1
|
Gómez-Morón Á, Requena S, Pertusa C, Lozano-Prieto M, Calzada-Fraile D, Scagnetti C, Sánchez-García I, Calero-García AA, Izquierdo M, Martín-Cófreces NB. End-binding protein 1 regulates the metabolic fate of CD4 + T lymphoblasts and Jurkat T cells and the organization of the mitochondrial network. Front Immunol 2023; 14:1197289. [PMID: 37520527 PMCID: PMC10374013 DOI: 10.3389/fimmu.2023.1197289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Immunology, Oftalmology and Otorrinolaryngology Dept., School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Diego Calzada-Fraile
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
| | - Inés Sánchez-García
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | | | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Noa B Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
2
|
Yoo T, Joshi S, Prajapati S, Cho YS, Kim J, Park PH, Bae YC, Kim E, Kim SY. A Deficiency of the Psychiatric Risk Gene DLG2/PSD-93 Causes Excitatory Synaptic Deficits in the Dorsolateral Striatum. Front Mol Neurosci 2022; 15:938590. [PMID: 35966008 PMCID: PMC9370999 DOI: 10.3389/fnmol.2022.938590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variations resulting in the loss of function of the discs large homologs (DLG2)/postsynaptic density protein-93 (PSD-93) gene have been implicated in the increased risk for schizophrenia, intellectual disability, and autism spectrum disorders (ASDs). Previously, we have reported that mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) display autistic-like behaviors, including social deficits and increased repetitive behaviors, as well as suppressed spontaneous excitatory postsynaptic currents in the striatum. However, the neural substrate underpinning such aberrant synaptic network activity remains unclear. Here, we found that the corticostriatal synaptic transmission was significantly impaired in Dlg2–/– mice, which did not seem attributed to defects in presynaptic releases of cortical neurons, but to the reduced number of functional synapses in the striatum, as manifested in the suppressed frequency of miniature excitatory postsynaptic currents in spiny projection neurons (SPNs). Using transmission electron microscopy, we found that both the density of postsynaptic densities and the fraction of perforated synapses were significantly decreased in the Dlg2–/– dorsolateral striatum. The density of dendritic spines was significantly reduced in striatal SPNs, but notably, not in the cortical pyramidal neurons of Dlg2–/– mice. Furthermore, a DLG2/PSD-93 deficiency resulted in the compensatory increases of DLG4/PSD-95 and decreases in the expression of TrkA in the striatum, but not particularly in the cortex. These results suggest that striatal dysfunction might play a role in the pathology of psychiatric disorders that are associated with a disruption of the Dlg2 gene.
Collapse
Affiliation(s)
- Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Shambhu Joshi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | | | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jinkyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Soo Young Kim,
| |
Collapse
|
3
|
Hatakeyama S, Tojo A, Satonaka H, Yamada NO, Senda T, Ishimitsu T. Decreased Podocyte Vesicle Transcytosis and Albuminuria in APC C-Terminal Deficiency Mice with Puromycin-Induced Nephrotic Syndrome. Int J Mol Sci 2021; 22:ijms222413412. [PMID: 34948207 PMCID: PMC8708520 DOI: 10.3390/ijms222413412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
In minimal change nephrotic syndrome, podocyte vesicle transport is enhanced. Adenomatous polyposis coli (APC) anchors microtubules to cell membranes and plays an important role in vesicle transport. To clarify the role of APC in vesicle transport in podocytes, nephrotic syndrome was induced by puromycin amino nucleoside (PAN) injection in mice expressing APC1638T lacking the C-terminal of microtubule-binding site (APC1638T mouse); this was examined in renal tissue changes. The kidney size and glomerular area of APC1638T mice were reduced (p = 0.014); however, the number of podocytes was same between wild-type (WT) mice and APC1638T mice. The ultrastructure of podocyte foot process was normal by electron microscopy. When nephrotic syndrome was induced, the kidneys of WT+PAN mice became swollen with many hyaline casts, whereas these changes were inhibited in the kidneys of APC1638T+PAN mice. Electron microscopy showed foot process effacement in both groups; however, APC1638T+PAN mice had fewer vesicles in the basal area of podocytes than WT+PAN mice. Cytoplasmic dynein-1, a motor protein for vesicle transport, and α-tubulin were significantly reduced in APC1638T+PAN mice associated with suppressed urinary albumin excretion compared to WT+PAN mice. In conclusion, APC1638T mice showed reduced albuminuria associated with suppressed podocyte vesicle transport when minimal change nephrotic syndrome was induced.
Collapse
Affiliation(s)
- Saaya Hatakeyama
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
- Correspondence: ; Tel.: +81-282-86-1111
| | - Hiroshi Satonaka
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
| | - Nami O. Yamada
- Department of Anatomy, Gifu University, Gifu 501-1193, Japan; (N.O.Y.); (T.S.)
| | - Takao Senda
- Department of Anatomy, Gifu University, Gifu 501-1193, Japan; (N.O.Y.); (T.S.)
| | - Toshihiko Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
| |
Collapse
|
4
|
Petitpierre M, Stenz L, Paoloni-Giacobino A. Epigenomic changes after acupuncture treatment in patients suffering from burnout. Complement Med Res 2021; 29:109-119. [PMID: 34875647 DOI: 10.1159/000521347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The effects of acupuncture treatment in patients suffering from burnout may imply an epigenetic control mediated by DNA methylation changes. In this observational study, a genome-wide characterization of epigenetic changes in blood DNA, before and after acupuncture treatment, was performed in a cohort of 11 patients suffering from burnout. METHODS Burnout was assessed using the Maslach Burnout Inventory (MBI) and DNA was extracted from blood samples and analyzed by Illumina EPIC BeadChip. RESULTS Before acupuncture, all patients suffered of emotional exhaustion (EE) (MBI-EE score, 44±6), 81% suffered of depersonalization (DP) (MBI-DP score, 16±6), and 72% of low feelings of personal accomplishment (PA) (MBI-PA score, 29±9). After acupuncture, all MBI dimensions improved significantly (EE, 16±11 [p=1.5*10-4]; DP, 4±5 [p=5.3*10-4]; and PA, 40±6 [p=4.1*10-3]). For each patient, both methylomes obtained before and after acupuncture co-clustered in the multidimensional scaling plot, indicating a high level of similarity. Genes corresponding to the 10 most differentially methylated CpGs showed enrichment in the brain dopaminergic signalling, steroid synthesis and in the insulin sensitivity pathways. CONCLUSION Acupuncture treatment was found to be highly effective on all burnout dimensions and the epigenetic targets identified were involved in some major disturbances of this syndrome.
Collapse
Affiliation(s)
- Marc Petitpierre
- General Medicine, Acupuncture and Chinese Pharmacotherapy Office, Rolle, Switzerland
| | - Ludwig Stenz
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland,
| | | |
Collapse
|
5
|
Abstract
Neurons are highly specialized cells equipped with a sophisticated molecular machinery for the reception, integration, conduction and distribution of information. The evolutionary origin of neurons remains unsolved. How did novel and pre-existing proteins assemble into the complex machinery of the synapse and of the apparatus conducting current along the neuron? In this review, the step-wise assembly of functional modules in neuron evolution serves as a paradigm for the emergence and modification of molecular machinery in the evolution of cell types in multicellular organisms. The pre-synaptic machinery emerged through modification of calcium-regulated large vesicle release, while the postsynaptic machinery has different origins: the glutamatergic postsynapse originated through the fusion of a sensory signaling module and a module for filopodial outgrowth, while the GABAergic postsynapse incorporated an ancient actin regulatory module. The synaptic junction, in turn, is built around two adhesion modules controlled by phosphorylation, which resemble septate and adherens junctions. Finally, neuronal action potentials emerged via a series of duplications and modifications of voltage-gated ion channels. Based on these origins, key molecular innovations are identified that led to the birth of the first neuron in animal evolution.
Collapse
|
6
|
An Inside Job: Molecular Determinants for Postsynaptic Localization of Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113065. [PMID: 34063759 PMCID: PMC8196675 DOI: 10.3390/molecules26113065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.
Collapse
|
7
|
Pirone A, Alexander JM, Koenig JB, Cook-Snyder DR, Palnati M, Wickham RJ, Eden L, Shrestha N, Reijmers L, Biederer T, Miczek KA, Dulla CG, Jacob MH. Social Stimulus Causes Aberrant Activation of the Medial Prefrontal Cortex in a Mouse Model With Autism-Like Behaviors. Front Synaptic Neurosci 2018; 10:35. [PMID: 30369876 PMCID: PMC6194190 DOI: 10.3389/fnsyn.2018.00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent and genetically heterogeneous brain disorder. Developing effective therapeutic interventions requires knowledge of the brain regions that malfunction and how they malfunction during ASD-relevant behaviors. Our study provides insights into brain regions activated by a novel social stimulus and how the activation pattern differs between mice that display autism-like disabilities and control littermates. Adenomatous polyposis coli (APC) conditional knockout (cKO) mice display reduced social interest, increased repetitive behaviors and dysfunction of the β-catenin pathway, a convergent target of numerous ASD-linked human genes. Here, we exposed the mice to a novel social vs. non-social stimulus and measured neuronal activation by immunostaining for the protein c-Fos. We analyzed three brain regions known to play a role in social behavior. Compared with control littermates, APC cKOs display excessive activation, as evidenced by an increased number of excitatory pyramidal neurons stained for c-Fos in the medial prefrontal cortex (mPFC), selectively in the infralimbic sub-region. In contrast, two other social brain regions, the medial amygdala and piriform cortex show normal levels of neuron activation. Additionally, APC cKOs exhibit increased frequency of miniature excitatory postsynaptic currents (mEPSCs) in layer 5 pyramidal neurons of the infralimbic sub-region. Further, immunostaining is reduced for the inhibitory interneuron markers parvalbumin (PV) and somatostatin (SST) in the APC cKO mPFC. Our findings suggest aberrant excitatory-inhibitory balance and activation patterns. As β-catenin is a core pathway in ASD, we identify the infralimbic sub-region of the mPFC as a critical brain region for autism-relevant social behavior.
Collapse
Affiliation(s)
- Antonella Pirone
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Jonathan M Alexander
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Jenny B Koenig
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Denise R Cook-Snyder
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Medha Palnati
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Robert J Wickham
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Lillian Eden
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Neha Shrestha
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Leon Reijmers
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Klaus A Miczek
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Michele H Jacob
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Expression and Manipulation of the APC-β-Catenin Pathway During Peripheral Neuron Regeneration. Sci Rep 2018; 8:13197. [PMID: 30181617 PMCID: PMC6123411 DOI: 10.1038/s41598-018-31167-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Molecules and pathways that suppress growth are expressed in postmitotic neurons, a potential advantage in mature neural networks, but a liability during regeneration. In this work, we probed the APC (adenomatous polyposis coli)-β-catenin partner pathway in adult peripheral sensory neurons during regeneration. APC had robust expression in the cytoplasm and perinuclear region of adult DRG sensory neurons both before and after axotomy injury. β-catenin was expressed in neuronal nuclei, neuronal cytoplasm and also in perineuronal satellite cells. In injured dorsal root ganglia (DRG) sensory neurons and their axons, we observed paradoxical APC upregulation, despite its role as an inhibitor of growth whereas β-catenin was downregulated. Inhibition of APC in adult sensory neurons and activation of β-catenin, LEF/TCF transcriptional factors were associated with increased neuronal plasticity in vitro. Local knockdown of APC, at the site of sciatic nerve crush injury enhanced evidence for electrophysiological, behavioural and structural regeneration in vivo. This was accompanied by upregulation of β-catenin. Collectively, the APC-β-catenin-LEF/TCF transcriptional pathway impacts intrinsic mechanisms of axonal regeneration and neuronal plasticity after injury, offering new options for addressing axon regeneration.
Collapse
|
9
|
Abstract
Background Germline mutations in the coding sequence of the tumour suppressor APC gene give rise to familial adenomatous polyposis (which leads to colorectal cancer) and are associated with many other oncopathologies. The loss of APC function because of deletion of putative promoter 1A or 1B also results in the development of colorectal cancer. Since the regions of promoters 1A and 1B contain many single nucleotide polymorphisms (SNPs), the aim of this study was to perform functional analysis of some of these SNPs by means of an electrophoretic mobility shift assay (EMSA) and a luciferase reporter assay. Results First, it was shown that both putative promoters of APC (1A and 1B) drive transcription in an in vitro reporter experiment. From eleven randomly selected SNPs of promoter 1A and four SNPs of promoter 1B, nine and two respectively showed differential patterns of binding of nuclear proteins to oligonucleotide probes corresponding to alternative alleles. The luciferase reporter assay showed that among the six SNPs tested, the rs75612255 C allele and rs113017087 C allele in promoter 1A as well as the rs138386816 T allele and rs115658307 T allele in promoter 1B significantly increased luciferase activity in the human erythromyeloblastoid leukaemia cell line K562. In human colorectal cancer HCT-116 cells, none of the substitutions under study had any effect, with the exception of minor allele G of rs79896135 in promoter 1B. This allele significantly decreased the luciferase reporter’s activity Conclusion Our results indicate that many SNPs in APC promoters 1A and 1B are functionally relevant and that allele G of rs79896135 may be associated with the predisposition to colorectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0460-8) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Voelzmann A, Hahn I, Pearce SP, Sánchez-Soriano N, Prokop A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 2016; 126:226-237. [PMID: 27530065 PMCID: PMC5090033 DOI: 10.1016/j.brainresbull.2016.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.
Collapse
Affiliation(s)
- André Voelzmann
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ines Hahn
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Pearce
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; The University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Natalia Sánchez-Soriano
- University of Liverpool, Institute of Translational Medicine, Department of Cellular and Molecular Physiology, Crown Street, Liverpool, L69 3BX, UK
| | - Andreas Prokop
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
11
|
Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing. J Neurosci 2015; 35:9236-45. [PMID: 26085645 DOI: 10.1523/jneurosci.4384-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve-muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. SIGNIFICANCE STATEMENT This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing.
Collapse
|
12
|
Stępkowski TM, Wasyk I, Grzelak A, Kruszewski M. 6-OHDA-Induced Changes in Parkinson's Disease-Related Gene Expression are not Affected by the Overexpression of PGAM5 in In Vitro Differentiated Embryonic Mesencephalic Cells. Cell Mol Neurobiol 2015; 35:1137-47. [PMID: 25986246 PMCID: PMC4602069 DOI: 10.1007/s10571-015-0207-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/05/2015] [Indexed: 10/29/2022]
Abstract
LUHMES cells, a recently established line of immortalized embryonic mesencephalic cells, are the novel in vitro model for studying Parkinson's disease (PD) and dopaminergic neuron biology. Phosphoglyceromutase 5 (PGAM5) is a mitochondrial protein involved in mitophagy, mitochondria dynamics, and other processes important for PD pathogenesis. We tested the impact of lentiviral overexpression of PGAM5 protein in LUHMES cells on their differentiation and expression of 84 PD-related genes. LUHMES cells were transduced with PGAM5 or mock and treated with 100 μM 6-hydroxydopamine (6-OHDA), a model PD neurotoxin. Real-Time PCR analysis revealed that the treatment with 6-OHDA-induced changes in expression of 44 PD-related genes. PGAM5 transduction alone did not cause alternations in PD-related genes expression, nor it affected changes in gene expression mediated by 6-OHDA. The 6-OHDA-induced PD-related gene expression profile of LUHMES cells is presented for the first time and widely discussed.
Collapse
Affiliation(s)
- Tomasz Maciej Stępkowski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland.
| | - Iwona Wasyk
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Agnieszka Grzelak
- Department of Molecular Biophysics, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland.,Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.,Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Sucharskiego 2, 35-225, Rzeszów, Poland
| |
Collapse
|
13
|
Regulation of nicotinic acetylcholine receptors in Alzheimer׳s disease: a possible role of chaperones. Eur J Pharmacol 2015; 755:34-41. [PMID: 25771456 DOI: 10.1016/j.ejphar.2015.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/15/2015] [Accepted: 02/22/2015] [Indexed: 12/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) seem to play an integral role in the progress and/or prevention of Alzheimer׳s diseases (AD). Functional abnormalities and problems in biogenesis and trafficking of nAChRs are two major culprits in AD; on the other hand, chaperones modulate post-translational changes in nAChRs. Moreover, they indirectly regulate nAChRs by controlling AD-related proteins such as tau and amyloid beta (Aβ). In this review, we go through recent studies which are showing that chaperones modulate the expression of nAChRs in a subtype-specific manner and explain how AD progress is affected by nAChRs chaperoning.
Collapse
|
14
|
Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β in vivo. Biochem J 2015; 466:415-30. [DOI: 10.1042/bj20140207] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Andrographolide activates the canonical Wnt pathway and induces the transcription of Wnt target genes through a mechanism independent of Wnt ligand binding to its receptor, by direct substrate-competitive inhibition of GSK-3.
Collapse
|
15
|
Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol Psychiatry 2014; 19:1133-42. [PMID: 24934177 PMCID: PMC4317257 DOI: 10.1038/mp.2014.61] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022]
Abstract
Intellectual disabilities (IDs) and autism spectrum disorders link to human APC inactivating gene mutations. However, little is known about adenomatous polyposis coli's (APC's) role in the mammalian brain. This study is the first direct test of the impact of APC loss on central synapses, cognition and behavior. Using our newly generated APC conditional knock-out (cKO) mouse, we show that deletion of this single gene in forebrain neurons leads to a multisyndromic neurodevelopmental disorder. APC cKO mice, compared with wild-type littermates, exhibit learning and memory impairments, and autistic-like behaviors (increased repetitive behaviors, reduced social interest). To begin to elucidate neuronal changes caused by APC loss, we focused on the hippocampus, a key brain region for cognitive function. APC cKO mice display increased synaptic spine density, and altered synaptic function (increased frequency of miniature excitatory synaptic currents, modestly enhanced long-term potentiation). In addition, we found excessive β-catenin levels and associated changes in canonical Wnt target gene expression and N-cadherin synaptic adhesion complexes, including reduced levels of presenilin1. Our findings identify some novel functional and molecular changes not observed previously in other genetic mutant mouse models of co-morbid cognitive and autistic-like disabilities. This work thereby has important implications for potential therapeutic targets and the impact of their modulation. We provide new insights into molecular perturbations and cell types that are relevant to human ID and autism. In addition, our data elucidate a novel role for APC in the mammalian brain as a hub that links to and regulates synaptic adhesion and signal transduction pathways critical for normal cognition and behavior.
Collapse
|
16
|
Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev 2014; 46 Pt 2:315-25. [PMID: 24879992 DOI: 10.1016/j.neubiorev.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/13/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The involvement of the cholinergic system in learning, memory and attention has long been recognized, although its neurobiological mechanisms are not fully understood. Recent evidence identifies the endogenous cholinergic signaling via nicotinic acetylcholine receptors (nAChRs) as key players in determining the morphological and functional maturation of the glutamatergic system. Here, we review the available experimental and clinical evidence of nAChRs contribution to the establishment of the glutamatergic system, and therefore to cognitive function. We provide some clues of the putative underlying molecular mechanisms and discuss recent human studies that associate genetic variability of the genes encoding nAChR subunits with cognitive disorders. Finally, we discuss the new avenues to therapeutically targeting nAChRs in persons with cognitive dysfunction for which the α7-nAChR subunit is an important etiological mechanism.
Collapse
Affiliation(s)
- Susanna Molas
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain.
| |
Collapse
|
17
|
Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 2013; 86:1063-73. [DOI: 10.1016/j.bcp.2013.06.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022]
|
18
|
Takács VT, Freund TF, Nyiri G. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 2013; 8:e72450. [PMID: 24039767 PMCID: PMC3764118 DOI: 10.1371/journal.pone.0072450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 01/17/2023] Open
Abstract
Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum). In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties of brain circuits and behavior.
Collapse
Affiliation(s)
- Virág T. Takács
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F. Freund
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
19
|
Chen Y, Fu AK, Ip NY. Axin: An emerging key scaffold at the synapse. IUBMB Life 2013; 65:685-91. [DOI: 10.1002/iub.1184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/29/2013] [Indexed: 11/12/2022]
|
20
|
Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function. J Neurosci 2013; 32:13906-16. [PMID: 23035100 DOI: 10.1523/jneurosci.2108-12.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubule organization and dynamics are essential during axon and dendrite formation and maintenance in neurons. However, little is known about the regulation of microtubule dynamics during synaptic development and function in mammalian neurons. Here, we present evidence that the microtubule plus-end tracking protein CLASP2 (cytoplasmic linker associated protein 2) is a key regulator of axon and dendrite outgrowth that leads to functional alterations in synaptic activity and formation. We found that CLASP2 protein levels steadily increase throughout neuronal development in the mouse brain and are specifically enriched at the growth cones of extending neurites. The short-hairpin RNA-mediated knockdown of CLASP2 in primary mouse neurons decreased axon and dendritic length, whereas overexpression of human CLASP2 caused the formation of multiple axons, enhanced dendritic branching, and Golgi condensation, implicating CLASP2 in neuronal morphogenesis. In addition, the CLASP2-induced morphological changes led to significant functional alterations in synaptic transmission. CLASP2 overexpression produced a large increase in spontaneous miniature event frequency that was specific to excitatory neurotransmitter release. The changes in presynaptic activity produced by CLASP2 overexpression were accompanied by increases in presynaptic terminal circumference, total synapse number, and a selective increase in presynaptic proteins that are involved in neurotransmitter release. Also, we found a smaller increase in miniature event amplitude that was accompanied by an increase in postsynaptic surface expression of GluA1 receptor localization. Together, these results provide evidence for involvement of the microtubule plus-end tracking protein CLASP2 in cytoskeleton-related mechanisms underlying neuronal polarity and interplay between microtubule stabilization and synapse formation and activity.
Collapse
|
21
|
Onouchi T, Takamori N, Senda T. Colocalization of APC and PSD-95 in the nerve fiber as well as in the post-synapse of matured neurons. Med Mol Morphol 2012; 45:152-60. [DOI: 10.1007/s00795-011-0552-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/20/2011] [Indexed: 11/25/2022]
|
22
|
PMCA2 via PSD-95 controls calcium signaling by α7-containing nicotinic acetylcholine receptors on aspiny interneurons. J Neurosci 2012; 32:6894-905. [PMID: 22593058 DOI: 10.1523/jneurosci.5972-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local control of calcium concentration within neurons is critical for signaling and regulation of synaptic communication in neural circuits. How local control can be achieved in the absence of physical compartmentalization is poorly understood. Challenging examples are provided by nicotinic acetylcholine receptors that contain α7 nicotinic receptor subunits (α7-nAChRs). These receptors are highly permeable to calcium and are concentrated on aspiny dendrites of interneurons, which lack obvious physical compartments for constraining calcium diffusion. Using functional proteomics on rat brain, we show that α7-nAChRs are associated with plasma membrane calcium-ATPase pump isoform 2 (PMCA2). Analysis of α7-nAChR function in hippocampal interneurons in culture shows that PMCA2 activity limits the duration of calcium elevations produced by the receptors. Unexpectedly, PMCA2 inhibition triggers rapid calcium-dependent loss of α7-nAChR clusters. This extreme regulatory response is mediated by CaMKII, involves proteasome activity, depends on the second intracellular loop of α7-nAChR subunits, and is specific in that it does not alter two other classes of calcium-permeable ionotropic receptors on the same neurons. A critical link is provided by the scaffold protein PSD-95 (postsynaptic density-95), which is associated with α7-nAChRs and constrains their mobility as revealed by single-particle tracking on neurons. The PSD-95 link is required for PMCA2-mediated removal of α7-nAChR clusters. This three-component combination of PMCA2, PSD-95, and α7-nAChR offers a novel mechanism for tight control of calcium dynamics in neurons.
Collapse
|
23
|
Abstract
Wnt proteins are best known for their profound roles in cell patterning, because they are required for the embryonic development of all animal species studied to date. Besides regulating cell fate, Wnt proteins are gaining increasing recognition for their roles in nervous system development and function. New studies indicate that multiple positive and negative Wnt signaling pathways take place simultaneously during the formation of vertebrate and invertebrate neuromuscular junctions. Although some Wnts are essential for the formation of NMJs, others appear to play a more modulatory role as part of multiple signaling pathways. Here we review the most recent findings regarding the function of Wnts at the NMJ from both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Kate Koles
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | |
Collapse
|
24
|
Henríquez JP, Salinas PC. Dual roles for Wnt signalling during the formation of the vertebrate neuromuscular junction. Acta Physiol (Oxf) 2012; 204:128-36. [PMID: 21554559 DOI: 10.1111/j.1748-1716.2011.02295.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Wnt proteins play prominent roles in different aspects of neuronal development culminating with the formation of complex neuronal circuits. Here, we discuss new studies addressing the function of Wnt signalling at the peripheral neuromuscular junction (NMJ). In both, invertebrate and vertebrate organisms, Wnt signalling promotes and also inhibits the assembly of the neuromuscular synapse. Here, we focus our attention on recent studies at the vertebrate NMJ that demonstrate that some Wnt proteins collaborate with the Agrin-MuSK signalling to induce post-synaptic differentiation. In contrast, Wnts that activate the Wnt/β-catenin signalling inhibit post-synaptic differentiation. The dual function of different Wnts might finely modulate the proper apposition of the pre- and post-synaptic terminals during NMJ formation and growth.
Collapse
Affiliation(s)
- J P Henríquez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile.
| | | |
Collapse
|
25
|
Gardiner J, Overall R, Marc J. The microtubule cytoskeleton acts as a key downstream effector of neurotransmitter signaling. Synapse 2011; 65:249-56. [PMID: 20687109 DOI: 10.1002/syn.20841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are well known to play a key role in the trafficking of neurotransmitters to the synapse. However, less attention has been paid to their role as downstream effectors of neurotransmitter signaling in the target neuron. Here, we show that neurotransmitter-based signaling to the microtubule cytoskeleton regulates downstream microtubule function through several mechanisms. These include tubulin posttranslational modification, binding of microtubule-associated proteins, release of microtubule-interacting second messenger molecules, and regulation of tubulin expression levels. We review the evidence for neurotransmitter regulation of the microtubule cytoskeleton, focusing on the neurotransmitters serotonin, melatonin, dopamine, glutamate, glycine, and acetylcholine. Some evidence suggests that microtubules may even play a more direct role in propagating action potentials through conductance of electric current. In turn, there is evidence for the regulation of neurotransmission by the microtubule cytoskeleton.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences, The University of Sydney 2006, New South Wales, Australia.
| | | | | |
Collapse
|
26
|
Imura T, Wang X, Noda T, Sofroniew MV, Fushiki S. Adenomatous polyposis coli is essential for both neuronal differentiation and maintenance of adult neural stem cells in subventricular zone and hippocampus. Stem Cells 2011; 28:2053-2064. [PMID: 21089118 DOI: 10.1002/stem.524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that not only inhibits the Wnt signaling pathway by promoting the degradation of β-catenin but also controls cell polarity, motility, and division. APC is abundantly expressed in the adult central nervous system, but its role in adult neurogenesis remains unknown. Using conditional deletion (or knockout) of APC (APC-CKO) from glial fibrillary acidic protein (GFAP)-expressing cells including adult neural stem cells (NSCs) in the subventricular zone and hippocampal dentate gyrus, we show that APC expression by these cells is a critical component of adult neurogenesis. Loss of APC function resulted in a marked reduction of GFAP-expressing NSC-derived new neurons, leading to the decreased volume of olfactory granule cell layer. Two distinct mechanisms account for impaired neurogenesis in APC-CKO mice. First, APC was highly expressed in migrating neuroblasts and APC deletion disturbed the differentiation from Mash1-expressing transient amplifying cells to neuroblasts with concomitant accumulation of β-catenin. As a result, migrating neuroblasts decreased, whereas Mash1-expressing dividing cells reciprocally increased in the olfactory bulb of APC-CKO mice. Second, APC deletion promoted an exhaustion of the adult germinal zone. Functional NSCs and their progeny progressively depleted with age. These findings demonstrate that APC expression plays a key role in regulating intracellular β-catenin level and neuronal differentiation of newly generated cells, as well as maintaining NSCs in the adult neurogenic niche. STEM CELLS 2010;28:2053-2064.
Collapse
Affiliation(s)
- Tetsuya Imura
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Xiaohong Wang
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tetsuo Noda
- Department of Cell Biology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
27
|
Wang X, Imura T, Sofroniew MV, Fushiki S. Loss of adenomatous polyposis coli in Bergmann glia disrupts their unique architecture and leads to cell nonautonomous neurodegeneration of cerebellar Purkinje neurons. Glia 2011; 59:857-68. [PMID: 21381115 DOI: 10.1002/glia.21154] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/13/2011] [Indexed: 01/24/2023]
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that inhibits the Wnt/beta-catenin signaling pathway and regulates the microtubule and actin cytoskeletons. Using conditional knockout (CKO) mice in which the APC gene is inactivated in glial fibrillary acidic protein (GFAP)-expressing cells, we show a selective and critical role for APC in maintaining the morphology and function of cerebellar Bergmann glia, which are specialized astroglia that extend polarized radial processes from the Purkinje cell layer to the pial surface. APC-CKO mice developed Bergmann glia normally until the accumulation of beta-catenin started around postnatal day 10 (P10). Their radial fibers then became shortened with a marked reduction of branching collaterals and their cell bodies translocated into the molecular layer followed by loss of their pial contact and transformation into stellate-shaped cells by P21. Purkinje neurons were normal in appearance and number at P21, but there was significant loss of Purkinje neurons and cerebellar atrophy by middle age. Outside the cerebellum, neither beta-catenin accumulation nor morphological changes were identified in GFAP-expressing astroglia, indicating region-specific effects of APC deletion and an essential role for APC in maintaining the unique morphology of Bergmann glia as compared with other astroglia. These results demonstrate that loss of APC selectively disrupts the Bergmann glial scaffold in late postnatal development and leads to cerebellar degeneration with loss of Purkinje neurons in adults, providing another potential mechanism for region-specific non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
28
|
Potaros T, Phornchirasilp S, McKay SB, González-Cestari TF, Boyd RT, McKay DB. Evidence for the involvement of adenomatous polyposis coli (APC) protein in maintaining cellular distributions of α3β4 nicotinic receptors. Neurosci Lett 2011; 489:105-9. [PMID: 21138757 DOI: 10.1016/j.neulet.2010.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
Evidence exists supporting the involvement of adenomatous polyposis coli (APC) protein in the assembly of neuronal nicotinic acetylcholine receptors (nAChRs) in the postsynaptic complex. In the following studies, the effects of APC protein on cellular distribution of recombinant α3β4 nAChRs was investigated. RT-PCR and Western blotting techniques established the expression of APC protein both in bovine adrenal chromaffin cells, which express native α3β4* nAChRs, and in a HEK293 cell line expressing recombinant bovine adrenal α3β4 nAChRs (BMα3β4 cells). Transfection of BMα3β4 cells with siRNA to APC, reduced APC protein levels to 52.4% and 61.9% of control values at 24 and 48 h after transfection. To investigate the effects of APC on the cellular distribution of α3β4 nAChRs, [(3)H]epibatidine binding approaches, coupled with APC siRNA treatment, were used. Twenty-four and 48 h after APC siRNA transfection, intracellular nAChRs were significantly reduced to 71% and 68% of control, respectively, while the total population of nAChRs were not significantly changed. Given that total cellular nAChRs represent the sum of surface and intracellular nAChRs, these studies support a re-distribution of nAChRs to the plasma membrane with APC siRNA treatment. Treatment of the cells with the protein synthesis inhibitor, puromycin, also caused a significant reduction (55%) in APC protein levels, and produced a similar re-distribution of cellular nAChRs. These studies support the involvement of APC protein in the maintenance of normal cellular distribution of α3β4 nAChRs.
Collapse
Affiliation(s)
- Tulaya Potaros
- Division of Pharmacology, Ohio State University, College of Pharmacy, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
29
|
The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo. J Neurosci 2010; 30:11073-85. [PMID: 20720115 DOI: 10.1523/jneurosci.0983-10.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Synaptic efficacy requires that presynaptic and postsynaptic specializations align precisely and mature coordinately. The underlying mechanisms are poorly understood, however. We propose that adenomatous polyposis coli protein (APC) is a key coordinator of presynaptic and postsynaptic maturation. APC organizes a multiprotein complex that directs nicotinic acetylcholine receptor (nAChR) localization at postsynaptic sites in avian ciliary ganglion neurons in vivo. We hypothesize that the APC complex also provides retrograde signals that direct presynaptic active zones to develop in register with postsynaptic nAChR clusters. In our model, the APC complex provides retrograde signals via postsynaptic neuroligin that interacts extracellularly with presynaptic neurexin. S-SCAM (synaptic cell adhesion molecule) and PSD-93 (postsynaptic density-93) are scaffold proteins that bind to neuroligin. We identify S-SCAM as a novel component of neuronal nicotinic synapses. We show that S-SCAM, PSD-93, neuroligin and neurexin are enriched at alpha3*-nAChR synapses. PSD-93 and S-SCAM bind to APC and its binding partner beta-catenin, respectively. Blockade of selected APC and beta-catenin interactions, in vivo, leads to decreased postsynaptic accumulation of S-SCAM, but not PSD-93. Importantly, neuroligin synaptic clusters are also decreased. On the presynaptic side, there are decreases in neurexin and active zone proteins. Further, presynaptic terminals are less mature structurally and functionally. We define a novel neural role for APC by showing that the postsynaptic APC multiprotein complex is required for anchoring neuroligin and neurexin at neuronal synapses in vivo. APC human gene mutations correlate with autism spectrum disorders, providing strong support for the importance of the association, demonstrated here, between APC, neuroligin and neurexin.
Collapse
|
30
|
Lateral mobility of nicotinic acetylcholine receptors on neurons is determined by receptor composition, local domain, and cell type. J Neurosci 2010; 30:8841-51. [PMID: 20592206 DOI: 10.1523/jneurosci.6236-09.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lateral mobility of surface receptors can define the signaling properties of a synapse and rapidly change synaptic function. Here we use single-particle tracking with Quantum Dots to follow nicotinic acetylcholine receptors (nAChRs) on the surface of chick ciliary ganglion neurons in culture. We find that both heteropentameric alpha3-containing receptors (alpha3*-nAChRs) and homopentameric alpha7-containing receptors (alpha7-nAChRs) access synaptic domains by lateral diffusion. They have comparable mobilities and display Brownian motion in extrasynaptic space but are constrained and move more slowly in synaptic space. The two receptor types differ in the nature of their synaptic restraints. Disruption of lipid rafts, PDZ-containing scaffolds, and actin filaments each increase the mobility of alpha7-nAChRs in synaptic space while collapse of microtubules has no effect. The opposite is seen for alpha3*-nAChRs where synaptic mobility is increased only by microtubule collapse and not the other manipulations. Other differences are found for regulation of alpha3*-nAChR and alpha7-nAChR mobilities in extrasynaptic space. Most striking are effects on the immobile populations of alpha7-nAChRs and alpha3*-nAChRs. Disruption of either lipid rafts or PDZ scaffolds renders half of the immobile alpha3*-nAChRs mobile without changing the proportion of immobile alpha7-nAChRs. Similar results were obtained with chick sympathetic ganglion neurons, though regulation of receptor mobility differed in at least one respect from that seen with ciliary ganglion neurons. Control of nAChR lateral mobility, therefore, is determined by mechanisms that are domain specific, receptor subtype dependent, and cell-type constrained. The outcome is a system that could tailor nicotinic signaling capabilities to specific needs of individual locations.
Collapse
|
31
|
Olesoxime prevents microtubule-targeting drug neurotoxicity: selective preservation of EB comets in differentiated neuronal cells. Biochem Pharmacol 2010; 80:884-94. [PMID: 20417191 DOI: 10.1016/j.bcp.2010.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/30/2010] [Accepted: 04/15/2010] [Indexed: 01/01/2023]
Abstract
Microtubule-targeting agents (MTAs), anticancer drugs widely used in the clinic, often induce peripheral neuropathy, a main dose-limiting side effect. The mechanism for this neurotoxicity remains poorly understood and there are still no approved therapies for neuropathies triggered by MTAs. Olesoxime (cholest-4-en-3-one, oxime; TRO19622) has shown marked neuroprotective properties in animals treated with paclitaxel and vincristine. The purpose of this study was to investigate its mechanism of neuroprotection against MTA neurotoxicity by using rat and human differentiated neuronal cells. We first showed that olesoxime prevented neurite shrinkage induced by MTAs in differentiated PC-12 and SK-N-SH neuroblastoma cell lines by up to 90%. This neuroprotective effect was correlated with enhanced EB1 accumulation at microtubule plus-ends, increased growth cone microtubule growing rate (20%) and decreased microtubule attenuation duration (54%). The effects of olesoxime on EB comets were specific for differentiated neuronal cells and were not seen either in proliferating neuroblastoma cells, glioblastoma cells or primary endothelial cells. Importantly, olesoxime did not alter MTA cytotoxic properties in a wide range of MTA-sensitive tumor cells, a prerequisite for future clinical application. Finally, olesoxime also counteracted MTA inhibition of microtubule-dependent mitochondria trafficking. These results provide additional insight into the neuroprotective properties of olesoxime, highlighting a role for microtubule dynamics in preservation of neurite architecture and axoplasmic transport, which are both disturbed by MTAs. The neuron-specific protective properties of olesoxime support its further development to treat MTA-induced neuropathy.
Collapse
|
32
|
Farías GG, Godoy JA, Cerpa W, Varela-Nallar L, Inestrosa NC. Wnt signaling modulates pre- and postsynaptic maturation: therapeutic considerations. Dev Dyn 2010; 239:94-101. [PMID: 19681159 DOI: 10.1002/dvdy.22065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Wnt signaling regulates a wealth of aspects of nervous system development and function in embryonic stages and in adulthood. The expression of Wnt ligands and components of the Wnt signaling machinery in early stages of neural development has been related to its role in neurite patterning and in synaptogenesis. Moreover, its expression in the mature nervous system suggests a role for this pathway in synaptic maintenance and function. Therefore, it is of crucial relevance the understanding of the mechanisms by which Wnt signaling regulates these processes. Herein, we discuss how different Wnt ligands, acting through different Wnt signaling pathways, operate in pre- and postsynaptic regions to modulate synapse structure and function. We also elaborate on the idea that Wnt signaling pathways are a target for the treatment of neurodegenerative diseases that affect synaptic integrity, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ginny G Farías
- Centro de Envejecimiento y Regeneración (CARE), Instituto Milenio (MIFAB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
33
|
Synchronous and asynchronous transmitter release at nicotinic synapses are differentially regulated by postsynaptic PSD-95 proteins. J Neurosci 2010; 29:15770-9. [PMID: 20016093 DOI: 10.1523/jneurosci.4951-09.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rate and timing of information transfer at neuronal synapses are critical for determining synaptic efficacy and higher network function. Both synchronous and asynchronous neurotransmitter release shape the pattern of synaptic influences on a neuron. The PSD-95 family of postsynaptic scaffolding proteins, in addition to organizing postsynaptic components at glutamate synapses, acts transcellularly to regulate synchronous glutamate release. Here we show that PSD-95 family members at nicotinic synapses on chick ciliary ganglion neurons in culture execute multiple functions to enhance transmission. Together, endogenous PSD-95 and SAP102 in the postsynaptic cell appear to regulate transcellularly the synchronous release of transmitter from presynaptic terminals onto the neuron while stabilizing postsynaptic nicotinic receptor clusters under the release sites. Endogenous SAP97, in contrast, has no effect on receptor clusters but acts transcellularly from the postsynaptic cell through N-cadherin to enhance asynchronous release. These separate and parallel regulatory pathways allow postsynaptic scaffold proteins to dictate the pattern of cholinergic input a neuron receives; they also require balancing of PSD-95 protein levels to avoid disruptive competition that can occur through common binding domains.
Collapse
|
34
|
Abstract
Although WNTs have been long thought of as regulators of cell fate, recent studies highlight their involvement in crucial aspects of synaptic development in the nervous system. Particularly compelling are recent studies of the neuromuscular junction in nematodes, insects, fish and mammals. These studies place WNTs as major determinants of synapse differentiation and neurotransmitter receptor clustering.
Collapse
|
35
|
Neff RA, Gomez-Varela D, Fernandes CC, Berg DK. Postsynaptic scaffolds for nicotinic receptors on neurons. Acta Pharmacol Sin 2009; 30:694-701. [PMID: 19434056 DOI: 10.1038/aps.2009.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Complex postsynaptic scaffolds determine the structure and signaling capabilities of glutamatergic synapses. Recent studies indicate that some of the same scaffold components contribute to the formation and function of nicotinic synapses on neurons. PDZ-containing proteins comprising the PSD-95 family co-localize with nicotinic acetylcholine receptors (nAChRs) and mediate downstream signaling in the neurons. The PDZ-proteins also promote functional nicotinic innervation of the neurons, as does the scaffold protein APC and transmembrane proteins such as neuroligin and the EphB2 receptor. In addition, specific chaperones have been shown to facilitate nAChR assembly and transport to the cell surface. This review summarizes recent results in these areas and raises questions for the future about the mechanism and synaptic role of nAChR trafficking.
Collapse
|
36
|
Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 2008; 25:279-92. [PMID: 18446614 DOI: 10.1080/09687680802035675] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of an extensive super-family of neurotransmitter-gated ion channels. In humans, nAChRs are expressed within the nervous system and at the neuromuscular junction and are important targets for pharmaceutical drug discovery. They are also the site of action for neuroactive pesticides in insects and other invertebrates. Nicotinic receptors are complex pentameric transmembrane proteins which are assembled from a large family of subunits; seventeen nAChR subunits (alpha1-alpha10, beta1-beta4, gamma, delta and epsilon) have been identified in vertebrate species. This review will discuss nAChR subunit diversity and factors influencing receptor assembly and trafficking.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Pharmacology, University College London, London, UK.
| | | |
Collapse
|
37
|
Dystrophin and utrophin isoforms are expressed in glia, but not neurons, of the avian parasympathetic ciliary ganglion. Brain Res 2008; 1218:21-34. [PMID: 18533135 DOI: 10.1016/j.brainres.2008.04.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/14/2008] [Accepted: 04/20/2008] [Indexed: 11/22/2022]
Abstract
Muscular dystrophy patients often show cognitive impairment, in addition to muscle degeneration caused by dystrophin gene defects. The cognitive impairments lead to speculation that the dystrophin protein family may play a key role at neuronal synapses. Dystrophin regulates the stability of selected GABA(A) receptor subtypes and alpha3-containing nicotinic acetylcholine receptors (nAChRs) at a subset of central GABAergic and peripheral sympathetic nicotinic neuron synapses. Similarly, utrophin, the autosomal homologue of dystrophin, is not required for clustering but indirectly stabilizes muscle-type nAChRs at the neuromuscular junction. We examined dystrophin and utrophin expression and localization in the avian parasympathetic ciliary ganglion (CG) to determine whether these proteins play a general role at neuronal nicotinic synapses. We have determined that full-length utrophin and dystrophin and the short dystrophin isoform Dp116 are the major isoforms expressed in the CG based on immunoblotting and immunolabeling. Unexpectedly, the cytoskeletal proteins were not detected at nicotinic synapses or in CG neurons. They are expressed in myelinating and non-myelinating Schwann cells. Further, utrophin expression developmentally precedes that of dystrophin. The proteins show partially overlapping distributions, but also differential accumulation along the surface membrane of Schwann cells adjacent to neuronal somata versus axonal processes. Our findings are consistent with reports that dystrophin protein family members function in the maintenance of cell-cell interactions and myelination by anchoring the Schwann cell surface membrane to the basal lamina. In contrast, our results differ from those in skeletal muscle and a subset of sympathetic neurons where utrophin and dystrophin localize at nicotinic synapses.
Collapse
|
38
|
Breitman M, Zilberberg A, Caspi M, Rosin-Arbesfeld R. The armadillo repeat domain of the APC tumor suppressor protein interacts with Striatin family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1792-802. [PMID: 18502210 DOI: 10.1016/j.bbamcr.2008.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 11/24/2022]
Abstract
Adenomatous polyposis coli (APC) is a multifunctional tumor suppressor protein that negatively regulates the Wnt signaling pathway. The APC gene is ubiquitously expressed in various tissues, especially throughout the large intestine and central nervous system. Mutations in the gene encoding APC have been found in most colorectal cancers and in other types of cancer. The APC gene product is a large multidomain protein that interacts with a variety of proteins, many of which bind to the well conserved armadillo repeat domain of APC. Through its binding partners, APC affects a large number of important cellular processes, including cell-cell adhesion, cell migration, organization of the actin and microtubule cytoskeletons, spindle formation and chromosome segregation. The molecular mechanisms that control these diverse APC functions are only partly understood. Here we describe the identification of an additional APC armadillo repeat binding partner - the Striatin protein. The Striatin family members are multidomain molecules that are mainly neuronal and are thought to function as scaffolds. We have found that Striatin is expressed in epithelial cells and co-localizes with APC in the epithelial tight junction compartment and in neurite tips of PC12 cells. The junctional localization of APC and Striatin is actin-dependent. Depletion of APC or Striatin affected the localization of the tight junction protein ZO-1 and altered the organization of F-actin. These results raise the possibility that the contribution of APC to cell-cell adhesion may be through interaction with Striatin in the tight junction compartment of epithelial cells.
Collapse
Affiliation(s)
- Maya Breitman
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
39
|
Wells GB. Structural answers and persistent questions about how nicotinic receptors work. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:5479-510. [PMID: 18508600 PMCID: PMC2430769 DOI: 10.2741/3094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electron diffraction structure of nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata and the X-ray crystallographic structure of acetylcholine binding protein (AChBP) are providing new answers to persistent questions about how nAChRs function as biophysical machines and as participants in cellular and systems physiology. New high-resolution information about nAChR structures might come from advances in crystallography and NMR, from extracellular domain nAChRs as high fidelity models, and from prokaryotic nicotinoid proteins. At the level of biophysics, structures of different nAChRs with different pharmacological profiles and kinetics will help describe how agonists and antagonists bind to orthosteric binding sites, how allosteric modulators affect function by binding outside these sites, how nAChRs control ion flow, and how large cytoplasmic domains affect function. At the level of cellular and systems physiology, structures of nAChRs will help characterize interactions with other cellular components, including lipids and trafficking and signaling proteins, and contribute to understanding the roles of nAChRs in addiction, neurodegeneration, and mental illness. Understanding nAChRs at an atomic level will be important for designing interventions for these pathologies.
Collapse
Affiliation(s)
- Gregg B Wells
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
40
|
EphB receptors co-distribute with a nicotinic receptor subtype and regulate nicotinic downstream signaling in neurons. Mol Cell Neurosci 2008; 38:236-44. [PMID: 18403216 DOI: 10.1016/j.mcn.2008.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/26/2008] [Indexed: 11/21/2022] Open
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) on neurons engages calcium-dependent signaling pathways regulating numerous events. Receptors containing alpha7 subunits (alpha7-nAChRs) are prominent in this because of their abundance and high relative calcium permeability. We show here that EphB2 receptors are co-localized with postsynaptic alpha7-nAChRs on chick ciliary ganglion neurons and that treatment of the cells with an ephrinB1 construct to activate the EphB receptors exerts physical restraints on both classes of receptors, diminishing their dispersal after spine retraction or lipid raft disruption. Moreover, the ephrinB1/EphB receptor complex specifically enhances the ability of alpha7-nAChRs to activate the transcription factor CREB, acting through a pathway including a receptor tyrosine kinase, a Src family member, PI3 kinase, and protein kinase A most distally. The enhancement does not appear to result from a change in the alpha7-nAChR current amplitude, suggesting a downstream target. The results demonstrate a role for ephrin/EphB action in nicotinic signaling.
Collapse
|
41
|
Rosenberg MM, Yang F, Giovanni M, Mohn JL, Temburni MK, Jacob MH. Adenomatous polyposis coli plays a key role, in vivo, in coordinating assembly of the neuronal nicotinic postsynaptic complex. Mol Cell Neurosci 2008; 38:138-52. [PMID: 18407517 DOI: 10.1016/j.mcn.2008.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/30/2008] [Accepted: 02/10/2008] [Indexed: 11/27/2022] Open
Abstract
The neuronal nicotinic synapse plays a central role in normal cognitive and autonomic function. Molecular mechanisms that direct the assembly of this synapse remain poorly defined, however. We show here that adenomatous polyposis coli (APC) organizes a multi-molecular complex that is essential for targeting alpha3(*)nAChRs to synapses. APC interaction with microtubule plus-end binding protein EB1 is required for alpha3(*)nAChR surface membrane insertion and stabilization. APC brings together EB1, the key cytoskeletal regulators macrophin and IQGAP1, and 14-3-3 adapter protein at nicotinic synapses. 14-3-3, in turn, links the alpha3-subunit to APC. This multi-molecular APC complex stabilizes the local microtubule and F-actin cytoskeleton and links postsynaptic components to the cytoskeleton--essential functions for controlling the molecular composition and stability of synapses. This work identifies macrophin, IQGAP1 and 14-3-3 as novel nicotinic synapse components and defines a new role for APC as an in vivo coordinator of nicotinic postsynaptic assembly in vertebrate neurons.
Collapse
Affiliation(s)
- Madelaine M Rosenberg
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
42
|
Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering. J Neurosci 2007; 27:12590-600. [PMID: 18003838 DOI: 10.1523/jneurosci.2250-07.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Axonal steering reactions depend on the transformation of environmental information into internal, directed structures, which is achieved by differential modulation of the growth cone cytoskeleton; key elements are the microtubules, which are regulated in their dynamics by microtubule-associated proteins (MAPs). We investigated a potential role of the MAP adenomatous polyposis coli (APC) for growing axons, employing embryonic visual system as a model system. APC is concentrated in the distalmost (i.e., growing) region of retinal ganglion cell axons in vivo and in vitro. Within the growth cone, APC is enriched in the central domain; it only partially colocalizes with microtubules. When axons are induced to turn toward a cell or away from a substrate border, APC is present in the protruding and absent from the collapsing growth cone regions, thus indicating the future growth direction of the axon. To assess the functional role of the differential distribution of APC in navigating growth cones, the protein was inactivated via micro-scale chromophore-assisted laser inactivation in one half of the growth cone. If the N-terminal APC region (crucial for its oligomerization) is locally inactivated, the treated growth cone side collapses and the axon turns away. In contrast, if the 20 aa repeats in the middle region of APC (which can negatively regulate its microtubule association) are inactivated, protrusions are formed and the growth cone turns toward. Our data thus demonstrate a crucial role of APC for axon steering attributable to its multifunctional domain structure and differential distribution in the growth cone.
Collapse
|
43
|
Abstract
The role of Wnt signaling in the formation of neural circuits has been well established. Here, I wish to propose a Wnt signaling cascade at the mature central synapse. The synaptic Wnt signaling may have important implications in regulation of brain functions.
Collapse
Affiliation(s)
- Shao-Jun Tang
- Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University of California, Irvine, California 92697-3800, USA.
| |
Collapse
|
44
|
Shimomura A, Ohkuma M, Iizuka-Kogo A, Kohu K, Nomura R, Miyachi EI, Akiyama T, Senda T. Requirement of the tumour suppressor APC for the clustering of PSD-95 and AMPA receptors in hippocampal neurons. Eur J Neurosci 2007; 26:903-12. [PMID: 17714185 DOI: 10.1111/j.1460-9568.2007.05723.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the adenomatous polyposis coli (APC) gene are associated with familial adenomatous polyposis and sporadic colorectal tumours. The APC gene is expressed ubiquitously in various tissues, especially throughout the large intestine and central nervous system (CNS). In the CNS, the expression of the APC protein is highest during embryonic and early postnatal development. APC associates through its C-terminal region with postsynaptic density (PSD)-95, a neuronal protein that participates in synapse development. Here, we examined the involvement of APC in synaptogenesis. In cultured hippocampal neurons, both overexpression of a dominant-negative construct that disrupts the APC-PSD-95 interaction and knockdown of APC expression using small interfering RNA (siRNA) inhibited the clustering of PSD-95 and a glutamate receptor subunit, and reduced alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA)-induced activity of AMPA receptors; however, the clustering of an N-methyl-D-aspartate (NMDA) receptor subunit was unaffected. These results are suggestive of APC involvement in the development of glutamatergic synapses.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Department of Anatomy I, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jaworski J, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 2007; 40:619-37. [PMID: 18023603 DOI: 10.1016/j.biocel.2007.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/16/2007] [Accepted: 10/11/2007] [Indexed: 11/16/2022]
Abstract
Differentiated mammalian cells are often characterized by highly specialized and polarized structure. Its formation and maintenance depends on cytoskeletal components, among which microtubules play an important role. The shape and dynamic properties of microtubule networks are controlled by multiple microtubule-associated factors. These include molecular motors and non-motor proteins, some of which accumulate specifically at the growing microtubule plus-ends (the so-called microtubule plus-end tracking proteins). Plus-end tracking proteins can contribute to the regulation of microtubule dynamics, mediate the cross-talk between microtubule ends, the actin cytoskeleton and the cell cortex, and participate in transport and positioning of structural and regulatory factors and membrane organelles. Malfunction of these proteins results in various human diseases including some forms of cancer, neurodevelopmental disorders and mental retardation. In this article we discuss recent data on microtubule dynamics and activities of microtubule plus-end binding proteins important for the physiology and pathology of differentiated mammalian cells such as neurons, polarized epithelia, muscle and sperm cells.
Collapse
Affiliation(s)
- Jacek Jaworski
- International Institute of Molecular and Cell Biology , Warsaw, Poland.
| | | | | |
Collapse
|
46
|
Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A. Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 2007; 40:68-81. [PMID: 17572842 DOI: 10.1007/s00795-006-0352-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 12/19/2006] [Indexed: 01/17/2023]
Abstract
The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in most sporadic colorectal tumors. During both embryonic and postnatal periods, APC is widely expressed in a variety of tissues, including the brain and gastrointestinal tract. The APC gene product (APC) is a large multidomain protein consisting of 2843 amino acids. APC downregulates the Wnt signaling pathway through its binding to beta-catenin and Axin. Most mutated APC proteins in colorectal tumors lack the beta-catenin-binding regions and fail to inhibit Wnt signaling, leading to the overproliferation of tumor cells. Several mouse models (APC580D, APCDelta716, APC1309, APCMin, APC1638T) have been established to investigate carcinogenesis caused by APC mutations. APC also binds to APC-stimulated guanine nucleotide exchange factor, the kinesin superfamily-associated protein 3, IQGAP1, microtubules, EB1, and discs large (DLG). APC has both nuclear localization signals and nuclear export signals in its molecule, suggesting its occasional nuclear localization and export of beta-catenin from the nucleus. APC is highly expressed in the intestinal and colorectal epithelia and may be involved in homeostasis of the enterocyte renewal phenomena, in which proliferation, migration, differentiation, and apoptosis are highly regulated both temporally and spatially. Through the many binding proteins mentioned, APC can exert multiple functions involved in epithelial homeostasis.
Collapse
Affiliation(s)
- Takao Senda
- Department of Anatomy I, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | | | | | | |
Collapse
|
47
|
Farías GG, Vallés AS, Colombres M, Godoy JA, Toledo EM, Lukas RJ, Barrantes FJ, Inestrosa NC. Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J Neurosci 2007; 27:5313-25. [PMID: 17507554 PMCID: PMC6672358 DOI: 10.1523/jneurosci.3934-06.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 03/19/2007] [Accepted: 03/24/2007] [Indexed: 12/21/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) contribute significantly to hippocampal function. Alpha7-nAChRs are present in presynaptic sites in hippocampal neurons and may influence transmitter release, but the factors that determine their presynaptic localization are unknown. We report here that Wnt-7a, a ligand active in the canonical Wnt signaling pathway, induces dissociation of the adenomatous polyposis coli (APC) protein from the beta-catenin cytoplasmic complex and the interaction of APC with alpha7-nAChRs in hippocampal neurons. Interestingly, Wnt-7a induces the relocalization of APC to membranes, clustering of APC in neurites, and coclustering of APC with different, presynaptic protein markers. Wnt-7a also increases the number and size of coclusters of alpha7-nAChRs and APC in presynaptic terminals. These short-term changes in alpha7-nAChRs occur in the few minutes after ligand exposure and involve translocation to the plasma membrane without affecting total receptor levels. Longer-term exposure to Wnt-7a increases nAChR alpha7 subunit levels in an APC-independent manner and increases clusters of alpha7-nAChRs in neurites via an APC-dependent process. Together, these results demonstrate that stimulation through the canonical Wnt pathway regulates the presynaptic localization of APC and alpha7-nAChRs with APC serving as an intermediary in the alpha7-nAChR relocalization process. Modulation by Wnt signaling may be essential for alpha7-nAChR expression and function in synapses.
Collapse
Affiliation(s)
- Ginny G. Farías
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Ana S. Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, 8000 Bahía Blanca, Argentina, and
| | - Marcela Colombres
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Juan A. Godoy
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Enrique M. Toledo
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | - Francisco J. Barrantes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, 8000 Bahía Blanca, Argentina, and
| | - Nibaldo C. Inestrosa
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| |
Collapse
|
48
|
Zhang B, Luo S, Dong XP, Zhang X, Liu C, Luo Z, Xiong WC, Mei L. Beta-catenin regulates acetylcholine receptor clustering in muscle cells through interaction with rapsyn. J Neurosci 2007; 27:3968-73. [PMID: 17428970 PMCID: PMC6672526 DOI: 10.1523/jneurosci.4691-06.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Agrin is believed to be a factor used by motoneurons to direct acetylcholine receptor (AChR) clustering at the neuromuscular junction. However, exactly how agrin mediates this effect remains unclear. Here we demonstrate that the beta-catenin interacts with rapsyn, a molecule key for AChR clustering. Agrin stimulation increases the association of beta-catenin with surface AChRs. Suppression of beta-catenin expression inhibited agrin-induced AChR clustering, suggesting a necessary role of beta-catenin in this event. The beta-catenin action did not appear to require the function of T-cell factors (TCFs), suggesting a mechanism independent of TCF-mediated transcription. In contrast, prevention of beta-catenin from interacting with alpha-catenin attenuated agrin-induced AChR clustering. These results suggest that beta-catenin may serve as a link between AChRs and alpha-catenin-associated cytoskeleton, revealing a novel function of beta-catenin in synaptogenesis.
Collapse
Affiliation(s)
- Bin Zhang
- Program of Developmental Neurobiology and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Shiwen Luo
- Program of Developmental Neurobiology and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Xian-Ping Dong
- Program of Developmental Neurobiology and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Xian Zhang
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Chunming Liu
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Zhenge Luo
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Wen-Cheng Xiong
- Program of Developmental Neurobiology and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Lin Mei
- Program of Developmental Neurobiology and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| |
Collapse
|
49
|
Speese SD, Budnik V. Wnts: up-and-coming at the synapse. Trends Neurosci 2007; 30:268-75. [PMID: 17467065 PMCID: PMC3499976 DOI: 10.1016/j.tins.2007.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/28/2007] [Accepted: 04/16/2007] [Indexed: 12/11/2022]
Abstract
Synaptic development, function and plasticity are highly regulated processes requiring a precise coordination of pre- and postsynaptic events. Recent studies have begun to highlight Wingless-Int (Wnt) signaling as a key player in synapse differentiation and function. Emerging roles of Wnts include the differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, modulation of synaptic efficacy and regulation of gene expression. These processes are driven by a variety of Wnt transduction pathways. Combined with a myriad of Wnts and Frizzled receptor family members, these pathways highlight the versatility of Wnt signaling and the potential for combinatorial use of these pathways in different aspects of synapse development and function. The identification of neurons secreting Wnt and those containing molecular components downstream of Frizzled receptors indicates that Wnts can function both as anterograde and retrograde signals. These studies open new avenues for understanding how embryonic morphogens are utilized during the development and function of synaptic networks.
Collapse
Affiliation(s)
- Sean D Speese
- Department of Neurobiology, Aaron Lazare Biomedical Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01601, USA
| | | |
Collapse
|
50
|
Roccamo AM, Barrantes FJ. Charged amino acid motifs flanking each extreme of the alphaM4 transmembrane domain are involved in assembly and cell-surface targeting of the muscle nicotinic acetylcholine receptor. J Neurosci Res 2007; 85:285-93. [PMID: 17131427 DOI: 10.1002/jnr.21123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alphaM4 transmembrane domain of the nicotinic acetylcholine receptor (AChR) is flanked by two basic amino acids (His(408) and Arg(429)) located at its cytoplasmic- and extracellular-facing extremes, respectively, at the level of the phospholipid polar head regions of the postsynaptic membrane. A series of single and double alphaM4 mutants (His(408)Ala, Arg(429)Ala, Arg(429)Glu, His(408)Ala/Arg(429)Ala, and His(408)Ala/Arg(429)Glu) of the adult muscle-type AChR were produced and coexpressed with wild-type beta, delta, and epsilon subunits as stable clones in a mammalian heterologous expression system (CHO-K1 cells). The mutants were studied by alpha-bungarotoxin ([(125)I]alpha-BTX) binding, fluorescence microscopy, and equilibrium sucrose gradient centrifugation. Cell-surface [(125)I]alpha-BTX binding diminished approximately 40% in His(408)Ala and as much as 95% in the Arg(429)Ala mutant. Reversing the amino acid charge (e.g., Arg(429)Glu) abolished cell-surface expression of AChR. Fluorescence microscopy disclosed that AChR was retained at the endoplasmic reticulum, with an enhanced occurrence of unassembled AChR species in the mutant clones. Centrifugation analysis confirmed the lack of fully assembled AChR pentamers in all mutants with the exception of His(408)Ala. We conclude that His(408) and Arg(429) in alphaM4 are involved in assembly and cell-surface targeting of muscle AChR. Arg(429) plays a more decisive role in these two processes, suggesting an asymmetric weight of the charged motifs at each extreme of the alpha subunit M4 transmembrane segment. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- A M Roccamo
- Instituto de Investigaciones Bioquimicas and UNESCO Chair of Biophysics and Molecular Neurobiology, Bahía Blanca, Argentina
| | | |
Collapse
|