1
|
Lee J, Noh K, Lee S, Kim KH, Chung S, Lim H, Hwang M, Lee JH, Chung WS, Chang S, Lee SJ. Ganglioside GT1b prevents selective spinal synapse removal following peripheral nerve injury. EMBO Rep 2025:10.1038/s44319-025-00452-2. [PMID: 40307621 DOI: 10.1038/s44319-025-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
After peripheral nerve injury, the structure of the spinal cord is actively regulated by glial cells, contributing to the chronicity of neuropathic pain. However, the mechanism by which peripheral nerve injury leads to synaptic imbalance remains elusive. Here, we use a pH-reporter system and find that nerve injury triggers a reorganization of excitatory synapses that is influenced by the accumulation of the ganglioside GT1b at afferent terminals. GT1b acts as a protective signal against nerve injury-induced spinal synapse elimination. Inhibition of GT1b-synthesis increases glial phagocytosis of excitatory pre-synapses and reduces excitatory synapses post-injury. In vitro analyses reveal a positive correlation between GT1b accumulation and the frequency of pre-synaptic calcium activity, with GT1b-mediated suppression of glial phagocytosis occurring through SYK dephosphorylation. Our study highlights GT1b's pivotal role in preventing synapse elimination after nerve injury and offers new insight into the molecular underpinning of activity-dependent synaptic stability and glial phagocytosis.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea
| | - Kyungchul Noh
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Subeen Lee
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang Hwan Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seohyun Chung
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoungsub Lim
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyu Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea.
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Lei AA, Phang VWX, Lee YZ, Kow ASF, Tham CL, Ho YC, Lee MT. Chronic Stress-Associated Depressive Disorders: The Impact of HPA Axis Dysregulation and Neuroinflammation on the Hippocampus-A Mini Review. Int J Mol Sci 2025; 26:2940. [PMID: 40243556 PMCID: PMC11988747 DOI: 10.3390/ijms26072940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic stress significantly contributes to the development of depressive disorders, with the hypothalamic-pituitary-adrenal (HPA) axis playing a central role in mediating stress responses. This review examines the neurobiological alterations in the hippocampus linked to HPA axis dysregulation in chronic stress-associated depressive disorders. The prolonged activation of the HPA axis disrupts cortisol regulation, leading to the decline of both physical and mental health. The chronic stress-induced HPA axis dysfunction interacts with inflammatory pathways and generates oxidative stress, contributing to cellular damage and neuroinflammation that further aggravates depressive symptoms. These processes result in structural and functional alterations in the hippocampus, which is essential for emotional regulation and cognitive function. Comprehending the impact of chronic stress on the HPA axis and associated neurobiological pathways is essential for formulating effective interventions for depressive disorders. This review summarises the existing findings and underscores the necessity for future investigations into intervention strategies to improve physical and psychological wellbeing targeting at HPA axis dysregulation for the betterment of psychological wellbeing and human health.
Collapse
Affiliation(s)
- Ai Ai Lei
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Hardy M, Chen Y, Baram TZ, Justice NJ. Targeting corticotropin-releasing hormone receptor type 1 (Crhr1) neurons: validating the specificity of a novel transgenic Crhr1-FlpO mouse. Brain Struct Funct 2024; 230:12. [PMID: 39692887 PMCID: PMC11655595 DOI: 10.1007/s00429-024-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 12/19/2024]
Abstract
Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory. However, it is unknown whether alterations in CRHR1 signaling contribute to aberrant motivated behaviors observed, for example, in stressful contexts. These questions require tools to manipulate CRHR1 selectively. Here we describe and validate a novel Crhr1-FlpO mouse. Using bacterial artificial chromosome (BAC) transgenesis, we engineered a transgenic mouse that expresses FlpO recombinase in CRHR1-expressing cells. We used two independent methods to assess the specificity of FlpO to CRHR1-expressing cells. First, we injected Crhr1-FlpO mice with Flp-dependent viruses expressing fluorescent reporter molecules. Additionally, we crossed the Crhr1-FlpO mouse with a transgenic Flp-dependent reporter mouse. CRHR1 and reporter molecules were identified using immunocytochemistry and visualized via confocal microscopy in several brain regions in which CRHR1 expression and function is established. Expression of Flp-dependent viral constructs was highly specific to CRHR1-expressing cells in all regions examined (over 90% co-localization). In accord, robust and specific expression of the Flp-dependent transgenic reporter was observed in a reporter mouse, recapitulating endogenous CRHR1 expression. The Crhr1-FlpO mouse enables selective genetic access to CRHR1-expressing cells within the mouse brain. When combined with Cre-lox or site-specific recombinases, the mouse facilitates intersectional manipulations of CRHR1-expressing neurons.
Collapse
Affiliation(s)
- Mason Hardy
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, USA.
| | - Nicholas J Justice
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, USA
| |
Collapse
|
4
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Liu H, Zhang Y, Hou X, Zhu C, Yang Q, Li K, Fan L, Zhang X, Jiang X, Jin X, Lei H, Chen T, Zhang F, Zhang Z, Song J. CRHR1 antagonist alleviated depression-like behavior by downregulating p62 in a rat model of post-stroke depression. Exp Neurol 2024; 378:114822. [PMID: 38823676 DOI: 10.1016/j.expneurol.2024.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.
Collapse
Affiliation(s)
- Huanhuan Liu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Yunfei Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoli Hou
- General Hospital of Pingmei Shenma Group, Pingdingshan, Henan, China
| | - Chuanzhou Zhu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Qianling Yang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Kun Li
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Lifei Fan
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyue Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Xinhui Jiang
- The Third People's Hospital of Luoyang, Luoyang, Henan, China
| | - Xuejiao Jin
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Hao Lei
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tengfei Chen
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Fuping Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| | - Zhaohui Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Jinggui Song
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| |
Collapse
|
6
|
Lomeli N, Pearre DC, Cruz M, Di K, Ricks-Oddie JL, Bota DA. Cisplatin induces BDNF downregulation in middle-aged female rat model while BDNF enhancement attenuates cisplatin neurotoxicity. Exp Neurol 2024; 375:114717. [PMID: 38336286 PMCID: PMC11087041 DOI: 10.1016/j.expneurol.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Cancer-related cognitive impairments (CRCI) are neurological complications associated with cancer treatment, and greatly affect cancer survivors' quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning and memory. The reduction of BDNF is associated with the decrease in cognitive function in various neurological disorders. Few pre-clinical studies have reported on the effects of chemotherapy and medical stress on BDNF levels and cognition. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive function in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected 24 weeks after cisplatin initiation. In cultured hippocampal neurons, we screened three neuroprotective agents, riluzole (an approved treatment for amyotrophic lateral sclerosis), as well as the ampakines CX546 and CX1739. We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD-95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD-95. Ampakines (CX546 and CX1739) and riluzole did not affect the antitumor efficacy of cisplatin in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels on cognitive function, although future studies are warranted to assess the efficacy of BDNF enhancement in vivo on synaptic plasticity. Collectively, our results indicate that cancer treatment exerts long-lasting changes in BDNF levels, and support BDNF enhancement as a potential preventative approach to target CRCI with therapeutics that are FDA approved and/or in clinical study for other indications.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Diana C Pearre
- Gynecologic Oncology, Providence Specialty Medical Group, Burbank, CA, USA
| | - Maureen Cruz
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Joni L Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, University of California Irvine, Irvine, CA, USA; Biostatistics, Epidemiology and Research Design Unit, Institute for Clinical and Translational Sciences, University of California Irvine, Irvine, CA, USA
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Fahey L, Ali D, Donohoe G, Ó Broin P, Morris DW. Genes positively regulated by Mef2c in cortical neurons are enriched for common genetic variation associated with IQ and educational attainment. Hum Mol Genet 2023; 32:3194-3203. [PMID: 37672226 PMCID: PMC10630234 DOI: 10.1093/hmg/ddad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
The myocyte enhancer factor 2 C (MEF2C) gene encodes a transcription factor important for neurogenesis and synapse development and contains common variants associated with intelligence (IQ) and educational attainment (EA). Here, we took gene expression data from the mouse cortex of a Mef2c mouse model with a heterozygous DNA binding-deficient mutation of Mef2c (Mef2c-het) and combined these data with MEF2C ChIP-seq data from cortical neurons and single-cell data from the mouse brain. This enabled us to create a set of genes that were differentially regulated in Mef2c-het mice, represented direct target genes of MEF2C and had elevated in expression in cortical neurons. We found this gene-set to be enriched for genes containing common genetic variation associated with IQ and EA. Genes within this gene-set that were down-regulated, i.e. have reduced expression in Mef2c-het mice versus controls, were specifically significantly enriched for both EA and IQ associated genes. These down-regulated genes were enriched for functionality in the adenylyl cyclase signalling system, which is known to positively regulate synaptic transmission and has been linked to learning and memory. Within the adenylyl cyclase signalling system, three genes regulated by MEF2C, CRHR1, RGS6, and GABRG3, are associated at genome-wide significant levels with IQ and/or EA. Our results indicate that genetic variation in MEF2C and its direct target genes within cortical neurons contribute to variance in cognition within the general population, and the molecular mechanisms involved include the adenylyl cyclase signalling system's role in synaptic function.
Collapse
Affiliation(s)
- Laura Fahey
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
- Discipline of Bioinformatics, School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Deema Ali
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Pilib Ó Broin
- Discipline of Bioinformatics, School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| |
Collapse
|
8
|
Lomeli N, Pearre DC, Cruz M, Di K, Bota DA. Cisplatin Induces BDNF Downregulation in Middle-Aged Female Rat Model while BDNF Enhancement Attenuates Cisplatin Neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540850. [PMID: 37293048 PMCID: PMC10245559 DOI: 10.1101/2023.05.15.540850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cancer-related cognitive impairments (CRCI) are debilitating consequences of cancer treatment with platinum agents (e.g., cisplatin) that greatly alter cancer survivors' health-related quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning, and memory, and the reduction of BDNF is associated with the development of cognitive impairment in various neurological disorders, including CRCI. Our previous CRCI rodent studies have shown that cisplatin reduces hippocampal neurogenesis and BDNF expression and increases hippocampal apoptosis, which is associated with cognitive impairments. Few studies have reported on the effects of chemotherapy and medical stress on serum BDNF levels and cognition in middle-aged female rat models. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive performance in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected ten weeks after cisplatin completion. We also screened three BDNF-augmenting compounds, riluzole, ampakine CX546, and CX1739, for their neuroprotective effects on hippocampal neurons, in vitro . We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD95. Ampakines (CX546 and CX1739) but not riluzole altered the antitumor efficacy of cisplatin in two human ovarian cancer cell lines, OVCAR8 and SKOV3.ip1, in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels with cognitive function. We conducted an in vitro screening of BDNF-enhancing agents to evaluate their potential neuroprotective effects against cisplatin-induced neurotoxicity and their effect on ovarian cancer cell viability.
Collapse
|
9
|
Local CRF and oxytocin receptors correlate with female experience-driven avoidance change and hippocampal neuronal plasticity. Neurochem Int 2023; 163:105485. [PMID: 36623734 DOI: 10.1016/j.neuint.2023.105485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Understanding how experiences affect females' behaviors and neuronal plasticity is essential for uncovering the mechanism of neurodevelopmental disorders. The study explored how neonatal maternal deprivation (MD) and post-weaning environmental enrichment (EE) impacted the CA1 and DG's neuronal plasticity in the dorsal hippocampus, and its relationships with passive avoidance, local corticotrophin-releasing factor (CRF) levels, and oxytocin receptor (OTR) levels in female BALB/c mice. The results showed that MD damaged passive avoidance induced by foot shock and hotness, and EE restored it partially. In the CA1, MD raised CRF levels and OTR levels. Parallelly, MD increased synaptic connection levels but reduced the branches' numbers of pyramidal neurons. Meanwhile, in the DG, MD increased OTR levels but lowered CRF levels, DNA levels, and spine densities. EE did not change the CA1 and DG's CRF and OTR levels. However, EE added DG's dendrites of granular cells. The additive of MD and EE raised CA1's synaptophysin and DG's postsynaptic density protein-95 and OTR levels, and meanwhile, shaped avoidance behaviors primarily similar to the control. The results suggest that experience-driven avoidance change and hippocampal neuronal plasticity are associated with local CRF and OTR levels in female mice.
Collapse
|
10
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
11
|
Ruf WP, Palmer A, Dörfer L, Wiesner D, Buck E, Grozdanov V, Kassubek J, Dimou L, Ludolph AC, Huber-Lang M, Danzer KM. Thoracic trauma promotes alpha-Synuclein oligomerization in murine Parkinson's disease. Neurobiol Dis 2022; 174:105877. [PMID: 36162738 DOI: 10.1016/j.nbd.2022.105877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Systemic and neuroinflammatory processes play key roles in neurodegenerative diseases such as Parkinson's disease (PD). Physical trauma which induces considerable systemic inflammatory responses, represents an evident environmental factor in aging. However, little is known about the impact of physical trauma, on the immuno-pathophysiology of PD. Especially blunt chest trauma which is associated with a high morbidity and mortality rate in the elderly population, can induce a strong pulmonary and systemic inflammatory reaction. Hence, we sought out to combine a well-established thoracic trauma mouse model with a well-established PD mouse model to characterize the influence of physical trauma to neurodegenerative processes in PD. METHODS To study the influence of peripheral trauma in a PD mouse model we performed a highly standardized blunt thorax trauma in a well-established PD mouse model and determined the subsequent local and systemic response. RESULTS We could show that blunt chest trauma leads to a systemic inflammatory response which is quantifiable with increased inflammatory markers in bronchoalveolar fluids (BALF) and plasma regardless of the presence of a PD phenotype. A difference of the local inflammatory response in the brain between the PD group and non-PD group could be detected, as well as an increase in the formation of oligomeric pathological alpha-Synuclein (asyn) suggesting an interplay between peripheral thoracic trauma and asyn pathology in PD. CONCLUSION Taken together this study provides evidence that physical trauma is associated with increased asyn oligomerization in a PD mouse model underlining the relevance of PD pathogenesis under traumatic settings.
Collapse
Affiliation(s)
- Wolfgang P Ruf
- Department of Neurology, Ulm University, 89081 Ulm, Germany.
| | - Annette Palmer
- Institute of Experimental Trauma- Immunology, University Hospital of Ulm, Ulm, Germany.
| | - Lena Dörfer
- Institute of Experimental Trauma- Immunology, University Hospital of Ulm, Ulm, Germany
| | - Diana Wiesner
- German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | - Eva Buck
- German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | - Leda Dimou
- Molecular and Translational Neuroscience, Ulm University, 89081 Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| | - Markus Huber-Lang
- Institute of Experimental Trauma- Immunology, University Hospital of Ulm, Ulm, Germany.
| | - Karin M Danzer
- Department of Neurology, Ulm University, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DNZE), 89081 Ulm, Germany.
| |
Collapse
|
12
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
14
|
Ravasenga T, Ruben M, Regio V, Polenghi A, Petrini EM, Barberis A. Spatial regulation of coordinated excitatory and inhibitory synaptic plasticity at dendritic synapses. Cell Rep 2022; 38:110347. [PMID: 35139381 PMCID: PMC8844559 DOI: 10.1016/j.celrep.2022.110347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 09/16/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
The induction of synaptic plasticity at an individual dendritic glutamatergic spine can affect neighboring spines. This local modulation generates dendritic plasticity microdomains believed to expand the neuronal computational capacity. Here, we investigate whether local modulation of plasticity can also occur between glutamatergic synapses and adjacent GABAergic synapses. We find that the induction of long-term potentiation at an individual glutamatergic spine causes the depression of nearby GABAergic inhibitory synapses (within 3 μm), whereas more distant ones are potentiated. Notably, L-type calcium channels and calpain are required for this plasticity spreading. Overall, our data support a model whereby input-specific glutamatergic postsynaptic potentiation induces a spatially regulated rearrangement of inhibitory synaptic strength in the surrounding area through short-range heterosynaptic interactions. Such local coordination of excitatory and inhibitory synaptic plasticity is expected to influence dendritic information processing and integration. LTP of individual dendritic spines causes iLTD at neighboring GABAergic synapses Interaction between single-spine LTP and iLTD occurs in the spatial range of ±3 μm This iLTD depends on the local dendritic calcium increase and calpain activation iLTD is associated with reduced gephyrin clustering and increased GABAAR mobility
Collapse
Affiliation(s)
- Tiziana Ravasenga
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Massimo Ruben
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Vincenzo Regio
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alice Polenghi
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Enrica Maria Petrini
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Barberis
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
15
|
Laine M, Shansky R. Rodent models of stress and dendritic plasticity – Implications for psychopathology. Neurobiol Stress 2022; 17:100438. [PMID: 35257016 PMCID: PMC8897597 DOI: 10.1016/j.ynstr.2022.100438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Stress, as commonplace as it is, is a major environmental risk factor for psychopathology. While this association intuitively, anecdotally, and empirically makes sense, we are still very early in the process of understanding what the neurobiological manifestations of this risk truly are. Seminal work from the past few decades has established structural plasticity in the brain as a potential key mechanism. In this review we discuss evidence linking particularly chronic stress exposure in rodent models to plasticity at the dendrites, like remodeling of dendritic branches and spines, in a range of brain regions. A number of candidate mechanisms that seek to explain how stress influences neuroanatomy at this level have been proposed, utilizing in vivo, ex vivo and in vitro methods. However, a large gap still remains in our knowledge of how such dynamic structural changes ultimately relate to downstream effects such as altered affective and cognitive states relevant for psychopathology. We propose that future work expand our understanding of plasticity of specific stress-related brain circuits and cell-types. We also note that the vast majority of the work has been conducted solely on male rodents. The next big strides in our understanding of the neurobiology of psychopathology will require the inclusion of female subjects, as several studies have suggested both sex divergent and convergent features. By understanding plasticity, we can harness it. The growth of this body of knowledge will inform our efforts to improve the therapeutic options for stress-related psychopathology.
Collapse
|
16
|
Sukhareva EV. The role of the corticotropin-releasing hormone and its receptors in the regulation of stress response. Vavilovskii Zhurnal Genet Selektsii 2021; 25:216-223. [PMID: 34901719 PMCID: PMC8627883 DOI: 10.18699/vj21.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Stress is an essential part of everyday life. The neuropeptide corticotropin-releasing hormone (CRH, also
called CRF and corticoliberin) plays a key role in the integration of neuroendocrine, autonomic and behavioral
responses to stress. The activation of the hypothalamic-pituitary-adrenal axis (HPA axis) by neurons of the paraventricular hypothalamic nucleus (PVN), the primary site of synthesis CRH, triggers stress reactions. In addition to the
hypothalamus, CRH is widespread in extrahypothalamic brain structures, where it functions as a neuromodulator
for coordination and interaction between the humoral and behavioral aspects of a stress response. The axons of
neurons expressing CRH are directed to various structures of the brain, where the neuropeptide interacts with
specific receptors (CRHR1, CRHR2) and can affect various mediator systems that work together to transmit signals
to different brain regions to cause many reactions to stress. Moreover, the effect of stress on brain functions varies
from behavioral adaptation to increased survival and increased risk of developing mental disorders. Disturbances
of the CRH system regulation are directly related to such disorders: mental pathologies (depression, anxiety, addictions), deviations of neuroendocrinological functions, inflammation, as well as the onset and development of
neurodegenerative diseases such as Alzheimer’s disease. In addition, the role of CRH as a regulator of the neurons
structure in the areas of the developing and mature brain has been established. To date, studies have been conducted in which CRHR1 is a target for antidepressants, which are, in fact, antagonists of this receptor. In this regard,
the study of the participation of the CRH system and its receptors in negative effects on hormone-dependent
systems, as well as the possibility of preventing them, is a promising task of modern physiological genetics. In this
review, attention will be paid to the role of CRH in the regulation of response to stress, as well as to the involvement
of extrahypothalamic CRH in pathophysiology and the correction of mental disorders.
Collapse
Affiliation(s)
- E V Sukhareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Jafari M, Schumacher AM, Snaidero N, Ullrich Gavilanes EM, Neziraj T, Kocsis-Jutka V, Engels D, Jürgens T, Wagner I, Weidinger JDF, Schmidt SS, Beltrán E, Hagan N, Woodworth L, Ofengeim D, Gans J, Wolf F, Kreutzfeldt M, Portugues R, Merkler D, Misgeld T, Kerschensteiner M. Phagocyte-mediated synapse removal in cortical neuroinflammation is promoted by local calcium accumulation. Nat Neurosci 2021; 24:355-367. [PMID: 33495636 DOI: 10.1038/s41593-020-00780-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Cortical pathology contributes to chronic cognitive impairment of patients suffering from the neuroinflammatory disease multiple sclerosis (MS). How such gray matter inflammation affects neuronal structure and function is not well understood. In the present study, we use functional and structural in vivo imaging in a mouse model of cortical MS to demonstrate that bouts of cortical inflammation disrupt cortical circuit activity coincident with a widespread, but transient, loss of dendritic spines. Spines destined for removal show local calcium accumulations and are subsequently removed by invading macrophages or activated microglia. Targeting phagocyte activation with a new antagonist of the colony-stimulating factor 1 receptor prevents cortical synapse loss. Overall, our study identifies synapse loss as a key pathological feature of inflammatory gray matter lesions that is amenable to immunomodulatory therapy.
Collapse
Affiliation(s)
- Mehrnoosh Jafari
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Adrian-Minh Schumacher
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Nicolas Snaidero
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Emily M Ullrich Gavilanes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Tradite Neziraj
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Virág Kocsis-Jutka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Daniel Engels
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Tanja Jürgens
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juan Daniel Flórez Weidinger
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Stephanie S Schmidt
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Nellwyn Hagan
- Rare and Neurological Disease Research, Sanofi, Framingham, MA, USA
| | - Lisa Woodworth
- Rare and Neurological Disease Research, Sanofi, Framingham, MA, USA
| | - Dimitry Ofengeim
- Rare and Neurological Disease Research, Sanofi, Framingham, MA, USA
| | - Joseph Gans
- Translational Sciences Genomics, Sanofi, Framingham, MA, USA
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Ruben Portugues
- Sensorimotor Control, Max Planck Institute of Neurobiology, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland. .,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany. .,German Center for Neurodegenerative Diseases, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany. .,Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
18
|
Hokenson RE, Short AK, Chen Y, Pham AL, Adams ET, Bolton JL, Swarup V, Gall CM, Baram TZ. Unexpected Role of Physiological Estrogen in Acute Stress-Induced Memory Deficits. J Neurosci 2021; 41:648-662. [PMID: 33262247 PMCID: PMC7842761 DOI: 10.1523/jneurosci.2146-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine M Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior
| | - Tallie Z Baram
- Departments of Anatomy and Neurobiology
- Pediatrics
- Neurology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
19
|
Alviña K, Jodeiri Farshbaf M, Mondal AK. Long term effects of stress on hippocampal function: Emphasis on early life stress paradigms and potential involvement of neuropeptide Y. J Neurosci Res 2021; 99:57-66. [PMID: 32162350 DOI: 10.1002/jnr.24614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
The brain is both central in orchestrating the response to stress, and, a very sensitive target when such response is not controlled. In fact, stress has long been associated with the onset and/or exacerbation of several neuropsychiatric disorders such as anxiety, depression, and drug addiction. The hippocampus is a key brain region involved in the response to stress, not only due to its anatomical connections with the hypothalamic-pituitary-adrenal axis but also as a major target of stress mediators. The hippocampal dentate gyrus (DG)-CA3 circuit, composed of DG granule cells axons (mossy fibers) synapsing onto CA3 pyramidal cells, plays an essential role in memory encoding and retrieval, functions that are vulnerable to stress. Although naturally excitatory, this circuit is under the inhibitory control of GABAergic interneurons that maintain the excitation/inhibition balance. One subgroup of such interneurons produces neuropeptide Y (NPY), which has emerged as a promising endogenous stress "resilience molecule" due to its anxiolytic and anti-epileptic properties. Here we examine existing evidence that reveals a potential role for hilar NPY+ interneurons in mediating stress-induced changes in hippocampal function. We will focus specifically on rodent models of early life stress (ELS), defined as adverse conditions during the early postnatal period that can have profound consequences for neurodevelopment. Collectively, these findings suggest that the long-lasting effects of ELS might stem from the loss of GABAergic NPY+ cells, which then can lead to reduced inhibition in the DG-CA3 pathway. Such change might then lead to hyperexcitability and concomitant hippocampal-dependent behavioral deficits.
Collapse
Affiliation(s)
- Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Amit Kumar Mondal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
20
|
Cursano S, Battaglia CR, Urrutia-Ruiz C, Grabrucker S, Schön M, Bockmann J, Braumüller S, Radermacher P, Roselli F, Huber-Lang M, Boeckers TM. A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Mol Psychiatry 2021; 26:3778-3794. [PMID: 32051550 PMCID: PMC8550963 DOI: 10.1038/s41380-020-0659-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes.
Collapse
Affiliation(s)
- Silvia Cursano
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Chiara R. Battaglia
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Carolina Urrutia-Ruiz
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stefanie Grabrucker
- grid.10049.3c0000 0004 1936 9692Department of Biological Sciences, University of Limerick, Limerick, V94 PH61 Ireland
| | - Michael Schön
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jürgen Bockmann
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sonja Braumüller
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Clinic for Neurology, Ulm University, 89081 Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute of Clinical and Experimental Trauma-Immunology, Ulm University, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
21
|
Bolton JL, Schulmann A, Garcia-Curran MM, Regev L, Chen Y, Kamei N, Shao M, Singh-Taylor A, Jiang S, Noam Y, Molet J, Mortazavi A, Baram TZ. Unexpected Transcriptional Programs Contribute to Hippocampal Memory Deficits and Neuronal Stunting after Early-Life Adversity. Cell Rep 2020; 33:108511. [PMID: 33326786 PMCID: PMC7817243 DOI: 10.1016/j.celrep.2020.108511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/08/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023] Open
Abstract
Early-life adversity (ELA) is associated with lifelong memory deficits, yet the responsible mechanisms remain unclear. We impose ELA by rearing rat pups in simulated poverty, assess hippocampal memory, and probe changes in gene expression, their transcriptional regulation, and the consequent changes in hippocampal neuronal structure. ELA rats have poor hippocampal memory and stunted hippocampal pyramidal neurons associated with ~140 differentially expressed genes. Upstream regulators of the altered genes include glucocorticoid receptor and, unexpectedly, the transcription factor neuron-restrictive silencer factor (NRSF/REST). NRSF contributes critically to the memory deficits because blocking its function transiently following ELA rescues spatial memory and restores the dendritic arborization of hippocampal pyramidal neurons in ELA rats. Blocking NRSF function in vitro augments dendritic complexity of developing hippocampal neurons, suggesting that NRSF represses genes involved in neuronal maturation. These findings establish important, surprising contributions of NRSF to ELA-induced transcriptional programming that disrupts hippocampal maturation and memory function.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Anton Schulmann
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Megan M Garcia-Curran
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Limor Regev
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Noriko Kamei
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Manlin Shao
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Akanksha Singh-Taylor
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Yoav Noam
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Jenny Molet
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697-4475, USA.
| |
Collapse
|
22
|
Lv Y, Chen P, Kuang L, Han Z, Solanki B, Zhou W, Tao F, Chen R, Yao Y. Role of corticotropin-releasing hormone in the impact of chronic stress during pregnancy on inducing depression in male offspring mice. Brain Res 2020; 1747:147029. [PMID: 32717275 DOI: 10.1016/j.brainres.2020.147029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Yili Lv
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Peng Chen
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang Kuang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhenmin Han
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Bhawna Solanki
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Weiju Zhou
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui 230032, China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui 230032, China.
| |
Collapse
|
23
|
Lomeli N, Di K, Pearre DC, Chung TF, Bota DA. Mitochondrial-associated impairments of temozolomide on neural stem/progenitor cells and hippocampal neurons. Mitochondrion 2020; 52:56-66. [PMID: 32045717 DOI: 10.1016/j.mito.2020.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 01/04/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Primary brain tumor patients often experience neurological, cognitive, and depressive symptoms that profoundly affect quality of life. The DNA alkylating agent, temozolomide (TMZ), along with radiation therapy forms the standard of care for glioblastoma (GBM) - the most common and aggressive of all brain cancers. Numerous studies have reported that TMZ disrupts hippocampal neurogenesis and causes spatial learning deficits in rodents; however, the effect of TMZ on mature hippocampal neurons has not been addressed. In this study, we examined the mitochondrial-mediated mechanisms involving TMZ-induced neural damage in primary rat neural stem/progenitor cells (NSC) and hippocampal neurons. TMZ inhibited mtDNA replication and transcription of mitochondrial genes (ND1 and Cyt b) in NSC by 24 h, whereas the effect of TMZ on neuronal mtDNA transcription was less pronounced. Transmission electron microscopy imaging revealed mitochondrial degradation in TMZ-treated NSC. Acute TMZ exposure (4 h) caused a rapid reduction in dendritic branching and loss of postsynaptic density-95 (PSD95) puncta on dendrites. Longer TMZ exposure impaired mitochondrial respiratory activity, increased oxidative stress, and induced apoptosis in hippocampal neurons. The presented findings suggest that NSC may be more vulnerable to TMZ than hippocampal neurons upon acute exposure; however long-term TMZ exposure results in neuronal mitochondrial respiratory dysfunction and dendritic damage, which may be associated with delayed cognitive impairments.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| | - Diana C Pearre
- Department of Obstetrics and Gynecology, University of California, Irvine, Orange, CA, USA.
| | - Tzu-Feng Chung
- Department of Neurology, University of California Irvine, Irvine, CA, USA.
| | - Daniela A Bota
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Short AK, Maras PM, Pham AL, Ivy AS, Baram TZ. Blocking CRH receptors in adults mitigates age-related memory impairments provoked by early-life adversity. Neuropsychopharmacology 2020; 45:515-523. [PMID: 31698409 PMCID: PMC6969076 DOI: 10.1038/s41386-019-0562-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023]
Abstract
In humans, early-life adversity is associated with impairments in learning and memory that may emerge later in life. In rodent models, early-life adversity directly impacts hippocampal neuron structure and connectivity with progressive deficits in long-term potentiation and spatial memory function. Previous work has demonstrated that augmented release and actions of the stress-activated neuropeptide, CRH, contribute to the deleterious effects of early-life adversity on hippocampal dendritic arborization, synapse number and memory-function. Early-life adversity increases hippocampal CRH expression, and blocking hippocampal CRH receptor type-1 (CRHR1) immediately following early-life adversity prevented the consequent memory and LTP defects. Here, we tested if blocking CRHR1 in young adults ameliorates early-life adversity-provoked memory deficits later in life. A weeklong course of a CRHR1 antagonist in 2-month-old male rats prevented early-life adversity-induced deficits in object recognition memory that emerged by 12 months of age. Surprisingly, whereas the intervention did not mitigate early-life adversity-induced spatial memory losses at 4 and 8 months, it restored hippocampus-dependent location memory in 12-month-old rats that experienced early-life adversity. Neither early-life adversity nor CRHR1 blockade in the adult influenced anxiety- or depression-related behaviors. Altogether, these findings suggest that cognitive deficits attributable to adversity during early-life-sensitive periods are at least partially amenable to interventions later in life.
Collapse
Affiliation(s)
- Annabel K Short
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA.
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
| | - Pamela M Maras
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Aidan L Pham
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Autumn S Ivy
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
25
|
Qiu LL, Pan W, Luo D, Zhang GF, Zhou ZQ, Sun XY, Yang JJ, Ji MH. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca 2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation 2020; 17:23. [PMID: 31948437 PMCID: PMC6966800 DOI: 10.1186/s12974-019-1695-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Postoperative cognitive decline (POCD) is a recognized clinical phenomenon characterized by cognitive impairments in patients following anesthesia and surgery, yet its underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory via activation of TrkB-full length (TrkB-FL) receptors. It has been reported that an abnormal truncation of TrkB mediated by calpain results in dysregulation of BDNF/TrkB signaling and is associated with cognitive impairments in several neurodegenerative disorders. Calpains are Ca2+-dependent proteases, and overactivation of calpain is linked to neuronal death. Since one source of intracellular Ca2+ is N-methyl-d-aspartate receptors (NMDARs) related and the function of NMDARs can be regulated by neuroinflammation, we therefore hypothesized that dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might be involved in the pathogenesis of POCD. METHODS In the present study, 16-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to establish the POCD animal model. For the interventional study, mice were treated with either NMDAR antagonist memantine or calpain inhibitor MDL-28170. Behavioral tests were performed by open field, Y maze, and fear conditioning tests from 5 to 8 days post-surgery. The levels of Iba-1, GFAP, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), NMDARs, calpain, BDNF, TrkB, bax, bcl-2, caspase-3, and dendritic spine density were determined in the hippocampus. RESULTS Anesthesia and surgery-induced neuroinflammation overactivated NMDARs and then triggered overactivation of calpain, which subsequently led to the truncation of TrkB-FL, BDNF/TrkB signaling dysregulation, dendritic spine loss, and cell apoptosis, contributing to cognitive impairments in aging mice. These abnormities were prevented by memantine or MDL-28170 treatment. CONCLUSION Collectively, our study supports the notion that NMDAR/Ca2+/calpain is mechanistically involved in anesthesia and surgery-induced BDNF/TrkB signaling disruption and cognitive impairments in aging mice, which provides one possible therapeutic target for POCD.
Collapse
Affiliation(s)
- Li-Li Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Wei Pan
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Luo
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Sun
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
26
|
Repeated Exposure to Multiple Concurrent Stresses Induce Circuit Specific Loss of Inputs to the Posterior Parietal Cortex. J Neurosci 2020; 40:1849-1861. [PMID: 31949108 DOI: 10.1523/jneurosci.1838-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Severe loss of excitatory synapses in key brain regions is thought to be one of the major mechanisms underlying stress-induced cognitive impairment. To date, however, the identity of the affected circuits remains elusive. Here we examined the effect of exposure to repeated multiple concurrent stressors (RMS) on the connectivity of the posterior parietal cortex (PPC) in adolescent male mice. We found that RMS led to layer-specific elimination of excitatory synapses with the most pronounced loss observed in deeper cortical layers. Quantitative analysis of cortical projections to the PPC revealed a significant loss of sensory and retrosplenial inputs to the PPC while contralateral and frontal projections were preserved. These results were confirmed by decreased synaptic strength from sensory, but not from contralateral, projections in stress-exposed animals. Functionally, RMS disrupted visuospatial working memory performance, implicating disrupted higher-order visual processing. These effects were not observed in mice subjected to restraint-only stress for an identical period of time. The PPC is considered to be a cortical hub for multisensory integration, working memory, and perceptual decision-making. Our data suggest that sensory information streams targeting the PPC may be impacted by recurring stress, likely contributing to stress-induced cognitive impairment.SIGNIFICANCE STATEMENT Repeated exposure to stress profoundly impairs cognitive functions like memory, attention, or decision-making. There is emerging evidence that stress not only impacts high-order regions of the brain, but may affect earlier stages of cognitive processing. Our work focuses on the posterior parietal cortex, a brain region supporting short-term memory, multisensory integration, and decision-making. We show evidence that repeated stress specifically damages sensory inputs to this region. This disruption of synaptic connectivity is linked to working memory impairment and is specific to repeated exposure to multiple stressors. Altogether, our data provide a potential alternative explanation to ailments previously attributed to downstream, cognitive brain structures.
Collapse
|
27
|
Hajszan T. Stress and remodeling of hippocampal spine synapses. VITAMINS AND HORMONES 2020; 114:257-279. [DOI: 10.1016/bs.vh.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Khalaf B, Roncador A, Pischedda F, Casini A, Thomas S, Piccoli G, Kiebler M, Macchi P. Ankyrin-G induces nucleoporin Nup358 to associate with the axon initial segment of neurons. J Cell Sci 2019; 132:jcs.222802. [PMID: 31427429 DOI: 10.1242/jcs.222802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Nup358 (also known as RanBP2) is a member of the large nucleoporin family that constitutes the nuclear pore complex. Depending on the cell type and the physiological state, Nup358 interacts with specific partner proteins and influences distinct mechanisms independent of its role in nucleocytoplasmic transport. Here, we provide evidence that Nup358 associates selectively with the axon initial segment (AIS) of mature neurons, mediated by the AIS scaffold protein ankyrin-G (AnkG, also known as Ank3). The N-terminus of Nup358 is demonstrated to be sufficient for its localization at the AIS. Further, we show that Nup358 is expressed as two isoforms, one full-length and another shorter form of Nup358. These isoforms differ in their subcellular distribution in neurons and expression level during neuronal development. Overall, the present study highlights an unprecedented localization of Nup358 within the AIS and suggests its involvement in neuronal function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bouchra Khalaf
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Alessandro Roncador
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Francesca Pischedda
- Dulbecco Telethon Laboratory of Biology of Synapses, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Antonio Casini
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Sabine Thomas
- Department for Cell Biology, Biomedical Center, Medical Faculty, Ludwig-Maximilian University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Giovanni Piccoli
- Dulbecco Telethon Laboratory of Biology of Synapses, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Michael Kiebler
- Department for Cell Biology, Biomedical Center, Medical Faculty, Ludwig-Maximilian University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
29
|
Xie Z, Penzes P, Srivastava DP. Exchange protein directly activated by cAMP 2 is required for corticotropin-releasing hormone-mediated spine loss. Eur J Neurosci 2019; 50:3108-3114. [PMID: 31199033 PMCID: PMC6821562 DOI: 10.1111/ejn.14487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing hormone is produced in response to acute and chronic stress. Previous studies have shown that activation of the corticotropin-releasing hormone receptor 1 (CRHR1) by corticotropin-releasing hormone results in the rapid loss of dendritic spines which correlates with cognitive dysfunction associated with stress. Exchange protein directly activated by cAMP (EPAC2), a guanine nucleotide exchange factor for the small GTPase Rap, plays a critical role in regulating dendritic spine morphology and has been linked with CRHR1 signalling. In this study, we have tested whether EPAC2 links corticotropin-releasing hormone with dendritic spine remodelling. In primary rat cortical neurons, we show that CRHR1 is highly enriched in the dendritic spines. Furthermore, we find that EPAC2 and CRHR1 co-localize in cortical neurons and that acute exposure to corticotropin-releasing hormone induces spine loss. To establish whether EPAC2 was required for corticotropin-releasing hormone-mediated spine loss, we knocked-down EPAC2 in cortical neurons using a short hairpin RNA-mediated approach. In the presence of Epac2 knocked-down, corticotropin-releasing hormone was no longer able to induce spine loss. Taken together, our data indicate that EPAC2 is required for the rapid loss of dendritic spines induced by corticotropin-releasing hormone and may ultimately contribute to responses to acute stress.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL, USA
| | - Deepak P Srivastava
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
30
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
31
|
Wang X, Zou Z, Shen Q, Huang Z, Chen J, Tang J, Xue W, Tao W, Wu H, Wang D, Chen G. Involvement of NMDA-AKT-mTOR Signaling in Rapid Antidepressant-Like Activity of Chaihu-jia-Longgu-Muli-tang on Olfactory Bulbectomized Mice. Front Pharmacol 2019; 9:1537. [PMID: 30687098 PMCID: PMC6333740 DOI: 10.3389/fphar.2018.01537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Fast-onset antidepressants are urgently needed. Chaihu-jia-Longgu-Muli-tang (CLM), a classic Chinese herbal medicine, has been used for antidepressant treatment with long history. Olfactory bulbectomization (OB) model is validated for identification of rapid antidepressant efficacy. Here we used OB model for investigating the rapid onset activity of CLM in mice, and also tested the involvement of prefrontal Akt-mTOR and associated AMPA/NMDA receptors as well as hippocampal BDNF in the rapid antidepressant-like effect of CLM. Methods: The OB model was first characterized with depression-like behaviors and the time course changes of the behaviors. The fast onset of antidepressant effect of CLM was evaluated using sucrose preference test, tail suspension test and forced swim test in OB mice after a single administration. The expression of synaptic proteins of AMPA and NMDA subunits as well as Akt/mTOR signaling in the prefrontal cortex, and hippocampal BDNF was evaluated with the immunoblotting method. Results: A single dose of CLM significantly improved the deficiency in the sucrose preference and decreased the immobility time in the tail suspension test in OB mice. In the prefrontal cortex (PFC) in OB mice, there was lower expression level of the AMPA receptor subunit GluR1, rescued by a single dose of CLM. Additionally, the expression of NMDA subunit NR1 was up-regulated in OB mice, whereas mTOR and its upstream Akt signalings were both down-regulated. These deficiencies were reversed by a single dose of CLM. The CLM treatment also attenuated the expressions of NMDA receptor subunits NR2A and NR2B, which did not change in OB mice. In the hippocampus, expressions of GluR1 and brain derived neurotrophic factor (BDNF) were both up-regulated in OB mice, although CLM increased GluR1, but not BDNF. Conclusion: CLM elicited rapid antidepressant-like effects in the OB model mice, and CLM reversal of the abnormality in PFC expression of AMPA and NMDA receptors and associated Akt-mTOR signaling may underlie the effects.
Collapse
Affiliation(s)
- Xing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhilu Zou
- Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qinqin Shen
- Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiheng Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Chen
- Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Juanjuan Tang
- Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenda Xue
- Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Haoxin Wu
- Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Dwivedi DK, Kumar D, Kwatra M, Pandey SN, Choubey P, Lahkar M, Jangra A. Voluntary alcohol consumption exacerbated high fat diet-induced cognitive deficits by NF-κB-calpain dependent apoptotic cell death in rat hippocampus: Ameliorative effect of melatonin. Biomed Pharmacother 2018; 108:1393-1403. [PMID: 30372842 DOI: 10.1016/j.biopha.2018.09.173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/15/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Modern sedentary lifestyle with altered dietary habits imposes the risk of human health towards several metabolic disorders such as obesity. The metabolic insults negatively affect the mental health status and quality life of affected individuals. Melatonin is a potent antioxidant with anti-inflammatory and neuroprotective properties. The aim of the present study was to investigate the protective effect of melatonin on the cognitive and neurochemical deficits induced by the high-fat diet (HFD) and alcohol (ALC) alone or in combination (HFD + ALC) in rats. Male Wistar rats were given ALC (3-15% i.e. increased gradually) and HFD for 12 weeks in different experimental groups. After 12 weeks, we found that simultaneous consumption of HFD and ALC exacerbates cognitive dysfunction and neurochemical anomalies. However, melatonin (10 mg/kg/day, i.p.) treatment for four weeks significantly prevented memory deficits, oxidative stress and neuroinflammation in HFD, ALC and HFD + ALC groups. RT-PCR analysis showed down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) in ALC and HFD + ALC groups. Moreover, caspase-3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) mRNA expression level were found up-regulated in hippocampus of HFD, ALC and HFD + ALC groups. However, calpain expression was found up-regulated only in the hippocampus of HFD + ALC group. Chronic treatment with melatonin significantly restored the aberrant gene expression level in HFD, ALC and HFD + ALC group. In conclusion, our findings indicated that melatonin can mitigate the HFD and ALC-induced cognitive deficits via attenuation of oxidative stress and calpain-1 dependent as well as independent caspase-3 mediated neuronal cell death.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Dinesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Priyansha Choubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmacology, KIET School of Pharmacy, Krishna Institute of Engineering and Technology, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
33
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry 2018; 23:1614-1625. [PMID: 28761082 PMCID: PMC5794672 DOI: 10.1038/mp.2017.159] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Stress, a prevalent experience in modern society, is a major risk factor for many psychiatric disorders. Although sensorimotor abnormalities are often present in these disorders, little is known about how stress affects the sensory cortex. Combining behavioral analyses with in vivo synaptic imaging, we show that stressful experiences lead to progressive, clustered loss of dendritic spines along the apical dendrites of layer (L) 5 pyramidal neurons (PNs) in the mouse barrel cortex, and such spine loss closely associates with deteriorated performance in a whisker-dependent texture discrimination task. Furthermore, the activity of parvalbumin-expressing inhibitory interneurons (PV+ INs) decreases in the stressed mouse due to reduced excitability of these neurons. Importantly, both behavioral defects and structural changes of L5 PNs are prevented by selective pharmacogenetic activation of PV+INs in the barrel cortex during stress. Finally, stressed mice raised under environmental enrichment (EE) maintain normal activation of PV+ INs, normal texture discrimination, and L5 PN spine dynamics similar to unstressed EE mice. Our findings suggest that the PV+ inhibitory circuit is crucial for normal synaptic dynamics in the mouse barrel cortex and sensory function. Pharmacological, pharmacogenetic and environmental approaches to prevent stress-induced maladaptive behaviors and synaptic malfunctions converge on the regulation of PV+ IN activity, pointing to a potential therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA,Correspondence: Dr. Yi Zuo, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA, , Phone: +1-831-459-3812, Fax: +1-831-459-3139
| |
Collapse
|
35
|
Temporal profiling of an acute stress-induced behavioral phenotype in mice and role of hippocampal DRR1. Psychoneuroendocrinology 2018; 91:149-158. [PMID: 29555365 DOI: 10.1016/j.psyneuen.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/08/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Understanding the neurobiological mechanisms underlying the response to an acute stressor may provide novel insights into successful stress-coping strategies. Acute behavioral stress-effects may be restricted to a specific time window early after stress-induction. However, existing behavioral test batteries typically span multiple days or even weeks, limiting the feasibility for a broad behavioral analysis following acute stress. Here, we designed a novel comprehensive behavioral test battery in male mice that assesses multiple behavioral dimensions within a sufficiently brief time window to capture acute stress-effects and its temporal profile. Using this battery, we investigated the behavioral impact of acute social defeat stress (ASD) early thereafter (ASD-early, ∼4 h), when circulating corticosterone levels were elevated, and late after stress-induction (ASD-late, ∼8 h), when corticosterone were returned to timed control levels. ASD-early, but not ASD-late, displayed hippocampal-dependent cognitive impairments in the Y-maze and in the spatial object recognition test. The actin-binding protein (ABP) Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) has been described as resilience-promoting factor but the potential of DRR1 to curb stress-effects has not been investigated. Hippocampal DRR1 mRNA-expression was increased in ASD-early and ASD-late whereas DRR1-protein levels were increased only in ASD-late. We hypothesized that the absence of hippocampal DRR1 protein-upregulation in ASD-early caused the associated cognitive impairments. Hence, virus-mediated hippocampal DRR1-overexpression was induced as putative treatment, but cognitive deficits in ASD-early were not improved. We conclude that hippocampal DRR1-overexpression is insufficient to protect from the detrimental cognitive effects following acute social stress where perhaps a more global response in local actin dynamics, involving multiple stress-responsive ABPs that act synergistically, was warranted.
Collapse
|
36
|
Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease. Int J Mol Sci 2018; 19:ijms19041224. [PMID: 29670001 PMCID: PMC5979500 DOI: 10.3390/ijms19041224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.
Collapse
|
37
|
Zhang Y, Zheng Y, Xu Y, Sheng H, Ni X. Corticotropin-Releasing Hormone Suppresses Synapse Formation in the Hippocampus of Male Rats via Inhibition of CXCL5 Secretion by Glia. Endocrinology 2018; 159:622-638. [PMID: 29126185 DOI: 10.1210/en.2017-00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/01/2017] [Indexed: 12/23/2022]
Abstract
Corticotropin-releasing hormone (CRH) is believed to play a critical role in stress-induced synaptic formation and modification. In the current study, we explored the mechanisms underlying CRH modulation of synaptic formation in the hippocampus by using various models in vitro. In cultured hippocampal slices, CRH treatment decreased synapsin I and postsynaptic density protein 95 (PSD95) levels via CRH receptor type 1 (CRHR1). In isolated hippocampal neurons, however, it increased synapsin I-labeled presynaptic terminals and PSD95-labeled postsynaptic terminals via CRHR1. Interestingly, the inhibitory effect of CRH on synapsin I-labeled and PSD95-labeled terminals occurred in the model of neuron-glia cocultures. These effects were prevented by CRHR1 antagonist. Moreover, treatment of the neurons with the media of CRH-treated glia led to a decrease in synaptic terminal formation. The media collected from CRH-treated glial cells with CRHR1 knockdown did not show an inhibitory effect on synaptic terminals in hippocampal neurons. Unbiased cytokine array coupled with confirmatory enzyme-linked immunosorbent assay revealed that CRH suppressed C-X-C motif chemokine 5 (CXCL5) production in glia via CRHR1. Administration of CXCL5 reversed the inhibitory effects of CRH-treated glia culture media on synaptic formation. Our data suggest that CRH suppresses synapse formation through inhibition of CXCL5 secretion from glia in the hippocampus. Our study indicates that glia-neuron intercommunication is one of the mechanisms responsible for neuronal circuit remodeling during stress.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - You Zheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yongjun Xu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Hui Sheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Burjanadze G, Shengelia M, Dachanidze N, Mikadze M, Menabde K, Koshoridze N. Creatine–facilitated protection of stress caused by disrupted circadian rhythm. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2017.1333198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- George Burjanadze
- Faculty of Exact and Natural Sciences, Department of Biology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mariam Shengelia
- Faculty of Exact and Natural Sciences, Department of Biology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Natalia Dachanidze
- Faculty of Exact and Natural Sciences, Department of Biology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mariam Mikadze
- US MD Program, Tbilisi State Medical University, Tbilisi, Georgia
| | - Ketevan Menabde
- Faculty of Exact and Natural Sciences, Department of Biology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nana Koshoridze
- Faculty of Exact and Natural Sciences, Department of Biology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
39
|
Varejkova E, Plananska E, Myslivecek J. Lack of CRH Affects the Behavior but Does Not Affect the Formation of Short-Term Memory. Cell Mol Neurobiol 2018; 38:341-347. [PMID: 28786031 PMCID: PMC11481924 DOI: 10.1007/s10571-017-0532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/01/2017] [Indexed: 11/26/2022]
Abstract
Corticotropin-releasing hormone (CRH) is involved in modification of synaptic transmission and affects spatial discrimination learning, i.e., affects the formation of memory in long-term aspect. Therefore, we have focused on CRH effect on short-term memory. We have used stress task avoidance (maze containing three zones: entrance, aversive, and neutral) and compared the behavior and short-term memory in wild-type mice and mice lacking CRH (CRH KO) experiencing one 120-min session of restraint stress. As control, non-stressed animals were used. As expected, the animals that experienced the stress situation tend to spend less time in the zone in which the restraint chamber was present. The animals spent more time in the neutral zone. There were significant differences in number of freezing bouts in the aversive and entrance zones in CRH KO animals. CRH KO control animals entered the neutral zone much more faster than WT control and spent more time immobile in the neutral zone than WT control. These data give evidence that lacking of CRH itself improves the ability of mice to escape away from potentially dangerous area (i.e., those in which the scent of stressed animal is present).
Collapse
Affiliation(s)
- Eva Varejkova
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800, Prague, Czech Republic
| | - Eva Plananska
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800, Prague, Czech Republic
| | - Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800, Prague, Czech Republic.
| |
Collapse
|
40
|
Tsutiya A, Nakano Y, Hansen-Kiss E, Kelly B, Nishihara M, Goshima Y, Corsmeier D, White P, Herman GE, Ohtani-Kaneko R. Human CRMP4 mutation and disrupted Crmp4 expression in mice are associated with ASD characteristics and sexual dimorphism. Sci Rep 2017; 7:16812. [PMID: 29196732 PMCID: PMC5711804 DOI: 10.1038/s41598-017-16782-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/17/2017] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorders (ASD) are more common among boys than girls. The mechanisms responsible for ASD symptoms and their sex differences remain mostly unclear. We previously identified collapsin response mediator protein 4 (CRMP4) as a protein exhibiting sex-different expression during sexual differentiation of the hypothalamic sexually dimorphic nucleus. This study investigated the relationship between the sex-different development of autistic features and CRMP4 deficiency. Whole-exome sequencing detected a de novo variant (S541Y) of CRMP4 in a male ASD patient. The expression of mutated mouse CRMP4 S540Y, which is homologous to human CRMP4 S541Y, in cultured hippocampal neurons derived from Crmp4-knockout (KO) mice had increased dendritic branching, compared to those transfected with wild-type (WT) Crmp4, indicating that this mutation results in altered CRMP4 function in neurons. Crmp4-KO mice showed decreased social interaction and several alterations of sensory responses. Most of these changes were more severe in male Crmp4-KO mice than in females. The mRNA expression levels of some genes related to neurotransmission and cell adhesion were altered in the brain of Crmp4-KO mice, mostly in a gender-dependent manner. These results indicate a functional link between a case-specific, rare variant of one gene, Crmp4, and several characteristics of ASD, including sexual differences.
Collapse
Affiliation(s)
- Atsuhiro Tsutiya
- Institute of Life Innovation Studies, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Yui Nakano
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Emily Hansen-Kiss
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Benjamin Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa Ward, Yokohama, 236-0004, Japan
| | - Don Corsmeier
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Gail E Herman
- The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA
| | - Ritsuko Ohtani-Kaneko
- Institute of Life Innovation Studies, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
- Research Center for Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| |
Collapse
|
41
|
Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD. Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons. Neuron 2017; 95:1306-1318.e5. [PMID: 28910619 DOI: 10.1016/j.neuron.2017.08.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 01/24/2023]
Abstract
The motor symptoms of Parkinson's disease (PD) are linked to abnormally correlated and coherent activity in the cortex and subthalamic nucleus (STN). However, in parkinsonian mice we found that cortico-STN transmission strength had diminished by 50%-75% through loss of axo-dendritic and axo-spinous synapses, was incapable of long-term potentiation, and less effectively patterned STN activity. Optogenetic, chemogenetic, genetic, and pharmacological interrogation suggested that downregulation of cortico-STN transmission in PD mice was triggered by increased striato-pallidal transmission, leading to disinhibition of the STN and increased activation of STN NMDA receptors. Knockdown of STN NMDA receptors, which also suppresses proliferation of GABAergic pallido-STN inputs in PD mice, reduced loss of cortico-STN transmission and patterning and improved motor function. Together, the data suggest that loss of dopamine triggers a maladaptive shift in the balance of synaptic excitation and inhibition in the STN, which contributes to parkinsonian activity and motor dysfunction.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Ryan F Kovaleski
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory. J Neurosci 2017; 37:8938-8951. [PMID: 28821652 DOI: 10.1523/jneurosci.0703-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression.SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the activation of calpain and decreased glutamate receptor interacting protein 1 (GRIP1) expression in the nucleus accumbens (NAc) core. The inhibition of calpain activity in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory that was blocked by prior GRIP1 knock-down. Our findings indicate that calpain-GRIP signaling is essential for the restabilization process that is associated with drug cue memory and the inhibition of calpain activity may be a novel strategy for the prevention of drug relapse.
Collapse
|
43
|
Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses. J Neurosci 2017; 36:11295-11307. [PMID: 27807170 DOI: 10.1523/jneurosci.2542-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/16/2016] [Indexed: 11/21/2022] Open
Abstract
Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder. SIGNIFICANCE STATEMENT Stress influences memory, an adaptive process crucial for survival. During stress, adrenal corticosterone and hippocampal corticotropin-releasing hormone (CRH) permeate memory-forming hippocampal synapses, yet it is unknown whether (and how) these hormones interact to mediate effects of stress. Here, we demonstrate novel synergistic actions of corticosterone and CRH on hippocampal synaptic plasticity and spine structure that mediate the memory-disrupting effects of stress. Combined application of both hormones provoked synaptic function collapse and spine disruption. Mechanistically, corticosterone and CRH synergized at the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Notably, blocking both hormones, but not each alone, prevented the enduring memory problems after acute concurrent stresses. Therefore, synergistic actions of corticosterone and CRH underlie enduring memory impairments after concurrent acute stresses, which might be relevant to spatial memory deficits described in posttraumatic stress disorder.
Collapse
|
44
|
Curran MM, Sandman CA, Poggi Davis E, Glynn LM, Baram TZ. Abnormal dendritic maturation of developing cortical neurons exposed to corticotropin releasing hormone (CRH): Insights into effects of prenatal adversity? PLoS One 2017; 12:e0180311. [PMID: 28658297 PMCID: PMC5489219 DOI: 10.1371/journal.pone.0180311] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
Corticotropin releasing hormone (CRH) produced by the hypothalamus initiates the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the body's stress response. CRH levels typically are undetectable in human plasma, but during pregnancy the primate placenta synthesizes and releases large amounts of CRH into both maternal and fetal circulations. Notably, placental CRH synthesis increases in response to maternal stress signals. There is evidence that human fetal exposure to high concentrations of placental CRH is associated with behavioral consequences during infancy and into childhood, however the direct effects on of the peptide on the human brain are unknown. In this study, we used a rodent model to test the plausibility that CRH has direct effects on the developing cortex. Because chronic exposure to CRH reduces dendritic branching in hippocampal neurons, we tested the hypothesis that exposure to CRH would provoke impoverishment of dendritic trees in cortical neurons. This might be reflected in humans as cortical thinning. We grew developing cortical neurons in primary cultures in the presence of graded concentrations of CRH. We then employed Sholl analyses to measure dendritic branching and total dendritic length of treated cells. A seven-day exposure to increasing levels of CRH led to a significant, dose-dependent impoverishment of the branching of pyramidal-like cortical neurons. These results are consistent with the hypothesis that, rather than merely being a marker of prenatal stress, CRH directly decreases dendritic branching. Because dendrites comprise a large portion of cortical volume these findings might underlie reduced cortical thickness and could contribute to the behavioral consequences observed in children exposed to high levels of CRH in utero.
Collapse
Affiliation(s)
- Megan M. Curran
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Elysia Poggi Davis
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
- Department of Psychology, University of Denver, Denver, Colorado, United States of America
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, CA, United States of America
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California, United States of America
- Department of Pediatrics, University of California Irvine, Irvine, California, United States of America
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
45
|
Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2,3-dioxygenase and neurodegeneration. PLoS One 2017; 12:e0177940. [PMID: 28599322 PMCID: PMC5466431 DOI: 10.1371/journal.pone.0177940] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/05/2017] [Indexed: 12/02/2022] Open
Abstract
Co-morbid depression is prevalent in patients with obstructive sleep apnea. Here we report that monoamine oxidase A (MAO-A) plays pathogenic roles in the comorbidity. We found that chronic intermittent hypoxia significantly increased the MAO-A expression in the rat hippocampus and markedly decreased the dendritic length and spine density in the pyramidal neurons with less pre- and post-synaptic proteins. The MAO-A upregulation resulted in increased 5-hydroxyindoleacetic acid/serotonin ratio, oxidative stress, leading to NF-κB activation, inflammation and apoptosis. Also, the expression of cytokine-responsive indoleamine 2,3-dioxygenase-1 (IDO-1) was significantly augmented in hypoxia, resulting in increased kynurenine/tryptophan ratio and lowered serotonin level in the hippocampus. Moreover, depressive-like behaviors were observed in the hypoxic rat. Administration of M30, a brain-selective MAO-A inhibitor with iron-chelating properties, prior to hypoxic treatment prevented the aberrant changes in the hippocampus and depressive behavior. In human SH-SY5Y cells expressing MAO-A but not MAO-B, hypoxia significantly increased the MAO-A expression, which was blocked by M30 or clorgyline. Collectively, the MAO-A upregulation induced by chronic intermittent hypoxia plays significant pathogenic role in oxidative stress, inflammation and IDO-1 activation resulting in serotonin depletion and neurodegeneration.
Collapse
|
46
|
Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury. Sci Rep 2017; 7:40614. [PMID: 28094295 PMCID: PMC5240097 DOI: 10.1038/srep40614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase.
Collapse
|
47
|
Lomeli N, Di K, Czerniawski J, Guzowski JF, Bota DA. Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic Biol Med 2017; 102:274-286. [PMID: 27908784 PMCID: PMC5308450 DOI: 10.1016/j.freeradbiomed.2016.11.046] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE Chemotherapy-related cognitive impairment (CRCI) is commonly reported following the administration of chemotherapeutic agents and comprises a wide variety of neurological problems. No effective treatments for CRCI are currently available. Here we examined the mechanisms involving cisplatin-induced hippocampal damage following cisplatin administration in a rat model and in cultured rat hippocampal neurons and neural stem/progenitor cells (NSCs). We also assessed the protective effects of the antioxidant, N-acetylcysteine in mitigating these damages. EXPERIMENTAL DESIGN Adult male rats received 6mg/kg cisplatin in the acute studies. In chronic studies, rats received 5mg/kg cisplatin or saline injections once per week for 4 weeks. N-acetylcysteine (250mg/kg/day) or saline was administered for five consecutive days during cisplatin treatment. Cognitive testing was performed 5 weeks after treatment cessation. Cisplatin-treated cultured hippocampal neurons and NSCs were examined for changes in mitochondrial function, oxidative stress production, caspase-9 activation, and neuronal dendritic spine density. RESULTS Acute cisplatin treatment reduced dendritic branching and spine density, and induced mitochondrial degradation. Rats receiving the chronic cisplatin regimen showed impaired performance in contextual fear conditioning, context object discrimination, and novel object recognition tasks compared to controls. Cisplatin induced mitochondrial DNA damage, impaired respiratory activity, increased oxidative stress, and activated caspase-9 in cultured hippocampal neurons and NSCs. N-acetylcysteine treatment prevented free radical production, ameliorated apoptotic cellular death and dendritic spine loss, and partially reversed the cisplatin-induced cognitive impairments. CONCLUSIONS Our results suggest that mitochondrial dysfunction and increased oxidative stress are involved in cisplatin-induced cognitive impairments. Therapeutic agents, such as N-acetylcysteine, may be effective in mitigating the deleterious effects of cisplatin.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| | - Kaijun Di
- Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| | - Jennifer Czerniawski
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, University of California Irvine, Irvine, CA, USA.
| | - John F Guzowski
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, University of California Irvine, Irvine, CA, USA.
| | - Daniela A Bota
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
48
|
Sedmak G, Jovanov-Milošević N, Puskarjov M, Ulamec M, Krušlin B, Kaila K, Judaš M. Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain. Cereb Cortex 2016; 26:4574-4589. [PMID: 26428952 DOI: 10.1093/cercor/bhv218] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl- extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and β-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca2+-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.
Collapse
Affiliation(s)
| | | | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | - Monika Ulamec
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Božo Krušlin
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | | |
Collapse
|
49
|
Li J, Chen H, Wu S, Cheng Y, Li Q, Wang J, Zhu G. MPP + inhibits mGluR1/5-mediated long-term depression in mouse hippocampus by calpain activation. Eur J Pharmacol 2016; 795:22-27. [PMID: 27908790 DOI: 10.1016/j.ejphar.2016.11.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Neurotoxins are harmful to nervous system and cause either neuronal cell death or impairment of synaptic activity, which contributes to Parkinson's disease or other neuronal disorders. Hippocampal synaptic plasticity was proposed as a cellular model for memory processing. In this study, we reported a novel effect of neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), on metabotropic glutamate receptor 1/5 agonist, 3,5-dihydroxyphenylglycine (DHPG)-induced hippocampal synaptic plasticity, and MPP+ incubation blocked DHPG-induced hippocampal long-term depression (LTD) in Schaffer collateral-CA1 synapses. Our further findings indicated that, this blockage was reversed by pre-application of calpain inhibitor III, but not by cathepsin inhibitors. Biochemical analysis showed that MPP+ treatment stimulated calpain activation, displayed by spectrin breakdown. Interestingly, the level and activity of protein tyrosine phosphatase 1B (PTP1B) were reduced after MPP+ incubation and the decrease of PTP1B was prohibited by calpain inhibitor III. In addition, PTP1B inhibitor also blocked DHPG-induced LTD, mimicking the effect of MPP+. In summary, our data implicated that MPP+ activated calpain-dependent PTP1B degradation, which subsequently impaired hippocampal LTD. This novel effect of MPP+ might partially explain the impairment of memory processing in the pathogenesis of PD.
Collapse
Affiliation(s)
- Junyao Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hui Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuefa Cheng
- Jitang College of North China University of Science and Technology, Tangshan 063000, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jing Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
50
|
Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse. Brain Struct Funct 2016; 222:1705-1732. [PMID: 27638512 DOI: 10.1007/s00429-016-1303-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.
Collapse
|