1
|
Bodnar RJ. A 40-year analysis of central neuroanatomical and neurochemical circuits mediating homeostatic intake and hedonic intake and preferences in rodents. Brain Res 2025; 1857:149604. [PMID: 40180145 DOI: 10.1016/j.brainres.2025.149604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
This perspective review was written in response to the celebration of the 60th anniversary of the journal, Brain Research, and covers the evolving focus of my laboratory's work over 40 years in the neurobiological substrates of ingestive behavior in rodents. Following our initial work examining the effects of systemic and ventricular administration of general and selective opioid receptor agonists and antagonists on food intake under spontaneous, deprivation, glucoprivic and hedonic conditions, my laboratory in close collaboration with Drs. Gavril Pasternak and Ying-Xian Pan utilized an antisense oligodoxynucleotide knock-down technique affecting MOR-1, DOR-1, KOR-1 and ORL-1 genes as well as against G-protein subunits to study receptor mediation of opioid receptor agonist-induced feeding as well as feeding following regulatory challenges. Our laboratory employed intracerebral microinjection techniques to map limbic nucleus accumbens and ventral tegmental area central brain circuits mediating homeostatic and hedonic feeding responses through the use of selective mu, delta1, delta2 and kappa opioid receptor subtype agonists in combination with general and selective opioid, dopamineric, glutamatergic and GABAergic antagonists administered into the same site or the reciprocal site, allowing for the identification of a distributed brain network mediating these ingestive effects. Our laboratory in close collaboration with Dr. Anthony Sclafani then focused on the pharmacological, neuroanatomical and learning mechanisms related to the development of sugar- (sucrose, glucose and fructose) and fat- (corn oil) conditioned flavor preferences (CFP) in rats, and on murine genetic variance in food intake, preferences and the process of appetition.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, and Psychology Doctoral Program, The Graduate Center, City University of New York, United States.
| |
Collapse
|
2
|
Schreiber T, Leitner E, Brandstetter J, Richter A, Lange S, Zechner D, Junghanss C, Vollmar B, Kumstel S. Mouse strain-specific habituation to oral metamizole administration. Lab Anim 2025; 59:192-202. [PMID: 39668591 DOI: 10.1177/00236772241274058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
When pain might occur during an animal experiment, sufficient analgesia is necessary. Metamizole is the third most used postoperative pain medication in animal research. The analgesic effect of metamizole is supposed to last 6-8 h in rodents. Therefore, the supplementation of drinking water with metamizole should be the preferred method to ensure permanent pain relief without unnecessary stressors. The present exploratory study compared the voluntary intake of metamizole-supplemented drinking water (3 mg/ml) between healthy mice of three different mouse strains. After the addition of metamizole to the drinking water, a marginal reduction in body weight was observed in C57BL/6J and BALB/c mice. However, NSG mice displayed a significantly higher body weight loss and reduction of drinking behavior compared with the C57BL/6J and BALB/c strains. The acceptance of metamizole in NSG mice did not increase with a different metamizole formulation. Thus, the mice of the inbred strains C57BL/6J and BALB/c seemed to be able to adapt to the taste of metamizole, while NSG mice were not able to accustom to analgesia within 1 week. Strain-specific habituation should be considered in future animal studies when analgesia is applied via drinking water.
Collapse
Affiliation(s)
- Tim Schreiber
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Germany
| | - Emily Leitner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Germany
| | - Jakob Brandstetter
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Germany
| | - Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Germany
| | - Sandra Lange
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Germany
| | - Simone Kumstel
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Germany
| |
Collapse
|
3
|
Belloir C, Jeannin M, Karolkowski A, Briand L. TAS1R2/ TAS1R3 Single-Nucleotide Polymorphisms Affect Sweet Taste Receptor Activation by Sweeteners: The SWEET Project. Nutrients 2025; 17:949. [PMID: 40289963 PMCID: PMC11945486 DOI: 10.3390/nu17060949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES Studies have hypothesised that single-nucleotide polymorphisms (SNPs) in the TAS1R2 and TAS1R3 genes may alter sweet compound detection and eating habits, thereby increasing the risk of obesity. This in vitro study aims to measure the impact of human TAS1R2/TAS1R3 polymorphisms, some of which are thought to be involved in obesity, on the response of the sweet taste receptor to various sweeteners. It also aims to identify new SNPs in an obese population associated with a decrease in or loss of TAS1R2/TAS1R3 function. METHODS First, the effects of 12 human TAS1R2-SNPs and 16 human TAS1R3-SNPs, previously identified in the literature, on the response of the sweet taste receptor stimulated by 12 sweeteners were investigated using functional cellular assays. Second, a total of 162 blood samples were collected from an obese population (BMI between 25 and 35 kg/m2) involved in the SWEET project. The TaqMan method for SNP genotyping was carried out using DNA extracted from blood samples to identify new SNPs and predict possible/probable TAS1R2/TAS1R3 loss of function. RESULTS Although certain human TAS1R2/TAS1R3 SNPs showed reduced receptor response, they were not associated with particular phenotypes. Seven SNPs were predicted to severely impair the human TAS1R2/TAS1R3 response to sweeteners. CONCLUSIONS Although some TAS1R2- and TAS1R3-SNPs have previously been associated with obesity, our cellular results do not confirm this association and reinforce the hypothesis, put forward by other researchers, that sweet taste perception and sugar consumption are governed by factors other than the TAS1R2 and TAS1R3 genes.
Collapse
Affiliation(s)
| | | | | | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, The National Centre for Scientific Research (CNRS), National Institute of Agricultural Research (INRAE), Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France; (C.B.); (M.J.); (A.K.)
| |
Collapse
|
4
|
Plum T, Binzberger R, Thiele R, Shang F, Postrach D, Fung C, Fortea M, Stakenborg N, Wang Z, Tappe-Theodor A, Poth T, MacLaren DAA, Boeckxstaens G, Kuner R, Pitzer C, Monyer H, Xin C, Bonventre JV, Tanaka S, Voehringer D, Vanden Berghe P, Strid J, Feyerabend TB, Rodewald HR. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 2023; 620:634-642. [PMID: 37438525 PMCID: PMC10432277 DOI: 10.1038/s41586-023-06188-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 05/10/2023] [Indexed: 07/14/2023]
Abstract
The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.
Collapse
Affiliation(s)
- Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| | - Rebecca Binzberger
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Robin Thiele
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Fuwei Shang
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Daniel Postrach
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Candice Fung
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Marina Fortea
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Zheng Wang
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Duncan A A MacLaren
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Rohini Kuner
- Pharmacology Institute, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Cuiyan Xin
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Thorsten B Feyerabend
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
5
|
Sclafani A, Castillo A, Carata I, Pines R, Berglas E, Joseph S, Sarker J, Nashed M, Roland M, Arzayus S, Williams N, Glendinning JI, Bodnar RJ. Conditioned preference and avoidance induced in mice by the rare sugars isomaltulose and allulose. Physiol Behav 2023; 267:114221. [PMID: 37146897 DOI: 10.1016/j.physbeh.2023.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 male were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.
Collapse
|
6
|
Hu R, Jiang X, Yang H, Liu G. Selection signature analysis reveals RDH5 performed key function in vision during sheep domestication process. Arch Anim Breed 2023. [DOI: 10.5194/aab-66-81-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract. As one of the most successful domesticated animals in the Neolithic age,
sheep gradually migrated all over the world with human activities. During the
domestication process, remarkable changes have taken place in morphology,
physiology, and behavior, resulting in different breeds with different
characters via artificial and natural selection. However, the genetic
background responsible for these phenotypic variations remains largely
unclear. Here, we used whole genome resequencing technology to compare and
analyze the genome differences between Asiatic mouflon wild sheep (Ovis orientalis) and Hu
sheep (Ovis aries). A total of 755 genes were positively selected in the process of
domestication and selection, and the genes related to sensory perception had
directional evolution in the autosomal region, such as OPRL1, LEF1, TAS1R3, ATF6, VSX2, MYO1A, RDH5, and some novel
genes. A missense mutation of c.T722C/p.M241T in exon 4 of RDH5 existing in sheep
were found, and the T allele was completely fixed in Hu sheep. In addition, the
mutation with the C allele reduced the retinol dehydrogenase activity encoding
by RDH5, which can impair retinoic acid metabolism and further influenced the visual
cycle. Overall, our results showed significant enrichment for positively
selected genes involved in sensory perception development during sheep
domestication; RDH5 and its variants may be related to the retinal degeneration
in sheep. We infer that the wild sheep ancestors with weaker visual sensitivity
were weeded out by humans, and the mutation was selective, swept by the dual
pressures of natural and artificial selection.
Collapse
|
7
|
Roland M, Berglas E, Pines R, Carata I, Castillo A, Nashed M, Sclafani A, Bodnar RJ. Differential patterns of opioid and dopamine D1 receptor antagonism on nutritive and non-nutritive sweetener intakes in C57BL/6:129 hybrid mice relative to inbred C57BL/6 and 129 mice. Pharmacol Biochem Behav 2023; 223:173514. [PMID: 36642390 DOI: 10.1016/j.pbb.2023.173514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Opioid and dopamine (DA) D1 receptor antagonists differentially reduce nutritive and non-nutritive sweetener intakes in inbred mouse strains. Sucrose intake was more effectively reduced by naltrexone in C57BL/6 (B6) mice relative to 129P3 (129) mice, but more effectively reduced by SCH23390 in 129 mice relative to B6 mice. Opioid and DA D1 antagonists differentially reduced saccharin intakes in B6 mice relative to other strains. Given these differential patterns in sweetener intake in B6 and 129 mice, the present study examined whether systemic naltrexone (0.01-5 mg/kg) and SCH23390 (50-1600 nmol/kg) reduced intakes of 10 % sucrose or 0.2 % saccharin solutions over a 120 min time course in first-generation hybrid mice (B6:129) of B6 and 129 parents and reduced low-nutritive sweetener intakes in 129 mice. Naltrexone (5 mg/kg) significantly reduced 10 % sucrose intake in B6:129 hybrid mice more like that of 129 than B6 mice. In contrast, SCH23390 (400-1600 nmol/kg) reduced 10 % sucrose intake in B6:129 hybrid mice more effectively than that observed in B6 or 129 parental strains. Because 129 mice consumed relatively low amounts of 0.2 % saccharin, they were tested with a more attractive low-nutritive solution containing 0.2 % saccharin and 2 % sucrose. Naltrexone failed to reduce saccharin intake in B6:129 hybrid mice but suppressed saccharin+sucrose intake in 129 mice more like that observed in B6 mice. SCH23390 similarly inhibited saccharin or saccharin+sucrose intakes in hybrid B6:129, 129, and B6 mice with B6 mice more resistant to the lowest SCH23390 dose. Thus, whereas sucrose intake in B6:129 hybrid mice exhibited similar sensitivity to opioid and to a lesser degree DA D1 antagonism to their 129, but not B6 parents, opioid and DA D1 mediation of low- and non-nutritive sweet intake produced unique profiles among B6:129 hybrid and B6 and 129 strains which does not support a simple heritability explanation.
Collapse
Affiliation(s)
- Matthew Roland
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Eli Berglas
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Rachel Pines
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Ion Carata
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Alexander Castillo
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Mirna Nashed
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, United States of America; Psychology Doctoral Program, Graduate Center of the City University of New York, United States of America
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, United States of America; Psychology Doctoral Program, Graduate Center of the City University of New York, United States of America.
| |
Collapse
|
8
|
Przybysz JT, DiBrog AM, Kern KA, Mukherjee A, Japa JE, Waite MH, Mietlicki-Baase EG. Macronutrient intake: Hormonal controls, pathological states, and methodological considerations. Appetite 2023; 180:106365. [PMID: 36347305 PMCID: PMC10563642 DOI: 10.1016/j.appet.2022.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A plethora of studies to date has examined the roles of feeding-related peptides in the control of food intake. However, the influence of these peptides on the intake of particular macronutrient constituents of food - carbohydrate, fat, and protein - has not been as extensively addressed in the literature. Here, the roles of several feeding-related peptides in controlling macronutrient intake are reviewed. Next, the relationship between macronutrient intake and diseases including diabetes mellitus, obesity, and eating disorders are examined. Finally, some key considerations in macronutrient intake research are discussed. We hope that this review will shed light onto this underappreciated topic in ingestive behavior research and will help to guide further scientific investigation in this area.
Collapse
Affiliation(s)
- Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jason E Japa
- Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Mariana H Waite
- Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
9
|
Alteration of sweet taste receptor expression in circumvallate papillae of mice with decreased sweet taste preference induced by social defeat stress. J Nutr Biochem 2022; 107:109055. [DOI: 10.1016/j.jnutbio.2022.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022]
|
10
|
Differential fructose and glucose appetition in DBA/2, 129P3 and C57BL/6 × 129P3 hybrid mice revealed by sugar versus non-nutritive sweetener tests. Physiol Behav 2021; 241:113590. [PMID: 34509472 DOI: 10.1016/j.physbeh.2021.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022]
Abstract
Inbred mouse strains differ in their postoral appetite stimulating response (appetition) to fructose as demonstrated in intragastric (IG) sugar conditioning and oral sugar vs. nonnutritive conditioning experiments. For example, FVB and SWR strains show experience-induced preferences for 8% fructose over a 0.1% sucralose + 0.1% saccharin (S + S) solution, whereas C57BL/6 (B6) and BALB/c strains do not. All strains, however, learn to prefer 8% glucose to S + S after experience, which is attributed to the potent appetition actions of this sugar. The present study extended this analysis to DBA/2 (DBA) and 129P3 (129) inbred mice. In Experiment 1A, ad libitum fed DBA and 129 mice preferred S + S to fructose before and after separate experience with the two sweeteners, indicating an indifference to the postoral nutrient effects of the sugar. When food restricted (Experiment 1B), 129 mice continued to prefer S + S to fructose while DBA mice showed equal preference for the sweeteners after experience, indicating some sensitivity to fructose appetition. In Experiment 1C, both strains acquired significant preferences for glucose over S + S after experience, confirming their sensitivity to postoral glucose appetition. Experiment 2 revealed that C57BL/6 × 129P3 (B6:129) hybrid mice responded like inbred B6 mice and 129 mice in acquiring a preference for glucose but not fructose over S + S. This is of interest because sweet "taste-blind" P2 × 2 / P2 × 3 double-knockout (DKO) mice on a B6:129 genetic background prefer fructose to water in 24 h tests, which is indicative of fructose appetition. Whether differences in the genetic makeup of DKO and B6:129 hybrid mice or other factors explain the fructose appetition of the DKO mice remains to be determined.
Collapse
|
11
|
McCaughey SA. Variation in the gene Tas1r3 reveals complex temporal properties of mouse brainstem taste responses to sweeteners. Am J Physiol Regul Integr Comp Physiol 2021; 321:R751-R767. [PMID: 34523351 PMCID: PMC8616626 DOI: 10.1152/ajpregu.00001.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
The gene Tas1r3 codes for the protein T1R3, which dimerizes with T1R2 to form a sweetener-binding receptor in taste cells. Tas1r3 influences sweetener preferences in mice, as shown by work with a 129.B6-Tas1r3 segregating congenic strain on a 129P3/J (129) genetic background; members of this strain vary in whether they do or do not have one copy of a donor fragment with the C57BL/6ByJ (B6) allele for Tas1r3 (B6/129 and 129/129 mice, respectively). Taste-evoked neural responses were measured in the nucleus of the solitary tract (NST), the first central gustatory relay, in B6/129 and 129/129 littermates, to examine how the activity dependent on the T1R2/T1R3 receptor is distributed across neurons and over time. Responses to sucrose were larger in B6/129 than in 129/129 mice, but only during a later, tonic response portion (>600 ms) sent to different cells than the earlier, phasic response. Similar results were found for artificial sweeteners, whose responses were best considered as complex spatiotemporal patterns. There were also group differences in burst firing of NST cells, with a significant positive correlation between bursting prevalence and sucrose response size in only the 129/129 group. The results indicate that sweetener transduction initially occurs through T1R3-independent mechanisms, after which the T1R2/T1R3 receptor initiates a separate, spatially distinct response, with the later period dominating sweet taste perceptions and driving sugar preferences. Furthermore, the current data suggest that burst firing is distributed across NST neurons nonrandomly and in a manner that may amplify weak incoming gustatory signals.
Collapse
Affiliation(s)
- Stuart A McCaughey
- Center for Medical Education, Ball State University, Muncie, Indiana
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Basson AR, Rodriguez-Palacios A, Cominelli F. Artificial Sweeteners: History and New Concepts on Inflammation. Front Nutr 2021; 8:746247. [PMID: 34631773 PMCID: PMC8497813 DOI: 10.3389/fnut.2021.746247] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of artificial sweeteners (AS) to the North American market in the 1950s, a growing number of epidemiological and animal studies have suggested that AS may induce changes in gut bacteria and gut wall immune reactivity, which could negatively affect individuals with or susceptible to chronic inflammatory conditions such as inflammatory bowel disease (IBD), a disorder that has been growing exponentially in westernized countries. This review summarizes the history of current FDA-approved AS and their chemical composition, metabolism, and bacterial utilization, and provides a scoping overview of the disease mechanisms associated with the induction or prevention of inflammation in IBD. We provide a general outlook on areas that have been both largely and scarcely studied, emerging concepts using silica, and describe the effects of AS on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Mouse Models, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, United States
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Mouse Models, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, United States
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Lin C, Inoue M, Li X, Bosak NP, Ishiwatari Y, Tordoff MG, Beauchamp GK, Bachmanov AA, Reed DR. Genetics of mouse behavioral and peripheral neural responses to sucrose. Mamm Genome 2021; 32:51-69. [PMID: 33713179 DOI: 10.1007/s00335-021-09858-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Mice of the C57BL/6ByJ (B6) strain have higher consumption of sucrose, and stronger peripheral neural responses to it, than do mice of the 129P3/J (129) strain. To identify quantitative trait loci (QTLs) responsible for this strain difference and to evaluate the contribution of peripheral taste responsiveness to individual differences in sucrose intake, we produced an intercross (F2) of 627 mice, measured their sucrose consumption in two-bottle choice tests, recorded the electrophysiological activity of the chorda tympani nerve elicited by sucrose in a subset of F2 mice, and genotyped the mice with DNA markers distributed in every mouse chromosome. We confirmed a sucrose consumption QTL (Scon2, or Sac) on mouse chromosome (Chr) 4, harboring the Tas1r3 gene, which encodes the sweet taste receptor subunit TAS1R3 and affects both behavioral and neural responses to sucrose. For sucrose consumption, we also detected five new main-effect QTLs, Scon6 (Chr2), Scon7 (Chr5), Scon8 (Chr8), Scon3 (Chr9), and Scon9 (Chr15), and an epistatically interacting QTL pair Scon4 (Chr1) and Scon3 (Chr9). No additional QTLs for the taste nerve responses to sucrose were detected besides Scon2 (Tas1r3) on Chr4. Identification of the causal genes and variants for these sucrose consumption QTLs may point to novel mechanisms beyond peripheral taste sensitivity that could be harnessed to control obesity and diabetes.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Sonora Quest Laboratories, Phoenix, AZ, USA
| | | | - Yutaka Ishiwatari
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Ajinomoto Co., Inc., Tokyo, Japan
| | | | | | - Alexander A Bachmanov
- Monell Chemical Senses Center, Philadelphia, PA, USA. .,GlaxoSmithKline, Collegeville, PA, USA.
| | | |
Collapse
|
14
|
Lin C, Tordoff MG, Li X, Bosak NP, Inoue M, Ishiwatari Y, Chen L, Beauchamp GK, Bachmanov AA, Reed DR. Genetic controls of Tas1r3-independent sucrose consumption in mice. Mamm Genome 2021; 32:70-93. [PMID: 33710367 DOI: 10.1007/s00335-021-09860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
We have previously used crosses between C57BL/6ByJ (B6) and 129P3/J (129) inbred strains to map a quantitative trait locus (QTL) on mouse chromosome (Chr) 4 that affects behavioral and neural responses to sucrose. We have named it the sucrose consumption QTL 2 (Scon2), and shown that it corresponds to the Tas1r3 gene, which encodes a sweet taste receptor subunit TAS1R3. To discover other sucrose consumption QTLs, we have intercrossed B6 inbred and 129.B6-Tas1r3 congenic mice to produce F2 hybrids, in which Scon2 (Tas1r3) does not segregate, and hence does not contribute to phenotypical variation. Chromosome mapping using this F2 intercross identified two main-effect QTLs, Scon3 (Chr9) and Scon10 (Chr14), and an epistatically interacting QTL pair Scon3 (Chr9)-Scon4 (Chr1). Using serial backcrosses, congenic and consomic strains, we conducted high-resolution mapping of Scon3 and Scon4 and analyzed their epistatic interactions. We used mice with different Scon3 or Scon4 genotypes to understand whether these two QTLs influence sucrose intake via gustatory or postoral mechanisms. These studies found no evidence for involvement of the taste mechanisms, but suggested involvement of energy metabolism. Mice with the B6 Scon4 genotype drank less sucrose in two-bottle tests, and also had a higher respiratory exchange ratio and lower energy expenditure under basal conditions (when they had only chow and water available). Our results provide evidence that Scon3 and Scon4 influence mouse-to-mouse variation in sucrose intake and that both likely act through a common postoral mechanism.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Sonora Quest Laboratories, Phoenix, AZ, USA
| | | | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Yutaka Ishiwatari
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Ajinomoto Co. Inc, Tokyo, Japan
| | - Longhui Chen
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Tannbach Capital, Hong Kong, China
| | | | - Alexander A Bachmanov
- Monell Chemical Senses Center, Philadelphia, PA, USA.,GlaxoSmithKline, Collegeville, PA, USA
| | | |
Collapse
|
15
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
16
|
Mustac T, Yuabov A, Macanian J, Aminov S, Fazylov D, Lulu EB, Nashed M, Albakry A, Jean-Philippe-Morisset B, Bodnar RJ. Acute d-fenfluramine, but not fluoxetine decreases sweet intake in BALB/c, C57BL/6 and SWR inbred mouse strains. Physiol Behav 2020; 224:113029. [PMID: 32590091 DOI: 10.1016/j.physbeh.2020.113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
Dopamine, opioid and muscarinic receptor antagonists differentially reduce sucrose and saccharin intakes across inbred mouse strains. Whereas these systems stimulate sweet intake, serotonin signaling inhibits food intake. The present study examined whether fluoxetine (0.1-10 mg/kg) or d-fenfluramine (0.1-6 mg/kg) differentially inhibited sucrose or saccharin intake in BALB/c, C57BL/6 and SWR mice. Fluoxetine marginally altered sucrose intake in all strains. d-fenfluramine significantly, but quite similarly reduced (ID40) sucrose and saccharin intake in BALB/c (5.7 vs. 5.8 mg/kg), C57BL/6 (4.4 vs. 4.3 mg/kg) and SWR (4.6 vs. 5.6 mg/kg) mice, suggesting serotonin-induced inhibition of orosensory mechanisms in all three inbred mouse strains.
Collapse
Affiliation(s)
- Tatjana Mustac
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Asnat Yuabov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Jason Macanian
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Sonya Aminov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - David Fazylov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Eden Ben Lulu
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Mirna Nashed
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Ahmed Albakry
- Department of Psychology, Queens College, City University of New York (CUNY)
| | | | - Richard J Bodnar
- Department of Psychology, Queens College, City University of New York (CUNY); CUNY Neuroscience Collaborative and Psychology Doctoral Program, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
17
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
18
|
Ahn IS, Lang JM, Olson CA, Diamante G, Zhang G, Ying Z, Byun HR, Cely I, Ding J, Cohn P, Kurtz I, Gomez-Pinilla F, Lusis AJ, Hsiao EY, Yang X. Host Genetic Background and Gut Microbiota Contribute to Differential Metabolic Responses to Fructose Consumption in Mice. J Nutr 2020; 150:2716-2728. [PMID: 32856048 PMCID: PMC7549307 DOI: 10.1093/jn/nxaa239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is unclear how high fructose consumption induces disparate metabolic responses in genetically diverse mouse strains. OBJECTIVE We aimed to investigate whether the gut microbiota contributes to differential metabolic responses to fructose. METHODS Eight-week-old male C57BL/6J (B6), DBA/2J (DBA), and FVB/NJ (FVB) mice were given 8% fructose solution or regular water (control) for 12 wk. The gut microbiota composition in cecum and feces was analyzed using 16S ribosomal DNA sequencing, and permutational multivariate ANOVA (PERMANOVA) was used to compare community across mouse strains, treatments, and time points. Microbiota abundance was correlated with metabolic phenotypes and host gene expression in hypothalamus, liver, and adipose tissues using Biweight midcorrelation. To test the causal role of the gut microbiota in determining fructose response, we conducted fecal transplants from B6 to DBA mice and vice versa for 4 wk, as well as gavaged antibiotic-treated DBA mice with Akkermansia for 9 wk, accompanied with or without fructose treatment. RESULTS Compared with B6 and FVB, DBA mice had significantly higher Firmicutes to Bacteroidetes ratio and lower baseline abundance of Akkermansia and S24-7 (P < 0.05), accompanied by metabolic dysregulation after fructose consumption. Fructose altered specific microbial taxa in individual mouse strains, such as a 7.27-fold increase in Akkermansia in B6 and 0.374-fold change in Rikenellaceae in DBA (false discovery rate <5%), which demonstrated strain-specific correlations with host metabolic and transcriptomic phenotypes. Fecal transplant experiments indicated that B6 microbes conferred resistance to fructose-induced weight gain in DBA mice (F = 43.1, P < 0.001), and Akkermansia colonization abrogated the fructose-induced weight gain (F = 17.8, P < 0.001) and glycemic dysfunctions (F = 11.8, P = 0.004) in DBA mice. CONCLUSIONS Our findings support that differential microbiota composition between mouse strains is partially responsible for host metabolic sensitivity to fructose, and that Akkermansia is a key bacterium that confers resistance to fructose-induced metabolic dysregulation.
Collapse
Affiliation(s)
- In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jennifer M Lang
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christine A Olson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Hyae Ran Byun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Peter Cohn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, University of California, Los Angeles, CA, USA,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA,Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Xia Yang
- Address correspondence to XY (e-mail: )
| |
Collapse
|
19
|
Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids. PLoS One 2020; 15:e0235913. [PMID: 32673349 PMCID: PMC7365461 DOI: 10.1371/journal.pone.0235913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022] Open
Abstract
In mammals, inter- and intraspecies differences in consumption of sweeteners largely depend on allelic variation of the Tas1r3 gene (locus Sac) encoding the T1R3 protein, a sweet taste receptor subunit. To assess the influence of Tas1r3 polymorphisms on feeding behavior and metabolism, we examined the phenotype of F1 male hybrids obtained from crosses between the following inbred mouse strains: females from 129SvPasCrl (129S2) bearing the recessive Tas1r3 allele and males from either C57BL/6J (B6), carrying the dominant allele, or the Tas1r3-gene knockout strain C57BL/6J-Tas1r3tm1Rfm (B6-Tas1r3-/-). The hybrids 129S2B6F1 and 129S2B6-Tas1r3-/-F1 had identical background genotypes and different sets of Tas1r3 alleles. The effect of Tas1r3 hemizygosity was analyzed by comparing the parental strain B6 (Tas1r3 homozygote) and hemizygous F1 hybrids B6 × B6-Tas1r3-/-. Data showed that, in 129S2B6-Tas1r3-/-F1 hybrids, the reduction of glucose tolerance, along with lower consumption of and lower preference for sweeteners during the initial licking responses, is due to expression of the recessive Tas1r3 allele. Hemizygosity of Tas1r3 did not influence these behavioral and metabolic traits. However, the loss of the functional Tas1r3 allele was associated with a small decline in the long-term intake and preference for sweeteners and reduction of plasma insulin and body, liver, and fat mass.
Collapse
|
20
|
Howitt MR, Cao YG, Gologorsky MB, Li JA, Haber AL, Biton M, Lang J, Michaud M, Regev A, Garrett WS. The Taste Receptor TAS1R3 Regulates Small Intestinal Tuft Cell Homeostasis. Immunohorizons 2020; 4:23-32. [PMID: 31980480 PMCID: PMC7197368 DOI: 10.4049/immunohorizons.1900099] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 01/06/2023] Open
Abstract
Tuft cells are an epithelial cell type critical for initiating type 2 immune responses to parasites and protozoa in the small intestine. To respond to these stimuli, intestinal tuft cells use taste chemosensory signaling pathways, but the role of taste receptors in type 2 immunity is poorly understood. In this study, we show that the taste receptor TAS1R3, which detects sweet and umami in the tongue, also regulates tuft cell responses in the distal small intestine. BALB/c mice, which have an inactive form of TAS1R3, as well as Tas1r3-deficient C57BL6/J mice both have severely impaired responses to tuft cell-inducing signals in the ileum, including the protozoa Tritrichomonas muris and succinate. In contrast, TAS1R3 is not required to mount an immune response to the helminth Heligmosomoides polygyrus, which infects the proximal small intestine. Examination of uninfected Tas1r3-/- mice revealed a modest reduction in the number of tuft cells in the proximal small intestine but a severe decrease in the distal small intestine at homeostasis. Together, these results suggest that TAS1R3 influences intestinal immunity by shaping the epithelial cell landscape at steady-state.
Collapse
Affiliation(s)
- Michael R Howitt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115;
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Y Grace Cao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | | | - Jessica A Li
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Adam L Haber
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Moshe Biton
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jessica Lang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115;
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| |
Collapse
|
21
|
Schier LA, Inui-Yamamoto C, Blonde GD, Spector AC. T1R2+T1R3-independent chemosensory inputs contributing to behavioral discrimination of sugars in mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R448-R462. [PMID: 30624973 PMCID: PMC6589602 DOI: 10.1152/ajpregu.00255.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 11/22/2022]
Abstract
Simple sugars are thought to elicit a unitary sensation, principally via the "sweet" taste receptor type 1 taste receptor (T1R)2+T1R3, yet we previously found that rats with experience consuming two metabolically distinct sugars, glucose and fructose, subsequently licked more for glucose than fructose, even when postingestive influences were abated. The results pointed to the existence of an orosensory receptor that binds one sugar but not the other and whose signal is channeled into neural circuits that motivate ingestion. Here we sought to determine the chemosensory nature of this signal. First, we assessed whether T1R2 and/or T1R3 are necessary to acquire this behavioral discrimination, replicating our rat study in T1R2+T1R3 double-knockout (KO) mice and their wild-type counterparts as well as in two common mouse strains that vary in their sensitivity to sweeteners [C57BL/6 (B6) and 129X1/SvJ (129)]. These studies showed that extensive exposure to multiple concentrations of glucose and fructose in daily one-bottle 30-min sessions enhanced lick responses for glucose over fructose in brief-access tests. This was true even for KO mice that lacked the canonical "sweet" taste receptor. Surgical disconnection of olfactory inputs to the forebrain (bulbotomy) in B6 mice severely disrupted the ability to express this experience-dependent sugar discrimination. Importantly, these bulbotomized B6 mice exhibited severely blunted responsiveness to both sugars relative to water in brief-access lick tests, despite the fact that they have intact T1R2+T1R3 receptors. The results highlight the importance of other sources of chemosensory and postingestive inputs in shaping and maintaining "hardwired" responses to sugar.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California
| | - Chizuko Inui-Yamamoto
- Department of Oral Anatomy and Development, Osaka University Graduate School of Dentistry , Osaka , Japan
- Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Ginger D Blonde
- Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
22
|
Sclafani A, Vural AS, Ackroff K. Profound differences in fat versus carbohydrate preferences in CAST/EiJ and C57BL/6J mice: Role of fat taste. Physiol Behav 2018; 194:348-355. [PMID: 29933030 PMCID: PMC6082157 DOI: 10.1016/j.physbeh.2018.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022]
Abstract
In a nutrient self-selection study, CAST/EiJ mice consumed more carbohydrate than fat while C57BL/6J (B6) mice showed the opposite preference. The present study revealed similar strain differences in preferences for isocaloric fat (Intralipid) and carbohydrate (sucrose, maltodextrin) solutions in chow-fed mice. In initial 2-day choice tests, percent fat intakes of CAST and B6 mice were 4-9% and 71-81% respectively. In subsequent nutrient vs. water tests, CAST mice consumed considerably less fat but not carbohydrate compared to B6 mice. Orosensory rather than postoral factors are implicated in the very low fat preference and intake of CAST mice. This is supported by results of a choice test with Intralipid mixed with non-nutritive sweeteners vs. non-sweet maltodextrin. The preference of CAST mice for sweetened fat exceeded that of B6 mice (94 vs. 74%) and absolute fat intakes were similar in the two strains. When given unsweetened Intralipid vs. water tests at ascending fat concentrations CAST mice displayed reduced fat preferences at 0.1-5% and reduced intakes at 0.5-5% concentrations, compared to B6 mice. The differential fat preferences of CAST and B6 mice may reflect differences in fat taste sensing or in central neural processes related to fat selection.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | - Austin S Vural
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
23
|
Babbs RK, Kelliher JC, Scotellaro JL, Luttik KP, Mulligan MK, Bryant CD. Genetic differences in the behavioral organization of binge eating, conditioned food reward, and compulsive-like eating in C57BL/6J and DBA/2J strains. Physiol Behav 2018; 197:51-66. [PMID: 30261172 DOI: 10.1016/j.physbeh.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Binge eating (BE) is a heritable symptom of eating disorders associated with anxiety, depression, malnutrition, and obesity. Genetic analysis of BE could facilitate therapeutic discovery. We used an intermittent, limited access BE paradigm involving sweetened palatable food (PF) to examine genetic differences in BE, conditioned food reward, and compulsive-like eating between C57BL/6J (B6J) and DBA/2J (D2J) inbred mouse strains. D2J mice showed a robust escalation in intake and conditioned place preference for the PF-paired side. D2J mice also showed a unique style of compulsive-like eating in the light/dark conflict test where they rapidly hoarded and consumed PF in the preferred unlit environment. BE and compulsive-like eating exhibited narrow-sense heritability estimates between 56 and 73%. To gain insight into the genetic basis, we phenotyped and genotyped a small cohort of 133 B6J × D2J-F2 mice at the peak location of three quantitative trait loci (QTL) previously identified in F2 mice for sweet taste (chromosome 4: 156 Mb), bitter taste (chromosome 6: 133 Mb) and behavioral sensitivity to drugs of abuse (chromosome 11: 50 Mb). The D2J allele on chromosome 6 was associated with greater PF intake on training days and greater compulsive-like PF intake, but only in males, suggesting that decreased bitter taste may increase BE in males. The D2J allele on chromosome 11 was associated with an increase in final PF intake and slope of escalation across days. Future studies employing larger crosses and genetic reference panels comprising B6J and D2J alleles will identify causal genes and neurobiological mechanisms.
Collapse
Affiliation(s)
- Richard K Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States
| | - Julia L Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States; Boston University Undergraduate Research Opportunity Program (UROP), United States
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States; Boston University Undergraduate Research Opportunity Program (UROP), United States
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
24
|
Murovets VO, Lukina EA, Zolotarev VA. The Effect of Tas1r3 Gene Polymorphism on Preference and Consumption of Sucrose and Low-Calorie Sweeteners in Interstrain Hybrid Mice of the First Filial Generation. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018030079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3628121. [PMID: 29789785 PMCID: PMC5896338 DOI: 10.1155/2018/3628121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
Nonnutritive sweetener use is a common practice worldwide. Although considered safe for human consumption, accumulating evidence suggests these compounds may affect metabolic homeostasis; however, there is no consensus on the role of frequent sweetener intake in appetite and weight loss. We sought to determine whether frequent intake of commercial sweeteners induces changes in the JAK2/STAT3 signaling pathway in the brain of mice, as it is involved in the regulation of appetite and body composition. We supplemented adult BALB/c mice with sucrose, steviol glycosides (SG), or sucralose, daily, for 6 weeks. After supplementation, we evaluated body composition and expression of total and phosphorylated JAK2, STAT3, and Akt, as well as SOCS3 and ObRb, in brain tissue. Our results show that frequent intake of commercial SG decreases energy intake, adiposity, and weight gain in male animals, while increasing the expression of pJAK2 and pSTAT3 in the brain, whereas sucralose increases weight gain and pJAK2 expression in females. Our results suggest that chronic intake of commercial sweeteners elicits changes in signaling pathways that have been related to the control of appetite and energy balance in vivo, which may have relevant consequences for the nutritional state and long term health of the organism.
Collapse
|
26
|
Cai W, He S, Liang XF, Yuan X. DNA Methylation of T1R1 Gene in the Vegetarian Adaptation of Grass Carp Ctenopharyngodon idella. Sci Rep 2018; 8:6934. [PMID: 29720695 PMCID: PMC5931979 DOI: 10.1038/s41598-018-25121-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/13/2018] [Indexed: 11/22/2022] Open
Abstract
Although previous studies have indicated importance of taste receptors in food habits formation in mammals, little is known about those in fish. Grass carp is an excellent model for studying vegetarian adaptation, as it shows food habit transition from carnivore to herbivore. In the present study, pseudogenization or frameshift mutations of the umami receptors that hypothesized related to dietary switch in vertebrates, were not found in grass carp, suggesting other mechanisms for vegetarian adaptation in grass carp. T1R1 and T1R3 strongly responded to L-Arg and L-Lys, differing from those of zebrafish and medaka, contributing to high species specificity in amino acid preferences and diet selection of grass carp. After food habit transition of grass carp, DNA methylation levels were higher in CPG1 and CPG3 islands of upstream control region of T1R1 gene. Luciferase activity assay of upstream regulatory region of T1R1 (−2500-0 bp) without CPG1 or CPG3 indicated that CPG1 and CPG3 might be involved in transcriptional regulation of T1R1 gene. Subsequently, high DNA methylation decreased expression of T1R1 in intestinal tract. It could be a new mechanism to explain, at least partially, the vegetarian adaptation of grass carp by regulation of expression of umami receptor via epigenetic modification.
Collapse
Affiliation(s)
- Wenjing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Xiaochen Yuan
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
27
|
Blonde GD, Travers SP, Spector AC. Taste sensitivity to a mixture of monosodium glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1+T1R3 amino acid receptor. Am J Physiol Regul Integr Comp Physiol 2018; 314:R802-R810. [PMID: 29443544 DOI: 10.1152/ajpregu.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The taste of l-glutamate and its synergism with 5'-ribonucleotides is thought to be primarily mediated through the T1R1+T1R3 heterodimer in some mammals, including rodents and humans. While knockout (KO) mice lacking either receptor subunit show impaired sensitivity to a range of monosodium glutamate (MSG) concentrations mixed with 2.5 mM inosine 5'-monophosphate (IMP) in amiloride, wild-type (WT) controls can detect this IMP concentration, hindering direct comparison between genotypes. Moreover, some residual sensitivity persists in the KO group, suggesting that the remaining subunit could maintain a limited degree of function. Here, C57BL/6J, 129X1/SvJ, and T1R1+T1R3 double KO mice ( n = 16 each to start the experiment) were trained in a two-response operant task in gustometers and then tested for their ability to discriminate 100 µM amiloride from MSG (starting with 0.6 M) and IMP (starting with 2.5 mM) in amiloride (MSG+I+A). Testing continued with successive dilutions of both MSG and IMP (in amiloride). The two WT strains were similarly sensitive to MSG+I+A ( P > 0.8). KO mice, however, were significantly impaired relative to either WT strain ( P < 0.01), although they were able to detect the highest concentrations. Thus, normal detectability of MSG+I+A requires an intact T1R1+T1R3 receptor, without regard for allelic variation in the T1R3 gene between the WT strains. Nevertheless, residual sensitivity by the T1R1+T1R3 KO mice demonstrates that a T1R-independent mechanism can contribute to the detectability of high concentrations of this prototypical umami compound stimulus.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Susan P Travers
- Division of Biosciences, College of Dentistry, Ohio State University , Columbus, Ohio
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
28
|
LaMagna S, Olsson K, Warshaw D, Fazilov G, Iskhakov B, Buras A, Bodnar RJ. Prior exposure to nutritive and artificial sweeteners differentially alters the magnitude and persistence of sucrose-conditioned flavor preferences in BALB/c and C57BL/6 inbred mouse strains. Nutr Neurosci 2018; 22:706-717. [PMID: 29415638 DOI: 10.1080/1028415x.2018.1436216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Murine genetic variance affects sucrose's ability to condition flavor preferences (CFP) relative to saccharin. Whereas BALB/c mice display robust sucrose- and fructose-CFP, C57BL/6 mice only display sucrose-CFP. Prior exposure to sucrose or saccharin solutions alters subsequent food choice responsiveness. The present study examined whether pre-exposure for one month to 10% sucrose or 0.2% saccharin altered subsequent sucrose-CFP in male and female BALB/c and C57BL/6 mice. Two weeks later, food-restricted mice were exposed to 10 CFP training trials with uniquely flavored 16% sucrose and 0.2% saccharin solutions. Two-bottle choice tests of the flavors mixed in saccharin followed for 4 weeks. Male mice weighed more than females across all conditions, and male BALB/c, but not C57BL mice consumed more 85 sucrose than females. No other notable sex differences were observed. BALB/c mice consumed more sucrose during pre-exposure and one-bottle training than C57BL/6 mice. Although the magnitudes of sucrose-CFP were comparable in two-bottle choice tests in water-exposed BALB/c and C57BL/6 mice, sucrose- and saccharin-exposed BALB/c mice displayed significantly greater sucrose-CFP preferences relative to C57BL/6 counterparts. These data indicate murine genetic variance in the effects of prior exposure to nutritive or non-nutritive sweeteners upon the magnitude of adult sugar-CFP.
Collapse
Affiliation(s)
- Sam LaMagna
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Kerstin Olsson
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Gabriela Fazilov
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA.,CUNY Neuroscience Collaborative, CUNY Graduate Center , New York , NY , USA
| |
Collapse
|
29
|
Bourie F, Olsson K, Iskhakov B, Buras A, Fazilov G, Shenouda M, Zhezherya J, Bodnar RJ. Murine genetic variance in muscarinic cholinergic receptor antagonism of sucrose and saccharin solution intakes in three inbred mouse strains. Pharmacol Biochem Behav 2017; 163:50-56. [PMID: 29042247 DOI: 10.1016/j.pbb.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Nutritive (e.g., sucrose) and non-nutritive (e.g., saccharin) sweeteners stimulate intake in inbred mouse strains. BALB/c, SWR and C57BL/6 mice differ in the ability of dopamine (DA) D1 (SCH23390) and opioid (naltrexone) receptor antagonism to alter sucrose intake. Whereas SCH23390 comparably reduced cumulative sucrose intake in all three strains, naltrexone reduced cumulative sucrose intake maximally in C57/BL/6 mice, in intermediate fashion in BALB/c mice, but not in SWR mice. Whereas cumulative saccharin intake was reduced by DA D1 receptor antagonism in BALB/c and SWR mice, naltrexone was more potent in SWR relative to BALB/c mice. The present study first examined whether SCH23390 (50-1600nmol/kg) and naltrexone (0.01-5mg/kg) altered saccharin intake in C57BL/6 mice. Given that scopolamine (SCOP), a muscarinic cholinergic receptor antagonist, reduces sweet intake in outbred rats, a second experiment examined whether SCOP (0.1-10mg/kg) altered 0.2% saccharin and 10% sucrose intakes in BALB/c, SWR and C57BL/6 mice. Cumulative saccharin intake was significantly reduced by SCH23390 (200-1600nmol/kg; ID40=175nmol/kg) and naltrexone (0.1-5mg/kg; ID40>5mg/kg) in C57BL/6 mice. Cumulative sucrose intake was significantly reduced following SCOP in C57BL/6 (0.1-10mg/kg; ID40=2.32mg/kg) and BALB/c (2.5-10mg/kg; ID40=0.52mg/kg) mice. In contrast, SWR mice (ID40=41.61mg/kg) only displayed transient (15min) reductions in sucrose intake following SCOP (2.5-10mg/kg). Cumulative saccharin intake was significantly reduced following SCOP in C57BL/6 and BALB/c mice (0.1-10mg/kg; ID40<0.1mg/kg). In contrast, SWR mice (ID40=2.28mg/kg) displayed smaller significant reductions in saccharin intake following SCOP (0.1-10mg/kg). These data indicate that although both nutritive and non-nutritive sweet intakes are governed by muscarinic cholinergic receptor signaling, this process is subject to murine genetic variance with greater sensitivity observed in C57BL/6 and BALB/c relative to SWR inbred mouse strains.
Collapse
Affiliation(s)
- Faye Bourie
- Department of Psychology, Queens College, CUNY, USA
| | | | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY, USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY, USA
| | | | | | | | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, USA; CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
30
|
Dess NK, Dobson K, Roberts BT, Chapman CD. Sweetener Intake by Rats Selectively Bred for Differential Saccharin Intake: Sucralose, Stevia, and Acesulfame Potassium. Chem Senses 2017; 42:381-392. [PMID: 28334357 DOI: 10.1093/chemse/bjx017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Behavioral responses to sweeteners have been used to study the evolution, mechanisms, and functions of taste. Occidental low and high saccharin consuming rats (respectively, LoS and HiS) have been selectively outbred on the basis of saccharin intake and are a valuable tool for studying variation among individuals in sweetener intake and its correlates. Relative to HiS rats, LoS rats consume smaller amounts of all nutritive and nonnutritive sweeteners tested to date, except aspartame. The lines also differ in intake of the commercial product Splenda; the roles of sucralose and saccharides in the difference are unclear. The present study extends prior work by examining intake of custom mixtures of sucralose, maltodextrin, and sugars and Splenda by LoS and HiS rats (Experiment 1A-1D), stevia and a constituent compound (rebaudioside A; Experiment 2A-2E), and acesulfame potassium tested at several concentrations or with 4 other sweeteners at one concentration each (Experiment 3A-3B). Results indicate that aversive side tastes limit intake of Splenda, stevia, and acesulfame potassium, more so among LoS rats than among HiS rats. In addition, regression analyses involving 5 sweeteners support the idea that both sweetness and bitterness are needed to account for intake of nonnutritive sweeteners, more so among LoS rats. These findings contribute to well developed and emerging literatures on sweetness and domain-general processes related to gustation.
Collapse
Affiliation(s)
- Nancy K Dess
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Kiana Dobson
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Brandon T Roberts
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Clinton D Chapman
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| |
Collapse
|
31
|
Sclafani A, Vural AS, Ackroff K. CAST/EiJ and C57BL/6J Mice Differ in Their Oral and Postoral Attraction to Glucose and Fructose. Chem Senses 2017; 42:259-267. [PMID: 28158517 DOI: 10.1093/chemse/bjx003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A recent study indicated that CAST/EiJ and C57BL/6J mice differ in their taste preferences for maltodextrin but display similar sucrose preferences. The present study revealed strain differences in preferences for the constituent sugars of sucrose. Whereas B6 mice preferred 8% glucose to 8% fructose in 2-day tests, the CAST mice preferred fructose to glucose. These preferences emerged with repeated testing which suggested post-oral influences. In a second experiment, 2-day choice tests were conducted with the sugars versus a sucralose + saccharin (SS) mixture which is highly preferred in brief access tests. B6 mice strongly preferred glucose but not fructose to the non-nutritive SS whereas CAST mice preferred SS to both glucose and fructose even when food restricted. This implied that CAST mice are insensitive to the postoral appetite stimulating actions of the 2 sugars. A third experiment revealed, however, that intragastric glucose and fructose infusions conditioned significant but mild flavor preferences in CAST mice, whereas in B6 mice glucose conditioned a robust preference but fructose was ineffective. Thus, unlike other mouse strains and rats, glucose is not more reinforcing than fructose in CAST mice. Their oral preference for fructose over glucose may be related to a subsensitive maltodextrin receptor or glucose-specific receptor which is stimulated by glucose but not fructose. The failure of CAST mice to prefer glucose to a non-nutritive sweetener distinguishes this strain from other mouse strains and rats.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Austin S Vural
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
32
|
Genetic control of oromotor phenotypes: A survey of licking and ingestive behaviors in highly diverse strains of mice. Physiol Behav 2017; 177:34-43. [PMID: 28411104 DOI: 10.1016/j.physbeh.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
Abstract
In order to examine genetic influences on fluid ingestion, 20-min intake of either water or 0.1M sucrose was measured in a lickometer in 18 isogenic strains of mice, including 15 inbred strains and 3 F1 hybrid crosses. Intake and licking data were examined at a number of levels, including lick rate as defined by mean or median interlick interval, as well as several microstructural parameters (i.e. burst-pause structure). In general, strain variation for ingestive phenotypes were correlated across water and sucrose in all strains, indicating fundamental, rather than stimulus-specific, mechanisms of intake. Strain variation was substantial and robust, with heritabilities for phenotypes ranging from 0.22 to 0.73. For mean interlick interval (MPI; a measure of lick rate) strains varied continuously from 94.3 to 127.0ms, a range consistent with previous studies. Furthermore, variation among strains for microstructural traits such as burst size and number suggested that strains possess different overall ingestive strategies, with some favoring more short bursts, and others favoring fewer, long bursts. Strains also varied in cumulative intake functions, exhibiting both linear and decelerated rates of intake across the session.
Collapse
|
33
|
Flavor preferences conditioned by nutritive and non-nutritive sweeteners in mice. Physiol Behav 2017; 173:188-199. [PMID: 28192132 DOI: 10.1016/j.physbeh.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/18/2017] [Indexed: 01/08/2023]
Abstract
Recent studies suggest that preferences are conditioned by nutritive (sucrose) but not by non-nutritive (sucralose) sweeteners in mice. Here we compared the effectiveness of nutritive and non-nutritive sweeteners to condition flavor preferences in three mouse strains. Isopreferred sucrose and sucralose solutions both conditioned flavor preferences in C57BL/6J (B6) mice but sucrose was more effective, consistent with its post-oral appetition action. Subsequent experiments compared flavor conditioning by fructose, which has no post-oral appetition effect in B6 mice, and a sucralose+saccharin mixture (SS) which is highly preferred to fructose in 24-h choice tests. Both sweeteners conditioned flavor preferences but fructose induced stronger preferences than SS. Training B6 mice to drink a flavored SS solution paired with intragastric fructose infusions did not enhance the SS-conditioned preference. Thus, the post-oral nutritive actions of fructose do not explain the sugar's stronger preference conditioning effect. Training B6 mice to drink a flavored fructose solution containing SS did not reduce the sugar-conditioned preference, indicating that SS does not have an off-taste that attenuates conditioning. Although B6 mice strongly preferred flavored SS to flavored fructose in a direct choice test, they preferred the fructose-paired flavor to the SS-paired flavor when these were presented in water. Fructose conditioned a stronger flavor preference than an isopreferred saccharin solution, indicating that sucralose is not responsible for the limited SS conditioning actions. SS is highly preferred by FVB/NJ and CAST/EiJ inbred mice, yet conditioned only weak flavor preferences. It is unclear why highly or equally preferred non-nutritive sweeteners condition weaker preferences than fructose, when all stimulate the same T1r2/T1r3 sweet receptor. Recent findings support the existence of non-T1r2/T1r3 glucose taste sensors; however, there is no evidence for receptors that respond to fructose but not to non-nutritive sweeteners.
Collapse
|
34
|
Bodnar RJ. Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite 2016; 122:17-25. [PMID: 27988368 DOI: 10.1016/j.appet.2016.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
The elucidation of the behavioral, neurochemical, neuroanatomical and genetic substrates mediating the development of conditioned flavor preferences (CFP) is one of the multi-faceted scientific contributions that Dr. Anthony Sclafani has made to the study of food intake. This review summarizes the results of thirty-five publications over nearly twenty years of collaborations between the Sclafani and Bodnar laboratories. This includes the different approaches employed to study the orosensory (flavor-flavor) and post-ingestive (flavor-nutrient) processes underlying CFP including its acquisition (learning) and expression. It describes how CFP is elicited by different sugars (sucrose, glucose, fructose) and fats (corn oil) in rats, and how strain-specific CFP effects can be observed through the use of inbred mouse strains to evaluate genetic variance. The roles of pharmacological substrates (dopamine, glutamate, opioids, acetylcholine, GABA, cannabinoids) mediating sugar- and fat-CFP acquisition and expression are elucidated. Finally, neuroanatomical sites of action (nucleus accumbens, amygdala, medial prefrontal and orbital frontal cortices, lateral hypothalamus) are evaluated at which dopamine signaling mediates acquisition and expression of different forms of CFP.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College and the Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States.
| |
Collapse
|
35
|
NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2016; 148:76-83. [DOI: 10.1016/j.pbb.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
36
|
Abstract
The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination.
Collapse
|
37
|
Ackroff K, Sclafani A. Maltodextrin and sucrose preferences in sweet-sensitive (C57BL/6J) and subsensitive (129P3/J) mice revisited. Physiol Behav 2016; 165:286-90. [PMID: 27526998 DOI: 10.1016/j.physbeh.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022]
Abstract
Mice are attracted to the tastes of sugar and maltodextrin solutions. Sugar taste is mediated by the T1R2/T1R3 sweet taste receptor, while maltodextrin taste is dependent upon a different as yet unidentified receptor. In a prior study sweet-sensitive C57BL/6J (B6) mice displayed similar preferences for sucrose and maltodextrin solutions in 24-h saccharide vs. water choice tests that exceeded those of sweet-subsensitive 129P3/J (129) mice. In a subsequent experiment reported here, sucrose and maltodextrin (Polycose) preference and acceptance were compared in the two strains in saccharide vs. saccharide choice tests with isocaloric concentrations (0.5-32%). The 129 mice displayed significantly greater maltodextrin preferences than B6 mice at mid-range concentrations (2-8%), while the mice displayed an opposite preference profile at the highest concentration (32%). As in prior studies, 129 mice consumed less total saccharide than B6 mice at lower concentrations. These findings show that the conclusions reached from tastant vs. water tests may differ from those pitting one tastant against another. The increased sucrose preference and intake of B6 mice, relative to 129 mice, is consistent with their sweet-sensitive phenotype.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College and the Graduate School, The City University of New York, Brooklyn, NY 11210, USA.
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate School, The City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
38
|
Bachmanov AA, Bosak NP, Glendinning JI, Inoue M, Li X, Manita S, McCaughey SA, Murata Y, Reed DR, Tordoff MG, Beauchamp GK. Genetics of Amino Acid Taste and Appetite. Adv Nutr 2016; 7:806S-22S. [PMID: 27422518 PMCID: PMC4942865 DOI: 10.3945/an.115.011270] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite.
Collapse
Affiliation(s)
| | | | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA
| | - Satoshi Manita
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | - Yuko Murata
- Monell Chemical Senses Center, Philadelphia, PA; National Research Institute of Fisheries Science, Yokohama, Japan; and
| | | | | | - Gary K Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA; Department of Psychology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Lyte M, Fodor AA, Chapman CD, Martin GG, Perez-Chanona E, Jobin C, Dess NK. Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships. Psychosom Med 2016; 78:610-9. [PMID: 27035357 DOI: 10.1097/psy.0000000000000318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The microbiota-gut-brain axis is increasingly implicated in obesity, anxiety, stress, and other health-related processes. Researchers have proposed that gut microbiota may influence dietary habits, and pathways through the microbiota-gut-brain axis make such a relationship feasible; however, few data bear on the hypothesis. As a first step in the development of a model system, the gut microbiome was examined in rat lines selectively outbred on a taste phenotype with biobehavioral profiles that have diverged with respect to energy regulation, anxiety, and stress. METHODS Occidental low and high-saccharin-consuming rats were assessed for body mass and chow, water, and saccharin intake; littermate controls had shared cages with rats in the experimental group but were not assessed. Cecum and colon microbial communities were profiled using Illumina 16S rRNA sequencing and multivariate analysis of microbial diversity and composition. RESULTS The saccharin phenotype was confirmed (low-saccharin-consuming rats, 0.7Δ% [0.9Δ%]; high-saccharin-consuming rats, 28.1Δ% [3.6Δ%]). Regardless of saccharin exposure, gut microbiota differed between lines in terms of overall community similarity and taxa at lower phylogenetic levels. Specifically, 16 genera in three phyla distinguished the lines at a 10% false discovery rate. DISCUSSION The study demonstrates for the first time that rodent lines created through selective pressure on taste and differing on functionally related correlates host different microbial communities. Whether the microbiota are causally related to the taste phenotype or its correlates remains to be determined. These findings encourage further inquiry on the relationship of the microbiome to taste, dietary habits, emotion, and health.
Collapse
Affiliation(s)
- Mark Lyte
- From the Department of Veterinary Microbiology and Preventive Medicine, School of Veterinary Medicine (Lyte), Iowa State University, Ames, Iowa; Department of Immunotherapeutics and Biotechnology (Lyte), Texas Tech University Health Sciences Center, Abilene, Texas; Department of Bioinformatics and Genomics (Fodor), University of North Carolina at Charlotte, North Carolina; School of Medicine (Perez-Chanona), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Division of Gastroenterology, Department of Medicine (Jobin), University of Florida College of Medicine, Gainesville, Florida; and Occidental College (Chapman, Martin, Dess), Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
40
|
Kraft TT, Huang D, Lolier M, Warshaw D, LaMagna S, Natanova E, Sclafani A, Bodnar RJ. BALB/c and SWR inbred mice differ in post-oral fructose appetition as revealed by sugar versus non-nutritive sweetener tests. Physiol Behav 2015; 153:64-9. [PMID: 26485292 DOI: 10.1016/j.physbeh.2015.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022]
Abstract
Recent studies indicate that C57BL/6J (B6) and FVB inbred mouse strains differ in post-oral fructose conditioning. This was demonstrated by their differential flavor conditioning response to intragastric fructose and their preference for fructose versus a non-nutritive sweetener. The present study extended this analysis to SWR and BALB/c inbred strains which are of interest because they both show robust flavor conditioning responses to fructose. In the first experiment, ad-libitum fed mice were given a series of 2-day, two-bottle preference tests between 8% fructose and a more preferred, but non-nutritive 0.1% sucralose +0.1% saccharin (S+S) solution (tests 1 & 4), and fructose or S+S versus water (tests 2 and 3). In test 1, SWR mice preferred S+S to fructose, and in tests 2 and 3, they preferred both sweeteners to water. In test 4, SWR mice switched their preference and consumed more fructose than S+S. In contrast, ad-libitum fed BALB/c mice strongly preferred S+S to fructose in both tests 1 and 4, although they preferred both sweeteners to water in tests 2 and 3. Food-restricted BALB/c mice also preferred the non-nutritive S+S to fructose in tests 1 and 4. The experience-induced fructose preference reversal observed in SWR, but not BALB/c mice indicates that fructose has a post-oral reinforcing effect in SWR mice as in FVB mice. Because B6 and FVB mice prefer glucose to fructose based on the post-oral actions of the two sugars, the second experiment compared the preferences of SWR and BALB/c mice for 8% glucose and fructose solutions. Ad-libitum fed and food-restricted SWR mice strongly preferred glucose to fructose. In contrast, ad-libitum fed BALB/c mice were indifferent to the sugars, perhaps because of their overall low intakes. Food-restricted BALB/c mice, however, strongly preferred glucose. These findings indicate that SWR and BALB/c mice differ in their preference response to the post-oral actions of fructose.
Collapse
Affiliation(s)
- Tamar T Kraft
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Melanie Lolier
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Anthony Sclafani
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Brooklyn College, City University of New York, New York, NY, USA
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Queens College, City University of New York, New York, NY, USA.
| |
Collapse
|
41
|
Poole RL, Aleman TR, Ellis HT, Tordoff MG. Maltodextrin Acceptance and Preference in Eight Mouse Strains. Chem Senses 2015; 41:45-52. [PMID: 26464499 DOI: 10.1093/chemse/bjv056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference.
Collapse
Affiliation(s)
- Rachel L Poole
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Tiffany R Aleman
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Hillary T Ellis
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Kraft TT, Yakubov Y, Huang D, Fitzgerald G, Natanova E, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonists differentially reduce the acquisition and expression of fructose-conditioned flavor preferences in BALB/c and SWR mice. Physiol Behav 2015. [PMID: 26220464 DOI: 10.1016/j.physbeh.2015.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sugar appetite is influenced by unlearned and learned preferences in rodents. The present study examined whether dopamine (DA) D1 (SCH23390: SCH) and opioid (naltrexone: NTX) receptor antagonists differentially altered the expression and acquisition of fructose-conditioned flavor preferences (CFPs) in BALB/c and SWR mice. In expression experiments, food-restricted mice alternately (10 sessions, 1h) consumed a flavored (e.g., cherry) 8% fructose+0.2% saccharin solution (CS+) and a differently-flavored (e.g., grape) 0.2% saccharin solution (CS-). Two-bottle CS choice tests (1h) occurred 0.5h following vehicle: SCH (200 or 800 nmol/kg) or NTX (1 or 5mg/kg). SCH, but not NTX significantly reduced CS+ preference in both strains. In acquisition experiments, 0.5h prior to 10 acquisition training sessions, vehicle, SCH (50 nmol/kg), NTX (1 mg/kg) or Limited Control vehicle treatments were administered, followed by two-bottle CS choice tests without injections. SCH and NTX reduced training intakes in both strains. BALB/c mice displayed hastened extinction of the fructose-CFP following training with SCH, but not NTX. SCH eliminated fructose-CFP acquisition in SWR mice, whereas NTX hastened extinction of the CFP. These results are compared to previous drug findings obtained with sucrose-CFPs in SWR and BALB/c mice, and are discussed in terms of differential effects of these sugars on oral and post-oral conditioning.
Collapse
Affiliation(s)
- Tamar T Kraft
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Yakov Yakubov
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Gregory Fitzgerald
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Anthony Sclafani
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Brooklyn College, City University of New York, New York, NY, USA
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Queens College, City University of New York, New York, NY, USA.
| |
Collapse
|
43
|
Kraft TT, Huang D, Natanova E, Lolier M, Yakubov Y, La Magna S, Warshaw D, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacol Biochem Behav 2015; 131:13-8. [DOI: 10.1016/j.pbb.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
|
44
|
Abstract
INTRODUCTION This mini-review discusses some of the parallels between rodent neurophysiological and human psychophysical data concerning temperature effects on sweet taste. METHODS AND PURPOSE "Sweet" is an innately rewarding taste sensation that is associated in part with foods that contain calories in the form of sugars. Humans and other mammals can show unconditioned preference for select sweet stimuli. Such preference is poised to influence diet selection and, in turn, nutritional status, which underscores the importance of delineating the physiological mechanisms for sweet taste with respect to their influence on human health. Advances in our knowledge of the biology of sweet taste in humans have arisen in part through studies on mechanisms of gustatory processing in rodent models. Along this line, recent work has revealed there are operational parallels in neural systems for sweet taste between mice and humans, as indexed by similarities in the effects of temperature on central neurophysiological and psychophysical responses to sucrose in these species. Such association strengthens the postulate that rodents can serve as effective models of particular mechanisms of appetitive taste processing. Data supporting this link are discussed here, as are rodent and human data that shed light on relationships between mechanisms for sweet taste and ingestive disorders, such as alcohol abuse. RESULTS AND CONCLUSIONS Rodent models have utility for understanding mechanisms of taste processing that may pertain to human flavor perception. Importantly, there are limitations to generalizing data from rodents, albeit parallels across species do exist.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, 1-405-325-2365 (office), 1-405-325-7560 (fax)
| |
Collapse
|
45
|
Sclafani A, Zukerman S, Ackroff K. Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1448-57. [PMID: 25320345 DOI: 10.1152/ajpregu.00312.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS-) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward.
Collapse
Affiliation(s)
- Anthony Sclafani
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Steven Zukerman
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| |
Collapse
|
46
|
Tordoff MG, Downing A, Voznesenskaya A. Macronutrient selection by seven inbred mouse strains and three taste-related knockout strains. Physiol Behav 2014; 135:49-54. [PMID: 24912134 DOI: 10.1016/j.physbeh.2014.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Many animals thrive when given a choice of separate sources of macronutrients. How they do this is unknown. Here, we report some studies comparing the spontaneous choices between carbohydrate- and fat-containing food sources of seven inbred mouse strains (B6, BTBR, CBA, JF1, NZW, PWD and PWK) and three mouse models with genetic ablation of taste transduction components (T1R3, ITPR3 and CALHM1). For 8days, each mouse could choose between sources of carbohydrate (CHO-P; sucrose-cornstarch) and fat (Fat-P; vegetable shortening) with each source also containing protein (casein). We found that the B6 and PWK strains markedly preferred the CHO-P diet to the Fat-P diet, the BTBR and JF1 strains markedly preferred the Fat-P diet to the CHO-P diet, and the CBA, NZW and PWD strains showed equal intakes of the two diets (by weight). Relative to their WT littermates, ITPR3 and CALHM1 KO mice had elevated Fat-P preferences but T1R3 KO mice did not. There were differences among strains in adaption to the diet choice and there were differences in response between males and females on some days. These results demonstrate the diverse responses to macronutrients of inbred mice and they point to the involvement of chemosensory detectors (but not sweetness) as contributors to macronutrient selection.
Collapse
|
47
|
Niimi K, Takahashi E. Differences in saccharin preference and genetic alterations of the Tas1r3 gene among senescence-accelerated mouse strains and their parental AKR/J strain. Physiol Behav 2014; 130:108-12. [PMID: 24726396 DOI: 10.1016/j.physbeh.2014.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
The senescence-accelerated mouse (SAM) is used as an animal model of senescence acceleration and age-associated disorders. SAM is derived from unexpected crosses between the AKR/J and unknown mouse strains. There are nine senescence-prone (SAMP) strains and three senescence-resistant (SAMR) strains. Although SAMP strains exhibit strain-specific and age-related pathological changes, the genes responsible for the pathologic changes in SAMP strains have not been comprehensively identified. In the present study, we evaluated sweet taste perception using the two-bottle test. We compared genotypes of the taste related gene, Tas1r3, using SAM strains and the parental AKR/J strain. The two-bottle test revealed that SAMR1 (R1), SAMP6 (P6), SAMP8 (P8), and SAMP10 (P10) mice were saccharin-preferring strains, whereas AKR/J did not prefer saccharin. All genotypes of the R1, P6, P8, and P10 strains at the polymorphic sites in Tas1r3, which is known to influence saccharin preference, were identical to those of C57BL6/J, a well-known saccharin-preferring strain, and were completely different from those of the parental AKR/J strain. These genetic alterations in SAM strains appear to arise from an unknown strain that is thought to have been crossed with AKR/J initially.
Collapse
Affiliation(s)
- Kimie Niimi
- Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Eiki Takahashi
- Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
48
|
McCool BA, Chappell AM. Persistent enhancement of ethanol drinking following a monosodium glutamate-substitution procedure in C57BL6/J and DBA/2J mice. Alcohol 2014; 48:55-61. [PMID: 24355071 DOI: 10.1016/j.alcohol.2013.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/17/2022]
Abstract
Inbred mouse strains such as C57BL/6J (B6) and DBA/2J (D2) and related strains have been used extensively to help identify genetic controls for a number of ethanol-related behaviors, including acute intoxication and sensitivity to repeated exposures. The disparate ethanol drinking behaviors of B6 mice expressing high-drinking/preference and D2 mice expressing low-drinking/preference have yielded considerable insight into the heritable control of alcohol drinking. However, the B6-high and D2-low drinking phenotypes are contrasted with ethanol-conditioned reward-like behaviors, which are robustly expressed by D2 mice and considerably less expressed by B6 mice. This suggests that peripheral factors, chiefly ethanol taste, may help drive ethanol drinking by these and related strains, which complicates mouse genetic studies designed to understand the relationships between reward-related behaviors and ethanol drinking. Traditional approaches such as the sucrose/saccharin-substitution procedure that normally accentuate ethanol drinking in rodents have had limited success in low drinking/preferring mice such as the D2 line. This may be due to allelic variations of the sweet taste receptor subunit, expressed by many ethanol low-drinking/preferring strains, which would limit the utility of these types of substitution approaches. We have recently shown (McCool & Chappell, 2012) that monosodium glutamate (MSG), the primary component of umami taste, can be used in a substitution procedure to initiate ethanol drinking in both B6 and D2 mice that greatly surpasses that initiated by a more traditional sucrose-substitution procedure. In this study, we show that ethanol drinking initiated by MSG substitution in D2 mice, but not sucrose substitution, can persist for several weeks following removal of the flavor. These findings further illustrate the utility of MSG substitution to initiate ethanol drinking in distinct mouse strains.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.
| | - Ann M Chappell
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
49
|
Umpierre AD, Remigio GJ, Dahle EJ, Bradford K, Alex AB, Smith MD, West PJ, White HS, Wilcox KS. Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler's virus model of temporal lobe epilepsy. Neurobiol Dis 2014; 64:98-106. [PMID: 24412221 DOI: 10.1016/j.nbd.2013.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 11/28/2022] Open
Abstract
Viral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniel's strain of Theiler's Murine Encephalomyelitis Virus (TMEV; 3×10(5) PFU, i.c.) display acute limbic seizures that secondarily generalize. A majority of acutely seized animals develop spontaneous seizures weeks to months later. As part of our investigation, we sought to assess behavioral comorbidity following TMEV inoculation. Anxiety, depression, cognitive impairment, and certain psychoses are diagnosed in persons with epilepsy at rates far more frequent than in the general population. We used a battery of behavioral tests to assess anxiety, depression, cognitive impairment, and general health in acutely seized animals inoculated with TMEV and compared behavioral outcomes against age-matched controls receiving a sham injection. We determined that TMEV-seized animals are less likely to move through the exposed center of an open field and are less likely to enter into the lighted half of a light/dark box; both behaviors may be indicative of anxiety-like behavior. TMEV-seized animals also display early and persistent reductions in novel object exploration during novel object place tasks and do not improve in their ability to find a hidden escape platform in Morris water maze testing, indicative of impairment in episodic and spatial memory, respectively. Cresyl violet staining at 35 and 250 days after injection reveals bilateral reductions in hippocampal area, with extensive sclerosis of CA1 evident bilaterally along the rostral-caudal axis. Early and persistent behavioral changes in the TMEV model provide surrogate markers for assessing disease progression as well as endpoints in screening for the efficacy of novel compounds to manage both seizure burden and comorbid conditions.
Collapse
Affiliation(s)
- Anthony D Umpierre
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132
| | - Gregory J Remigio
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132
| | - E Jill Dahle
- Department of Pharmacology and Toxicology, University of Utah
| | - Kate Bradford
- Department of Pharmacology and Toxicology, University of Utah
| | - Anitha B Alex
- Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Peter J West
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - H Steve White
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Karen S Wilcox
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA.
| |
Collapse
|
50
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|