1
|
Bruns Vi N, Tressler EH, Vendruscolo LF, Leggio L, Farokhnia M. IUPHAR review - Glucagon-like peptide-1 (GLP-1) and substance use disorders: An emerging pharmacotherapeutic target. Pharmacol Res 2024; 207:107312. [PMID: 39032839 PMCID: PMC11467891 DOI: 10.1016/j.phrs.2024.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Addiction is a chronic relapsing disease with high morbidity and mortality. Treatments for addiction include pharmacological and psychosocial interventions; however, currently available medications are limited in number and efficacy. The glucagon-like-peptide-1 (GLP-1) system is emerging as a potential novel pharmacotherapeutic target for alcohol and other substance use disorders (ASUDs). In this review, we summarize and discuss the wealth of available evidence from testing GLP-1 receptor (GLP-1R) agonist medications in preclinical models and humans with ASUDs, possible mechanisms underlying the impact of GLP-1R agonists on alcohol/substance use, gaps in knowledge, and future directions. Most of the research with GLP-1R agonists has been conducted in relation to alcohol use; psychostimulants, opioids, and nicotine have also been investigated. Preclinical evidence suggests that GLP-1R agonists reduce alcohol/substance use and other related outcomes. The main proposed mechanisms are related to reward processing, stress, and cognitive function, as well as broader mechanisms related to satiety, changes in gastric motility, and glucose homeostasis. More in-depth mechanistic studies are warranted. Clinical studies have been limited and their findings have been less conclusive; however, most support the safety and potential efficacy of GLP-1R agonists in ASUD treatment. Identifying preferred compounds, as well as possible subgroups who are most responsive to GLP-1R agonists are some of the key research questions to translate the promising preclinical data into clinical settings. Several clinical trials are underway to test GLP-1R agonists in people with ASUDs.
Collapse
Affiliation(s)
- Nicolaus Bruns Vi
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Elizabeth H Tressler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Guerrero-Hreins E, Foldi CJ, Oldfield BJ, Stefanidis A, Sumithran P, Brown RM. Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a review. Rev Endocr Metab Disord 2022; 23:733-751. [PMID: 34851508 DOI: 10.1007/s11154-021-09696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
Bariatric surgery results in long-term weight loss and an improved metabolic phenotype due to changes in the gut-brain axis regulating appetite and glycaemia. Neuroendocrine alterations associated with bariatric surgery may also influence hedonic aspects of eating by inducing changes in taste preferences and central reward reactivity towards palatable food. However, the impact of bariatric surgery on disordered eating behaviours (e.g.: binge eating, loss-of-control eating, emotional eating and 'addictive eating'), which are commonly present in people with obesity are not well understood. Increasing evidence suggests gut-derived signals, such as appetitive hormones, bile acid profiles, microbiota concentrations and associated neuromodulatory metabolites, can influence pathways in the brain implicated in food intake, including brain areas involved in sensorimotor, reward-motivational, emotional-arousal and executive control components of food intake. As disordered eating prevalence is a key mediator of weight-loss success and patient well-being after bariatric surgery, understanding how changes in the gut-brain axis contribute to disordered eating incidence and severity after bariatric surgery is crucial to better improve treatment outcomes in people with obesity.
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Australia
- Department of Endocrinology, Austin Health, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
3
|
Tachibana T, Nakatani A, Khan S, Makino R, Cline MA. Effect of lithium chloride on food intake, cloacal temperature, voluntary activity, and crop-emptying rate in chicks. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111284. [PMID: 35918017 DOI: 10.1016/j.cbpa.2022.111284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022]
Abstract
Infections frequently accompany with non-specific symptoms such as anorexia and hyperthermia. In addition, there may be unpleasant sensations such as visceral discomfort during infection. Lipopolysaccharide (LPS), a Gram-negative bacteria cell wall component, is known to induce the unpleasant sensation of conditioned taste aversion in mammals. However, the relationship between unpleasant sensations and changes in behavior and physiological conditions has not been investigated extensively in birds. Lithium chloride (LiCl) is a compound that induces unpleasant sensations, including visceral discomfort, although its effects on behavior and physiological conditions have also not been investigated extensively in birds. Thus, the present study was aimed to investigate the effect of an intraperitoneal (IP) injection of LiCl on conditioned visual aversion, food intake, cloacal temperature, voluntary activity, crop-emptying rate, and blood constituents in chicks (Gallus gallus). We also examined the effect of IP injections of LPS and zymosan, a cell wall component of fungus, on conditioned visual aversion formation. First, IP injection of LiCl was confirmed to induce conditioned visual aversion in chicks. An IP injection of LiCl significantly decreased food intake, voluntary activity, and crop-emptying rate but did not affect the temperature. In addition, the injection of LiCl significantly increased plasma corticosterone concentration, indicating that LiCl serves as a stressor in chicks. Finally, IP injections of LPS and zymosan were found to induce conditioned visual aversion in chicks. Collectively, these results suggest that LiCl induces conditioned aversion, anorexia, hypoactivity, and inhibition of crop-emptying in chicks. In addition, LPS and zymosan would induce unpleasant sensations in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - Ai Nakatani
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, United States
| |
Collapse
|
4
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
5
|
Holt MK, Rinaman L. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions. Br J Pharmacol 2021; 179:642-658. [PMID: 34050926 PMCID: PMC8820208 DOI: 10.1111/bph.15576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine, behavioural and autonomic responses to stressful stimuli are orchestrated by complex neural circuits. The caudal nucleus of the solitary tract (cNTS) in the dorsomedial hindbrain is uniquely positioned to integrate signals of both interoceptive and psychogenic stress. Within the cNTS, glucagon‐like peptide‐1 (GLP‐1) and prolactin‐releasing peptide (PrRP) neurons play crucial roles in organising neural responses to a broad range of stressors. In this review we discuss the anatomical and functional overlap between PrRP and GLP‐1 neurons. We outline their co‐activation in response to stressful stimuli and their importance as mediators of behavioural and physiological stress responses. Finally, we review evidence that PrRP neurons are downstream of GLP‐1 neurons and outline unexplored areas of the research field. Based on the current state‐of‐knowledge, PrRP and GLP‐1 neurons may be compelling targets in the treatment of stress‐related disorders.
Collapse
Affiliation(s)
- Marie K Holt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
6
|
Edwards MM, Nguyen HK, Herbertson AJ, Dodson AD, Wietecha T, Wolden-Hanson T, Graham JL, O'Brien KD, Havel PJ, Blevins JE. Chronic hindbrain administration of oxytocin elicits weight loss in male diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R471-R487. [PMID: 33470901 PMCID: PMC8238148 DOI: 10.1152/ajpregu.00294.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
Previous studies indicate that oxytocin (OT) administration reduces body weight in high-fat diet (HFD)-induced obese (DIO) rodents through both reductions in food intake and increases in energy expenditure. We recently demonstrated that chronic hindbrain [fourth ventricular (4V)] infusions of OT evoke weight loss in DIO rats. Based on these findings, we hypothesized that chronic 4V OT would elicit weight loss in DIO mice. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle over 28 days on body weight, food intake, and body composition. OT reduced body weight by approximately 4.5% ± 1.4% in DIO mice relative to OT pretreatment body weight (P < 0.05). These effects were associated with reduced adiposity and adipocyte size [inguinal white adipose tissue (IWAT)] (P < 0.05) and attributed, in part, to reduced energy intake (P < 0.05) at a dose that did not increase kaolin intake (P = NS). OT tended to increase uncoupling protein-1 expression in IWAT (0.05 < P < 0.1) suggesting that OT stimulates browning of WAT. To assess OT-elicited changes in brown adipose tissue (BAT) thermogenesis, we examined the effects of 4V OT on interscapular BAT temperature (TIBAT). 4V OT (1 µg) elevated TIBAT at 0.75 (P = 0.08), 1, and 1.25 h (P < 0.05) postinjection; a higher dose (5 µg) elevated TIBAT at 0.75-, 1-, 1.25-, 1.5-, 1.75- (P < 0.05), and 2-h (0.05 < P < 0.1) postinjection. Together, these findings support the hypothesis that chronic hindbrain OT treatment evokes sustained weight loss in DIO mice by reducing energy intake and increasing BAT thermogenesis at a dose that is not associated with evidence of visceral illness.
Collapse
MESH Headings
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adiposity/drug effects
- Animals
- Anti-Obesity Agents/administration & dosage
- Diet, High-Fat
- Disease Models, Animal
- Eating/drug effects
- Energy Intake/drug effects
- Infusions, Intraventricular
- Leptin/blood
- Male
- Mice, Inbred C57BL
- Obesity/drug therapy
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Oxytocin/administration & dosage
- Rhombencephalon/drug effects
- Rhombencephalon/physiopathology
- Thermogenesis/drug effects
- Uncoupling Protein 1/metabolism
- Weight Loss/drug effects
- Mice
Collapse
Affiliation(s)
- Melise M Edwards
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Ha K Nguyen
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Adam J Herbertson
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Andrew D Dodson
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - Tomasz Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Tami Wolden-Hanson
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
| | - James L Graham
- Department of Nutrition, University of California, Davis, California
| | - Kevin D O'Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, California
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - James E Blevins
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
7
|
Leon RM, Borner T, Stein LM, Urrutia NA, De Jonghe BC, Schmidt HD, Hayes MR. Activation of PPG neurons following acute stressors differentially involves hindbrain serotonin in male rats. Neuropharmacology 2021; 187:108477. [PMID: 33581143 DOI: 10.1016/j.neuropharm.2021.108477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Within the hindbrain, serotonin (5-HT) functions as a modulator of the central glucagon-like peptide-1 (GLP-1) system. This interaction between 5-HT and GLP-1 is achieved via 5-HT2C and 5-HT3 receptors and is relevant for GLP-1-mediated feeding behavior. The central GLP-1 system is activated by various stressors, activates the hypothalamic pituitary adrenocortical (HPA) axis, and contributes to stress-related behaviors. Whether 5-HT modulates GLP-1's role in the stress response in unknown. We hypothesized that the serotonergic modulation of GLP-1-producing neurons (i.e., PPG neurons) is stimuli-specific and that stressed-induced PPG activity is one of the modalities in which 5-HT plays a role. In this study, we investigated the roles of 5-HT2C and 5-HT3 receptors in mediating the activation of PPG neurons in the nucleus tractus solitarius (NTS) following exposure to three different acute stressors: lithium chloride (LiCl), noncontingent cocaine (Coc), and novel restraint stress (RES). Results showed that increased c-Fos expression in PPG neurons following LiCl and RES-but not Coc-is dependent on hindbrain 5-HT2C and 5-HT3 receptor signaling. Additionally, stressors that depend on 5-HT signaling to activate PPG neurons (i.e., LiCl and RES) increased c-Fos expression in 5-HT-expressing neurons within the caudal raphe (CR), specifically in the raphe magnus (RMg). Finally, we showed that RMg neurons innervate NTS PPG neurons and that some of these PPG neurons lie in close proximity to 5-HT axons, suggesting RMg 5-HT-expressing neurons are the source of 5-HT input responsible for engaging NTS PPG neurons. Together, these findings identify a direct RMg to NTS pathway responsible for the modulatory effect of 5-HT on the central GLP-1 system-specifically via activation of 5-HT2C and 5-HT3 receptors-in the facilitation of acute stress responses.
Collapse
Affiliation(s)
- Rosa M Leon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norma A Urrutia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
9
|
Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020; 10:811-837. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene-related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G-protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811-837, 2020.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin. Mol Neurobiol 2020; 57:3307-3333. [DOI: 10.1007/s12035-020-01944-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
|
11
|
Horvathova L, Tillinger A, Padova A, Bizik J, Mravec B. Changes in gene expression in brain structures related to visceral sensation, autonomic functions, food intake, and cognition in melanoma-bearing mice. Eur J Neurosci 2019; 51:2376-2393. [PMID: 31883212 DOI: 10.1111/ejn.14661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
The brain exerts complex effects on the initiation and progression of cancer in the body. However, the influence of cancer localized in peripheral tissues on the brain has been only partially described. Therefore, we investigated gene expression in brain structures that participate in transmitting viscerosensory signals, regulating autonomic functions and food intake, as well as cognition in C57Bl/6J mice with B16-F10 melanoma. In addition, we investigated the relationship between peripheral inflammation and neuroinflammation. We found increased neuronal activity in the nucleus of the solitary tract of tumor-bearing mice, whereas neuronal activity in the A1/C1 catecholaminergic cell group, parabrachial nucleus, lateral hypothalamic area, ventromedial nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, and hippocampus was decreased. In the majority of investigated brain structures, we found increased gene expression of IL-1β, whereas gene expression of IL-6 and NF-κB was reduced or unchanged compared with controls. Melanoma-bearing mice also showed increased gene expression of tyrosine hydroxylase in the A1/C1 catecholaminergic cell group, nucleus of the solitary tract, and locus coeruleus, as well as reduced mRNA levels of hypocretin neuropeptide precursor protein in the lateral hypothalamic area, and proopiomelanocortin in the arcuate nucleus. In addition, we found reduced mRNA levels of Bcl-2, brain-derived neurotrophic factor, and doublecortin in the hippocampus. Our data indicate that skin melanoma induces complex changes in the brain, and these changes are most probably caused by cancer-related signals mediated by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Padova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Bizik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
12
|
Hypophagia induced by hindbrain serotonin is mediated through central GLP-1 signaling and involves 5-HT2C and 5-HT3 receptor activation. Neuropsychopharmacology 2019; 44:1742-1751. [PMID: 30959513 PMCID: PMC6784912 DOI: 10.1038/s41386-019-0384-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
The overlap in neurobiological circuitry mediating the physiological and behavioral response to satiation and noxious/stressful stimuli are not well understood. The interaction between serotonin (5-HT) and glucagon-like peptide-1 (GLP-1) could play a role as upstream effectors involved in mediating associations between anorectic and noxious/stressful stimuli. We hypothesize that 5-HT acts as an endogenous modulator of the central GLP-1 system to mediate satiation and malaise in rats. Here, we investigate whether interactions between central 5-HT and GLP-1 signaling are behaviorally and physiologically relevant for the control of food intake and pica (i.e., behavioral measure of malaise). Results show that the anorexia and body weight changes induced by administration of exogenous hindbrain 5-HT are dependent on central GLP-1 receptor signaling. Furthermore, anatomical evidence shows mRNA expression of 5-HT2C and 5-HT3 receptors on GLP-1-producing preproglucagon (PPG) neurons in the medial nucleus tractus solitarius by fluorescent in situ hybridization, suggesting that PPG neurons are likely to express both of these receptors. Behaviorally, the hypophagia induced by the pharmacological activation of both of these receptors is also dependent on GLP-1 signaling. Finally, 5-HT3, but not 5-HT2C receptors, are required for the anorectic effects of the interoceptive stressor LiCl, suggesting the hypophagia induced by these 5-HT receptors may be driven by different mechanisms. Our findings highlight 5-HT as a novel endogenous modulator of the central GLP-1 system and suggest that the central interaction between 5-HT and GLP-1 is involved in the control of food intake in rats.
Collapse
|
13
|
Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 2019; 128:94-105. [PMID: 31002893 PMCID: PMC7081944 DOI: 10.1016/j.neuint.2019.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Meal ingestion provokes the release of hormones and transmitters, which in turn regulate energy homeostasis and feeding behavior. One such hormone, glucagon-like peptide-1 (GLP-1), has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. In addition to the peripheral actions of GLP-1, this hormone is able to alter behavior through the modulation of multiple neural circuits. Recent work that focused on elucidating the mechanisms and outcomes of GLP-1 neuromodulation led to the discovery of an impressive array of GLP-1 actions. Here, we summarize the many levels at which the GLP-1 signal adapts to different systems, with the goal being to provide a background against which to guide future research.
Collapse
Affiliation(s)
- Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Amphetamine-induced activation of neurons within the rat nucleus of the solitary tract. Physiol Behav 2019; 204:355-363. [PMID: 30831183 DOI: 10.1016/j.physbeh.2019.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
Despite generally being a reinforcing drug of abuse, amphetamine (amph) also produces effects such as hypophagia and conditioned taste avoidance (CTA), which may indicate that amph acts as an aversive homeostatic stressor. Stress-responsive prolactin-releasing peptide (PrRP)-positive noradrenergic and glucagon-like peptide-1 (GLP-1)-positive neurons in the caudal nucleus of the solitary tract (cNTS) are modulated by metabolic state, and are prime candidates for mediating amph-induced hypophagia and CTA. The present study used dual immunolabeling and fluorescent in situ hybridization (RNAscope) to examine acute amph-induced activation of cFos expression in phenotypically-identified cNTS neurons in ad lib-fed vs. overnight-fasted male Sprague Dawley rats. We also examined the impact of food deprivation on amph-induced CTA. Compared to control saline treatment, amph activated significantly more cNTS neurons, including PrRP-negative noradrenergic (NA) neurons, GABAergic neurons, and glutamatergic neurons, but not PrRP or GLP-1 neurons. Amph also increased neural activation within a subset of central cNTS projection targets, including the lateral parabrachial nucleus and central amygdala, but not the paraventricular hypothalamus. Food deprivation did not alter amph-induced neural activation or impact the ability of amph to support CTA. These findings indicate that PrRP-negative NA and other cNTS neurons are recruited by acute amph treatment regardless of metabolic state, and may participate in amph-induced hypophagia and CTA.
Collapse
|
15
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
16
|
Gastric myoelectric activity during cisplatin-induced acute and delayed emesis reveals a temporal impairment of slow waves in ferrets: effects not reversed by the GLP-1 receptor antagonist, exendin (9-39). Oncotarget 2017; 8:98691-98707. [PMID: 29228720 PMCID: PMC5716760 DOI: 10.18632/oncotarget.21859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies show that the glucagon-like peptide-1 (GLP-1) receptor antagonist, exendin (9-39), can reduce acute emesis induced by cisplatin. In the present study, we investigate the effect of exendin (9-39) (100 nmol/24 h, i.c.v), on cisplatin (5 mg/kg, i.p.)-induced acute and delayed emesis and changes indicative of ‘nausea’ in ferrets. Cisplatin induced 37.2 ± 2.3 and 59.0 ± 7.7 retches + vomits during the 0-24 (acute) and 24-72 h (delayed) periods, respectively. Cisplatin also increased (P<0.05) the dominant frequency of gastric myoelectric activity from 9.4 ± 0.1 to 10.4 ± 0.41 cpm and decreased the dominant power (DP) during acute emesis; there was a reduction in the % power of normogastria and an increase in the % power of tachygastria; food and water intake was reduced. DP decreased further during delayed emesis, where normogastria predominated. Advanced multifractal detrended fluctuation analysis revealed that the slow wave signal shape became more simplistic during delayed emesis. Cisplatin did not affect blood pressure (BP), but transiently increased heart rate, and decreased heart rate variability (HRV) during acute emesis; HRV spectral analysis indicated a shift to ‘sympathetic dominance’. A hyperthermic response was seen during acute emesis, but hypothermia occurred during delayed emesis and there was also a decrease in HR. Exendin (9-39) did not improve feeding and drinking but reduced cisplatin-induced acute emesis by ~59 % (P<0.05) and antagonised the hypothermic response (P<0.05); systolic, diastolic and mean arterial BP increased during the delayed phase. In conclusion, blocking GLP-1 receptors in the brain reduces cisplatin-induced acute but not delayed emesis. Restoring power and structure to slow waves may represent a novel approach to treat the side effects of chemotherapy.
Collapse
|
17
|
Ivezaj V, Stoeckel LE, Avena NM, Benoit SC, Conason A, Davis JF, Gearhardt AN, Goldman R, Mitchell JE, Ochner CN, Saules KK, Steffen KJ, Stice E, Sogg S. Obesity and addiction: can a complication of surgery help us understand the connection? Obes Rev 2017; 18:765-775. [PMID: 28429582 DOI: 10.1111/obr.12542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/12/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
Obesity is a multifactorial, chronic disease that has proven difficult to treat. An increased understanding of aetiological mechanisms is critical to the development of more effective obesity prevention and treatment strategies. A growing body of empirical evidence has demonstrated parallels between obesity, overeating and substance abuse, including shared behavioural, psychological and neurophysiological factors implicated in the excessive intake of both food and substances of abuse. Several different lines of research have recently emerged that hold the potential to shed light on the connection between obesity, food reward and addiction, with studies examining changes in alcohol use/misuse after weight loss surgery providing a particularly interesting perspective on these interrelationships. However, these lines of investigation have proceeded in relative isolation, and relevant research findings have yet to be integrated in a synthesized, comprehensive manner. To provide an opportunity to achieve such a synthesis, a scientific symposium was convened at the Radcliffe Institute in Cambridge, Massachusetts. Invited participants were researchers working in diverse domains related to the intersection between obesity and addiction. Extensive discussion was generated suggesting novel research directions. In this article, we summarize and synthesize the symposium participants' ongoing research in this area, incorporating additional relevant research holding potential clues regarding the connections between obesity, weight loss surgery and addiction.
Collapse
Affiliation(s)
- V Ivezaj
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - L E Stoeckel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - N M Avena
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S C Benoit
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - A Conason
- Division of Endocrinology, Diabetes, and Metabolism, Mt. Sinai West, New York, NY, USA
| | - J F Davis
- Department of Integrative Physiology & Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - A N Gearhardt
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - R Goldman
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - J E Mitchell
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA.,Neuropsychiatric Research Institute, Fargo, ND, USA
| | - C N Ochner
- Kendall Regional Medical Center, Hospital, Corporation of America - Physician Services Group, Miami, FL, USA
| | - K K Saules
- Department of Psychology, Eastern Michigan University, Ypsilanti, MI, USA
| | - K J Steffen
- Neuropsychiatric Research Institute, Fargo, ND, USA.,School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - E Stice
- Oregon Research Institute, Eugene, OR, USA
| | - S Sogg
- Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital Weight Center, Boston, MA, USA
| |
Collapse
|
18
|
Jessen L, Smith EP, Ulrich-Lai Y, Herman JP, Seeley RJ, Sandoval D, D’Alessio D. Central Nervous System GLP-1 Receptors Regulate Islet Hormone Secretion and Glucose Homeostasis in Male Rats. Endocrinology 2017; 158:2124-2133. [PMID: 28430981 PMCID: PMC5505222 DOI: 10.1210/en.2016-1826] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
The glucagon-like peptide 1 (GLP-1) system plays an important role in blood glucose regulation, in great part through coordinate control of insulin and glucagon secretion. These effects are generally attributed to GLP-1 produced in peripheral sites, principally the intestine. GLP-1 is also produced in hindbrain neurons that signal through GLP-1 receptors (GLP-1rs) expressed in brain regions involved in metabolic regulation. GLP-1 in the central nervous system (CNS) induces satiety, visceral illness, and stress responses. However, recent evidence suggests CNS GLP-1 is also involved in glucose regulation. To test the hypothesis that central GLP-1 regulates islet hormone secretion, conscious rats were given intracerebroventricular (ICV) GLP-1, GLP-1r antagonist exendin-[9-39] (Ex-9), or saline during fasting or hyperglycemia from intravenous glucose. Administration of CNS GLP-1 increased fasting glucose, glucagon, corticosterone, and epinephrine and blunted insulin secretion in response to hyperglycemia. Paradoxically, GLP-1r blockade with ICV Ex-9 also reduced glucose-stimulated insulin secretion, and administration of ICV Ex-9 to freely feeding rats caused mild glucose intolerance. Thus, direct administration of CNS GLP-1 affected islet hormone secretion counter to what is seen with peripherally administered GLP-1, an effect likely due to stimulation of sympathetic nervous system activity. In contrast, blockade of brain GLP-1r supports a role for CNS GLP-1 on glucose-stimulated insulin secretion and glucose control after a meal. These findings suggest a model in which activation of CNS GLP-1r by endogenous peptide promotes glucose tolerance, an effect that can be overridden by stress responses stimulated by exogenous GLP-1.
Collapse
Affiliation(s)
- Lene Jessen
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45219
| | - Eric P. Smith
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45219
| | - Yvonne Ulrich-Lai
- Department of Psychiatry and Behavioral Neursocience, University of Cincinnati, Cincinnati, Ohio 45219
| | - James P. Herman
- Department of Psychiatry and Behavioral Neursocience, University of Cincinnati, Cincinnati, Ohio 45219
| | - Randy J. Seeley
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45219
| | - Darleen Sandoval
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45219
| | - David D’Alessio
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45219
| |
Collapse
|
19
|
Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav 2017; 176:195-206. [PMID: 28095318 DOI: 10.1016/j.physbeh.2017.01.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
Abstract
Periods of caloric deficit substantially attenuate many centrally mediated responses to acute stress, including neural drive to the hypothalamic-pituitary-adrenal (HPA) axis, anxiety-like behavior, and stress-induced suppression of food intake (i.e., stress hypophagia). It is posited that this stress response plasticity supports food foraging and promotes intake during periods of negative energy balance, even in the face of other internal or external threats, thereby increasing the likelihood that energy stores are repleted. The mechanisms by which caloric deficit alters central stress responses, however, remain unclear. The caudal brainstem contains two distinct populations of stress-recruited neurons [i.e., noradrenergic neurons of the A2 cell group that co-express prolactin-releasing peptide (PrRP+ A2 neurons), and glucagon-like peptide 1 (GLP-1) neurons] that also are responsive to interoceptive feedback about feeding and metabolic status. A2/PrRP and GLP-1 neurons have been implicated anatomically and functionally in the central control of the HPA axis, anxiety-like behavior, and stress hypophagia. The current review summarizes a growing body of evidence that caloric deficits attenuate physiological and behavioral responses to acute stress as a consequence of reduced recruitment of PrRP+ A2 and hindbrain GLP-1 neurons, accompanied by reduced signaling to their brainstem, hypothalamic, and limbic forebrain targets.
Collapse
|
20
|
Vogel H, Wolf S, Rabasa C, Rodriguez-Pacheco F, Babaei CS, Stöber F, Goldschmidt J, DiMarchi RD, Finan B, Tschöp MH, Dickson SL, Schürmann A, Skibicka KP. GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology 2016; 110:396-406. [DOI: 10.1016/j.neuropharm.2016.07.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/09/2023]
|
21
|
Can A, Frost DO, Cachope R, Cheer JF, Gould TD. Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens. J Neurochem 2016; 139:576-585. [PMID: 27513916 DOI: 10.1111/jnc.13769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/21/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
Chronic lithium treatment effectively reduces behavioral phenotypes of mania in humans and rodents. The mechanisms by which lithium exerts these actions are poorly understood. Pre-clinical and clinical evidence have implicated increased mesolimbic dopamine (DA) neurotransmission with mania. We used fast-scan cyclic voltammetry to characterize changes in extracellular DA concentrations in the nucleus accumbens (NAc) core evoked by 20 and 60 Hz electrical stimulation of the ventral tegmental area (VTA) in C57BL6/J mice treated either acutely or chronically with lithium. The effects of chronic lithium treatment on the availability of DA for release were assessed by depleting readily releasable DA using short inter-train intervals, or administering d-amphetamine acutely to mobilize readily releasable DA. Chronic, but not acute, lithium treatment decreased the amplitude of DA responses in the NAc following 60 Hz pulse train stimulation. Neither lithium treatment altered the kinetics of DA release or reuptake. Chronic treatment did not impact the progressive reduction in the amplitude of DA responses when, using 20 or 60 Hz pulse trains, the VTA was stimulated every 6 s to deplete DA. Specifically, the amplitude of DA responses to 60 Hz pulse trains was initially reduced compared to control mice, but by the fifth pulse train, there was no longer a treatment effect. However, chronic lithium treatment attenuated d-amphetamine-induced increases in DA responses to 20 Hz pulse trains stimulation. Our data suggest that long-term administration of lithium may ameliorate mania phenotypes by normalizing the readily releasable DA pool in VTA axon terminals in the NAc. Read the Editorial Highlight for this article on Page 520.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Douglas O Frost
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230:R95-R113. [PMID: 27496374 DOI: 10.1530/joe-16-0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada Department of PhysiologyUniversity of Toronto, Toronto, ON, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada
| |
Collapse
|
23
|
Diz-Chaves Y, Gil-Lozano M, Toba L, Fandiño J, Ogando H, González-Matías LC, Mallo F. Stressing diabetes? The hidden links between insulinotropic peptides and the HPA axis. J Endocrinol 2016; 230:R77-94. [PMID: 27325244 DOI: 10.1530/joe-16-0118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus exerts metabolic stress on cells and it provokes a chronic increase in the long-term activity of the hypothalamus-pituitary-adrenocortical (HPA) axis, perhaps thereby contributing to insulin resistance. GLP-1 receptor (GLP-1R) agonists are pleiotropic hormones that not only affect glycaemic and metabolic control, but they also produce many other effects including activation of the HPA axis. In fact, several of the most relevant effects of GLP-1 might involve, at least in part, the modulation of the HPA axis. Thus, the anorectic activity of GLP-1 could be mediated by increasing CRF at the hypothalamic level, while its lipolytic effects could imply a local increase in glucocorticoids and glucocorticoid receptor (GC-R) expression in adipose tissue. Indeed, the potent activation of the HPA axis by GLP-1R agonists occurs within the range of therapeutic doses and with a short latency. Interestingly, the interactions of GLP-1 with the HPA axis may underlie most of the effects of GLP-1 on food intake control, glycaemic metabolism, adipose tissue biology and the responses to stress. Moreover, such activity has been observed in animal models (mice and rats), as well as in normal humans and in type I or type II diabetic patients. Accordingly, better understanding of how GLP-1R agonists modulate the activity of the HPA axis in diabetic subjects, especially obese individuals, will be crucial to design new and more efficient therapies for these patients.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Manuel Gil-Lozano
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Laura Toba
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Juan Fandiño
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Hugo Ogando
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Lucas C González-Matías
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Federico Mallo
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| |
Collapse
|
24
|
Terrill SJ, Jackson CM, Greene HE, Lilly N, Maske CB, Vallejo S, Williams DL. Role of lateral septum glucagon-like peptide 1 receptors in food intake. Am J Physiol Regul Integr Comp Physiol 2016; 311:R124-32. [PMID: 27194565 PMCID: PMC4967229 DOI: 10.1152/ajpregu.00460.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/05/2016] [Indexed: 01/20/2023]
Abstract
Hindbrain glucagon-like peptide 1 (GLP-1) neurons project to numerous forebrain areas, including the lateral septum (LS). Using a fluorescently labeled GLP-1 receptor (GLP-1R) agonist, Exendin 4 (Ex4), we demonstrated GLP-1 receptor binding throughout the rat LS. We examined the feeding effects of Ex4 and the GLP-1R antagonist Exendin (9-39) (Ex9) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS Ex4 suppressed overnight chow and high-fat diet (HFD) intake, and Ex9 increased chow and HFD intake relative to vehicle. During 2-h tests, intra-LS Ex9 significantly increased 0.25 M sucrose and 4% corn oil. Ex4 can cause nausea, but intra-LS administration of Ex4 did not induce pica. Furthermore, intra-LS Ex4 had no effect on anxiety-like behavior in the elevated plus maze. We investigated the role of LS GLP-1R in motivation for food by examining operant responding for sucrose on a progressive ratio (PR) schedule, with and without a nutrient preload to maximize GLP-1 neuron activation. The preload strongly suppressed PR responding, but blockade of GLP-1R in the intermediate subdivision of the LS did not affect motivation for sucrose under either load condition. The ability of the nutrient load to suppress subsequent chow intake was significantly attenuated by intermediate LS Ex9 treatment. By contrast, blockade of GLP-1R in the dorsal subdivision of the LS increased both PR responding and overnight chow intake. Together, these studies suggest that endogenous activity of GLP-1R in the LS influence feeding, and dLS GLP-1Rs, in particular, play a role in motivation.
Collapse
Affiliation(s)
- Sarah J Terrill
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Christine M Jackson
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Hayden E Greene
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Nicole Lilly
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Calyn B Maske
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Samantha Vallejo
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Diana L Williams
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
25
|
Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016; 65:54-66. [PMID: 26724568 DOI: 10.1016/j.psyneuen.2015.11.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/31/2015] [Accepted: 11/20/2015] [Indexed: 01/04/2023]
Abstract
Glucagon-like peptide 1 (GLP-1), produced in the intestine and hindbrain, is known for its glucoregulatory and appetite suppressing effects. GLP-1 agonists are in clinical use for treatment of type 2 diabetes and obesity. GLP-1, however, may also affect brain areas associated with emotionality regulation. Here we aimed to characterize acute and chronic impact of GLP-1 on anxiety and depression-like behavior. Rats were subjected to anxiety and depression behavior tests following acute or chronic intracerebroventricular or intra-dorsal raphe (DR) application of GLP-1 receptor agonists. Serotonin or serotonin-related genes were also measured in the amygdala, DR and the hippocampus. We demonstrate that both GLP-1 and its long lasting analog, Exendin-4, induce anxiety-like behavior in three rodent tests of this behavior: black and white box, elevated plus maze and open field test when acutely administered intraperitoneally, into the lateral ventricle, or directly into the DR. Acute central GLP-1 receptor stimulation also altered serotonin signaling in the amygdala. In contrast, chronic central administration of Exendin-4 did not alter anxiety-like behavior but significantly reduced depression-like behavior in the forced swim test. Importantly, this positive effect of Exendin-4 was not due to significant body weight loss and reduced food intake, since rats pair-fed to Exendin-4 rats did not show altered mood. Collectively we show a striking impact of central GLP-1 on emotionality and the amygdala serotonin signaling that is divergent under acute versus chronic GLP-1 activation conditions. We also find a novel role for the DR GLP-1 receptors in regulation of behavior. These results may have direct relevance to the clinic, and indicate that Exendin-4 may be especially useful for obese patients manifesting with comorbid depression.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Jennifer E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Caroline Hansson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
26
|
Fortin SM, Chartoff EH, Roitman MF. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors. Neuropsychopharmacology 2016. [PMID: 26211731 PMCID: PMC4707837 DOI: 10.1038/npp.2015.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.
Collapse
Affiliation(s)
- Samantha M Fortin
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA,Psychology, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, USA, Tel: 312 996 3113, Fax: 312 413 4122, E-mail:
| |
Collapse
|
27
|
Heppner KM, Perez-Tilve D. GLP-1 based therapeutics: simultaneously combating T2DM and obesity. Front Neurosci 2015; 9:92. [PMID: 25852463 PMCID: PMC4367528 DOI: 10.3389/fnins.2015.00092] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) enhances meal-related insulin secretion, which lowers blood glucose excursions. In addition to its incretin action, GLP-1 acts on the GLP-1 receptor (GLP-1R) in the brain to suppress feeding. These combined actions of GLP-1R signaling cause improvements in glycemic control as well as weight loss in type II diabetes (T2DM) patients treated with GLP-1R agonists. This is a superior advantage of GLP-1R pharmaceuticals as many other drugs used to treat T2DM are weight neutral or actual cause weight gain. This review summarizes GLP-1R action on energy and glucose metabolism, the effectiveness of current GLP-1R agonists on weight loss in T2DM patients, as well as GLP-1R combination therapies.
Collapse
Affiliation(s)
- Kristy M Heppner
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University Beaverton, OR, USA
| | - Diego Perez-Tilve
- Department of Medicine, Metabolic Diseases Institute, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
28
|
Sharma A, Paliwal G, Upadhyay N, Tiwari A. Therapeutic stimulation of GLP-1 and GIP protein with DPP-4 inhibitors for type-2 diabetes treatment. J Diabetes Metab Disord 2015; 14:15. [PMID: 26473146 PMCID: PMC4607261 DOI: 10.1186/s40200-015-0143-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibition is a new treatment for type-2 diabetes. DPP-4 inhibition increases levels of active GLP-1. GLP-1 enhances insulin secretion and diminishes glucagon secretion, in this manner reducing glucose concentrations in blood. A number of DPP-4 inhibitors are under clinical development. However, the durability and long-term safety of DPP-4 inhibition remain to be established. These synthetic DPP-4 inhibitors are showing some side effects. Herbal medicines are alternative medicine over synthetic drugs that can relieve the patients. Various research studies have been carried all over the world to evaluate the efficacy of herbs in the treatment of Type II diabetes mellitus. For a long time type II diabetes mellitus has been treated orally with herbal medicines, because plant products are frequently prescribed due to their less toxicity than conventional medicines.
Collapse
Affiliation(s)
- Alok Sharma
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| | - Geetanjali Paliwal
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| |
Collapse
|
29
|
Münzberg H, Laque A, Yu S, Rezai-Zadeh K, Berthoud HR. Appetite and body weight regulation after bariatric surgery. Obes Rev 2015; 16 Suppl 1:77-90. [PMID: 25614206 PMCID: PMC4784979 DOI: 10.1111/obr.12258] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bariatric surgery continues to be remarkably efficient in treating obesity and type 2 diabetes mellitus and a debate has started whether it should remain the last resort only or also be used for the prevention of metabolic diseases. Intense research efforts in humans and rodent models are underway to identify the critical mechanisms underlying the beneficial effects with a view towards non-surgical treatment options. This non-systematic review summarizes and interprets some of this literature, with an emphasis on changes in the controls of appetite. Contrary to earlier views, surgery-induced reduction of energy intake and subsequent weight loss appear to be the main drivers for rapid improvements of glycaemic control. The mechanisms responsible for suppression of appetite, particularly in the face of the large weight loss, are not well understood. Although a number of changes in food choice, taste functions, hedonic evaluation, motivation and self-control have been documented in both humans and rodents after surgery, their importance and relative contribution to diminished appetite has not yet been demonstrated. Furthermore, none of the major candidate mechanisms postulated in mediating surgery-induced changes from the gut and other organs to the brain, such as gut hormones and sensory neuronal pathways, have been confirmed yet. Future research efforts should focus on interventional rather than descriptive approaches in both humans and rodent models.
Collapse
Affiliation(s)
- H Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | | | | | | |
Collapse
|
30
|
Richard JE, Farkas I, Anesten F, Anderberg RH, Dickson SL, Gribble FM, Reimann F, Jansson JO, Liposits Z, Skibicka KP. GLP-1 receptor stimulation of the lateral parabrachial nucleus reduces food intake: neuroanatomical, electrophysiological, and behavioral evidence. Endocrinology 2014; 155:4356-67. [PMID: 25116706 PMCID: PMC4256827 DOI: 10.1210/en.2014-1248] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN.
Collapse
Affiliation(s)
- Jennifer E Richard
- Department of Physiology/Metabolic Physiology (J.E.R., R.H.A., K.P.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-40530, Sweden; Laboratory of Endocrine Neurobiology (I.F., Z.L.), Institute of Experimental Medicine, Budapest 1083, Hungary; Department of Physiology/Endocrinology (F.A., S.L.D., J.-O.J.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-40530, Sweden; and Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Institute of Metabolic Science (F.M.G., F.R.), University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat. Eur J Pharmacol 2014; 741:254-63. [DOI: 10.1016/j.ejphar.2014.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
|
32
|
Wright FL, Rodgers RJ. Behavioural profile of exendin-4/naltrexone dose combinations in male rats during tests of palatable food consumption. Psychopharmacology (Berl) 2014; 231:3729-44. [PMID: 24682505 DOI: 10.1007/s00213-014-3507-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE The glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 potently suppresses food intake in animals and humans. However, little is known about the behavioural specificity of this effect either when administered alone or when co-administered with another anorectic agent. OBJECTIVES The present study characterises the effects of exendin-4, both alone and in combination with naltrexone, on behaviours displayed by male rats during tests with palatable mash. METHODS Experiment 1 examined the dose-response effects of exendin-4 (0.025-2.5 μg/kg, IP), while experiment 2 profiled the effects of low-dose combinations of the peptide (0.025 and 0.25 μg/kg) and naltrexone (0.1 mg/kg). RESULTS In experiment 1, exendin-4 dose dependently suppressed food intake as well as the frequency and rate of eating. However, these effects were accompanied by dose-dependent reductions in all active behaviours and, at 2.5 μg/kg, a large increase in resting and disruption of the behavioural satiety sequence (BSS). In experiment 2, while exendin-4 (0.25 μg/kg) and naltrexone each produced a significant reduction in intake and feeding behaviour (plus an acceleration in the BSS), co-treatment failed to produce stronger effects than those seen in response to either compound alone. CONCLUSION Similarities between the behavioural signature of exendin-4 and that previously reported for the emetic agent lithium chloride would suggest that exendin-4 anorexia is related to the aversive effects of the peptide. Furthermore, as low-dose combinations of the peptide with naltrexone failed to produce an additive/synergistic anorectic effect, this particular co-treatment strategy would not appear to have therapeutic significance.
Collapse
Affiliation(s)
- F L Wright
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, Leeds, LS2 9JT, UK, England
| | | |
Collapse
|
33
|
Zheng H, Stornetta RL, Agassandian K, Rinaman L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct 2014; 220:3011-22. [PMID: 25012114 DOI: 10.1007/s00429-014-0841-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 01/30/2023]
Abstract
The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions.
Collapse
Affiliation(s)
- H Zheng
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, 15260, USA
| | | | | | | |
Collapse
|
34
|
Punjabi M, Arnold M, Rüttimann E, Graber M, Geary N, Pacheco-López G, Langhans W. Circulating glucagon-like peptide-1 (GLP-1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance. Endocrinology 2014; 155:1690-9. [PMID: 24601880 DOI: 10.1210/en.2013-1447] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To address the neural mediation of the eating-inhibitory effect of circulating glucagon-like peptide-1 (GLP-1), we investigated the effects of 1) intra-fourth ventricular infusion of the GLP-1 receptor antagonist exendin-9 or 2) area postrema lesion on the eating-inhibitory effect of intrameal hepatic portal vein (HPV) GLP-1 infusion in adult male rats. To evaluate the physiological relevance of the observed effect we examined 3) the influence of GLP-1 on flavor acceptance in a 2-bottle conditioned flavor avoidance test, and 4) measured active GLP-1 in the HPV and vena cava (VC) in relation to a meal and in the VC after HPV GLP-1 infusion. Intrameal HPV GLP-1 infusion (1 nmol/kg body weight-5 min) specifically reduced ongoing meal size by almost 40% (P < .05). Intra-fourth ventricular exendin-9 (10 μg/rat) itself did not affect eating, but attenuated (P < .05) the satiating effect of HPV GLP-1. Area postrema lesion also blocked (P < .05) the eating-inhibitory effect of HPV GLP-1. Pairing consumption of flavored saccharin solutions with HPV GLP-1 infusion did not alter flavor acceptance, indicating that HPV GLP-1 can inhibit eating without inducing malaise. A regular chow meal transiently increased (P < .05) HPV, but not VC, plasma active GLP-1 levels, whereas HPV GLP-1 infusion caused a transient supraphysiological increase (P < .01) in VC GLP-1 concentration 3 minutes after infusion onset. The results implicate hindbrain GLP-1 receptors and the area postrema in the eating-inhibitory effect of circulating GLP-1, but question the physiological relevance of the eating-inhibitory effect of iv infused GLP-1 under our conditions.
Collapse
Affiliation(s)
- Mukesh Punjabi
- Physiology and Behavior Laboratory, Institute of Food, Nutrition, and Health, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8603 Schwerzenbach, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Chan SW, Lu Z, Lin G, Yew DTW, Yeung CK, Rudd JA. The differential antiemetic properties of GLP-1 receptor antagonist, exendin (9-39) in Suncus murinus (house musk shrew). Neuropharmacology 2014; 83:71-8. [PMID: 24726308 DOI: 10.1016/j.neuropharm.2014.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 11/30/2022]
Abstract
The use of glucagon-like peptide-1 (7-36) amide (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus is commonly associated with nausea and vomiting. Previous studies using Suncus murinus revealed that the GLP-1 receptor agonist, exendin-4, induces emesis via the brainstem and/or hypothalamus. The present study investigated the mechanism of exendin-4-induced emesis in more detail. Ondansetron (1 mg/kg, s.c.) and CP-99,994 (10 mg/kg, s.c) failed to reduce emesis induced by exendin-4 (3 nmol, i.c.v.), suggesting that 5-HT3 and NK1 receptors are not involved in the mechanism. In other studies, the GLP-1 receptor antagonist, exendin (9-39), antagonised emesis and c-Fos expression in the brainstem and the paraventricular hypothalamus induced by the chemotherapeutic drug cisplatin (30 mg/kg, i.p.; p < 0.05), but not the emesis induced by nicotine (5 mg/kg, s.c.; p > 0.05), or copper sulphate pentahydrate (120 mg/kg, p.o.; p > 0.05). GLP-1 receptors may therefore represent a potential target for drugs to prevent chemotherapy-induced emesis in situations where 5-HT3 and NK1 receptor antagonists fail.
Collapse
Affiliation(s)
- Sze Wa Chan
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zengbing Lu
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Ge Lin
- Cancer and Inflammation, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - David Tai Wai Yew
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Chi Kong Yeung
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - John A Rudd
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
36
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
37
|
Anderberg RH, Anefors C, Bergquist F, Nissbrandt H, Skibicka KP. Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiol Behav 2014; 136:135-44. [PMID: 24560840 DOI: 10.1016/j.physbeh.2014.02.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/11/2022]
Abstract
Mesolimbic dopamine plays a critical role in food-related reward processing and learning. The literature focuses primarily on the nucleus accumbens as the key dopaminergic target in which enhanced dopamine signaling is associated with reward. Here, we demonstrate a novel neurobiological mechanism by which dopamine transmission in the amygdala regulates food intake and reward. We show that food intake was associated with increased dopamine turnover in the amygdala. Next, we assess the impact of direct intra-amygdala D1 and D2 receptor activation on food intake and sucrose-driven progressive ratio operant conditioning in rats. Amygdala D2 receptor activation reduced food intake and operant behavior for sucrose, whereas D2 receptor blockade increased food intake but surprisingly reduced operant behavior. In contrast, D1 receptor stimulation or blockade did not alter feeding or operant conditioning for food. The glucagon-like peptide 1 (GLP-1) system, a target for type 2 diabetes treatment, in addition to regulating glucose homeostasis, also reduces food intake. We found that central GLP-1R receptor activation is associated with elevated dopamine turnover in the amygdala, and that part of the anorexic effect of GLP-1 is mediated by D2 receptor signaling in the amygdala. Our findings indicate that amygdala dopamine signaling is activated by both food intake and the anorexic brain-gut peptide GLP-1 and that amygdala D2 receptor activation is necessary and sufficient to change feeding behavior. Collectively these studies indicate a novel mechanism by which the dopamine system affects feeding-oriented behavior at the level of the amygdala.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Christine Anefors
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
38
|
Gu G, Roland B, Tomaselli K, Dolman CS, Lowe C, Heilig JS. Glucagon-like peptide-1 in the rat brain: distribution of expression and functional implication. J Comp Neurol 2013; 521:2235-61. [PMID: 23238833 DOI: 10.1002/cne.23282] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/17/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022]
Abstract
Glucagon-like-peptide 1 (GLP-1) is expressed not only in gut endocrine cells, but also in cells in the caudal brainstem and taste buds. To better understand the functions of central GLP-1, GLP-1 expression was immunohistochemically profiled in normal rat brain and its distribution correlated with FOS induction following systemic administration of a GLP-1 receptor agonist, exendin-4. In the present study, only a small number of GLP-1-immunoreactive cell bodies were observed in the nucleus of the solitary tract (NTS). However, these neurons send abundant projections to other regions of the brain, in particular the forebrain, including the paraventricular and dorsomedial nuclei of the hypothalamus, the central nucleus of the amygdala, the oval nucleus of the bed nuclei of the stria terminalis, and the paraventricular nucleus of the thalamus. Intraperitoneal administration of exendin-4 resulted in extensive FOS expression in areas of the forebrain and the hindbrain. In the forebrain, FOS expression was largely confined to regions where a high density of GLP-1-immunoreactive terminals was also localized. The majority of GLP-1-immunoreactive cells in the NTS were not FOS-positive. FOS-positive cells appeared to represent a different population from those expressing GLP-1. Thus, GLP-1-containing neurons in the brainstem may not be involved in receiving and relaying to other regions of the brain the physiological signals of prandial GLP-1 secreted by intestinal L-cells. Projections of GLP-1-containing neurons to the distinctive structures in the forebrain imply that central GLP-1 may play an important role in the behavioral and metabolic integration of autonomic control and arousal in the rat.
Collapse
Affiliation(s)
- Guibao Gu
- Amylin Pharmaceuticals, San Diego, California 92121, USA.
| | | | | | | | | | | |
Collapse
|
39
|
McKay NJ, Daniels D. Glucagon-like peptide-1 receptor agonist administration suppresses both water and saline intake in rats. J Neuroendocrinol 2013; 25:929-38. [PMID: 23957745 PMCID: PMC3794436 DOI: 10.1111/jne.12086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 08/05/2013] [Accepted: 08/10/2013] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) plays an important role in energy homeostasis. Injections of GLP-1 receptor (GLP-1R) agonists suppress food intake, and endogenous GLP-1 is released when nutrients enter the gut. There is also growing evidence that the GLP-1 system is involved in the regulation of body fluid homeostasis. GLP-1R agonists suppress water intake independent of their effects on food intake. It is unknown, however, whether this suppressive effect of GLP-1R agonists extends to saline intake. Accordingly, we tested the effect of the GLP-1R agonists liraglutide (0.05 μg) and exendin-4 (0.05 μg) on water and saline intake, as stimulated either by angiotensin II (AngII) or by water deprivation with partial rehydration (WD-PR). Each agonist suppressed AngII-induced water intake; however, only exendin-4 suppressed saline intake. WD-PR-induced water and saline intakes were both attenuated by each agonist. Analysis of drinking microstructure after WD-PR found a reliable effect of the agonists on burst number. Furthermore, exendin-4 conditioned a robust taste avoidance to saccharine; however, there was no similar effect of liraglutide. To evaluate the relevance of the conditioned taste avoidance, we tested whether inducing visceral malaise by injection of lithium chloride (LiCl) suppressed fluid intake. Injection of LiCl did not suppress water or saline intakes. Overall, these results indicate that the fluid intake suppression by GLP-1R activation is not selective to water intake, is a function of post-ingestive feedback, and is not secondary to visceral malaise.
Collapse
Affiliation(s)
| | - Derek Daniels
- address for correspondence and reprint requests: Derek Daniels, Department of Psychology, B74 Park Hall, University at Buffalo, SUNY, Buffalo, NY 14260, Fax:(716) 645-3801, Ph: (716)645-0264,
| |
Collapse
|
40
|
Trapp S, Richards JE. The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant? Curr Opin Pharmacol 2013; 13:964-9. [PMID: 24075717 PMCID: PMC3988995 DOI: 10.1016/j.coph.2013.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/04/2013] [Indexed: 01/01/2023]
Abstract
PPG neurons express GLP-1 and project to autonomic control sites throughout the brain. The distribution of PPG axon terminals mirrors the distribution of GLP-1 receptor cells throughout the CNS. Brain-derived GLP-1 plays a role in suppression of hedonic and metabolic food intake.
Glucagon-like peptide-1 (GLP-1) is both a peripherally expressed incretin and a centrally active neuropeptide. Brain derived GLP-1, produced in preproglucagon (PPG) neurons located in the nucleus of the solitary tract (NTS) and projecting to numerous brain regions, is ideally placed to activate central GLP-1 receptors in a range of autonomic control areas. In vivo analysis of central GLP-1 using GLP-1 receptor antagonists has demonstrated the control of a range of feeding responses mediated by GLP-1 receptor activation. Recent advances enabling identification and targeting of the neurons in the NTS has specifically implicated PPG neurons at the core of GLP-1 dependent central and peripheral control for short-term and long-term energy balance.
Collapse
Affiliation(s)
- Stefan Trapp
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
41
|
Bednářová A, Kodrík D, Krishnan N. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:91-100. [PMID: 23085293 DOI: 10.1016/j.cbpa.2012.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
Abstract
Glucagon is conventionally regarded as a hormone, counter regulatory in function to insulin and plays a critical anti-hypoglycemic role by maintaining glucose homeostasis in both animals and humans. Glucagon performs this function by increasing hepatic glucose output to the blood by stimulating glycogenolysis and gluconeogenesis in response to starvation. Additionally it plays a homeostatic role by decreasing glycogenesis and glycolysis in tandem to try and maintain optimal glucose levels. To perform this action, it also increases energy expenditure which is contrary to what one would expect and has actions which are unique and not entirely in agreement with its role in protection from hypoglycemia. Interestingly, glucagon-like peptides (GLP-1 and GLP-2) from the major fragment of proglucagon (in non-mammalian vertebrates, as well as in mammals) may also modulate response to stress in addition to their other physiological actions. These unique modes of action occur in response to psychological, metabolic and other stress situations and mirror the role of adipokinetic hormones (AKHs) in insects which perform a similar function. The findings on the anti-stress roles of glucagon and glucagon-like peptides in mammalian and non-mammalian vertebrates may throw light on the multiple stress responsive mechanisms which operate in a concerted manner under regulation by AKH in insects thus functioning as a stress responsive hormone while also maintaining organismal homeostasis.
Collapse
Affiliation(s)
- Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Science, Branišovská 31, České Budějovice, 370 05-CZ, Czech Republic
| | | | | |
Collapse
|
42
|
Gastric bypass surgery attenuates ethanol consumption in ethanol-preferring rats. Biol Psychiatry 2012; 72:354-60. [PMID: 22444202 DOI: 10.1016/j.biopsych.2012.01.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is an effective weight loss strategy employed to treat obesity and associated complications. Importantly, the RYGB procedure has been reported to attenuate reward-related consummatory behaviors. The present work examined the hypothesis that RYGB surgery attenuates ethanol intake and reward in the context of frequent ethanol consumption. METHODS To do this, self-report of ethanol intake was examined in human bariatric patients (n = 6165) before and following the RYGB procedure. In addition, we utilized a rodent model of RYGB and examined ethanol consumption and ethanol reward in male ethanol-preferring (P) rats, which are selectively bred to consume large volumes of ethanol. RESULTS Patients that reported frequent consumption of ethanol before RYGB reported decreased consumption following RYGB surgery. Moreover, the RYGB procedure decreased ethanol intake and the reinforcing properties of ethanol in P rats. Notably, the attenuating effect of RYGB surgery on ethanol consumption was associated with ethanol-induced increases in the gut hormone glucagon-like peptide-1 (GLP-1). Pharmacologic administration of GLP-1 agonists attenuated ethanol consumption in sham P rats. In addition, pharmacologic replacement of the gut hormone ghrelin restored drinking behavior in P rats following RYGB. CONCLUSIONS Collectively, these findings unveil the potential of RYGB surgery to attenuate ethanol consumption in some humans and rats. Furthermore, our data indicate that this regulation is achieved, in part, through reduction of reward and is modified by the gut hormones GLP-1 and ghrelin.
Collapse
|
43
|
Roth JD, Erickson MR, Chen S, Parkes DG. GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. Br J Pharmacol 2012; 166:121-36. [PMID: 21671898 DOI: 10.1111/j.1476-5381.2011.01537.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The discoveries of the incretin hormone glucagon-like peptide-1 (GLP-1) and the β-cell hormone amylin have translated into hormone-based therapies for diabetes. Both classes of molecules also exhibit weight-lowering effects and have been investigated for their anti-obesity potential. In the present review, we explore the mechanisms underlying the physiological and pharmacological actions of GLP-1 and amylin agonism. Despite their similarities (e.g. both molecular classes slow gastric emptying, decrease glucagon and inhibit food intake), there are important distinctions between the central and/or peripheral pathways that mediate their effects on glycaemia and energy balance. We suggest that understanding the similarities and differences between these molecules holds important implications for the development of novel, combination-based therapies, which are increasingly the norm for diabetes/metabolic disease. Finally, the future of GLP-1- and amylin agonist-based therapeutics is discussed.
Collapse
|
44
|
Sasaki-Hamada S, Okada S, Ito K, Iwai T, Oka JI. Immunohistochemical determination of the site of hypotensive effects of glucagon-like peptide-2 in the rat brain. Neuroscience 2012; 212:140-8. [DOI: 10.1016/j.neuroscience.2012.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/18/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
|
45
|
Vickers SP, Jackson HC, Cheetham SC. The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol 2012; 164:1248-62. [PMID: 21265828 DOI: 10.1111/j.1476-5381.2011.01245.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The global incidence of obesity continues to rise and is a major driver of morbidity and mortality through cardiovascular and cerebrovascular diseases. Animal models used in the discovery of novel treatments for obesity range from straightforward measures of food intake in lean rodents to long-term studies in animals exhibiting obesity due to the continuous access to diets high in fat. The utility of these animal models can be extended to determine, for example, that weight loss is due to fat loss and/or assess whether beneficial changes in key plasma parameters (e.g. insulin) are evident. In addition, behavioural models such as the behavioural satiety sequence can be used to confirm that a drug treatment has a selective effect on food intake. Typically, animal models have excellent predictive validity whereby drug-induced weight loss in rodents subsequently translates to weight loss in man. However, despite this, at the time of writing orlistat (Europe; USA) remains the only drug currently marketed for the treatment of obesity, with sibutramine having recently been withdrawn from sale globally due to the increased incidence of serious, non-fatal cardiovascular events. While the utility of rodent models in predicting clinical weight loss is detailed, the review also discusses whether animals can be used to predict adverse events such as those seen with recent anti-obesity drugs in the clinic.
Collapse
|
46
|
Erreger K, Davis AR, Poe AM, Greig NH, Stanwood GD, Galli A. Exendin-4 decreases amphetamine-induced locomotor activity. Physiol Behav 2012; 106:574-8. [PMID: 22465309 DOI: 10.1016/j.physbeh.2012.03.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is released in response to nutrient ingestion and is a regulator of energy metabolism and consummatory behaviors through both peripheral and central mechanisms. The GLP-1 receptor (GLP-1R) is widely distributed in the central nervous system, however little is known about how GLP-1Rs regulate ambulatory behavior. The abused psychostimulant amphetamine (AMPH) promotes behavioral locomotor activity primarily by inducing the release of the neurotransmitter dopamine. Here, we identify the GLP-1R agonist exendin-4 (Ex-4) as a modulator of behavioral activation by AMPH. We report that in rats a single acute administration of Ex-4 decreases both basal locomotor activity as well as AMPH-induced locomotor activity. Ex-4 did not induce behavioral responses reflecting anxiety or aversion. Our findings implicate GLP-1R signaling as a novel modulator of psychostimulant-induced behavior and therefore a potential therapeutic target for psychostimulant abuse.
Collapse
Affiliation(s)
- Kevin Erreger
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Objective One developing strategy for obesity treatment has been to use combinations of differently acting pharmacotherapies to improve weight loss with fewer adverse effects. The purpose of this study was to determine whether the combination of naltrexone, an opioid antagonist acting on the reward system, and exendin-4, a glucagon-like peptide 1 (GLP-1) agonist, acting on satiety signaling, would produce larger reductions in food intake than either alone in rats. Because the anorectic potencies of both compounds have been associated with nausea and malaise, the influence of these drug combinations on the acquisition of a conditioned taste aversion (CTA) was also determined. Methods In Experiment 1, the acute anorectic effects of naltrexone (0.32–3.2 mg/kg; IP) and exendin-4 (1–10 µg/kg; IP) were assessed alone or in combination. Combinational doses were further investigated by the repeated daily administration of 1 mg/kg naltrexone + 3.2 µg/kg exendin-4 for 4 days. In Experiment 2, both compounds alone or in combination were used as unconditioned stimuli in a series of CTA tests. Results Naltrexone and exendin-4, alone or in combination, suppressed food intake in a dose dependent fashion, and the interaction on food intake between naltrexone and exendin-4 was additive. In the CTA paradigm, naltrexone (1 mg/Kg) alone did not support acquisition, whereas a CTA was evident with doses of Ex-4 (1 or 3.2 µg/Kg). Combinations of naltrexone and exendin-4 also resulted in a more rapid and robust acquisition of a CTA. Conclusion Given that the Nal and Ex-4 combination produces additive effects on not only food intake reduction but also food aversion learning, this specific drug combination does not have the benefit of minimizing the adverse effects associated with each individual drug. These data suggest that it is necessary to evaluate both the positive and adverse effects at early stages of combinational drug development.
Collapse
|
48
|
Abstract
GLP-1 receptors are expressed in the brain, especially in the regions responsible for the regulation of food intake, and intracerebroventricular injection of GLP-1 results in inhibition of food intake. Peripheral administration of GLP-1 dose-dependently enhances satiety and reduces food intake in normal and obese subjects as well as in type 2 diabetic patients. So far, the mechanisms by which GLP-1 exerts its effects are not completely clear. Interactions with neurons in the gastrointestinal tract or possibly direct access to the brain through the blood-brain barrier as observed in rats are possible and discussed in this chapter as well as a novel hypothesis based on the finding that GLP-1 is also expressed in taste cells. Finally, the role of GLP-1 receptor agonists as a possible treatment option in obesity is discussed as well as the role of GLP-1 in the effects of bariatric surgery on adiposity and glucose homeostasis.
Collapse
|
49
|
Kwon B, Houpt TA. Mitogen-activated protein kinase in the amygdala plays a critical role in lithium chloride-induced taste aversion learning. Neurobiol Learn Mem 2012; 97:132-9. [PMID: 22085719 PMCID: PMC3532514 DOI: 10.1016/j.nlm.2011.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/20/2011] [Accepted: 10/31/2011] [Indexed: 11/28/2022]
Abstract
The intracellular mitogen-activated protein kinase (MAPK) pathway in the brain is necessary for the formation of a variety of memories including conditioned taste aversion (CTA) learning. However, the functional role of MAPK activation in the amygdala during lithium chloride (LiCl)-induced CTA learning has not been established. In the present study, we investigated if local microinjection of SL327, a MAPK kinase inhibitor, into the rat amygdala could alleviate LiCl-induced CTA learning. Our results revealed that acute administration of a high dose of LiCl (0.15M, 12 ml/kg, i.p.) rapidly increased the level of phosphorylated MAPK (pMAPK)-positive cells in the central nucleus of the amygdala (CeA) and nucleus of the solitary tract (NTS) of rats as measured by immunohistochemistry. Local microinjection of SL327 (1 μg/0.5 μl/hemisphere) into the CeA 10 min before LiCl administration decreased both the strength of LiCl-induced CTA paired with 0.125% saccharin and the level of LiCl-induced pMAPK-positive cells in the CeA, but not in the NTS. Our data suggest that the intracellular signaling cascade of the MAPK pathway in the CeA plays a critical role in the processing of visceral information induced by LiCl for CTA learning.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4295, USA
| | | |
Collapse
|
50
|
Mathes CM, Bueter M, Smith KR, Lutz TA, le Roux CW, Spector AC. Roux-en-Y gastric bypass in rats increases sucrose taste-related motivated behavior independent of pharmacological GLP-1-receptor modulation. Am J Physiol Regul Integr Comp Physiol 2011; 302:R751-67. [PMID: 22170618 DOI: 10.1152/ajpregu.00214.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery has been shown to decrease consummatory responsiveness of rats to high sucrose concentrations, and genetic deletion of glucagon-like peptide-1 receptors (GLP-1R) has been shown to decrease consummatory responsiveness of mice to low-sucrose concentrations. Here we assessed the effects of RYGB and pharmacological GLP-1R modulation on sucrose licking by chow-fed rats in a brief-access test that assessed consummatory and appetitive behaviors. Rats were tested while fasted presurgically and postsurgically and while nondeprived postsurgically and 5 h after intraperitoneal injections with the GLP-1R antagonist exendin-3(9-39) (30 μg/kg), agonist exendin-4 (1 μg/kg), and vehicle in 30-min sessions during which a sucrose concentration series (0.01-1.0 M) was presented in 10-s trials. Other rats were tested postsurgically or 15 min after peptide or vehicle injection while fasted and while nondeprived. Independent of food-deprivation state, sucrose experience, or GLP-1R modulation, RYGB rats took 1.5-3× as many trials as sham-operated rats, indicating increased appetitive behavior. Under nondeprived conditions, RYGB rats with presurgical sucrose experience licked more to sucrose relative to water compared with sham-operated rats. Exendin-4 and exendin-3(9-39) impacted 0.3 M sucrose intake in a one-bottle test, but never interacted with surgical group to affect brief-access responding. Unlike prior reports in both clearly obese and relatively leaner rats given RYGB and in GLP-1R knockout mice, we found that neither RYGB nor GLP-1R blockade decreased consummatory responsiveness to sucrose in our less obese chow-fed rats. Collectively, these results highlight the fact that changes in taste-driven motivated behavior to sucrose after RYGB and/or GLP-1R modulation are very model and measure dependent.
Collapse
Affiliation(s)
- C M Mathes
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301,USA
| | | | | | | | | | | |
Collapse
|