gammons JW, Webb CM, Nolen HG, Chapman P, Bikoff JB, Schwarz LA. A single-vector intersectional AAV strategy for interrogating cellular diversity and brain function. Nat Neurosci 2024; 27:1400-1410. [PMID: 38802592 DOI: 10.1038/s41593-024-01659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C Hughes
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Human Cell Types, Allen Institute for Brain Science, Seattle, WA, USA
| | - Brittany G Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesse W Gammons
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charis M Webb
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hunter G Nolen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Guerrero-Carrasco M, Targett I, Olmos-Alonso A, Vargas-Caballero M, Gomez-Nicola D. Low-grade systemic inflammation stimulates microglial turnover and accelerates the onset of Alzheimer's-like pathology. Glia 2024; 72:1340-1355. [PMID: 38597386 DOI: 10.1002/glia.24532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology. Our results indicate that low-grade systemic inflammation induces sub-threshold brain inflammation and promotes microglial proliferation driven by the CSF1R pathway, contrary to the effects caused by high systemic inflammation. In addition, repeated systemic challenges with low-grade LPS induce disease-associated microglia. Finally, using an inducible model of AD-like pathology (Line 102 mice), we observed that preconditioning with repeated doses of low-grade systemic inflammation, prior to APP induction, promotes a detrimental effect later in life, leading to an increase in Aβ accumulation and disease-associated microglia. These results support the notion that episodic low-grade systemic inflammation has the potential to influence the onset and severity of age-related neurological disorders, such as AD.
Collapse
Affiliation(s)
- Monica Guerrero-Carrasco
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Imogen Targett
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Adrian Olmos-Alonso
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
- Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
- Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Jin L, Sullivan HA, Zhu M, Lavin TK, Matsuyama M, Fu X, Lea NE, Xu R, Hou Y, Rutigliani L, Pruner M, Babcock KR, Ip JPK, Hu M, Daigle TL, Zeng H, Sur M, Feng G, Wickersham IR. Long-term labeling and imaging of synaptically connected neuronal networks in vivo using double-deletion-mutant rabies viruses. Nat Neurosci 2024; 27:373-383. [PMID: 38212587 PMCID: PMC10849964 DOI: 10.1038/s41593-023-01545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Rabies-virus-based monosynaptic tracing is a widely used technique for mapping neural circuitry, but its cytotoxicity has confined it primarily to anatomical applications. Here we present a second-generation system for labeling direct inputs to targeted neuronal populations with minimal toxicity, using double-deletion-mutant rabies viruses. Viral spread requires expression of both deleted viral genes in trans in postsynaptic source cells. Suppressing this expression with doxycycline following an initial period of viral replication reduces toxicity to postsynaptic cells. Longitudinal two-photon imaging in vivo indicated that over 90% of both presynaptic and source cells survived for the full 12-week course of imaging. Ex vivo whole-cell recordings at 5 weeks postinfection showed that the second-generation system perturbs input and source cells much less than the first-generation system. Finally, two-photon calcium imaging of labeled networks of visual cortex neurons showed that their visual response properties appeared normal for 10 weeks, the longest we followed them.
Collapse
Affiliation(s)
- Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Lingang Laboratory, Shanghai, China
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mulangma Zhu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas K Lavin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas E Lea
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ran Xu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - YuanYuan Hou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luca Rutigliani
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maxwell Pruner
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey R Babcock
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacque Pak Kan Ip
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Hu
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Lusk S, Ward CS, Chang A, Twitchell-Heyne A, Fattig S, Allen G, Jankowsky J, Ray R. An automated respiratory data pipeline for waveform characteristic analysis. J Physiol 2023; 601:4767-4806. [PMID: 37786382 PMCID: PMC10841337 DOI: 10.1113/jp284363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
Comprehensive and accurate analysis of respiratory and metabolic data is crucial to modelling congenital, pathogenic and degenerative diseases converging on autonomic control failure. A lack of tools for high-throughput analysis of respiratory datasets remains a major challenge. We present Breathe Easy, a novel open-source pipeline for processing raw recordings and associated metadata into operative outcomes, publication-worthy graphs and robust statistical analyses including QQ and residual plots for assumption queries and data transformations. This pipeline uses a facile graphical user interface for uploading data files, setting waveform feature thresholds and defining experimental variables. Breathe Easy was validated against manual selection by experts, which represents the current standard in the field. We demonstrate Breathe Easy's utility by examining a 2-year longitudinal study of an Alzheimer's disease mouse model to assess contributions of forebrain pathology in disordered breathing. Whole body plethysmography has become an important experimental outcome measure for a variety of diseases with primary and secondary respiratory indications. Respiratory dysfunction, while not an initial symptom in many of these disorders, often drives disability or death in patient outcomes. Breathe Easy provides an open-source respiratory analysis tool for all respiratory datasets and represents a necessary improvement upon current analytical methods in the field. KEY POINTS: Respiratory dysfunction is a common endpoint for disability and mortality in many disorders throughout life. Whole body plethysmography in rodents represents a high face-value method for measuring respiratory outcomes in rodent models of these diseases and disorders. Analysis of key respiratory variables remains hindered by manual annotation and analysis that leads to low throughput results that often exclude a majority of the recorded data. Here we present a software suite, Breathe Easy, that automates the process of data selection from raw recordings derived from plethysmography experiments and the analysis of these data into operative outcomes and publication-worthy graphs with statistics. We validate Breathe Easy with a terabyte-scale Alzheimer's dataset that examines the effects of forebrain pathology on respiratory function over 2 years of degeneration.
Collapse
Affiliation(s)
- Savannah Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher S. Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andersen Chang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Shaun Fattig
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Genevera Allen
- Departments of Electrical and Computer Engineering, Statistics, and Computer Science, Rice University, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Joanna Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Russell Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute, Houston, TX 77030, USA
| |
Collapse
|
6
|
Rodrigues S, Anglada-Huguet M, Hochgräfe K, Kaniyappan S, Wegmann S, Mandelkow EM. Spreading of Tau Protein Does Not Depend on Aggregation Propensity. J Mol Neurosci 2023; 73:693-712. [PMID: 37606769 PMCID: PMC10694122 DOI: 10.1007/s12031-023-02143-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/23/2023]
Abstract
The stereotypical progression of Tau pathology during Alzheimer disease has been attributed to trans-neuronal spreading of misfolded Tau proteins, followed by prion-like templated aggregation of Tau. The nature of Tau and the cellular mechanisms of Tau spreading are still under debate. We hypothesized that Tau's propensity for aggregation would correlate with its ability to spread across synapses and propagate pathology. To study the progressive propagation of Tau proteins in brain regions relevant for Alzheimer disease, we used mice expressing near-physiological levels of full-length human Tau protein carrying pro-aggregant (TauΔK280, TauΔK) or anti-aggregant (TauΔK280-PP, TauΔK-PP) mutations in the entorhinal cortex (EC). To enhance Tau expression in the EC, we performed EC injections of adeno-associated virus (AAV) particles encoding TauΔK or TauΔK-PP. The brains of injected and non-injected EC/TauΔK and EC/TauΔK-PP mice were studied by immunohistological and biochemical techniques to detect Tau propagation to dentate gyrus (DG) neurons and Tau-induced pathological changes. Pro- and anti-aggregant mice had comparable low transgene expression (~0.2 times endogenous mouse Tau). They accumulated human Tau at similar rates and only in expressing EC neurons, including their axonal projections of the perforant path and presynaptic terminals in the molecular layer of the DG. Pro-aggregant EC/TauΔK mice showed misfolded Tau and synaptic protein alterations in EC neurons, not observed in anti-aggregant EC/TauΔK-PP mice. Additional AAV-mediated expression of TauΔK or TauΔK-PP in EC/TauΔK or EC/TauΔK-PP mice, respectively, increased the human Tau expression to ~0.65 times endogenous mouse Tau, with comparable spreading of TauΔK and TauΔK-PP throughout the EC. There was a low level of transcellular propagation of Tau protein, without pathological phosphorylation or misfolding, as judged by diagnostic antibodies. Additionally, TauΔK but not TauΔK-PP expression induced hippocampal astrogliosis. Low levels of pro- or anti-aggregant full-length Tau show equivalent distributions in EC neurons, independent of their aggregation propensity. Increasing the expression via AAV induce local Tau misfolding in the EC neurons, synaptotoxicity, and astrogliosis and lead to a low level of detectable trans-neuronal spreading of Tau. This depends on its concentration in the EC, but, contrary to expectations, does not depend on Tau's aggregation propensity/misfolding and does not lead to templated misfolding in recipient neurons.
Collapse
Affiliation(s)
- Sara Rodrigues
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Marta Anglada-Huguet
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Katja Hochgräfe
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical School, Bonn, Germany
| | - Susanne Wegmann
- DZNE, German Center for Neurodegenerative Diseases, Chariteplatz 1, 10117, Berlin, Germany
| | - Eva-Maria Mandelkow
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany.
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
7
|
Marciante AB, Lurk C, Mata L, Lewis J, Reznikov LR, Mitchell GS. Progressive tauopathy disrupts breathing stability and chemoreflexes during presumptive sleep in mice. Front Physiol 2023; 14:1272980. [PMID: 37811498 PMCID: PMC10551153 DOI: 10.3389/fphys.2023.1272980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Rationale: Although sleep apnea occurs in over 50% of individuals with Alzheimer's Disease (AD) or related tauopathies, little is known concerning the potential role of tauopathy in the pathogenesis of sleep apnea. Here, we tested the hypotheses that, during presumptive sleep, a murine model of tauopathy (rTg4510) exhibits: 1) increased breathing instability; 2) impaired chemoreflex function; and 3) exacerbation of these effects with tauopathy progression. Methods: rTg4510 mice initially develop robust tauopathy in the hippocampus and cortex, and eventually progresses to the brainstem. Type I and II post-sigh apnea, Type III (spontaneous) apnea, sigh, and hypopnea incidence were measured in young adult (5-6 months; n = 10-14/group) and aged (13-15 months; n = 22-24/group) non-transgenic (nTg), monogenic control tetracycline transactivator, and bigenic rTg4510 mice using whole-body plethysmography during presumptive sleep (i.e., eyes closed, curled/laying posture, stable breathing for >200 breaths) while breathing room air (21% O2). Peripheral and central chemoreceptor sensitivity were assessed with transient exposures (5 min) to hyperoxia (100% O2) or hypercapnia (3% and 5% CO2 in 21% O2), respectively. Results: We report significant increases in Type I, II, and III apneas (all p < 0.001), sighs (p = 0.002) and hypopneas (p < 0.001) in aged rTg4510 mice, but only Type III apneas in young adult rTg4510 mice (p < 0.001) versus age-matched nTg controls. Aged rTg4510 mice exhibited profound chemoreflex impairment versus age matched nTg and tTA mice. In rTg4510 mice, breathing frequency, tidal volume and minute ventilation were not affected by hyperoxic or hypercapnic challenges, in striking contrast to controls. Histological examination revealed hyperphosphorylated tau in brainstem regions involved in the control of breathing (e.g., pons, medullary respiratory column, retrotrapezoid nucleus) in aged rTg4510 mice. Neither breathing instability nor hyperphosphorylated tau in brainstem tissues were observed in young adult rTg4510 mice. Conclusion: Older rTg4510 mice exhibit profound impairment in the neural control of breathing, with greater breathing instability and near absence of oxygen and carbon-dioxide chemoreflexes. Breathing impairments paralleled tauopathy progression into brainstem regions that control breathing. These findings are consistent with the idea that tauopathy per se undermines chemoreflexes and promotes breathing instability during sleep.
Collapse
Affiliation(s)
- Alexandria B. Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Carter Lurk
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Luz Mata
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Diseases, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Nayak S, Sahoo G, Das II, Mohanty AK, Kumar R, Sahoo L, Sundaray JK. Poly- and Perfluoroalkyl Substances (PFAS): Do They Matter to Aquatic Ecosystems? TOXICS 2023; 11:543. [PMID: 37368643 DOI: 10.3390/toxics11060543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals with an aliphatic fluorinated carbon chain. Due to their durability, bioaccumulation potential, and negative impacts on living organisms, these compounds have drawn lots of attention across the world. The negative impacts of PFASs on aquatic ecosystems are becoming a major concern due to their widespread use in increasing concentrations and constant leakage into the aquatic environment. Furthermore, by acting as agonists or antagonists, PFASs may alter the bioaccumulation and toxicity of certain substances. In many species, particularly aquatic organisms, PFASs can stay in the body and induce a variety of negative consequences, such as reproductive toxicity, oxidative stress, metabolic disruption, immunological toxicity, developmental toxicity, cellular damage and necrosis. PFAS bioaccumulation plays a significant role and has an impact on the composition of the intestinal microbiota, which is influenced by the kind of diet and is directly related to the host's well-being. PFASs also act as endocrine disruptor chemicals (EDCs) which can change the endocrine system and result in dysbiosis of gut microbes and other health repercussions. In silico investigation and analysis also shows that PFASs are incorporated into the maturing oocytes during vitellogenesis and are bound to vitellogenin and other yolk proteins. The present review reveals that aquatic species, especially fishes, are negatively affected by exposure to emerging PFASs. Additionally, the effects of PFAS pollution on aquatic ecosystems were investigated by evaluating a number of characteristics, including extracellular polymeric substances (EPSs) and chlorophyll content as well as the diversity of the microorganisms in the biofilms. Therefore, this review will provide crucial information on the possible adverse effects of PFASs on fish growth, reproduction, gut microbial dysbiosis, and its potential endocrine disruption. This information aims to help the researchers and academicians work and come up with possible remedial measures to protect aquatic ecosystems as future works need to be focus on techno-economic assessment, life cycle assessment, and multi criteria decision analysis systems that screen PFAS-containing samples. New innovative methods requires further development to reach detection at the permissible regulatory limits.
Collapse
Affiliation(s)
- Sipra Nayak
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Ipsita Iswari Das
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Aman Kumar Mohanty
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Lakshman Sahoo
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Jitendra Kumar Sundaray
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| |
Collapse
|
9
|
Parka A, Volbracht C, Hall B, Bastlund JF, Nedergaard M, Laursen B, Botta P, Sotty F. Visual Evoked Potentials as an Early-Stage Biomarker in the rTg4510 Tauopathy Mouse Model. J Alzheimers Dis 2023; 93:247-262. [PMID: 37005884 DOI: 10.3233/jad-220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background: Tauopathies such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Early pathophysiological and functional changes related to neurofibrillary tangles formation are considered to occur prior to extensive neurodegeneration. Hyperphosphorylated tau has been detected in postmortem retinas of AD and FTD patients, and the visual pathway is an easily accessible system in a clinical setting. Hence, assessment of the visual function may offer the potential to detect consequences of early tau pathology in patients. Objective: The aim of this study was to evaluate visual function in a tauopathy mouse model in relation to tau hyperphosphorylation and neurodegeneration. Methods: In this study we explored the association between the visual system and functional consequences of tau pathology progression using a tauopathy rTg4510 mouse model. To this end, we recorded full-field electroretinography and visual evoked potentials in anesthetized and awake states at different ages. Results: While retinal function remained mostly intact within all the age groups investigated, we detected significant changes in amplitudes of visual evoked potential responses in young rTg4510 mice exhibiting early tau pathology prior to neurodegeneration. These functional alterations in the visual cortex were positively correlated with pathological tau levels. Conclusion: Our findings suggest that visual processing could be useful as a novel electrophysiological biomarker for early stages of tauopathy.
Collapse
Affiliation(s)
- Aleksandra Parka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- H. Lundbeck A/S, Research, Valby, Denmark
| | | | | | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
10
|
Leyder E, Suresh P, Jun R, Overbey K, Banerjee T, Melnikova T, Savonenko A. Depression-related phenotypes at early stages of Aβ and tau accumulation in inducible Alzheimer's disease mouse model: Task-oriented and concept-driven interpretations. Behav Brain Res 2023; 438:114187. [PMID: 36343696 DOI: 10.1016/j.bbr.2022.114187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Depression is highly prevalent in Alzheimer Disease (AD); however, there is paucity of studies that focus specifically on the assessment of depression-relevant phenotypes in AD mouse models. Conditional doxycycline-dependent transgenic mouse models reproducing amyloidosis (TetOffAPPsi) and/or tau (TetOffTauP301L) pathology starting at middle age (6 months) were used in this study. As AD patients can experience depressive symptoms relatively early in disease, testing was conducted at early, pre-pathology stages of Aβ and/or tau accumulation (starting from 45 days of transgenes expression). Tau-related differences were detected in the Novelty Suppressed Feeding task (NSF), whereas APP-related differences were observed predominantly in measures of the Open Field (OF) and Forced Swim tasks (FST). Effects of combined production of Aβ and tau were detected in immobility during the 1st half of the Tail Suspension task (TST). These data demonstrate that results from different tasks are difficult to reconcile using task/variable-centered interpretations in which a single task/variable is assigned an ad-hoc meaning relevant to depression. An alternative, concept-oriented, approach is based on multiple variables/tests, with an understanding of their possible inter-dependence and utilization of statistical approaches that handle correlated data sets. The existence of strong correlations within and between some of the tasks supported utilization of factor analyses (FA). FA explained a similar amount of variability across the genotypes (∼80%) and identified two factors stable across genotypes and representing motor activity and anxiety measures in OF. In contrast, variables related to FST, TST, and NSFT did not demonstrate a structure of factor loadings that would support the existence of a single integral factor of "depressive state" measured by these tasks. In addition, factor loadings varied between genotypes, indicating that genotype-specific between-task correlations need to be considered for interpretations of findings in any single task. In general, this study demonstrates that utilization of multiple tasks to characterize behavioral phenotypes, an approach that is finally gaining more widespread adoption, requires a step of data integration across different behavioral tests for appropriate interpretations.
Collapse
Affiliation(s)
- Erica Leyder
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Prakul Suresh
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Rachel Jun
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Katherine Overbey
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Tirtho Banerjee
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Alena Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Hughes AC, Pollard BG, Xu B, Gammons JW, Chapman P, Bikoff JB, Schwarz LA. A Novel Single Vector Intersectional AAV Strategy for Interrogating Cellular Diversity and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527312. [PMID: 36798174 PMCID: PMC9934562 DOI: 10.1101/2023.02.07.527312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C. Hughes
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pollard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jesse W. Gammons
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Present address: Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Lead contact
| |
Collapse
|
12
|
Kawles A, Minogue G, Zouridakis A, Keszycki R, Gill N, Nassif C, Coventry C, Zhang H, Rogalski E, Flanagan ME, Castellani R, Bigio EH, Mesulam MM, Geula C, Gefen T. Differential vulnerability of the dentate gyrus to tauopathies in dementias. Acta Neuropathol Commun 2023; 11:1. [PMID: 36597124 PMCID: PMC9811688 DOI: 10.1186/s40478-022-01485-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
The dentate gyrus (DG), a key hippocampal subregion in memory processing, generally resists phosphorylated tau accumulation in the amnestic dementia of the Alzheimer's type due to Alzheimer's disease (DAT-AD), but less is known about the susceptibility of the DG to other tauopathies. Here, we report stereologic densities of total DG neurons and tau inclusions in thirty-two brains of human participants with autopsy-confirmed tauopathies with distinct isoform profiles-3R Pick's disease (PiD, N = 8), 4R corticobasal degeneration (CBD, N = 8), 4R progressive supranuclear palsy (PSP, N = 8), and 3/4R AD (N = 8). All participants were diagnosed during life with primary progressive aphasia (PPA), an aphasic clinical dementia syndrome characterized by progressive deterioration of language abilities with spared non-language cognitive abilities in early stages, except for five patients with DAT-AD as a comparison group. 51% of total participants were female. All specimens were stained immunohistochemically with AT8 to visualize tau pathology, and PPA cases were stained for Nissl substance to visualize neurons. Unbiased stereological analysis was performed in granule and hilar DG cells, and inclusion-to-neuron ratios were calculated. In the PPA group, PiD had highest mean total (granule + hilar) densities of DG tau pathology (p < 0.001), followed by CBD, AD, then PSP. PPA-AD cases showed more inclusions in hilar cells compared to granule cells, while the opposite was true in PiD and CBD. Inclusion-to-neuron ratios revealed, on average, 33% of all DG neurons in PiD cases contained a tau inclusion, compared to ~ 7% in CBD, 2% in AD, and 0.4% in PSP. There was no significant difference between DAT-AD and PPA-AD pathologic tau burden, suggesting that differences in DG burden are not specific to clinical phenotype. We conclude that the DG is differentially vulnerable to pathologic tau accumulation, raising intriguing questions about the structural integrity and functional significance of hippocampal circuits in neurodegenerative dementias.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Caren Nassif
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Margaret E. Flanagan
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Eileen H. Bigio
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - M. Marsel Mesulam
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
13
|
Sahara N, Yanai R. Limitations of human tau-expressing mouse models and novel approaches of mouse modeling for tauopathy. Front Neurosci 2023; 17:1149761. [PMID: 37152607 PMCID: PMC10157230 DOI: 10.3389/fnins.2023.1149761] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases, collectively termed tauopathy. There is no disease-modifying drug available for tauopathy except anti-amyloid antibody therapies for Alzheimer's disease. For tau-targeting therapy, experimental models recapitulating human tau pathologies are indispensable. However, there are limited numbers of animal models that display intracellular filamentous tau aggregations. At present, several lines of P301L/S mutant tau-expressing transgenic mice successfully developed neurofibrillary pathology in the central nervous system, while most non-mutant tau-expressing transgenic mice rarely developed tau pathology. Importantly, recent studies have revealed that transgenes disrupt the coding sequence of endogenous genes, resulting in deletions and/or structural variations at the insertion site. Although any impact on the pathogenesis of tauopathy is unknown, gene disruptions may affect age-related neurodegeneration including tangle formation and brain atrophy. Moreover, some mouse lines show strain-dependent pathological features. These limitations (FTDP-17 mutations, insertion/deletion mutations, and genetic background) are a major hindrance to the establishment of a precise disease model of tauopathy. In this review, we noticed both the utility and the pitfalls of current P301L/S mutant tau-expressing transgenic mice, and we propose future strategies of mouse modeling to replicate human tauopathies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Rin Yanai
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
14
|
Kim DW, Tu KJ, Wei A, Lau AJ, Gonzalez-Gil A, Cao T, Braunstein K, Ling JP, Troncoso JC, Wong PC, Blackshaw S, Schnaar RL, Li T. Amyloid-beta and tau pathologies act synergistically to induce novel disease stage-specific microglia subtypes. Mol Neurodegener 2022; 17:83. [PMID: 36536457 PMCID: PMC9762062 DOI: 10.1186/s13024-022-00589-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Amongst risk alleles associated with late-onset Alzheimer's disease (AD), those that converged on the regulation of microglia activity have emerged as central to disease progression. Yet, how canonical amyloid-β (Aβ) and tau pathologies regulate microglia subtypes during the progression of AD remains poorly understood. METHODS We use single-cell RNA-sequencing to profile microglia subtypes from mice exhibiting both Aβ and tau pathologies across disease progression. We identify novel microglia subtypes that are induced in response to both Aβ and tau pathologies in a disease-stage-specific manner. To validate the observation in AD mouse models, we also generated a snRNA-Seq dataset from the human superior frontal gyrus (SFG) and entorhinal cortex (ERC) at different Braak stages. RESULTS We show that during early-stage disease, interferon signaling induces a subtype of microglia termed Early-stage AD-Associated Microglia (EADAM) in response to both Aβ and tau pathologies. During late-stage disease, a second microglia subtype termed Late-stage AD-Associated Microglia (LADAM) is detected. While similar microglia subtypes are observed in other models of neurodegenerative disease, the magnitude and composition of gene signatures found in EADAM and LADAM are distinct, suggesting the necessity of both Aβ and tau pathologies to elicit their emergence. Importantly, the pattern of EADAM- and LADAM-associated gene expression is observed in microglia from AD brains, during the early (Braak II)- or late (Braak VI/V)- stage of the disease, respectively. Furthermore, we show that several Siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of Siglec-10, the human orthologue of Siglecg, is progressively elevated in an AD-stage-dependent manner but not shown in non-AD tauopathy. CONCLUSIONS Using scRNA-Seq in mouse models bearing amyloid-β and/or tau pathologies, we identify novel microglia subtypes induced by the combination of Aβ and tau pathologies in a disease stage-specific manner. Our findings suggest that both Aβ and tau pathologies are required for the disease stage-specific induction of EADAM and LADAM. In addition, we revealed Siglecs as biomarkers of AD progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kevin J. Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Alice Wei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ashley J. Lau
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tianyu Cao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kerstin Braunstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Philip C. Wong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ronald L. Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
15
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
16
|
Steuer EL, Kemper LJ, Hlynialuk CJW, Leinonen-Wright K, Montonye ML, Lapcinski IP, Forster CL, Ashe KH, Liu P. Blocking Site-Specific Cleavage of Human Tau Delays Progression of Disease-Related Phenotypes in Genetically Matched Tau-Transgenic Mice Modeling Frontotemporal Dementia. J Neurosci 2022; 42:4737-4754. [PMID: 35508385 PMCID: PMC9186797 DOI: 10.1523/jneurosci.0543-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Studies have recently demonstrated that a caspase-2-mediated cleavage of human tau (htau) at asparate-314 (D314) is responsible for cognitive deficits and neurodegeneration in mice modeling frontotemporal dementia (FTD). However, these animal studies may be confounded by flaws in their model systems, such as endogenous functional gene disruption and inequivalent transgene expression. To avoid these weaknesses, we examined the pathogenic role of this site-specific htau cleavage in FTD using genetically matched htau targeted-insertion mouse lines: rT2 and rT3. Both male and female mice were included in this study. rT2 mice contain a single copy of the FTD-linked htau proline-to-leucine mutation at amino acid 301 (htau P301L), inserted into a neutral site to avoid dysregulation of host gene expression. The similarly constructed rT3 mice harbor an additional D314-to-glutamate (D314E) mutation that blocks htau cleavage. We demonstrate that htau transgene expression occurs primarily in the forebrain at similar levels in rT2 and rT3 mice. Importantly, expression of the cleavage-resistant D314E mutant delays transgene-induced tau accumulation in the postsynaptic density, brain atrophy, hippocampal neurodegeneration, and spatial memory impairment, without altering age-related progression of pathologic tau conformation and phosphorylation. Our comprehensive investigation of age-dependent disease phenotypes associated with the htau P301L variant in precisely engineered FTD-modeling mice unveils a transiently protective effect of blocking htau cleavage at D314. Findings of this study advance our understanding of the contribution of this tau cleavage to the pathogenesis of FTD, and aid the development of effective dementia-targeting therapies.SIGNIFICANCE STATEMENT A site-specific and caspase-2-mediated cleavage of human tau plays a pathologic role in dementia. In this study, we investigate the contribution of this cleavage to the pathogenesis of frontotemporal dementia (FTD) using two genetically matched, tau-transgene targeted-insertion mouse lines that differ only by a cleavage-resistant mutation. The use of these mice avoids confounding effects associated with the random integration of tau transgenes to the mouse genome and allows us to comprehensively evaluate the impact of the tau cleavage on FTD phenotypes. Our data reveal that blocking this tau cleavage delays memory impairment and neurodegeneration of FTD-modeling mice. These findings improve our understanding of the pathogenic mechanisms underlying FTD and will facilitate the development of effective therapeutics.
Collapse
Affiliation(s)
- Elizabeth L Steuer
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | - Lisa J Kemper
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | | | | | | | - Ian P Lapcinski
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | - Colleen L Forster
- N. Bud Grossman Center for Memory Research and Care
- UMN Academic Health Center Biological Materials Procurement Network, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karen H Ashe
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
- Geriatric Research, Education, and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, Minnesota 55417
| | - Peng Liu
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| |
Collapse
|
17
|
Xu G, Ulm BS, Howard J, Fromholt SE, Lu Q, Lee BB, Walker A, Borchelt DR, Lewis J. TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathol Appl Neurobiol 2022; 48:e12791. [PMID: 35067965 DOI: 10.1111/nan.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
AIMS Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS We crossed an inducible tauopathy model with two β-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aβ and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS These data suggest that tau misfolding is exacerbated by both newly forming Aβ deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Brittany S Ulm
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Susan E Fromholt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Qing Lu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Brian Benedict Lee
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- SantaFe HealthCare Alzheimer's Disease Research Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Sakamoto M, Inoue M, Takeuchi A, Kobari S, Yokoyama T, Horigane SI, Takemoto-Kimura S, Abe M, Sakimura K, Kano M, Kitamura K, Fujii H, Bito H. A Flp-dependent G-CaMP9a transgenic mouse for neuronal imaging in vivo. CELL REPORTS METHODS 2022; 2:100168. [PMID: 35474964 PMCID: PMC9017135 DOI: 10.1016/j.crmeth.2022.100168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022]
Abstract
Genetically encoded calcium indicators (GECIs) are widely used to measure calcium transients in neuronal somata and processes, and their use enables the determination of action potential temporal series in a large population of neurons. Here, we generate a transgenic mouse line expressing a highly sensitive green GECI, G-CaMP9a, in a Flp-dependent manner in excitatory and inhibitory neuronal subpopulations downstream of a strong CAG promoter. Combining this reporter mouse with viral or mouse genetic Flp delivery methods produces a robust and stable G-CaMP9a expression in defined neuronal populations without detectable detrimental effects. In vivo two-photon imaging reveals spontaneous and sensory-evoked calcium transients in excitatory and inhibitory ensembles with cellular resolution. Our results show that this reporter line allows long-term, cell-type-specific investigation of neuronal activity with enhanced resolution in defined populations and facilitates dissecting complex dynamics of neural networks in vivo.
Collapse
Affiliation(s)
- Masayuki Sakamoto
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8507, Japan
| | - Masatoshi Inoue
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Atsuya Takeuchi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Neurophysiology, School of Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetaka Kobari
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsushi Yokoyama
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Shin-ichiro Horigane
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8507, Japan
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Rodriguez Ospina S, Blazier DM, Criado-Marrero M, Gould LA, Gebru NT, Beaulieu-Abdelahad D, Wang X, Remily-Wood E, Chaput D, Stevens S, Uversky VN, Bickford PC, Dickey CA, Blair LJ. Small Heat Shock Protein 22 Improves Cognition and Learning in the Tauopathic Brain. Int J Mol Sci 2022; 23:ijms23020851. [PMID: 35055033 PMCID: PMC8775832 DOI: 10.3390/ijms23020851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510. Our results show that Hsp22 protected against deficits in synaptic plasticity and cognition in the tauopathic brain. However, we did not detect a significant change in tau phosphorylation or levels in these mice. This led us to hypothesize that the functional benefit was realized through the restoration of dysfunctional pathways in hippocampi of tau transgenic mice since no significant benefit was measured in non-transgenic mice expressing wtHsp22 or mtHsp22. To identify these pathways, we performed mass spectrometry of tissue lysates from the injection site. Overall, our data reveal that Hsp22 overexpression in neurons promotes synaptic plasticity by regulating canonical pathways and upstream regulators that have been characterized as potential AD markers and synaptogenesis regulators, like EIF4E and NFKBIA.
Collapse
Affiliation(s)
- Santiago Rodriguez Ospina
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Danielle M. Blazier
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Marangelie Criado-Marrero
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren A. Gould
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - David Beaulieu-Abdelahad
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Xinming Wang
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
| | - Elizabeth Remily-Wood
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (S.S.Jr.)
| | - Stanley Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (S.S.Jr.)
| | - Vladimir N. Uversky
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
- Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, 141700 Dolgoprudny, Russia
| | - Paula C. Bickford
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
- Research Service, James A. Haley Veterans’ Hospital, Tampa, FL 33620, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33613, USA
| | - Chad A. Dickey
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA; (S.R.O.); (D.M.B.); (M.C.-M.); (L.A.G.); (N.T.G.); (D.B.-A.); (X.W.); (V.N.U.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
- Research Service, James A. Haley Veterans’ Hospital, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-813-369-0639
| |
Collapse
|
20
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
21
|
Jouvet N, Bouyakdan K, Campbell SA, Baldwin C, Townsend SE, Gannon MA, Poitout V, Alquier T, Estall JL. The Tetracycline-Controlled Transactivator (Tet-On/Off) System in β-Cells Reduces Insulin Expression and Secretion in Mice. Diabetes 2021; 70:2850-2859. [PMID: 34610983 PMCID: PMC8660978 DOI: 10.2337/db21-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Controllable genetic manipulation is an indispensable tool in research, greatly advancing our understanding of cell biology and physiology. However in β-cells, transgene silencing, low inducibility, ectopic expression, and off-targets effects are persistent challenges. In this study, we investigated whether an inducible Tetracycline (Tet)-Off system with β-cell-specific mouse insulin promoter (MIP)-itTA-driven expression of tetracycline operon (TetO)-CreJaw/J could circumvent previous issues of specificity and efficacy. Following assessment of tissue-specific gene recombination, β-cell architecture, in vitro and in vivo glucose-stimulated insulin secretion, and whole-body glucose homeostasis, we discovered that expression of any tetracycline-controlled transactivator (e.g., improved itTA, reverse rtTA, or tTA) in β-cells significantly reduced Insulin gene expression and decreased insulin content. This translated into lower pancreatic insulin levels and reduced insulin secretion in mice carrying any tTA transgene, independent of Cre recombinase expression or doxycycline exposure. Our study echoes ongoing challenges faced by fundamental researchers working with β-cells and highlights the need for consistent and comprehensive controls when using the tetracycline-controlled transactivator systems (Tet-On or Tet-Off) for genome editing.
Collapse
Affiliation(s)
- Nathalie Jouvet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Khalil Bouyakdan
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Scott A Campbell
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Cindy Baldwin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Maureen A Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Vincent Poitout
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Thierry Alquier
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
22
|
Sato H, Takado Y, Toyoda S, Tsukamoto-Yasui M, Minatohara K, Takuwa H, Urushihata T, Takahashi M, Shimojo M, Ono M, Maeda J, Orihara A, Sahara N, Aoki I, Karakawa S, Isokawa M, Kawasaki N, Kawasaki M, Ueno S, Kanda M, Nishimura M, Suzuki K, Mitsui A, Nagao K, Kitamura A, Higuchi M. Neurodegenerative processes accelerated by protein malnutrition and decelerated by essential amino acids in a tauopathy mouse model. SCIENCE ADVANCES 2021; 7:eabd5046. [PMID: 34678069 PMCID: PMC8535828 DOI: 10.1126/sciadv.abd5046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein malnutrition is epidemiologically suggested as a potential risk factor for senile dementia, although molecular mechanisms linking dietary proteins and amino acids to neurodegeneration remain unknown. Here, we show that a low-protein diet resulted in down-regulated expression of synaptic components and a modest acceleration of brain atrophy in mice modeling neurodegenerative tauopathies. Notably, these abnormal phenotypes were robustly rescued by the administration of seven selected essential amino acids. The up-regulation of inflammation-associated gene expression and progressive brain atrophy in the tauopathy model were profoundly suppressed by treatment with these essential amino acids without modifications of tau depositions. Moreover, the levels of kynurenine, an initiator of a pathway inducing neuroinflammatory gliosis and neurotoxicity in the brain, were lowered by treatment through inhibition of kynurenine uptake in the brain. Our findings highlight the importance of specific amino acids as systemic mediators of brain homeostasis against neurodegenerative processes.
Collapse
Affiliation(s)
- Hideaki Sato
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | | | | | - Keiichiro Minatohara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Takuya Urushihata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Asumi Orihara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | | | | | | | | | - Satoko Ueno
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | | | | | | | | | - Kenji Nagao
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Akihiko Kitamura
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
- Corresponding author. (M.H.); (A.K.)
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
- Corresponding author. (M.H.); (A.K.)
| |
Collapse
|
23
|
Sánchez-Hidalgo AC, Arias-Aragón F, Romero-Barragán MT, Martín-Cuevas C, Delgado-García JM, Martinez-Mir A, Scholl FG. Selective expression of the neurexin substrate for presenilin in the adult forebrain causes deficits in associative memory and presynaptic plasticity. Exp Neurol 2021; 347:113896. [PMID: 34662541 DOI: 10.1016/j.expneurol.2021.113896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Presenilins (PS) form the active subunit of the gamma-secretase complex, which mediates the proteolytic clearance of a broad variety of type-I plasma membrane proteins. Loss-of-function mutations in PSEN1/2 genes are the leading cause of familial Alzheimer's disease (fAD). However, the PS/gamma-secretase substrates relevant for the neuronal deficits associated with a loss of PS function are not completely known. The members of the neurexin (Nrxn) family of presynaptic plasma membrane proteins are candidates to mediate aspects of the synaptic and memory deficits associated with a loss of PS function. Previous work has shown that fAD-linked PS mutants or inactivation of PS by genetic and pharmacological approaches failed to clear Nrxn C-terminal fragments (NrxnCTF), leading to its abnormal accumulation at presynaptic terminals. Here, we generated transgenic mice that selectively recreate the presynaptic accumulation of NrxnCTF in adult forebrain neurons, leaving unaltered the function of PS/gamma-secretase complex towards other substrates. Behavioral characterization identified selective impairments in NrxnCTF mice, including decreased fear-conditioning memory. Electrophysiological recordings in medial prefrontal cortex-basolateral amygdala (mPFC-BLA) of behaving mice showed normal synaptic transmission and uncovered specific defects in synaptic facilitation. These data functionally link the accumulation of NrxnCTF with defects in associative memory and short-term synaptic plasticity, pointing at impaired clearance of NrxnCTF as a new mediator in AD.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
24
|
Li Y, Xing Z, Yu T, Pao A, Daadi M, Yu YE. Coat Color-Facilitated Efficient Generation and Analysis of a Mouse Model of Down Syndrome Triplicated for All Human Chromosome 21 Orthologous Regions. Genes (Basel) 2021; 12:genes12081215. [PMID: 34440389 PMCID: PMC8393392 DOI: 10.3390/genes12081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Down syndrome (DS) is one of the most complex genetic disorders in humans and a leading genetic cause of developmental delays and intellectual disabilities. The mouse remains an essential model organism in DS research because human chromosome 21 (Hsa21) is orthologously conserved with three regions in the mouse genome. Recent studies have revealed complex interactions among different triplicated genomic regions and Hsa21 gene orthologs that underlie major DS phenotypes. Because we do not know conclusively which triplicated genes are indispensable in such interactions for a specific phenotype, it is desirable that all evolutionarily conserved Hsa21 gene orthologs are triplicated in a complete model. For this reason, the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mouse is the most complete model of DS to reflect gene dosage effects because it is the only mutant triplicated for all Hsa21 orthologous regions. Recently, several groups have expressed concerns that efforts needed to generate the triple compound model would be so overwhelming that it may be impractical to take advantage of its unique strength. To alleviate these concerns, we developed a strategy to drastically improve the efficiency of generating the triple compound model with the aid of a targeted coat color, and the results confirmed that the mutant mice generated via this approach exhibited cognitive deficits.
Collapse
Affiliation(s)
- Yichen Li
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Tao Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Annie Pao
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Marcel Daadi
- Regenerative Medicine and Aging Unit, Texas Biomedical Research Institute, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA;
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Correspondence:
| |
Collapse
|
25
|
Siegle JH, Ledochowitsch P, Jia X, Millman DJ, Ocker GK, Caldejon S, Casal L, Cho A, Denman DJ, Durand S, Groblewski PA, Heller G, Kato I, Kivikas S, Lecoq J, Nayan C, Ngo K, Nicovich PR, North K, Ramirez TK, Swapp J, Waughman X, Williford A, Olsen SR, Koch C, Buice MA, de Vries SEJ. Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. eLife 2021; 10:e69068. [PMID: 34270411 PMCID: PMC8285106 DOI: 10.7554/elife.69068] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.
Collapse
Affiliation(s)
| | | | - Xiaoxuan Jia
- MindScope Program, Allen InstituteSeattleUnited States
| | | | | | | | - Linzy Casal
- MindScope Program, Allen InstituteSeattleUnited States
| | - Andy Cho
- MindScope Program, Allen InstituteSeattleUnited States
| | - Daniel J Denman
- Allen Institute for Brain Science, Allen InstituteSeattleUnited States
| | | | | | - Gregg Heller
- MindScope Program, Allen InstituteSeattleUnited States
| | - India Kato
- MindScope Program, Allen InstituteSeattleUnited States
| | - Sara Kivikas
- MindScope Program, Allen InstituteSeattleUnited States
| | - Jérôme Lecoq
- MindScope Program, Allen InstituteSeattleUnited States
| | - Chelsea Nayan
- MindScope Program, Allen InstituteSeattleUnited States
| | - Kiet Ngo
- Allen Institute for Brain Science, Allen InstituteSeattleUnited States
| | - Philip R Nicovich
- Allen Institute for Brain Science, Allen InstituteSeattleUnited States
| | - Kat North
- MindScope Program, Allen InstituteSeattleUnited States
| | | | - Jackie Swapp
- MindScope Program, Allen InstituteSeattleUnited States
| | - Xana Waughman
- MindScope Program, Allen InstituteSeattleUnited States
| | - Ali Williford
- MindScope Program, Allen InstituteSeattleUnited States
| | - Shawn R Olsen
- MindScope Program, Allen InstituteSeattleUnited States
| | - Christof Koch
- MindScope Program, Allen InstituteSeattleUnited States
| | | | | |
Collapse
|
26
|
Barrett T, Stangis KA, Saito T, Saido T, Park KH. Neuronal Cell Cycle Re-Entry Enhances Neuropathological Features in AppNLF Knock-In Mice. J Alzheimers Dis 2021; 82:1683-1702. [PMID: 34219712 PMCID: PMC8461670 DOI: 10.3233/jad-210091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant cell cycle re-entry is a well-documented process occurring early in Alzheimer's disease (AD). This is an early feature of the disease and may contribute to disease pathogenesis. OBJECTIVE To assess the effect of forced neuronal cell cycle re-entry in mice expressing humanized Aβ, we crossed our neuronal cell cycle re-entry mouse model with AppNLF knock-in (KI) mice. METHODS Our neuronal cell cycle re-entry (NCCR) mouse model is bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. The NCCR mice were crossed with AppNLF KI mice to generate NCCR-AppNLF animals. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. The animals were examined at the following time points: 9, 12, and 18 months of age. Various neuropathological features in our mice were evaluated by image analysis and stereology on brain sections stained using either immunofluorescence or immunohistochemistry. RESULTS We show that neuronal cell cycle re-entry in humanized Aβ plaque producing AppNLF KI mice results in the development of additional AD-related pathologies, namely, pathological tau, neuroinflammation, brain leukocyte infiltration, DNA damage response, and neurodegeneration. CONCLUSION Our findings show that neuronal cell cycle re-entry enhances AD-related neuropathological features in AppNLF mice and highlight our unique AD mouse model for studying the pathogenic role of aberrant cell cycle re-entry in AD.
Collapse
Affiliation(s)
- Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kevin H.J. Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA
- Michigan Alzheimer’s Disease Research Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Dyer MS, Reale LA, Lewis KE, Walker AK, Dickson TC, Woodhouse A, Blizzard CA. Mislocalisation of TDP-43 to the cytoplasm causes cortical hyperexcitability and reduced excitatory neurotransmission in the motor cortex. J Neurochem 2020; 157:1300-1315. [PMID: 33064315 DOI: 10.1111/jnc.15214] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease pathologically characterised by mislocalisation of the RNA-binding protein TAR-DNA-binding protein 43 (TDP-43) from the nucleus to the cytoplasm. Changes to neuronal excitability and synapse dysfunction in the motor cortex are early pathological changes occurring in people with ALS and mouse models of disease. To investigate the effect of mislocalised TDP-43 on the function of motor cortex neurons we utilised mouse models that express either human wild-type (TDP-43WT ) or nuclear localisation sequence-deficient TDP-43 (TDP-43ΔNLS ) on an inducible promoter that enriches expression to forebrain neurons. Pathophysiology was investigated through immunohistochemistry and whole-cell patch-clamp electrophysiology. Thirty days expression of TDP-43ΔNLS in adult mice did not cause any changes in the number of CTIP2-positive neurons in the motor cortex. However, at this time-point, the expression of TDP-43ΔNLS drives intrinsic hyperexcitability in layer V excitatory neurons of the motor cortex. This hyperexcitability occurs concomitantly with a decrease in excitatory synaptic input to these cells and fluctuations in both directions of ionotropic glutamate receptors. This pathophysiology is not present with TDP-43WT expression, demonstrating that the localisation of TDP-43 to the cytoplasm is crucial for the altered excitability phenotype. This study has important implications for the mechanisms of toxicity of one of the most notorious proteins linked to ALS, TDP-43. We provide the first evidence that TDP-43 mislocalisation causes aberrant synaptic function and a hyperexcitability phenotype in the motor cortex, linking some of the earliest dysfunctions to arise in people with ALS to mislocalisation of TDP-43.
Collapse
Affiliation(s)
- Marcus S Dyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Katherine E Lewis
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| |
Collapse
|
28
|
Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Front Immunol 2020; 11:2044. [PMID: 33013864 PMCID: PMC7498544 DOI: 10.3389/fimmu.2020.02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is a very promising therapeutic approach against cancer that is particularly effective when combined with gene therapy. Immuno-gene therapy approaches have led to the approval of four advanced therapy medicinal products (ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In spite of these remarkable successes, immunotherapy is still associated with severe side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling transgene expression through an externally administered inductor is envisioned as a potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop smart immunogene therapy-based-ATMPs, which can be controlled by the addition of innocuous drugs or agents, allowing the clinicians to manage the intensity and durability of the therapy. In the present manuscript, we will review the different inducible, versatile and externally controlled gene delivery systems that have been developed and their applications to the field of immunotherapy. We will highlight the advantages and disadvantages of each system and their potential applications in clinics.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Pedro Justicia-Lirio
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Karim Benabdellah
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Francisco Martin
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
29
|
Holton CM, Hanley N, Shanks E, Oxley P, McCarthy A, Eastwood BJ, Murray TK, Nickerson A, Wafford KA. Longitudinal changes in EEG power, sleep cycles and behaviour in a tau model of neurodegeneration. ALZHEIMERS RESEARCH & THERAPY 2020; 12:84. [PMID: 32669112 PMCID: PMC7364634 DOI: 10.1186/s13195-020-00651-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/03/2020] [Indexed: 01/13/2023]
Abstract
Background Disturbed sleep is associated with cognitive decline in neurodegenerative diseases such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD). The progressive sequence of how neurodegeneration affects aspects of sleep architecture in conjunction with behavioural changes is not well understood. Methods We investigated changes in sleep architecture, spectral power and circadian rhythmicity in the tet-off rTg4510 mouse overexpressing human P301L tau within the same subjects over time. Doxycycline-induced transgene-suppressed rTg4510 mice, tTa carriers and wild-type mice were used as comparators. Spectral power and sleep stages were measured from within the home cage environment using EEG electrodes. In addition, locomotor activity and performance during a T-maze task were measured. Results Spectral power in the delta and theta bands showed a time-dependent decrease in rTg4510 mice compared to all other groups. After the initial changes in spectral power, wake during the dark period increased whereas NREM and number of REM sleep bouts decreased in rTg4510 compared to wild-type mice. Home cage locomotor activity in the dark phase significantly increased in rTg4510 compared to wild-type mice by 40 weeks of age. Peak-to-peak circadian rhythm amplitude and performance in the T-maze was impaired throughout the experiment independent of time. At 46 weeks, rTG4510 mice had significant degeneration in the hippocampus and cortex whereas doxycycline-treated rTG4510 mice were protected. Pathology significantly correlated with sleep and EEG outcomes, in addition to locomotor and cognitive measures. Conclusions We show that reduced EEG spectral power precedes reductions in sleep and home cage locomotor activity in a mouse model of tauopathy. The data shows increasing mutant tau changes sleep architecture, EEG properties, behaviour and cognition, which suggest tau-related effects on sleep architecture in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- C M Holton
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - N Hanley
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - E Shanks
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - P Oxley
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A McCarthy
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - B J Eastwood
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - T K Murray
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A Nickerson
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - K A Wafford
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK.
| |
Collapse
|
30
|
Fisher EMC, Bannerman DM. Mouse models of neurodegeneration: Know your question, know your mouse. Sci Transl Med 2020; 11:11/493/eaaq1818. [PMID: 31118292 DOI: 10.1126/scitranslmed.aaq1818] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/26/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Many mutant mouse strains have been developed as models to investigate neurodegenerative disease in humans. However, variability in results among studies using these mouse strains has led to questions about the value of these models. Here, we appraise various mouse models for dissecting neurodegenerative disease mechanisms and emphasize the importance of asking appropriate research questions. In therapeutic studies, we suggest that understanding variability among and within mouse models is crucial for preventing translational failures in human patients.
Collapse
Affiliation(s)
- Elizabeth M C Fisher
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
31
|
Carvalho K, Faivre E, Pietrowski MJ, Marques X, Gomez-Murcia V, Deleau A, Huin V, Hansen JN, Kozlov S, Danis C, Temido-Ferreira M, Coelho JE, Mériaux C, Eddarkaoui S, Gras SL, Dumoulin M, Cellai L, Landrieu I, Chern Y, Hamdane M, Buée L, Boutillier AL, Levi S, Halle A, Lopes LV, Blum D. Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain 2020; 142:3636-3654. [PMID: 31599329 PMCID: PMC6821333 DOI: 10.1093/brain/awz288] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer’s disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer’s disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein—also observed in patients with frontotemporal lobar degeneration—and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.
Collapse
Affiliation(s)
- Kevin Carvalho
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Emilie Faivre
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | | | - Xavier Marques
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F, Paris, France
| | - Victoria Gomez-Murcia
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Aude Deleau
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Vincent Huin
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Jan N Hansen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stanislav Kozlov
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Clément Danis
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France.,University of Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, LabEx DISTALZ, Lille, F Lille, France
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Céline Mériaux
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Sabiha Eddarkaoui
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Stéphanie Le Gras
- CNRS, Inserm, UMR 7104, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, F Illkirch, France
| | | | - Lucrezia Cellai
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | | | - Isabelle Landrieu
- University of Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, LabEx DISTALZ, Lille, F Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Malika Hamdane
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), CNRS UMR 7364, Université de Strasbourg, F Strasbourg, France
| | - Sabine Levi
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F, Paris, France
| | - Annett Halle
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Luisa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| |
Collapse
|
32
|
Age-Dependent Remarkable Regenerative Potential of the Dentate Gyrus Provided by Intrinsic Stem Cells. J Neurosci 2020; 40:974-995. [PMID: 31959697 DOI: 10.1523/jneurosci.1010-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple insults to the brain lead to neuronal cell death, thus raising the question to what extent can lost neurons be replenished by adult neurogenesis. Here we focused on the hippocampus and especially the dentate gyrus (DG), a vulnerable brain region and one of the two sites where adult neuronal stem cells (NSCs) reside. While adult hippocampal neurogenesis was extensively studied with regard to its contribution to cognitive enhancement, we focused on their underestimated capability to repair a massively injured, nonfunctional DG. To address this issue, we inflicted substantial DG-specific damage in mice of either sex either by diphtheria toxin-based ablation of >50% of mature DG granule cells (GCs) or by prolonged brain-specific VEGF overexpression culminating in extensive, highly selective loss of DG GCs (thereby also reinforcing the notion of selective DG vulnerability). The neurogenic system promoted effective regeneration by increasing NSCs proliferation/survival rates, restoring a nearly original DG mass, promoting proper rewiring of regenerated neurons to their afferent and efferent partners, and regaining of lost spatial memory. Notably, concomitantly with the natural age-related decline in the levels of neurogenesis, the regenerative capacity of the hippocampus also subsided with age. The study thus revealed an unappreciated regenerative potential of the young DG and suggests hippocampal NSCs as a critical reservoir enabling recovery from catastrophic DG damage.SIGNIFICANCE STATEMENT Adult hippocampal neurogenesis has been extensively studied in the context of its role in cognitive enhancement, but whether, and to what extent can dentate gyrus (DG)-resident neural stem cells drive regeneration of an injured DG has remained unclear. Here we show that DG neurogenesis acts to replace lost neurons and restore lost functions even following massive (>50%) neuronal loss. Age-related decline of neurogenesis is paralleled by a progressive decline of regenerative capacity. Considering also the exceptional vulnerability of the DG to insults, these findings provide a further rationale for maintaining DG neurogenesis in adult life.
Collapse
|
33
|
Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, CRC-SCA, Kuo SH, Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet 2020; 29:117-131. [PMID: 31696233 PMCID: PMC8216071 DOI: 10.1093/hmg/ddz265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine (Q) encoding CAG repeats in the gene Ataxin-1 (ATXN1). Although motor and balance deficits are the core symptoms of SCA1, cognitive decline is also commonly observed in patients. While mutant ATXN1 is expressed throughout the brain, pathological findings reveal severe atrophy of cerebellar cortex in SCA1 patients. The cerebellum has recently been implicated in diverse cognitive functions, yet to what extent cerebellar neurodegeneration contributes to cognitive alterations in SCA1 remains poorly understood. Much of our understanding of the mechanisms underlying pathogenesis of motor symptoms in SCA1 comes from mouse models. Reasoning that mouse models could similarly offer important insights into the mechanisms of cognitive alterations in SCA1, we tested cognition in several mouse lines using Barnes maze and fear conditioning. We confirmed cognitive deficits in Atxn1154Q/2Q knock-in mice with brain-wide expression of mutant ATXN1 and in ATXN1 null mice. We found that shorter polyQ length and haploinsufficiency of ATXN1 do not cause significant cognitive deficits. Finally, ATXN1[82Q ] transgenic mice-with cerebellum limited expression of mutant ATXN1-demonstrated milder impairment in most aspects of cognition compared to Atxn1154Q/2Q mice, supporting the concept that cognitive deficits in SCA1 arise from a combination of cerebellar and extra-cerebellar dysfunctions.
Collapse
Affiliation(s)
- Melissa Asher
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Orion Rainwater
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Bennyworth
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| | - Ruo-Yah Lai
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - CRC-SCA
- Clinical Research Consortium for Spinocerebellar Ataxia (CRC-SCA)#
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| |
Collapse
|
34
|
Medina CS, Uselman TW, Barto DR, Cháves F, Jacobs RE, Bearer EL. Decoupling the Effects of the Amyloid Precursor Protein From Amyloid-β Plaques on Axonal Transport Dynamics in the Living Brain. Front Cell Neurosci 2019; 13:501. [PMID: 31849608 PMCID: PMC6901799 DOI: 10.3389/fncel.2019.00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Amyloid precursor protein (APP) is the precursor to Aβ plaques. The cytoplasmic domain of APP mediates attachment of vesicles to molecular motors for axonal transport. In APP-KO mice, transport of Mn2+ is decreased. In old transgenic mice expressing mutated human (APPSwInd) linked to Familial Alzheimer's Disease, with both expression of APPSwInd and plaques, the rate and destination of Mn2+ axonal transport is altered, as detected by time-lapse manganese-enhanced magnetic resonance imaging (MEMRI) of the brain in living mice. To determine the relative contribution of expression of APPSwInd versus plaque on transport dynamics, we developed a Tet-off system to decouple expression of APPSwInd from plaque, and then studied hippocampal to forebrain transport by MEMRI. Three groups of mice were compared to wild-type (WT): Mice with plaque and APPSwInd expression; mice with plaque but suppression of APPSwInd expression; and mice with APPSwInd suppressed from mating until 2 weeks before imaging with no plaque. MR images were captured before at successive time points after stereotactic injection of Mn2+ (3-5 nL) into CA3 of the hippocampus. Mice were returned to their home cage between imaging sessions so that transport would occur in the awake freely moving animal. Images of multiple mice from the three groups (suppressed or expressed) together with C57/B6J WT were aligned and processed with our automated computational pipeline, and voxel-wise statistical parametric mapping (SPM) performed. At the conclusion of MR imaging, brains were harvested for biochemistry or histopathology. Paired T-tests within-group between time points (p = 0.01 FDR corrected) support the impression that both plaque alone and APPSwInd expression alone alter transport rates and destination of Mn2+ accumulation. Expression of APPSwInd in the absence of plaque or detectable Aβ also resulted in transport defects as well as pathology of hippocampus and medial septum, suggesting two sources of pathology occur in familial Alzheimer's disease, from toxic mutant protein as well as plaque. Alternatively mice with plaque without APPSwInd expression resemble the human condition of sporadic Alzheimer's, and had better transport. Thus, these mice with APPSwInd expression suppressed after plaque formation will be most useful in preclinical trials.
Collapse
Affiliation(s)
- Christopher S. Medina
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Taylor W. Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Daniel R. Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Frances Cháves
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- California Institute of Technology, Pasadena, CA, United States
| | - Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
35
|
Developmental Pathogenicity of 4-Repeat Human Tau Is Lost with the P301L Mutation in Genetically Matched Tau-Transgenic Mice. J Neurosci 2019; 40:220-236. [PMID: 31685653 DOI: 10.1523/jneurosci.1256-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022] Open
Abstract
Tau is a microtubule-associated protein that becomes dysregulated in a group of neurodegenerative diseases called tauopathies. Differential tau isoforms, expression levels, promoters, and disruption of endogenous genes in transgenic mouse models of tauopathy make it difficult to draw definitive conclusions about the biological role of tau in these models. We addressed this shortcoming by characterizing the molecular and cognitive phenotypes associated with the pathogenic P301L tau mutation (rT2 mice) in relation to a genetically matched transgenic mouse overexpressing nonmutant (NM) 4-repeat (4R) human tau (rT1 mice). Both male and female mice were included in this study. Unexpectedly, we found that 4R NM human tau (hTau) exhibited abnormal dynamics in young mice that were lost with the P301L mutation, including elevated protein stability and hyperphosphorylation, which were associated with cognitive impairment in 5-month-old rT1 mice. Hyperphosphorylation of NM hTau was observed as early as 4 weeks of age, and transgene suppression for the first 4 or 12 weeks of life prevented abnormal molecular and cognitive phenotypes in rT1, demonstrating that NM hTau pathogenicity is specific to postnatal development. We also show that NM hTau exhibits stronger binding to microtubules than P301L hTau, and is associated with mitochondrial abnormalities. Overall, our genetically matched mice have revealed that 4R NM hTau overexpression is pathogenic in a manner distinct from classical aging-related tauopathy, underlining the importance of assaying the effects of transgenic disease-related proteins at appropriate stages in life.SIGNIFICANCE STATEMENT Due to differences in creation of transgenic lines, the pathological properties of the P301L mutation confers to the tau protein in vivo have remained elusive, perhaps contributing to the lack of disease-modifying therapies for tauopathies. In an attempt to characterize P301L-specific effects on tau biology and cognition in novel genetically matched transgenic mouse models, we surprisingly found that nonmutant human tau has development-specific pathogenic properties of its own. Our findings indicate that overexpression of 4-repeat human tau during postnatal development is associated with excessive microtubule binding, which may disrupt important cellular processes, such as mitochondrial dynamics, leading to elevated stability and hyperphosphorylation of tau, and eventual cognitive impairments.
Collapse
|
36
|
Factors other than hTau overexpression that contribute to tauopathy-like phenotype in rTg4510 mice. Nat Commun 2019; 10:2479. [PMID: 31171783 PMCID: PMC6554306 DOI: 10.1038/s41467-019-10428-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
The tauopathy-like phenotype observed in the rTg4510 mouse line, in which human tauP301L expression specifically within the forebrain can be temporally controlled, has largely been attributed to high overexpression of mutant human tau in the forebrain region. Unexpectedly, we found that in a different mouse line with a targeted-insertion of the same transgene driven by the same tetracycline-TransActivator (tTA) allele, but with even higher overexpression of tauP301L than rTg4510, atrophy and tau histopathology are delayed, and a different behavioral profile is observed. This suggests that it is not overexpression of mutant human tau alone that contributes to the phenotype in rTg4510 mice. Furthermore we show that the tauopathy-like phenotype seen in rTg4510 requires a ~70-copy tau-transgene insertion in a 244 kb deletion in Fgf14, a ~7-copy tTA-transgene insertion in a 508 kb deletion that disrupts another five genes, in addition to high transgene overexpression. We propose that these additional effects need to be accounted for in any studies using rTg4510.
Collapse
|
37
|
Pitera AP, Asuni AA, O'Connor V, Deinhardt K. Pathogenic tau does not drive activation of the unfolded protein response. J Biol Chem 2019; 294:9679-9688. [PMID: 31053641 PMCID: PMC6597832 DOI: 10.1074/jbc.ra119.008263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Indexed: 11/06/2022] Open
Abstract
The unfolded protein response (UPR) is commonly associated with a range of neurodegenerative diseases, and targeting UPR components has been suggested as a therapeutic strategy. The UPR surveys protein folding within the endoplasmic reticulum. However, many of the misfolded proteins that accumulate in neurodegeneration are localized so that they do not directly cause endoplasmic reticulum triggers that activate this pathway. Here, using a transgenic mouse model and primary cell cultures along with quantitative PCR, immunoblotting, and immunohistochemistry, we tested whether the UPR is induced in in vivo and in vitro murine models of tauopathy that are based on expression of mutant tauP301L We found no evidence for the UPR in the rTg4510 mouse model, in which mutant tau is transgenically expressed under the control of tetracycline-controlled transactivator protein. This observation was supported by results from acute experiments in which neuronal cultures expressed mutant tau and accumulated misfolded cytoplasmic tau aggregates but exhibited no UPR activation. These results suggest that the UPR is not induced as a response to tau misfolding and aggregation despite clear evidence for progressive cellular dysfunction and degeneration. We propose that caution is needed when evaluating the implied significance of the UPR as a critical determinant across major neurodegenerative diseases.
Collapse
Affiliation(s)
- Aleksandra P Pitera
- From Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom and
| | - Ayodeji A Asuni
- Systems Biology - Symptoms, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Vincent O'Connor
- From Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom and
| | - Katrin Deinhardt
- From Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom and
| |
Collapse
|
38
|
Silva PR, Nieva GV, Igaz LM. Suppression of Conditional TDP-43 Transgene Expression Differentially Affects Early Cognitive and Social Phenotypes in TDP-43 Mice. Front Genet 2019; 10:369. [PMID: 31068973 PMCID: PMC6491777 DOI: 10.3389/fgene.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of TAR DNA-binding protein 43 (TDP-43) is a hallmark feature of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases. TDP-43 is a ubiquitously expressed RNA-binding protein with many physiological functions, playing a role in multiple aspects of RNA metabolism. We developed transgenic mice conditionally overexpressing human wild-type TDP-43 protein (hTDP-43-WT) in forebrain neurons, a model that recapitulates several key features of FTD. After post-weaning transgene (TG) induction during 1 month, these mice display an early behavioral phenotype, including impaired cognitive and social function with no substantial motor abnormalities. In order to expand the analysis of this model, we took advantage of the temporal and regional control of TG expression possible in these mice. We behaviorally evaluated mice at two different times: after 2 weeks of post-weaning TG induction (0.5 month group) and after subsequent TG suppression for 2 weeks following that time point [1 month (sup) group]. We found no cognitive abnormalities after 0.5 month of hTDP-43 expression, evaluated with a spatial working memory task (Y-maze test). Suppression of TG expression with doxycycline (Dox) at this time point prevented the development of cognitive deficits previously observed at 1 month post-induction, as revealed by the performance of the 1 month (sup) group. On the other hand, sociability deficits (assessed through the social interaction test) appeared very rapidly after Dox removal (0.5 month) and TG suppression was not sufficient to reverse this phenotype, indicating differential vulnerability to hTDP-43 expression and suppression. Animals evaluated at the early time point (0.5 month) post-induction do not display a motor phenotype, in agreement with the results obtained after 1 month of TG expression. Moreover, all motor tests (open field, accelerated rotarod, limb clasping, hanging wire grip) showed identical responses in both control and bigenic animals in the suppressed group, demonstrating that this protocol and treatment do not cause non-specific effects in motor behavior, which could potentially mask the phenotypes in other domains. Our results show that TDP-43-WT mice have a phenotype that qualifies them as a useful model of FTD and provide valuable information for susceptibility windows in therapeutic strategies for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Pablo R Silva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gabriela V Nieva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
39
|
Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS, Takeno MM, Huang L, Gu H, Larsen R, Mills M, Bosma-Moody A, Siverts LA, Walker M, Graybuck LT, Yao Z, Fong O, Nguyen TN, Garren E, Lenz GH, Chavarha M, Pendergraft J, Harrington J, Hirokawa KE, Harris JA, Nicovich PR, McGraw MJ, Ollerenshaw DR, Smith KA, Baker CA, Ting JT, Sunkin SM, Lecoq J, Lin MZ, Boyden ES, Murphy GJ, da Costa NM, Waters J, Li L, Tasic B, Zeng H. A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality. Cell 2019; 174:465-480.e22. [PMID: 30007418 DOI: 10.1016/j.cell.2018.06.035] [Citation(s) in RCA: 535] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023]
Abstract
Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.
Collapse
Affiliation(s)
- Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Travis A Hage
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ulf Knoblich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rylan S Larsen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Marc M Takeno
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lawrence Huang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hong Gu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachael Larsen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Maya Mills
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Miranda Walker
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Garreck H Lenz
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Mariya Chavarha
- Departments of Neurobiology and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Medea J McGraw
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | | | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jérôme Lecoq
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Z Lin
- Departments of Neurobiology and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edward S Boyden
- MIT Media Lab and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabe J Murphy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lu Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
40
|
The Disease-Associated Chaperone FKBP51 Impairs Cognitive Function by Accelerating AMPA Receptor Recycling. eNeuro 2019; 6:eN-NWR-0242-18. [PMID: 30963102 PMCID: PMC6450497 DOI: 10.1523/eneuro.0242-18.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
Increased expression of the FK506-binding protein 5 (FKBP5) gene has been associated with a number of diseases, but most prominently in connection to psychiatric illnesses. Many of these psychiatric disorders present with dementia and other cognitive deficits, but a direct connection between these issues and alterations in FKBP5 remains unclear. We generated a novel transgenic mouse to selectively overexpress FKBP5, which encodes the FKBP51 protein, in the corticolimbic system, which had no overt effects on gross body weight, motor ability, or general anxiety. Instead, we found that overexpression of FKBP51 impaired long-term depression (LTD) as well as spatial reversal learning and memory, suggesting a role in glutamate receptor regulation. Indeed, FKBP51 altered the association of heat-shock protein 90 (Hsp90) with AMPA receptors, which was accompanied by an accelerated rate of AMPA recycling. In this way, the chaperone system is critical in triage decisions for AMPA receptor trafficking. Imbalance in the chaperone system may manifest in impairments in both inhibitory learning and cognitive function. These findings uncover an unexpected and essential mechanism for learning and memory that is controlled by the psychiatric risk factor FKBP5.
Collapse
|
41
|
Yanagisawa D, Hamezah HS, Durani LW, Taguchi H, Tooyama I. Study of tau pathology in male rTg4510 mice fed with a curcumin derivative Shiga-Y5. PLoS One 2018; 13:e0208440. [PMID: 30521594 PMCID: PMC6283544 DOI: 10.1371/journal.pone.0208440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Intracellular inclusions of aggregated tau appear in neurons and glial cells in a range of neurodegenerative diseases known as tauopathies. Inhibition of pathological changes in tau is a therapeutic target for tauopathy. We recently synthesized a novel curcumin derivative, named Shiga-Y5, and showed that Shiga-Y5 inhibited cognitive impairment and amyloid deposition in a mouse model of Alzheimer’s disease. Here we investigated whether Shiga-Y5 inhibited cognitive impairment and tau accumulation in a mouse model of tauopathy, rTg4510. The rTg4510 mouse is a bitransgenic mouse model that uses a system of responder and activator transgenes to express human four-repeat tau with the P301L mutation. This strain is obtained by crossing tetO-MAPT*P301L mouse line (on a FVB/NJ background) with CaMKII-tTA mouse line (on a C57BL/6J background). Male rTg4510 mice and wild-type mice were fed with a standard chow diet with or without Shiga-Y5 (500 ppm) for 4 months. Behavioral tests were conducted from 5.5 months of age, and the mice were sacrificed at 6 months of age. There were no significant changes in behavioral performance in rTg4510 mice fed with SY5-containing chow diet compared with rTg4510 mice fed with control chow diet. Histological and biochemical analyses also showed no significant alterations in tau accumulation by the treatment with SY5. One of noticeable finding in this study was that rTg4510 mice on a F1 female FVB/NJ x male C57BL/6J background showed more severe tau accumulation than rTg4510 mice on a F1 female C57BL/6J x male FVB/NJ background. Further studies to clarify the mechanisms underlying tau aggregation may help to develop therapeutic approaches aimed at preventing this pathological feature.
Collapse
Affiliation(s)
- Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | | | - Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyasu Taguchi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
- * E-mail:
| |
Collapse
|
42
|
Lippi SLP, Smith ML, Flinn JM. A Novel hAPP/htau Mouse Model of Alzheimer's Disease: Inclusion of APP With Tau Exacerbates Behavioral Deficits and Zinc Administration Heightens Tangle Pathology. Front Aging Neurosci 2018; 10:382. [PMID: 30524268 PMCID: PMC6263092 DOI: 10.3389/fnagi.2018.00382] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The brains of those with Alzheimer's disease have amyloid and tau pathology; thus, mice modeling AD should have both markers. In this study, we characterize offspring from the cross of the J20 (hAPP) and rTg4510 (htau) strains (referred to as dual Tg). Behavior was assessed at both 3.5 and 7 months, and biochemical differences were assessed at 8 months. Additionally, mice were placed on zinc (Zn) water or standard lab water in order to determine the role of this essential biometal. Behavioral measures examined cognition, emotion, and aspects of daily living. Transgenic mice (dual Tg and htau) showed significant deficits in spatial memory in the Barnes Maze at both 3.5 and 7 months compared to controls. At 7 months, dual Tg mice performed significantly worse than htau mice (p < 0.01). Open field and elevated zero maze (EZM) data indicated that dual Tg and htau mice displayed behavioral disinhibition compared to control mice at both 3.5 and 7 months (p < 0.001). Transgenic mice showed significant deficits in activities of daily living, including burrowing and nesting, at both 3.5 and 7 months compared to control mice (p < 0.01). Dual Tg mice built very poor nests, indicating that non-cognitive tasks are also impacted by AD. Overall, dual Tg mice demonstrated behavioral deficits earlier than those shown by the htau mice. In the brain, dual Tg mice had significantly less free Zn compared to control mice in both the dentate gyrus and the CA3 of the hippocampus (p < 0.01). Dual Tg mice had increased tangles and plaques in the hippocampus compared to htau mice and the dual Tg mice given Zn water displayed increased tangle pathology in the hippocampus compared to htau mice on Zn water (p < 0.05). The dual Tg mouse described here displays pathology reminiscent of the human AD condition and is impaired early on in both cognitive and non-cognitive behaviors. This new mouse model allows researchers to assess how both amyloid and tau in combination impact behavior and brain pathology.
Collapse
Affiliation(s)
- Stephen L P Lippi
- Psychology Department, George Mason University, Fairfax, VA, United States
| | - Meghann L Smith
- Psychology Department, George Mason University, Fairfax, VA, United States
| | - Jane M Flinn
- Psychology Department, George Mason University, Fairfax, VA, United States
| |
Collapse
|
43
|
Bearer EL, Manifold-Wheeler BC, Medina CS, Gonzales AG, Chaves FL, Jacobs RE. Alterations of functional circuitry in aging brain and the impact of mutated APP expression. Neurobiol Aging 2018; 70:276-290. [PMID: 30055413 DOI: 10.1016/j.neurobiolaging.2018.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a disease of aging that results in cognitive impairment, dementia, and death. Pathognomonic features of AD are amyloid plaques composed of proteolytic fragments of the amyloid precursor protein (APP) and neurofibrillary tangles composed of hyperphosphorylated tau protein. One type of familial AD occurs when mutant forms of APP are inherited. Both APP and tau are components of the microtubule-based axonal transport system, which prompts the hypothesis that axonal transport is disrupted in AD, and that such disruption impacts cognitive function. Transgenic mice expressing mutated forms of APP provide preclinical experimental systems to study AD. Here, we perform manganese-enhanced magnetic resonance imaging to study transport from hippocampus to forebrain in four cohorts of living mice: young and old wild-type and transgenic mice expressing a mutant APP with both Swedish and Indiana mutations (APPSwInd). We find that transport is decreased in normal aging and further altered in aged APPSwInd plaque-bearing mice. These findings support the hypothesis that transport deficits are a component of AD pathology and thus may contribute to cognitive deficits.
Collapse
Affiliation(s)
- Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | | | | | - Aaron G Gonzales
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Frances L Chaves
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Division of Biology, California Institute of Technology, Pasadena, CA, USA; Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
44
|
Presymptomatic change in microRNAs modulates Tau pathology. Sci Rep 2018; 8:9251. [PMID: 29915328 PMCID: PMC6006352 DOI: 10.1038/s41598-018-27527-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRs) are 18~23 nucleotides long non-coding RNAs that regulate gene expression. To explore whether miR alterations in tauopathy contribute to pathological conditions, we first determined which hippocampal miRs are altered at the presymptomatic and symptomatic stages of tauopathy using rTg4510 mice (Tau mice), a well-characterized tauopathy model. miR-RNA pairing analysis using QIAGEN Ingenuity Pathway Analysis (IPA) revealed 401 genes that can be regulated by 71 miRs altered in Tau hippocampi at the presymptomatic stage. Among several miRs confirmed with real-time qPCR, miR142 (−3p and −5p) in Tau hippocampi were significantly upregulated by two-weeks of age and onward. Transcriptome studies by RNAseq and IPA revealed several overlapping biological and disease associated pathways affected by either Tau or miR142 overexpression, including Signal Transducer and Activator of Transcription 3 (Stat3) and Tumor Necrosis Factor Receptor 2 (Tnfr2) signaling pathways. Similar to what was observed in Tau brains, overexpressing miR142 in wildtype cortical neurons augments mRNA levels of Glial Fibrillary Acidic Protein (Gfap) and Colony Stimulating Factor 1 (Csf1), accompanied by a significant increase in microglia and reactive astrocyte numbers. Taken together, our study suggests that miR alterations by Tau overexpression may contribute to the neuroinflammation observed in Tau brains.
Collapse
|
45
|
Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci 2018; 38:6045-6062. [PMID: 29807909 DOI: 10.1523/jneurosci.1836-17.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is among the most prevalent dementias of early-onset. Pathologically, FTLD presents with tauopathy or TAR DNA-binding protein 43 (TDP-43) proteinopathy. A biallelic mouse model of FTLD was produced on a mix FVB/129SVE background overexpressing wild-type human TDP-43 (hTDP-43) using tetracycline transactivator (tTA), a system widely used in mouse models of neurological disorders. tTA activates hTDP-43, which is placed downstream of the tetracycline response element. The original study on this transgenic mouse found hippocampal degeneration following hTDP-43 expression, but did not account for independent effects of tTA protein. Here, we initially analyzed the neurotoxic effects of tTA in postweaning age mice of either sex using immunostaining and area measurements of select brain regions. We observed tTA-dependent toxicity selectively in the hippocampus affecting the dentate gyrus significantly more than CA fields, whereas hTDP-43-dependent toxicity in bigenic mice occurred in most other cortical regions. Atrophy was associated with inflammation, activation of caspase-3, and loss of neurons. The atrophy associated with tTA expression was rescuable by the tetracycline analog, doxycycline, in the diet. MRI studies corroborated the patterns of atrophy. tTA-induced degeneration was strain-dependent and was rescued by moving the transgene onto a congenic C57BL/6 background. Despite significant hippocampal atrophy, behavioral tests in bigenic mice revealed no hippocampally mediated memory impairment. Significant atrophy in most cortical areas due solely to TDP-43 expression indicates that this mouse model remains useful for providing critical insight into co-occurrence of TDP-43 pathology, neurodegeneration, and behavioral deficits in FTLD.SIGNIFICANCE STATEMENT The tTA expression system has been widely used in mice to model neurological disorders. The technique allows investigators to reversibly turn on or off disease causing genes. Here, we report on a mouse model that overexpresses human TDP-43 using tTA and attempt to recapitulate features of TDP-43 pathology present in human FTLD. The tTA expression system is problematic, resulting in dramatic degeneration of the hippocampus. Thus, our study adds a note of caution for the use of the tTA system. However, because FTLD is primarily characterized by cortical degeneration and our mouse model shows significant atrophy in most cortical areas due to human TDP-43 overexpression, our animal model remains useful for providing critical insight on this human disease.
Collapse
|
46
|
Chiang ACA, Fowler SW, Reddy R, Pletnikova O, Troncoso JC, Sherman MA, Lesne SE, Jankowsky JL. Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:739-756. [PMID: 29248459 PMCID: PMC5840490 DOI: 10.1016/j.ajpath.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Abstract
Despite increasing appreciation that oligomeric amyloid-β (Aβ) may contribute to cognitive decline of Alzheimer disease, defining the most critical forms has been thwarted by the changeable nature of these aggregates and the varying methods used for detection. Herein, using a broad approach, we quantified Aβ oligomers during the evolution of cognitive deficits in an aggressive model of Aβ amyloidosis. Amyloid precursor protein/tetracycline transactivator mice underwent behavioral testing at 3, 6, 9, and 12 months of age to evaluate spatial learning and memory, followed by histologic assessment of amyloid burden and biochemical characterization of oligomeric Aβ species. Transgenic mice displayed progressive impairments in acquisition and immediate recall of the trained platform location. Biochemical analysis of cortical extracts from behaviorally tested mice revealed distinct age-dependent patterns of accumulation in multiple oligomeric species. Dot blot analysis demonstrated that nonfibrillar Aβ oligomers were highly soluble and extracted into a fraction enriched for extracellular proteins, whereas prefibrillar species required high-detergent conditions to retrieve, consistent with membrane localization. Low-detergent extracts tested by 82E1 enzyme-linked immunosorbent assay confirmed the presence of bona fide Aβ oligomers, whereas immunoprecipitation-Western blotting using high-detergent extracts revealed a variety of SDS-stable low-n species. These findings show that different Aβ oligomers vary in solubility, consistent with distinct localization, and identify nonfibrillar Aβ oligomer-positive aggregates as tracking most closely with cognitive decline in this model.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Stephanie W Fowler
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Rohit Reddy
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Cognitive Science, Rice University, Houston, Texas
| | - Olga Pletnikova
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mathew A Sherman
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sylvain E Lesne
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Joanna L Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
47
|
Jackson J, Bianco G, Rosa AO, Cowan K, Bond P, Anichtchik O, Fern R. White matter tauopathy: Transient functional loss and novel myelin remodeling. Glia 2018; 66:813-827. [PMID: 29315804 DOI: 10.1002/glia.23286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/03/2023]
Abstract
Early white matter (WM) changes are common in dementia and may contribute to functional decline. We here examine this phenomenon in an induced dementia model for the first time. We report a novel and selective form of myelin injury as the first manifestation of tauopathy in the adult central nervous system. Myelin pathology rapidly followed the induction of a P301 tau mutation associated with fronto-temporal dementia in humans (rTG4510 line). Damage involved focal disruption of the ad-axonal myelin lamella and internal oligodendrocyte tongue process, followed by myelin remodeling with features of re-myelination that included myelin thinning and internodal shortening. The evolution of the re-myelinated phenotype was complete in the molecular layer of the dentate gyrus after 1 month and in the optic nerve (ON) after 9 months of transgene induction and proceeded in the absence of actual demyelination, reactive glial changes or inflammatory response. The initial rapid myelin pathology was associated with loss of WM function and performance decline in a novel recognition test and both these effects largely reversed during the myelin re-modeling phase. The initial phase of myelin injury was accompanied by disruption of the vesicle population present in the axoplasm of hippocampal and ON axons. Axoplasmic vesicle release is significant for the regulation of myelin plasticity and disruption of this pathway may underlie the myelin damage and remodeling evoked by tauopathy. WM dysfunction early in tauopathy will disorder neural circuits, the current findings suggest this event may make a significant contribution to early clinical deficit in dementia.
Collapse
Affiliation(s)
| | | | - Angelo O Rosa
- Plymouth Electron Microscopy Centre, University of Plymouth, Plymouth, United Kingdom
| | - Katrina Cowan
- Peninsula School of Medicine and Dentistry, University of Plymouth, PUPSMD, Plymouth, United Kingdom
| | - Peter Bond
- Plymouth Electron Microscopy Centre, University of Plymouth, Plymouth, United Kingdom
| | - Oleg Anichtchik
- Peninsula School of Medicine and Dentistry, University of Plymouth, PUPSMD, Plymouth, United Kingdom
| | - Robert Fern
- Peninsula School of Medicine and Dentistry, University of Plymouth, PUPSMD, Plymouth, United Kingdom
| |
Collapse
|
48
|
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:89. [PMID: 29273078 PMCID: PMC5741956 DOI: 10.1186/s13024-017-0231-7] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
49
|
Copping NA, Christian SGB, Ritter DJ, Islam MS, Buscher N, Zolkowska D, Pride MC, Berg EL, LaSalle JM, Ellegood J, Lerch JP, Reiter LT, Silverman JL, Dindot SV. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum Mol Genet 2017; 26:3995-4010. [PMID: 29016856 PMCID: PMC5886211 DOI: 10.1093/hmg/ddx289] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 01/07/2023] Open
Abstract
Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∼40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nycole A Copping
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Dylan J Ritter
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Texas A&M, College Station, TX, USA
| | - M Saharul Islam
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Nathalie Buscher
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Dorota Zolkowska
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Michael C Pride
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Elizabeth L Berg
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Janine M LaSalle
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Jacob Ellegood
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lawrence T Reiter
- Departments of Neurology, Pediatrics and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jill L Silverman
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|
50
|
Das AT, Tenenbaum L, Berkhout B. Tet-On Systems For Doxycycline-inducible Gene Expression. Curr Gene Ther 2017; 16:156-67. [PMID: 27216914 PMCID: PMC5070417 DOI: 10.2174/1566523216666160524144041] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
The tetracycline-controlled Tet-Off and Tet-On gene expression systems are used to regulate the activity of genes in eukaryotic cells in diverse settings, varying from basic biological research to biotechnology and gene therapy applications. These systems are based on regulatory elements that control the activity of the tetracycline-resistance operon in bacteria. The Tet-Off system allows silencing of gene expression by administration of tetracycline (Tc) or tetracycline-derivatives like doxycycline (dox), whereas the Tet-On system allows activation of gene expression by dox. Since the initial design and construction of the original Tet-system, these bacterium-derived systems have been significantly improved for their function in eukaryotic cells. We here review how a dox-controlled HIV-1 variant was designed and used to greatly improve the activity and dox-sensitivity of the rtTA transcriptional activator component of the Tet-On system. These optimized rtTA variants require less dox for activation, which will reduce side effects and allow gene control in tissues where a relatively low dox level can be reached, such as the brain.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|