1
|
Silva-Hurtado TJ, Giua G, Lassalle O, Makrini-Maleville L, Strauss B, Wager-Miller J, Freyermuth JM, Mackie K, Valjent E, Manzoni OJ, Chavis P. Reelin Deficiency and Synaptic Impairment in the Adolescent Prefrontal Cortex Following Initial Synthetic Cannabinoid Exposure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100426. [PMID: 39926699 PMCID: PMC11804564 DOI: 10.1016/j.bpsgos.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 02/11/2025] Open
Abstract
Background Adolescent cannabinoid exposure can have long-lasting effects on the brain, particularly in the prefrontal cortex, where the reelin protein plays a crucial role in neural organization. Chronic cannabinoid exposure leads to reelin deficiency and behavioral abnormalities, but the underlying mechanisms remain unclear. With the increasing use of synthetic cannabinoids (SCs) among young people, understanding these effects is crucial. Methods We examined the cellular and synaptic consequences of initial SC exposure in adolescent male mice 1 day after a single in vivo exposure to WIN 55,212-2. Our approach combined immunohistochemistry, Western blots, conditional CB1 receptor (CB1R) knockout mouse lines, quantitative polymerase chain reaction, and ex vivo electrophysiology to investigate the effects of SC on reelin expression and synaptic plasticity. Additionally, single-molecule fluorescent in situ hybridization profiling was used to identify cellular coexpression patterns of reelin and CB1Rs. Results Our findings indicate that a single exposure to SC decreased reelin expression in specific prefrontal cortex layers accompanied by disrupted proteolytic fragmentation but not changes in messenger RNA expression. Single-molecule fluorescent in situ hybridization profiling revealed a strong coexpression of CB1R and reelin. Furthermore, our pharmacological and genetic approaches demonstrated that CB1Rs in GABAergic (gamma-aminobutyric acidergic) neurons mediate the SC-induced decrease in reelin. This decrease in reelin results in a reduction in long-term potentiation, phenocopying reelin haploinsufficient mice. Notably, we restored long-term potentiation by infusing reelin bilaterally, establishing a functional link between reelin depletion and synaptic deficits. Conclusions These findings provide new insights into the neural consequences of adolescent cannabinoid consumption and highlight the critical role of reelin in the cellular mechanisms associated with SC initiation during adolescence.
Collapse
Affiliation(s)
- Thenzing J. Silva-Hurtado
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Gabriele Giua
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Olivier Lassalle
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Leila Makrini-Maleville
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Benjamin Strauss
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Jim Wager-Miller
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Ken Mackie
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Emmanuel Valjent
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Olivier J.J. Manzoni
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Pascale Chavis
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| |
Collapse
|
2
|
Hattori M. Regulatory mechanism of Reelin activity: a platform for exploiting Reelin as a therapeutic agent. Front Mol Neurosci 2025; 18:1546083. [PMID: 39931643 PMCID: PMC11808024 DOI: 10.3389/fnmol.2025.1546083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Reelin is a secreted glycoprotein that was initially investigated in the field of neuronal development. However, in recent decades, its role in the adult brain has become increasingly important, and it is now clear that diminished Reelin function is involved in the pathogenesis and progression of neuropsychiatric and neurodegenerative disorders, including schizophrenia and Alzheimer's disease (AD). Reelin activity is regulated at multiple steps, including synthesis, posttranslational modification, secretion, oligomerization, proteolytic processing, and interactions with extracellular molecules. Moreover, the differential use of two canonical receptors and the presence of non-canonical receptors and co-receptors add to the functional diversity of Reelin. In this review, I summarize recent findings on the molecular mechanisms of Reelin activity. I also discuss possible strategies to enhance Reelin's function. A complete understanding of Reelin function and its regulatory mechanisms in the adult central nervous system could help ameliorate neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Sharma DR, Cheng B, Jaiswal MK, Zhang X, Kumar A, Parikh N, Singh D, Sheth H, Varghese M, Dobrenis K, Zhang X, Hof PR, Stanton PK, Ballabh P. Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns. Cereb Cortex 2023; 33:6449-6464. [PMID: 36646459 PMCID: PMC10183730 DOI: 10.1093/cercor/bhac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Prematurely born infants are deprived of maternal hormones and cared for in the stressful environment of Neonatal Intensive Care Units (NICUs). They suffer from long-lasting deficits in learning and memory. Here, we show that prematurity and associated neonatal stress disrupt dentate gyrus (DG) development and induce long-term cognitive deficits and that these effects are mediated by insulin growth factor-1 (IGF1). Nonmaternal care of premature rabbits increased the number of granule cells and interneurons and reduced neurogenesis, suggesting accelerated premature maturation of DG. However, the density of glutamatergic synapses, mature dendritic spines, and synaptic transmission were reduced in preterm kits compared with full-term controls, indicating that premature synaptic maturation was abnormal. These findings were consistent with cognitive deficits observed in premature rabbits and appeared to be driven by transcriptomic changes in the granule cells. Preterm kits displayed reduced weight, elevated serum cortisol and growth hormone, and higher IGF1 expression in the liver and DG relative to full-term controls. Importantly, blocking IGF-1 receptor in premature kits restored cognitive deficits, increased the density of glutamatergic puncta, and rescued NR2B and PSD95 levels in the DG. Hence, IGF1 inhibition alleviates prematurity-induced cognitive dysfunction and synaptic changes in the DG through modulation of NR2B and PSD95. The study identifies a novel strategy to potentially rescue DG maldevelopment and cognitive dysfunction in premature infants under stress in NICUs.
Collapse
Affiliation(s)
- Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Manoj Kumar Jaiswal
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nirzar Parikh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Divya Singh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patric K Stanton
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Lee HJ, Park JH, Trotter JH, Maher JN, Keenoy KE, Jang YM, Lee Y, Kim JI, Weeber EJ, Hoe HS. Reelin and APP Cooperatively Modulate Dendritic Spine Formation In Vitro and In Vivo. Exp Neurobiol 2023; 32:42-55. [PMID: 36919335 PMCID: PMC10017845 DOI: 10.5607/en22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Amyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, in vitro. However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown. In the present study, we found that Reelin treatment significantly increased dendritic spine density and PSD-95 puncta number in primary hippocampal neurons. An examination of the molecular mechanisms by which Reelin regulates dendritic spinogenesis revealed that Reelin enhanced hippocampal dendritic spine formation in a Ras/ERK/CREB signaling-dependent manner. Interestingly, Reelin did not increase dendritic spine number in primary hippocampal neurons when APP expression was reduced or in vivo in APP knockout (KO) mice. Taken together, our data are the first to demonstrate that Reelin acts cooperatively with APP to modulate dendritic spine formation and suggest that normal APP function is critical for Reelin-mediated dendritic spinogenesis at synapses.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
| | - Justin H Trotter
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - James N Maher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kathleen E Keenoy
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - You Mi Jang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Youngeun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
5
|
Extracellular matrix and synapse formation. Biosci Rep 2023; 43:232259. [PMID: 36503961 PMCID: PMC9829651 DOI: 10.1042/bsr20212411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is a complex molecular network distributed throughout the extracellular space of different tissues as well as the neuronal system. Previous studies have identified various ECM components that play important roles in neuronal maturation and signal transduction. ECM components are reported to be involved in neurogenesis, neuronal migration, and axonal growth by interacting or binding to specific receptors. In addition, the ECM is found to regulate synapse formation, the stability of the synaptic structure, and synaptic plasticity. Here, we mainly reviewed the effects of various ECM components on synapse formation and briefly described the related diseases caused by the abnormality of several ECM components.
Collapse
|
6
|
Pardo M, Gregorio S, Montalban E, Pujadas L, Elias-Tersa A, Masachs N, Vílchez-Acosta A, Parent A, Auladell C, Girault JA, Vila M, Nairn AC, Manso Y, Soriano E. Adult-specific Reelin expression alters striatal neuronal organization: implications for neuropsychiatric disorders. Front Cell Neurosci 2023; 17:1143319. [PMID: 37153634 PMCID: PMC10157100 DOI: 10.3389/fncel.2023.1143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
In addition to neuronal migration, brain development, and adult plasticity, the extracellular matrix protein Reelin has been extensively implicated in human psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. Moreover, heterozygous reeler mice exhibit features reminiscent of these disorders, while overexpression of Reelin protects against its manifestation. However, how Reelin influences the structure and circuits of the striatal complex, a key region for the above-mentioned disorders, is far from being understood, especially when altered Reelin expression levels are found at adult stages. In the present study, we took advantage of complementary conditional gain- and loss-of-function mouse models to investigate how Reelin levels may modify adult brain striatal structure and neuronal composition. Using immunohistochemical techniques, we determined that Reelin does not seem to influence the striatal patch and matrix organization (studied by μ-opioid receptor immunohistochemistry) nor the density of medium spiny neurons (MSNs, studied with DARPP-32). We show that overexpression of Reelin leads to increased numbers of striatal parvalbumin- and cholinergic-interneurons, and to a slight increase in tyrosine hydroxylase-positive projections. We conclude that increased Reelin levels might modulate the numbers of striatal interneurons and the density of the nigrostriatal dopaminergic projections, suggesting that these changes may be involved in the protection of Reelin against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mònica Pardo
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Gregorio
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrica Montalban
- Institut du Fer à Moulin UMR-S 1270, INSERM, Sorbonne University, Paris, France
| | - Lluís Pujadas
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Experimental Sciences and Methodology, Faculty of Health Science and Welfare, University of Vic – Central University of Catalonia (UVic-UCC), Vic, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Barcelona, Spain
| | - Alba Elias-Tersa
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Masachs
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Vílchez-Acosta
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Carme Auladell
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miquel Vila
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yasmina Manso
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Yasmina Manso,
| | - Eduardo Soriano
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Eduardo Soriano,
| |
Collapse
|
7
|
Jin K, Zhang S, Jiang C, Liu R, Chen B, Zhao H, Zhang Q, Shen Z, Xu P, Hu X, Jiao J, Lu J, Huang M. The role of reelin in the pathological mechanism of depression from clinical to rodents. Psychiatry Res 2022; 317:114838. [PMID: 36103758 DOI: 10.1016/j.psychres.2022.114838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
Major depressive disorder (MDD) is a devastating mental illness and the leading cause of disability worldwide. Previous studies have suggested that synaptic plasticity in the hippocampus plays an important role in depression pathogenesis. Reelin is expressed mainly in the frontal lobe and hippocampus, and is closely associated with neurodevelopment and synaptic plasticity. However, few studies have investigated its role in MDD combining clinical trials and animal experiments. We show that in a clinical trial, plasma reelin levels decreased in patients with first-episode drug-naïve MDD and increased after treatment; further, plasma reelin levels allowed to distinguish drug-naïve patients with first-episode MDD from healthy individuals. In rats, chronic mild and unpredictable stress led to a decrease in both reelin mRNA and protein levels in the hippocampus, which could be reversed by vortioxetine. Subsequent experiments confirmed that the reelin-ApoER2-NR2A /NR2B pathway regulates hippocampal synaptic plasticity and may be involved in depression or antidepressant responses. Our work contributes to a deeper understanding of MDD pathogenesis and provides new evidence that reelin should be considered a potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Qin Zhang
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Zhe Shen
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xiaohan Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
8
|
Nishibe M, Toyoda H, Hiraga SI, Yamashita T, Katsuyama Y. Synaptic and Genetic Bases of Impaired Motor Learning Associated with Modified Experience-Dependent Cortical Plasticity in Heterozygous Reeler Mutants. Cereb Cortex 2021; 32:504-519. [PMID: 34339488 DOI: 10.1093/cercor/bhab227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/12/2022] Open
Abstract
Patients with neurodevelopmental disorders show impaired motor skill learning. It is unclear how the effect of genetic variation on synaptic function and transcriptome profile may underlie experience-dependent cortical plasticity, which supports the development of fine motor skills. RELN (reelin) is one of the genes implicated in neurodevelopmental psychiatric vulnerability. Heterozygous reeler mutant (HRM) mice displayed impairments in reach-to-grasp learning, accompanied by less extensive cortical map reorganization compared with wild-type mice, examined after 10 days of training by intracortical microstimulation. Assessed by patch-clamp recordings after 3 days of training, the training induced synaptic potentiation and increased glutamatergic-transmission of cortical layer III pyramidal neurons in wild-type mice. In contrast, the basal excitatory and inhibitory synaptic functions were depressed, affected both by presynaptic and postsynaptic impairments in HRM mice; and thus, no further training-induced synaptic plasticity occurred. HRM exhibited downregulations of cortical synaptophysin, immediate-early gene expressions, and gene enrichment, in response to 3 days of training compared with trained wild-type mice, shown using quantitative reverse transcription polymerase chain reaction, immunohistochemisty, and RNA-sequencing. We demonstrated that motor learning impairments associated with modified experience-dependent cortical plasticity are at least partially attributed by the basal synaptic alternation as well as the aberrant early experience-induced gene enrichment in HRM.
Collapse
Affiliation(s)
- Mariko Nishibe
- Office of Strategic Innovative Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.,Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Hiraga
- Department of Neuromedical Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Neuromedical Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Molecular Neuroscience, WPI Immunology Frontier Research Center, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan
| |
Collapse
|
9
|
Tsuneura Y, Sawahata M, Itoh N, Miyajima R, Mori D, Kohno T, Hattori M, Sobue A, Nagai T, Mizoguchi H, Nabeshima T, Ozaki N, Yamada K. Analysis of Reelin signaling and neurodevelopmental trajectory in primary cultured cortical neurons with RELN deletion identified in schizophrenia. Neurochem Int 2021; 144:104954. [PMID: 33388358 DOI: 10.1016/j.neuint.2020.104954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Reelin, an extracellular matrix protein, is secreted by Cajal-Retzius cells and plays crucial roles in the development of brain structures and neuronal functions. Reductions in Reelin cause the brain dysfunctions associated with mental disorders, such as schizophrenia. A recent genome-wide copy number variation analysis of Japanese schizophrenia patients identified a novel deletion in RELN encoding Reelin. To clarify the pathophysiological role of the RELN deletion, we developed transgenic mice carrying the RELN deletion (Reln-del) and found abnormalities in their brain structures and social behavior. In the present study, we performed an in vitro analysis of Reelin expression, intracellular Reelin signaling, and the morphology of primary cultured cortical neurons from wild-type (WT) and Reln-del mice. Reelin protein levels were lower in Reln-del neurons than in WT neurons. Dab1 expression levels were significantly higher in Reln-del neurons than in WT neurons, suggesting that Reelin signaling was decreased in Reln-del neurons. Reelin was mainly expressed in γ-aminobutyric acid (GABA)-ergic inhibitory neurons, but not in parvalbumin (PV)-positive neurons. A small proportion of Ca2+/calmodulin-dependent protein kinase II α subunit (CaMKIIα)-positive excitatory neurons also expressed Reelin. In comparisons with WT neurons, significant decreases were observed in neurite lengths and branch points as well as in the number of postsynaptic density protein 95 (PSD95) immunoreactive puncta in Reln-del neurons. A disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3) is a protease that inactivates Reelin by cleavage at the N-t site. The knockdown of ADAMTS-3 by short hairpin RNAs suppressed Reelin cleavage in conditioned medium and reduced Dab1 expression, indicating that Reelin signaling was enhanced in the primary cultured cortical neurons of WT and heterozygous Reln-del. Accordingly, the inhibition of ADAMTS-3 may be a potential candidate in the clinical treatment of schizophrenia by enhancing Reelin signaling in the brain.
Collapse
Affiliation(s)
- Yumi Tsuneura
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norimichi Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryoya Miyajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, Project Office for Neuropsychological Research Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
10
|
Abo El Fotoh WMM, Bayomy NR, Kasemy ZA, Barain AM, Shalaby BM, Abd el naby SA. Genetic Variants and Haplotypes of Tryptophan Hydroxylase 2 and Reelin Genes May Be Linked with Attention Deficit Hyperactivity Disorder in Egyptian Children. ACS Chem Neurosci 2020; 11:2094-2103. [PMID: 32530273 DOI: 10.1021/acschemneuro.0c00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) has been proposed to stem from multiple etiologies, perhaps genetic in nature with biological and psychosocial motivates. Tryptophan hydroxylase 2 (TPH2) and Reelin (RELN) genes may play a key role in triggering ADHD. The purpose of this case-controlled study was to explore the linkage of the genetic variants of TPH2 and RELN genes with ADHD. One hundred Egyptian children with ADHD and 105 age and sex matched controls constituted the study samples. Genotyping was performed for TPH2 (rs11179027; rs1843809) and RELN (rs736707; rs362691) gene polymorphisms using real time PCR assay. The alleles and genotype frequencies of TPH2 and RELN gene polymorphisms were assessed in all study participants. The frequencies of the alleles of TPH2 rs11179027 (OR = 1.75, 95% CI = 1.08-2.85, p = 0.022), TPH2 rs1843809 (OR = 3.67, 95% CI = 1.82-7.43, p = <0.001), and RELN rs736707 (OR = 1.61, 95% CI = 1.03-2.51, p = 0.035) were significantly associated with ADHD, while there was no significant difference between ADHD patients and controls regarding the frequency of RELN rs362691 (OR = 1.34, 95% CI = 0.73-2.48, p = 0.34). The frequencies of CTAG, CTGG, CTAC, CTGC, and GTAC haplotypes were significantly higher in ADHD patients than in controls (p = 0.011, 0.005, 0.015, 0.001, and 0.027, respectively). In conclusion, TPH2 rs11179027, TPH2 rs1843809, and RELN rs736707 gene alleles and haplotypes might be significantly correlated with the genetic susceptibility to ADHD in Egyptian children.
Collapse
Affiliation(s)
| | - Noha Rabie Bayomy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Menoufia University, Shebin El-Kom 0020, Egypt
| | - Zeinab A. Kasemy
- Public Health, and Community Medicine, Faculty of Medicine, Menoufia University, Shebin El-Kom 0020, Egypt
| | | | - Basma Mofed Shalaby
- Shebin El-Kom Teaching Hospital, The Ministry of Health, Shebin El-Kom 0020, Egypt
| | | |
Collapse
|
11
|
Dal Pozzo V, Crowell B, Briski N, Crockett DP, D’Arcangelo G. Reduced Reelin Expression in the Hippocampus after Traumatic Brain Injury. Biomolecules 2020; 10:biom10070975. [PMID: 32610618 PMCID: PMC7407987 DOI: 10.3390/biom10070975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a relatively common occurrence following accidents or violence, and often results in long-term cognitive or motor disability. Despite the high health cost associated with this type of injury, presently there are no effective treatments for many neurological symptoms resulting from TBI. This is due in part to our limited understanding of the mechanisms underlying brain dysfunction after injury. In this study, we used the mouse controlled cortical impact (CCI) model to investigate the effects of TBI, and focused on Reelin, an extracellular protein that critically regulates brain development and modulates synaptic activity in the adult brain. We found that Reelin expression decreases in forebrain regions after TBI, and that the number of Reelin-expressing cells decrease specifically in the hippocampus, an area of the brain that plays an important role in learning and memory. We also conducted in vitro experiments using mouse neuronal cultures and discovered that Reelin protects hippocampal neuronal cells from glutamate-induced neurotoxicity, a well-known secondary effect of TBI. Together our findings suggest that the loss of Reelin expression may contribute to neuronal death in the hippocampus after TBI, and raise the possibility that increasing Reelin levels or signaling activity may promote functional recovery.
Collapse
Affiliation(s)
- Valentina Dal Pozzo
- Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - Beth Crowell
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - Nicholas Briski
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - David P. Crockett
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| | - Gabriella D’Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
- Correspondence:
| |
Collapse
|
12
|
Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10:biom10060964. [PMID: 32604886 PMCID: PMC7355739 DOI: 10.3390/biom10060964] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
13
|
Prume M, Rollenhagen A, Yakoubi R, Sätzler K, Lübke JH. Quantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in the "Barrel Field" of the Adult "Reeler" Mouse Somatosensory Neocortex: A Comparative Fine-Scale Electron Microscopic Analysis with the Wild Type Mouse. Cereb Cortex 2020; 30:3209-3227. [PMID: 31813963 DOI: 10.1093/cercor/bhz304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Synapses are key structural determinants for information processing and computations in the normal and pathologically altered brain. Here, the quantitative morphology of excitatory synaptic boutons in the "reeler" mutant, a model system for various neurological disorders, was investigated and compared with wild-type (WT) mice using high-resolution, fine-scale electron microscopy (EM) and quantitative three-dimensional (3D) models of synaptic boutons. Beside their overall geometry, the shape and size of presynaptic active zones (PreAZs) and postsynaptic densities (PSDs) forming the active zones and the three pools of synaptic vesicles (SVs), namely the readily releasable pool (RRP), the recycling pool (RP), and the resting pool, were quantified. Although the reeler mouse neocortex is severely disturbed, no significant differences were found in most of the structural parameters investigated: the size of boutons (~3 μm2), size of the PreAZs and PSDs (~0.17 μm2), total number of SVs, and SVs within a perimeter (p) of 10 nm and p20 nm RRP; the p60 nm, p100 nm, and p60-p200 nm RP; and the resting pool, except the synaptic cleft width. Taken together, the synaptic organization and structural composition of synaptic boutons in the reeler neocortex remain comparably "normal" and may thus contribute to a "correct" wiring of neurons within the reeler cortical network.
Collapse
Affiliation(s)
- Miriam Prume
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425 Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425 Jülich, Germany
| | - Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425 Jülich, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Londonderry BT52 1SA, UK
| | - Joachim Hr Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH University Hospital Aachen, 52074 Aachen, Germany.,JARA Translational Brain Medicine, Jülich/Aachen, Germany
| |
Collapse
|
14
|
Wang L, Zhao D, Wang M, Wang Y, Vreugdenhil M, Lin J, Lu C. Modulation of Hippocampal Gamma Oscillations by Dopamine in Heterozygous Reeler Mice in vitro. Front Cell Neurosci 2020; 13:586. [PMID: 32116553 PMCID: PMC7026475 DOI: 10.3389/fncel.2019.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 11/14/2022] Open
Abstract
The reelin haploinsufficient heterozygous reeler mice (HRM), an animal model of schizophrenia, have altered mesolimbic dopaminergic pathways and share similar neurochemical and behavioral properties with patients with schizophrenia. Dysfunctional neural circuitry with impaired gamma (γ) oscillation (30–80 Hz) has been implicated in abnormal cognition in patients with schizophrenia. However, the function of neural circuitry in terms of γ oscillation and its modulation by dopamine (DA) has not been reported in HRM. In this study, first, we recorded γ oscillations in CA3 from wild-type mice (WTM) and HRM hippocampal slices, and we studied the effects of DA on γ oscillations. We found that there was no difference in γ power between WTM and HRM and that DA increased γ power of WTM but not HRM, suggesting that DA modulations of network oscillations in HRM are impaired. Second, we found that N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 itself increased γ power and occluded DA-mediated enhancement of γ power in WTM but partially restored DA modulation of γ oscillations in HRM. Third, inhibition of phosphatidylinositol 3-kinase (PI3K), a downstream molecule of NMDAR, increased γ power and blocked the effects of DA on γ oscillation in WTM and had no significant effect on γ power but largely restored DA modulation of γ oscillations in HRM. Our results reveal that impaired DA function in HRM is associated with dysregulated NMDAR–PI3K signaling, a mechanism that may be relevant in the pathology of schizophrenia.
Collapse
Affiliation(s)
- Lu Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Dandan Zhao
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Yuan Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Juntang Lin
- School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Chengbiao Lu
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Sturm L, van Elst LT, Fiebich B, Wolkewitz M, Hornig T. Intra-day variations of blood reelin levels in healthy individuals. Arch Med Sci 2019; 16:118-123. [PMID: 32051714 PMCID: PMC6963140 DOI: 10.5114/aoms.2020.91288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/07/2017] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Reelin (RELN) is an extracellular glycoprotein best known to be crucial for neuronal migration during the embryonic period and regulation of synaptic plasticity in the adult brain, with recent studies pointing to reelin playing an important part in the organization of peripheral organs as well. Abnormalities in RELN function are associated with a variety of medical conditions in human beings. These alterations partly also reflect in RELN's blood levels, which gives it a clinical relevance as a potential biomarker. Requirement for a possible clinical use is a profound understanding of RELN's physiology. We hypothesized blood RELN levels could underlie time-dependent variations and therefore examined individuals' serum reelin concentrations in the course of one day. MATERIAL AND METHODS We obtained blood samples from healthy individuals (n = 10) at several times of measurement over a time period of 24 h. We subsequently determined the respective serum RELN concentrations utilizing an enzyme-linked immunosorbent assay and tested for intra- and interindividual variations in serum RELN concentrations over time. RESULTS All tested individuals' serum RELN levels displayed significant intraindividual variations in the course of 24 h. Test subjects' reelin day profiles showed substantial divergence among each other. CONCLUSIONS Our findings point to short-term fluctuations in blood RELN levels being part of physiological RELN homeostasis. This is of special interest with regard to a potential clinical use of RELN as a biomarker.
Collapse
Affiliation(s)
- Lukas Sturm
- Department of Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | | | - Bernd Fiebich
- Department of Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Martin Wolkewitz
- Department of Medical Biometrics and Medical Informatics, University of Freiburg, Freiburg, Germany
| | - Tobias Hornig
- Department of Psychiatry, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Tufford AR, Onyak JR, Sondereker KB, Lucas JA, Earley AM, Mattar P, Hattar S, Schmidt TM, Renna JM, Cayouette M. Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina. Cell Rep 2019; 23:2416-2428. [PMID: 29791852 DOI: 10.1016/j.celrep.2018.04.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022] Open
Abstract
Newborn neurons follow molecular cues to reach their final destination, but whether early life experience influences lamination remains largely unexplored. As light is among the first stimuli to reach the developing nervous system via intrinsically photosensitive retinal ganglion cells (ipRGCs), we asked whether ipRGCs could affect lamination in the developing mouse retina. We show here that ablation of ipRGCs causes cone photoreceptors to mislocalize at different apicobasal positions in the retina. This effect is partly mediated by light-evoked activity in ipRGCs, as dark rearing or silencing of ipRGCs leads a subset of cones to mislocalize. Furthermore, ablation of ipRGCs alters the cone transcriptome and decreases expression of the dopamine receptor D4, while injection of L-DOPA or D4 receptor agonist rescues the displaced cone phenotype observed in dark-reared animals. These results show that early light-mediated activity in ipRGCs influences neuronal lamination and identify ipRGC-elicited dopamine release as a mechanism influencing cone position.
Collapse
Affiliation(s)
- Adele R Tufford
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | | | | | - Jasmine A Lucas
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aaron M Earley
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Samer Hattar
- National Institute of Mental Health, Bethesda, MD, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
17
|
Functional Role of SIL1 in Neurodevelopment and Learning. Neural Plast 2019; 2019:9653024. [PMID: 31531014 PMCID: PMC6720716 DOI: 10.1155/2019/9653024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background Sil1 is the causative gene of Marinesco-Sjӧgren Syndrome (MSS). The mutated Sil1 generates shortened SIL1 protein which will form aggregation and be degraded rapidly. Mental retardation is a major symptom of MSS which suggests a role of SIL1 in the development of the central nervous system, but how SIL1 functions remains unclear. Objectives The aim of this study is to explore the role of SIL1 in regulating cerebral development and its underlying molecular mechanism. Methods The basic expression pattern of SIL1 in tissues and cultured cortical neurons is measured by immunostaining and Western blot. The expression of SIL1 is reduced in vitro and in vivo through RNA interference delivered by a lentivirus. The expression of NMDA receptor subunits and the function of the Reelin signaling pathway are then examined by surface biotinylation and Western blot subsequently. Finally, the spatial learning of young mice was assessed by the Barnes maze task. Results SIL1 deficiency caused a diminished expression of both Reelin receptors and therefore impaired the Reelin signaling pathway. It then inhibited the developmental expression of GluN2A and impaired the spatial learning of 5-week-old mice. Conclusions These results suggested that SIL1 is required for the development of the central nervous system which is associated with its role in Reelin signaling.
Collapse
|
18
|
Canet-Pons J, Schubert R, Duecker RP, Schrewe R, Wölke S, Kieslich M, Schnölzer M, Chiocchetti A, Auburger G, Zielen S, Warnken U. Ataxia telangiectasia alters the ApoB and reelin pathway. Neurogenetics 2018; 19:237-255. [DOI: 10.1007/s10048-018-0557-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
19
|
Wang RH, Chen YF, Chen S, Hao B, Xue L, Wang XG, Shi YW, Zhao H. Maternal Deprivation Enhances Contextual Fear Memory via Epigenetically Programming Second-Hit Stress-Induced Reelin Expression in Adult Rats. Int J Neuropsychopharmacol 2018; 21:1037-1048. [PMID: 30169690 PMCID: PMC6209857 DOI: 10.1093/ijnp/pyy078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early-life stress increases the risk for posttraumatic stress disorder. However, the epigenetic mechanism of early-life stress-induced susceptibility to posttraumatic stress disorder in adulthood remains unclear. METHODS Rat pups were exposed to maternal deprivation during postnatal days 1 to 14 for 3 hours daily and treated with the DNA methyltransferase inhibitor zebularine, L-methionine, or vehicle 7 days before contextual fear conditioning, which was used as a second stress and to mimic the reexperiencing symptom of posttraumatic stress disorder in adulthood. Long-term potentiation, dendritic spine density, DNA methyltransferase mRNA, Reelin gene methylation, and Reelin protein expression in the hippocampal CA1 were measured. RESULTS Maternal deprivation enhanced contextual fear memory in adulthood. Meanwhile, maternal deprivation decreased DNA methyltransferase mRNA and Reelin gene methylation in the hippocampal CA1 on postnatal days 22 and 90. Reelin protein expression was increased in the hippocampal CA1 following contextual fear conditioning in adulthood. Furthermore, compared with rats that experienced maternal deprivation alone, rats also exposed to contextual fear conditioning showed an enhanced induction of hippocampal long-term potentiation and increased dendritic spine density in the hippocampal CA1 following contextual fear conditioning in adulthood. Zebularine pretreatment led to an enhancement of contextual fear memory, hypomethylation of the Reelin gene, and increased Reelin protein expression in adult rats, while L-methionine had the opposite effects. CONCLUSIONS Maternal deprivation can epigenetically program second-hit stress-induced Reelin expression and enhance the susceptibility to contextual fear memory in adulthood. These findings provide a new framework for understanding the cumulative stress hypothesis.
Collapse
Affiliation(s)
- Run-Hua Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Ye-Fei Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Hao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Correspondence: Hu Zhao, PhD, MD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China (); and Yan-Wei Shi, PhD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China ()
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Correspondence: Hu Zhao, PhD, MD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China (); and Yan-Wei Shi, PhD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China ()
| |
Collapse
|
20
|
Ducharme P, Zarruk JG, David S, Paquin J. The ferroxidase ceruloplasmin influences Reelin processing, cofilin phosphorylation and neuronal organization in the developing brain. Mol Cell Neurosci 2018; 92:104-113. [PMID: 30077770 DOI: 10.1016/j.mcn.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 12/09/2022] Open
Abstract
Ceruloplasmin (Cp) is an important extracellular regulator of iron metabolism. We showed previously that it stimulates Reelin proteolytic processing and cell aggregation in cultures of developing neurons. Reelin is a secreted protein required for the correct positioning of neurons in the brain. It is cleaved in vivo into N-terminally-derived 300K and 180K fragments through incompletely known mechanisms. One of Reelin signaling targets is the actin-binding protein cofilin, the phosphorylation of which is diminished in Reelin-deficient mice. This work looked for in vivo evidence of a relationship between Cp, Reelin and neuronal organization during brain development by analyzing wild-type and Cp-null mice. Cp as well as the full-length, 300K and 180K Reelin species appeared together in wild-type brains at embryonic day (E) 12.5 by immunoblotting. In wild-type compared to Cp-null brains, there was more 300K Reelin from E12.5 to E17.5, a period characterized by extensive, radially directed neuronal migration in the cerebral cortex. Immunofluorescence labeling of tissue sections at E16.5 revealed the localization of Cp with radial glia and meningeal cells adjacent to Reelin-producing Cajal-Retzius neurons, underlining the proximity of Cp and Reelin. Cofilin phosphorylation was seen starting at E10.5-E12.5 and lasted longer until postnatal day 7 in wild-type than Cp-null mice. Finally, using CUX1 as a marker revealed defective accumulation of neurons in layers II/III in neonatal and adult Cp-null mice. These results combined with our earlier work point to a potentially new role of Cp in Reelin processing and signaling and neuronal organization in the cerebral cortex in vivo.
Collapse
Affiliation(s)
- Philippe Ducharme
- Département de Chimie and Centre BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, Quebec H3C 3P8, Canada.
| | - Juan G Zarruk
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Joanne Paquin
- Département de Chimie and Centre BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, Quebec H3C 3P8, Canada.
| |
Collapse
|
21
|
Schroeder A, van den Buuse M, Hill RA. Reelin Haploinsufficiency and Late-Adolescent Corticosterone Treatment Induce Long-Lasting and Female-Specific Molecular Changes in the Dorsal Hippocampus. Brain Sci 2018; 8:brainsci8070118. [PMID: 29941797 PMCID: PMC6070826 DOI: 10.3390/brainsci8070118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
Reelin depletion and stress seem to affect similar pathways including GABAergic and glutamatergic signaling and both are implicated in psychiatric disorders in late adolescence/early adulthood. The interaction between reelin depletion and stress, however, remains unclear. To investigate this, male and female heterozygous reelin mice (HRM) and wildtype (WT) controls were treated with the stress hormone, corticosterone (CORT), during late adolescence to simulate chronic stress. Glucocorticoid receptors (GR), N-methyl-d-aspartate receptor (NMDAr) subunits, glutamic acid decarboxylase (GAD67) and parvalbumin (PV) were measured in the hippocampus and the prefrontal cortex (PFC) in adulthood. While no changes were seen in male mice, female HRM showed a significant reduction in GR expression in the dorsal hippocampus. In addition, CORT reduced GR levels as well as GluN2B and GluN2C subunits of NMDAr in the dorsal hippocampus in female mice only. CORT furthermore reduced GluN1 levels in the PFC of female mice. The combined effect of HRM and CORT treatment appeared to be additive in terms of GR expression in the dorsal hippocampus. Female-specific CORT-induced changes were associated with overall higher circulating CORT levels in female compared to male mice. This study shows differential effects of reelin depletion and CORT treatment on GR and NMDAr protein expression in male and female mice, suggesting that females are more susceptible to reelin haploinsufficiency as well as late-adolescent stress. These findings shed more light on female-specific vulnerability to stress and have implications for stress-associated mental illnesses with a female bias including anxiety and major depression.
Collapse
Affiliation(s)
- Anna Schroeder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora 3086 Australia.
- Department of Pharmacology, University of Melbourne, Parkville 3052, Australia.
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4810, Australia.
| | - Rachel A Hill
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| |
Collapse
|
22
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
24
|
Antonioli-Santos R, Lanzillotta-Mattos B, Hedin-Pereira C, Serfaty CA. The fine tuning of retinocollicular topography depends on reelin signaling during early postnatal development of the rat visual system. Neuroscience 2017; 357:264-272. [PMID: 28602919 DOI: 10.1016/j.neuroscience.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
During postnatal development, neural circuits are extremely dynamic and develop precise connection patterns that emerge as a result of the elimination of synaptic terminals, a process instructed by molecular cues and patterns of electrical activity. In the rodent visual system, this process begins during the first postnatal week and proceeds during the second and third postnatal weeks as spontaneous retinal activity and finally use-dependent fine tuning takes place. Reelin is a large extracellular matrix glycoprotein able to affect several steps of brain development, from neuronal migration to the maturation of dendritic spines and use-dependent synaptic development. In the present study, we investigated the role of reelin on the topographical refinement of primary sensory connections studying the development of retinal ganglion cell axon terminals in the rat superior colliculus. We found that reelin levels in the visual layers of the superior colliculus are the highest between the second and third postnatal weeks. Blocking reelin signaling with a neutralizing antibody (CR-50) from PND 7 to PND 14 induced a non-specific sprouting of ipsilateral retinocollicular axons outside their typical distribution of discrete patches of axon terminals. Also we found that reelin blockade resulted in reduced levels of phospho-GAP43, increased GluN1 and GluN2B-NMDA subunits and decreased levels of GAD65 content in the visual layers of the superior colliculus. The results suggest that reelin signaling is associated with the maturation of excitatory and inhibitory synaptic machinery influencing the development and fine tuning of topographically organized neural circuits during postnatal development.
Collapse
Affiliation(s)
- Rachel Antonioli-Santos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil; Institute of Biomedical Research, Marcílio Dias Navy Hospital, Rio de Janeiro, Brazil
| | - Bruna Lanzillotta-Mattos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil
| | - Cecília Hedin-Pereira
- Federal University of Rio de Janeiro, Institute of Biomedical Sciences, Laboratory of Cellular Neuroanatomy - Rio de Janeiro, Brazil; Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil.
| |
Collapse
|
25
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
26
|
Bouamrane L, Scheyer AF, Lassalle O, Iafrati J, Thomazeau A, Chavis P. Reelin-Haploinsufficiency Disrupts the Developmental Trajectory of the E/I Balance in the Prefrontal Cortex. Front Cell Neurosci 2017; 10:308. [PMID: 28127276 PMCID: PMC5226963 DOI: 10.3389/fncel.2016.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
The reelin gene is a strong candidate in the etiology of several psychiatric disorders such as schizophrenia, major depression, bipolar disorders, and autism spectrum disorders. Most of these diseases are accompanied by cognitive and executive-function deficits associated with prefrontal dysfunctions. Mammalian prefrontal cortex (PFC) development is characterized by a protracted postnatal maturation constituting a period of enhanced vulnerability to psychiatric insults. The identification of the molecular components underlying this prolonged postnatal development is necessary to understand the synaptic properties of defective circuits participating in these psychiatric disorders. We have recently shown that reelin plays a key role in the maturation of glutamatergic functions in the postnatal PFC, but no data are available regarding the GABAergic circuits. Here, we undertook a cross-sectional analysis of GABAergic function in deep layer pyramidal neurons of the medial PFC of wild-type and haploinsufficient heterozygous reeler mice. Using electrophysiological approaches, we showed that decreased reelin levels impair the maturation of GABAergic synaptic transmission without affecting the inhibitory nature of GABA. This phenotype consequently impacted the developmental sequence of the synaptic excitation/inhibition (E/I) balance. These data indicate that reelin is necessary for the correct maturation and refinement of GABAergic synaptic circuits in the postnatal PFC and therefore provide a mechanism for altered E/I balance of prefrontal circuits associated with psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavis
- INMED, Aix-Marseille University, INSERM Marseille, France
| |
Collapse
|
27
|
Wasser CR, Herz J. Reelin: Neurodevelopmental Architect and Homeostatic Regulator of Excitatory Synapses. J Biol Chem 2016; 292:1330-1338. [PMID: 27994051 DOI: 10.1074/jbc.r116.766782] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over half a century ago, D. S. Falconer first reported a mouse with a reeling gate. Four decades later, the Reln gene was isolated and identified as the cause of the reeler phenotype. Initial studies found that loss of Reelin, a large, secreted glycoprotein encoded by the Reln gene, results in abnormal neuronal layering throughout several regions of the brain. In the years since, the known functions of Reelin signaling in the brain have expanded to include multiple postdevelopmental neuromodulatory roles, revealing an ever increasing body of evidence to suggest that Reelin signaling is a critical player in the modulation of synaptic function. In writing this review, we intend to highlight the most fundamental aspects of Reelin signaling and integrate how these various neuromodulatory effects shape and protect synapses.
Collapse
Affiliation(s)
- Catherine R Wasser
- From the Department of Molecular Genetics.,Center for Translational Neurodegeneration Research, and
| | - Joachim Herz
- From the Department of Molecular Genetics, .,Center for Translational Neurodegeneration Research, and.,Department of Neuroscience.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
28
|
Ampuero E, Jury N, Härtel S, Marzolo MP, van Zundert B. Interfering of the Reelin/ApoER2/PSD95 Signaling Axis Reactivates Dendritogenesis of Mature Hippocampal Neurons. J Cell Physiol 2016; 232:1187-1199. [PMID: 27653801 DOI: 10.1002/jcp.25605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022]
Abstract
Reelin, an extracellular glycoprotein secreted in embryonic and adult brain, participates in neuronal migration and neuronal plasticity. Extensive evidence shows that reelin via activation of the ApoER2 and VLDLR receptors promotes dendrite and spine formation during early development. Further evidence suggests that reelin signaling is needed to maintain a stable architecture in mature neurons, but, direct evidence is lacking. During activity-dependent maturation of the neuronal circuitry, the synaptic protein PSD95 is inserted into the postsynaptic membrane to induce structural refinement and stability of spines and dendrites. Given that ApoER2 interacts with PSD95, we tested if reelin signaling interference in adult neurons reactivates the dendritic architecture. Unlike findings in developing cultures, the presently obtained in vitro and in vivo data show, for the first time, that reelin signaling interference robustly increase dendritogenesis and reduce spine density in mature hippocampal neurons. In particular, the expression of a mutant ApoER2 form (ApoER2-tailless), which is unable to interact with PSD95 and hence cannot transduce reelin signaling, resulted in robust dendritogenesis in mature hippocampal neurons in vitro. These results indicate that reelin/ApoER2/PSD95 signaling is important for neuronal structure maintenance in mature neurons. Mechanistically, obtained immunofluorescent data indicate that reelin signaling impairment reduced synaptic PSD95 levels, consequently leading to synaptic re-insertion of NR2B-NMDARs. Our findings underscore the importance of reelin in maintaining adult network stability and reveal a new mode for reactivating dendritogenesis in neurological disorders where dendritic arbor complexity is limited, such as in depression, Alzheimer's disease, and stroke. J. Cell. Physiol. 232: 1187-1199, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Steffen Härtel
- SCIAN-Lab, CIMT, Bomedical Neuroscience Institute (BNI), ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
29
|
Iafrati J, Malvache A, Gonzalez Campo C, Orejarena MJ, Lassalle O, Bouamrane L, Chavis P. Multivariate synaptic and behavioral profiling reveals new developmental endophenotypes in the prefrontal cortex. Sci Rep 2016; 6:35504. [PMID: 27765946 PMCID: PMC5073243 DOI: 10.1038/srep35504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/30/2016] [Indexed: 01/02/2023] Open
Abstract
The postnatal maturation of the prefrontal cortex (PFC) represents a period of increased vulnerability to risk factors and emergence of neuropsychiatric disorders. To disambiguate the pathophysiological mechanisms contributing to these disorders, we revisited the endophenotype approach from a developmental viewpoint. The extracellular matrix protein reelin which contributes to cellular and network plasticity, is a risk factor for several psychiatric diseases. We mapped the aggregate effect of the RELN risk allele on postnatal development of PFC functions by cross-sectional synaptic and behavioral analysis of reelin-haploinsufficient mice. Multivariate analysis of bootstrapped datasets revealed subgroups of phenotypic traits specific to each maturational epoch. The preeminence of synaptic AMPA/NMDA receptor content to pre-weaning and juvenile endophenotypes shifts to long-term potentiation and memory renewal during adolescence followed by NMDA-GluN2B synaptic content in adulthood. Strikingly, multivariate analysis shows that pharmacological rehabilitation of reelin haploinsufficient dysfunctions is mediated through induction of new endophenotypes rather than reversion to wild-type traits. By delineating previously unknown developmental endophenotypic sequences, we conceived a promising general strategy to disambiguate the molecular underpinnings of complex psychiatric disorders and for the rational design of pharmacotherapies in these disorders.
Collapse
Affiliation(s)
- Jillian Iafrati
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Arnaud Malvache
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Cecilia Gonzalez Campo
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - M Juliana Orejarena
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Olivier Lassalle
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Lamine Bouamrane
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Pascale Chavis
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| |
Collapse
|
30
|
Identification of RELN variation p.Thr3192Ser in a Chinese family with schizophrenia. Sci Rep 2016; 6:24327. [PMID: 27071546 PMCID: PMC4829830 DOI: 10.1038/srep24327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/24/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a serious psychiatric disease with strong heritability. Its complexity is reflected by extensive genetic heterogeneity and much of the genetic liability remains unaccounted for. We applied a combined strategy involving detection of copy number variants (CNVs), whole-genome mapping, and exome sequencing to identify the genetic basis of autosomal-dominant SCZ in a Chinese family. To rule out pathogenic CNVs, we first performed Illumina single nucleotide polymorphism (SNP) array analysis on samples from two patients and one psychiatrically healthy family member, but no pathogenic CNVs were detected. In order to further narrow down the susceptible region, we conducted genome-wide linkage analysis and mapped the disease locus to chromosome 7q21.13-22.3, with a maximum multipoint logarithm of odds score of 2.144. Whole-exome sequencing was then carried out with samples from three affected individuals and one unaffected individual in the family. A missense variation c.9575 C > G (p.Thr3192Ser) was identified in RELN, which is known as a risk gene for SCZ, located on chromosome 7q22, in the pedigree. This rare variant, as a highly penetrant risk variant, co-segregated with the phenotype. Our results provide genetic evidence that RELN may be one of pathogenic gene in SCZ.
Collapse
|
31
|
Kwon HJ, Jang WC, Lim MH. Association between RELN Gene Polymorphisms and Attention Deficit Hyperactivity Disorder in Korean Children. Psychiatry Investig 2016; 13:210-6. [PMID: 27081382 PMCID: PMC4823197 DOI: 10.4306/pi.2016.13.2.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is common disorder of the school-age population. ADHD is familial and genetic studies estimate heritability at 80-90%. The aim of the present study was to investigate the association between the genetic type and alleles for RELNgene (rs736707, rs2229864, rs362746, rs362726, rs362691, rs1062831, rs607755, and rs2072403) in Korean children with ADHD. METHODS The sample consisted of 180 ADHD children and 159 control children. We diagnosed ADHD according to DSM-IV. ADHD symptoms were evaluated with Conners' Parent Rating Scales and Dupaul Parent ADHD Rating Scales. Blood samples were taken from the 339 subjects, DNA was extracted from blood lymphocytes, and PCR was performed for RELN Polymorphism. Alleles and genotype frequencies were compared using the chi-square test. We compared the allele and genotype frequencies of RELN gene polymorphism in the ADHD and control groups. RESULTS This study showed that there was a significant correlation among the frequencies of the rs736707 (OR=1.40, 95% CI=1.03-1.90, p=0.031) of alleles of RELN, but the final conclusions are not definite. CONCLUSION Follow up studies with larger patient or pure subgroups are expected. These results suggested that RELN might be related to ADHD symptoms.
Collapse
Affiliation(s)
- Ho Jang Kwon
- Environmental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Won-Cheol Jang
- Department of Chemistry, College of Natural Science, Dankook University, Cheonan, Republic of Korea
| | - Myung Ho Lim
- Environmental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
- Department of Psychology, College of Public Welfare, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
32
|
Caruncho HJ, Brymer K, Romay-Tallón R, Mitchell MA, Rivera-Baltanás T, Botterill J, Olivares JM, Kalynchuk LE. Reelin-Related Disturbances in Depression: Implications for Translational Studies. Front Cell Neurosci 2016; 10:48. [PMID: 26941609 PMCID: PMC4766281 DOI: 10.3389/fncel.2016.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023] Open
Abstract
The finding that reelin expression is significantly decreased in mood and psychotic disorders, together with evidence that reelin can regulate key aspects of hippocampal plasticity in the adult brain, brought our research group and others to study the possible role of reelin in the pathogenesis of depression. This review describes recent progress on this topic using an animal model of depression that makes use of repeated corticosterone (CORT) injections. This methodology produces depression-like symptoms in both rats and mice that are reversed by antidepressant treatment. We have reported that CORT causes a decrease in the number of reelin-immunopositive cells in the dentate gyrus subgranular zone (SGZ), where adult hippocampal neurogenesis takes place; that down-regulation of the number of reelin-positive cells closely parallels the development of a depression-like phenotype during repeated CORT treatment; that reelin downregulation alters the co-expression of reelin with neuronal nitric oxide synthase (nNOS); that deficits in reelin might also create imbalances in glutamatergic and GABAergic circuits within the hippocampus and other limbic structures; and that co-treatment with antidepressant drugs prevents both reelin deficits and the development of a depression-like phenotype. We also observed alterations in the pattern of membrane protein clustering in peripheral lymphocytes in animals with low levels of reelin. Importantly, we found parallel changes in membrane protein clustering in depression patients, which differentiated two subpopulations of naïve depression patients that showed a different therapeutic response to antidepressant treatment. Here, we review these findings and develop the hypothesis that restoring reelin-related function could represent a novel approach for antidepressant therapies.
Collapse
Affiliation(s)
- Hector J Caruncho
- Neuroscience Cluster, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | - Kyle Brymer
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | | | - Milann A Mitchell
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Tania Rivera-Baltanás
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Justin Botterill
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Jose M Olivares
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Lisa E Kalynchuk
- Department of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
33
|
McMurtrey RJ. Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration. J Tissue Eng 2016; 7:2041731416671926. [PMID: 27766141 PMCID: PMC5056621 DOI: 10.1177/2041731416671926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023] Open
Abstract
Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures. Such designs comprise compartmentalized regions in the biomaterial structure that are functionalized with molecular factors that form concentration gradients through the construct and guide stem cell development, axis patterning, and tissue architecture, including rostral/caudal, ventral/dorsal, or medial/lateral identities of the central nervous system. The ability to recapitulate innate developmental processes in a three-dimensional environment and under specific controlled conditions has vital application to advanced models of neurodevelopment and for repair of specific sites of damaged or diseased neural tissue.
Collapse
|
34
|
Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 2015; 167:18-27. [PMID: 25601362 PMCID: PMC4504843 DOI: 10.1016/j.schres.2014.12.040] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons.
Collapse
Affiliation(s)
- Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Christopher Brown
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Eleni T Batzianouli
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
35
|
Lane-Donovan C, Philips GT, Wasser CR, Durakoglugil MS, Masiulis I, Upadhaya A, Pohlkamp T, Coskun C, Kotti T, Steller L, Hammer RE, Frotscher M, Bock HH, Herz J. Reelin protects against amyloid β toxicity in vivo. Sci Signal 2015; 8:ra67. [PMID: 26152694 DOI: 10.1126/scisignal.aaa6674] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a currently incurable neurodegenerative disorder and is the most common form of dementia in people over the age of 65 years. The predominant genetic risk factor for AD is the ε4 allele encoding apolipoprotein E (ApoE4). The secreted glycoprotein Reelin enhances synaptic plasticity by binding to the multifunctional ApoE receptors apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr). We have previously shown that the presence of ApoE4 renders neurons unresponsive to Reelin by impairing the recycling of the receptors, thereby decreasing its protective effects against amyloid β (Aβ) oligomer-induced synaptic toxicity in vitro. We showed that when Reelin was knocked out in adult mice, these mice behaved normally without overt learning or memory deficits. However, they were strikingly sensitive to amyloid-induced synaptic suppression and had profound memory and learning disabilities with very low amounts of amyloid deposition. Our findings highlight the physiological importance of Reelin in protecting the brain against Aβ-induced synaptic dysfunction and memory impairment.
Collapse
Affiliation(s)
- Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gary T Philips
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murat S Durakoglugil
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Irene Masiulis
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ajeet Upadhaya
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs-University, Freiburg 79085, Germany
| | - Cagil Coskun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiina Kotti
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Steller
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, Hamburg 20251, Germany
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, Hamburg 20251, Germany
| | - Hans H Bock
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs-University, Freiburg 79085, Germany. Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Hethorn WR, Ciarlone SL, Filonova I, Rogers JT, Aguirre D, Ramirez RA, Grieco JC, Peters MM, Gulick D, Anderson AE, L Banko J, Lussier AL, Weeber EJ. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome. Eur J Neurosci 2015; 41:1372-80. [PMID: 25864922 PMCID: PMC4676289 DOI: 10.1111/ejn.12893] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023]
Abstract
The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain.
Collapse
Affiliation(s)
- Whitney R Hethorn
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Stephanie L Ciarlone
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Irina Filonova
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Justin T Rogers
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Daniela Aguirre
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Raquel A Ramirez
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Joseph C Grieco
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Melinda M Peters
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Danielle Gulick
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jessica L Banko
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - April L Lussier
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Edwin J Weeber
- USF Health Byrd Alzheimer's Institute, 4001 East Fletcher Avenue, Tampa, FL, 33613, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
37
|
Yong SM, Ong QR, Siew BE, Wong BS. The effect of chicken extract on ERK/CREB signaling is ApoE isoform-dependent. Food Funct 2015; 5:2043-51. [PMID: 25080220 DOI: 10.1039/c4fo00428k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is unclear how the nutritional supplement chicken extract (CE) enhances cognition. Human apolipoprotein E (ApoE) can regulate cognition and this isoform-dependent effect is associated with the N-methyl-d-aspartate receptor (NMDAR). To understand if CE utilizes this pathway, we compared the NMDAR signaling in neuronal cells expressing ApoE3 and ApoE4. We observed that CE increased S896 phosphorylation on NR1 in ApoE3 cells and this was linked to higher protein kinase C (PKC) activation. However, ApoE4 cells treated with CE have lowered S897 phosphorylation on NR1 and this was associated with reduced protein kinase A (PKA) phosphorylation. In ApoE3 cells, CE increased calmodulin kinase II (CaMKII) activation and AMPA GluR1 phosphorylation on S831. In contrast, CE reduced CaMKII phosphorylation and led to higher de-phosphorylation of S831 and S845 on GluR1 in ApoE4 cells. While CE enhanced ERK/CREB phosphorylation in ApoE3 cells, this pathway was down-regulated in both ApoE4 and mock cells after CE treatment. These results show that CE triggers ApoE isoform-specific changes on ERK/CREB signaling.
Collapse
Affiliation(s)
- Shan-May Yong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117597.
| | | | | | | |
Collapse
|
38
|
Ishii K, Nagai T, Hirota Y, Noda M, Nabeshima T, Yamada K, Kubo KI, Nakajima K. Reelin has a preventive effect on phencyclidine-induced cognitive and sensory-motor gating deficits. Neurosci Res 2015; 96:30-6. [PMID: 25573715 DOI: 10.1016/j.neures.2014.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/26/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
Reelin has recently attracted attention because of its connection to several neuropsychiatric diseases. We previously reported the finding that prior transplantation of GABAergic neuron precursor cells into the medial prefrontal cortex (mPFC) of mice significantly prevented the induction of cognitive and sensory-motor gating deficits induced by phencyclidine (PCP). The majority of the precursor cells transplanted into the mPFC of the recipient mice differentiated into members of a somatostatin/Reelin-expressing class of GABAergic interneurons. These findings raised the possibility that Reelin secreted by the transplanted cells plays an important role in preventing the deficits induced by PCP. In this study, we investigated whether Reelin itself has a preventive effect on PCP-induced behavioral phenotypes by injecting conditioned medium containing Reelin into the lateral ventricle of the brains of 6- to 7-week-old male mice before administrating PCP. Behavioral analyses showed that the prior Reelin injection had a preventive effect against induction of the cognitive and sensory-motor gating deficits associated with PCP. Moreover, one of the types of Reelin receptor was found to be expressed by neurons in the mPFC. The results of this study point to the Reelin signaling pathway as a candidate target for the pharmacologic treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kazuhiro Ishii
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Nagoya, Japan
| | - Yuki Hirota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Noda
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care & Sciences, Meijo University, Nagoya, Japan; NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Nagoya, Japan
| | - Ken-ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Romay-Tallon R, Rivera-Baltanas T, Kalynchuk LE, Caruncho HJ. Differential effects of corticosterone on the colocalization of reelin and neuronal nitric oxide synthase in the adult hippocampus in wild type and heterozygous reeler mice. Brain Res 2015; 1594:274-83. [DOI: 10.1016/j.brainres.2014.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 10/25/2014] [Indexed: 11/27/2022]
|
40
|
Abstract
INTRODUCTION Schizophrenia, a multifactorial disorder, is associated with dopaminergic hyperactivity, dysregulated glutamatergic neurotransmission, neuroinflammation and extracellular matrix (ECM) disturbances. MMPs, a group of structurally related proteolytic enzymes, are responsible for remodeling of ECM that maintains synaptic functions and blood-brain barrier (BBB) patency. Overstimulation of MMPs by neuroinflammation triggers ECM abnormalities that directly or indirectly alter neuronal functions like synaptic plasticity and damage to BBB. MMP-mediated ECM abnormality plays a central role in the pathogenesis of schizophrenia. AREAS COVERED The current review discusses the mechanistic involvement of MMPs in the pathogenesis of schizophrenia and briefly gives an overview on the recent studies on various MMP modulators. EXPERT OPINION Overexpression of MMPs and imbalance between MMP versus tissue inhibitors of metalloproteinase are associated with various ECM disturbances in the schizophrenic brain. Therefore, MMPs can be projected as potential therapeutic target for treatment and/or prevention of positive, negative and cognitive symptoms of schizophrenia. From past decade, scientific community is focusing on broad spectrum MMP modulators as potential therapeutic moieties for prevention of plethora of neurological, cardiovascular and pulmonary diseases. In future, specific MMP modulators should be tailored to regulate ECM integrity and explored for their pharmacotherapeutic potential in schizophrenia.
Collapse
Affiliation(s)
- Kanwaljit Chopra
- Panjab University, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Pharmacology Research Laboratory , Chandigarh 160 014 , India
| | | | | |
Collapse
|
41
|
Corticosterone treatment during adolescence induces down-regulation of reelin and NMDA receptor subunit GLUN2C expression only in male mice: implications for schizophrenia. Int J Neuropsychopharmacol 2014; 17:1221-32. [PMID: 24556017 DOI: 10.1017/s1461145714000121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Stress exposure during adolescence/early adulthood has been shown to increase the risk for psychiatric disorders such as schizophrenia. Reelin plays an essential role in brain development and its levels are decreased in schizophrenia. However, the relationship between stress exposure and reelin expression remains unclear. We therefore treated adolescent reelin heteroyzogous mice (HRM) and wild-type (WT) littermates with the stress hormone, corticosterone (CORT) in their drinking water (25 mg/l) for 3 wk. In adulthood, we measured levels of full-length (FL) reelin and the N-R6 and N-R2 cleavage fragments in the frontal cortex (FC) and dorsal (DH) and ventral (VH) hippocampus. As expected, levels of all reelin forms were approximately 50% lower in HRMs compared to WT. In male mice, CORT treatment significantly decreased FL and N-R2 expression in the FC and N-R2 and N-R6 levels in the DH. This reelin down-regulation was accompanied by significant reductions in downstream N-methyl-D-aspartate (NMDA) GluN2C subunit levels. There were no effects of CORT treatment in the VH of either of the sexes and only subtle changes in female DH. CORT-induced reelin and GluN2C down-regulation in males was not associated with changes in two GABAergic neuron markers, GAD67 and parvalbumin, or glucocorticoids receptors (GR). These results show that CORT treatment causes long-lasting and selective reductions of reelin form levels in male FC and DH accompanied by changes in NMDAR subunit composition. This sex-specific reelin down-regulation in regions implicated in schizophrenia could be involved in the effects of stress in this disease.
Collapse
|
42
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
43
|
Lee GH, Chhangawala Z, von Daake S, Savas JN, Yates JR, Comoletti D, D'Arcangelo G. Reelin induces Erk1/2 signaling in cortical neurons through a non-canonical pathway. J Biol Chem 2014; 289:20307-17. [PMID: 24876378 DOI: 10.1074/jbc.m114.576249] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reelin is an extracellular protein that controls many aspects of pre- and postnatal brain development and function. The molecular mechanisms that mediate postnatal activities of Reelin are not well understood. Here, we first set out to express and purify the full length Reelin protein and a biologically active central fragment. Second, we investigated in detail the signal transduction mechanisms elicited by these purified Reelin proteins in cortical neurons. Unexpectedly, we discovered that the full-length Reelin moiety, but not the central fragment, is capable of activating Erk1/2 signaling, leading to increased p90RSK phosphorylation and the induction of immediate-early gene expression. Remarkably, Erk1/2 activation is not mediated by the canonical signal transduction pathway, involving ApoER2/VLDLR and Dab1, that mediates other functions of Reelin in early brain development. The activation of Erk1/2 signaling likely contributes to the modulation of neuronal maturation and synaptic plasticity by Reelin in the postnatal and adult brain.
Collapse
Affiliation(s)
- Gum Hwa Lee
- From the Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Zinal Chhangawala
- the Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
| | - Sventja von Daake
- the Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
| | - Jeffrey N Savas
- the Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037
| | - John R Yates
- the Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037
| | - Davide Comoletti
- the Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
| | - Gabriella D'Arcangelo
- From the Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854,
| |
Collapse
|
44
|
Sotelo P, Farfán P, Benitez ML, Bu G, Marzolo MP. Sorting nexin 17 regulates ApoER2 recycling and reelin signaling. PLoS One 2014; 9:e93672. [PMID: 24705369 PMCID: PMC3976305 DOI: 10.1371/journal.pone.0093672] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/10/2014] [Indexed: 11/30/2022] Open
Abstract
ApoER2 is a member of the low density-lipoprotein receptor (LDL-R) family. As a receptor for reelin, ApoER2 participates in neuronal migration during development as well as synaptic plasticity and survival in the adult brain. A previous yeast two-hybrid screen showed that ApoER2 is a binding partner of sorting nexin 17 (SNX17) - a cytosolic adaptor protein that regulates the trafficking of several membrane proteins in the endosomal pathway, including LRP1, P-selectin and integrins. However, no further studies have been performed to investigate the role of SNX17 in ApoER2 trafficking and function. In this study, we present evidence based on GST pull-down and inmunoprecipitation assays that the cytoplasmic NPxY endocytosis motif of ApoER2 interacts with the FERM domain of SNX17. SNX17 stimulates ApoER2 recycling in different cell lines including neurons without affecting its endocytic rate and also facilitates the transport of ApoER2 from the early endosomes to the recycling endosomes. The reduction of SNX17 was associated with accumulation of an ApoER2 carboxy-terminal fragment (CTF). In addition, in SNX17 knockdown cells, constitutive ApoER2 degradation was not modified, whereas reelin-induced ApoER2 degradation was increased, implying that SNX17 is a regulator of the receptor's half-life. Finally, in SNX17 silenced hippocampal and cortical neurons, we underscored a positive role of this endosomal protein in the development of the dendritic tree and reelin signaling. Overall, these results establish the role of SNX17 in ApoER2 trafficking and function and aid in identifying new links between endocytic trafficking and receptor signaling.
Collapse
Affiliation(s)
- Pablo Sotelo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millenium Nucleus for Renerative Biology (MINREB), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millenium Nucleus for Renerative Biology (MINREB), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Luisa Benitez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millenium Nucleus for Renerative Biology (MINREB), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - María-Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millenium Nucleus for Renerative Biology (MINREB), Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
45
|
Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Chavis P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry 2014; 19:417-26. [PMID: 23752244 PMCID: PMC3965840 DOI: 10.1038/mp.2013.66] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 02/07/2023]
Abstract
Defective brain extracellular matrix (ECM) is a factor of vulnerability in various psychiatric diseases such as schizophrenia, depression and autism. The glycoprotein reelin is an essential building block of the brain ECM that modulates neuronal development and participates to the functions of adult central synapses. The reelin gene (RELN) is a strong candidate in psychiatric diseases of early onset, but its synaptic and behavioral functions in juvenile brain circuits remain unresolved. Here, we found that in juvenile reelin-haploinsufficient heterozygous reeler mice (HRM), abnormal fear memory erasure is concomitant to reduced dendritic spine density and anomalous long-term potentiation in the prefrontal cortex. In juvenile HRM, a single in vivo injection with ketamine or Ro25-6981 to inhibit GluN2B-N-methyl-D-aspartate receptors (NMDARs) restored normal spine density, synaptic plasticity and converted fear memory to an erasure-resilient state typical of adult rodents. The functional and behavioral rescue by ketamine was prevented by rapamycin, an inhibitor of the mammalian target of rapamycin pathway. Finally, we show that fear memory erasure persists until adolescence in HRM and that a single exposure to ketamine during the juvenile period reinstates normal fear memory in adolescent mice. Our results show that reelin is essential for successful structural, functional and behavioral development of juvenile prefrontal circuits and that this developmental period provides a critical window for therapeutic rehabilitation with GluN2B-NMDAR antagonists.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Dendritic Spines/drug effects
- Dendritic Spines/genetics
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agents/pharmacology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Fear/drug effects
- Fear/physiology
- Female
- In Vitro Techniques
- Ketamine/pharmacology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Patch-Clamp Techniques
- Phenols
- Piperidines/pharmacology
- Prefrontal Cortex/cytology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/growth & development
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reelin Protein
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- J Iafrati
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - M J Orejarena
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - O Lassalle
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - L Bouamrane
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - P Chavis
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| |
Collapse
|
46
|
Reelin in the Years: Controlling Neuronal Migration and Maturation in the Mammalian Brain. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/597395] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extracellular protein Reelin was initially identified as an essential factor in the control of neuronal migration and layer formation in the developing mammalian brain. In the years following its discovery, however, it became clear that Reelin is a multifunctional protein that controls not only the positioning of neurons in the developing brain, but also their growth, maturation, and synaptic activity in the adult brain. In this review, we will highlight the major discoveries of the biological activities of Reelin and the underlying molecular mechanisms that affect the development and function of the mammalian brain, from embryonic ages to adulthood.
Collapse
|
47
|
Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006312. [PMID: 22393530 DOI: 10.1101/cshperspect.a006312] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
48
|
Frischknecht R, Gundelfinger ED. The brain's extracellular matrix and its role in synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:153-71. [PMID: 22351055 DOI: 10.1007/978-3-7091-0932-8_7] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The extracellular matrix (ECM) of the brain has important roles in regulating synaptic function and plasticity. A juvenile ECM supports the wiring of neuronal networks, synaptogenesis, and synaptic maturation. The closure of critical periods for experience-dependent shaping of neuronal circuits coincides with the implementation of a mature form of ECM that is characterized by highly elaborate hyaluronan-based structures, the perineuronal nets (PNN), and PNN-like perisynaptic ECM specializations. In this chapter, we will focus on some recently reported aspects of ECM functions in brain plasticity. These include (a) the discovery that the ECM can act as a passive diffusion barrier for cell surface molecules including neurotransmitter receptors and in this way compartmentalize cell surfaces, (b) the specific functions of ECM components in actively regulating synaptic plasticity and homeostasis, and (c) the shaping processes of the ECM by extracellular proteases and in turn the activation particular signaling pathways.
Collapse
Affiliation(s)
- Renato Frischknecht
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
49
|
Altered N-methyl-D-aspartate receptor function in reelin heterozygous mice: male-female differences and comparison with dopaminergic activity. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:237-46. [PMID: 22361156 DOI: 10.1016/j.pnpbp.2012.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 01/19/2023]
Abstract
The aim of this study was to investigate the in vivo relationship between reelin and NMDA receptor function in schizophrenia. We assessed the effect of reelin deficiency in behavioral models of aspects of this illness, NMDA receptor subunit levels, and NMDA receptor, dopamine D₂ receptor, and dopamine transporter density. Male, but not female, reelin heterozygous mice showed significantly enhanced MK-801-induced locomotor hyperactivity compared to wildtype controls (7.4-fold vs. 5.2-fold effect of MK-801 over saline, respectively) but there were no genotype differences in the response to amphetamine. Both male and female reelin heterozygous mice showed enhanced effects of MK-801 on startle, but not prepulse inhibition (PPI) of startle. There were no group differences in the effect of apomorphine on startle or PPI. The levels of NMDA receptor subunits were not altered in the striatum. In the frontal cortex, male and female reelin heterozygous mice showed significant up-regulation of NR1 subunits, but down-regulation of NR2C subunits, which was associated with significantly elevated NR1/NR2A and NR1/NR2C ratios. However, there were no differences in [³H]MK-801 binding density in the nucleus accumbens or caudate nucleus, nor in the density of [³H]YM-09151 or [³H]GBR12935 in these brain regions. The enhanced effects of MK-801 in reelin heterozygous mice in this study could be reflective of the role of reelin deficiency in schizophrenia. This genotype effect was male-specific for locomotor hyperactivity, a model of psychosis, but was seen in male and female mice for startle, which could be an indication of changes in anxiety. Changes in NMDA receptor subunit levels and ratios were also seen in both male and female mice. These results suggest that the role of reelin deficiency in schizophrenia may be particularly mediated by altered NMDA receptor responses, with some of these effects being strictly sex-specific.
Collapse
|
50
|
Kysenius K, Muggalla P, Mätlik K, Arumäe U, Huttunen HJ. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci 2012; 69:1903-16. [PMID: 22481440 PMCID: PMC11114498 DOI: 10.1007/s00018-012-0977-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/05/2012] [Accepted: 03/22/2012] [Indexed: 12/30/2022]
Abstract
The secreted protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipid (LDL) receptor family members LDLR, very low density lipoprotein receptor (VLDLR) and apolipoprotein receptor 2 (ApoER2), and promotes their degradation in intracellular acidic compartments. In the liver, LDLR is a major controller of blood LDL levels, whereas VLDLR and ApoER2 in the brain mediate Reelin signaling, a critical pathway for proper development of the nervous system. Expression level of PCSK9 in the brain is highest in the cerebellum during perinatal development, but is also increased in the adult brain after ischemia. The mechanism of PCSK9 function and its involvement in neuronal apoptosis is poorly understood. We show here that RNAi-mediated knockdown of PCSK9 significantly reduced the death of potassium-deprived cerebellar granule neurons (CGN), as shown by reduced levels of nuclear phosphorylated c-Jun and activated caspase-3, as well as condensed apoptotic nuclei. ApoER2 protein levels were increased in PCSK9 RNAi cells. Knockdown of ApoER2 but not of VLDLR was sufficient to reverse the protection provided by PCSK9 RNAi, suggesting that proapoptotic signaling of PCSK9 is mediated by altered ApoER2 function. Pharmacological inhibition of signaling pathways associated with lipoprotein receptors suggested that PCSK9 regulates neuronal apoptosis independently of NMDA receptor function but in concert with ERK and JNK signaling pathways. PCSK9 RNAi also reduced staurosporine-induced CGN apoptosis and axonal degeneration in the nerve growth factor-deprived dorsal root ganglion neurons. We conclude that PCSK9 potentiates neuronal apoptosis via modulation of ApoER2 levels and related anti-apoptotic signaling pathways.
Collapse
Affiliation(s)
- Kai Kysenius
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O. Box 56, 00014 Helsinki, Finland
| | - Pranuthi Muggalla
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O. Box 56, 00014 Helsinki, Finland
| | - Kert Mätlik
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Urmas Arumäe
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Henri J. Huttunen
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|