1
|
Guzmán-Herrera N, Ruíz-Madrigal B, Parés-Hipólito J, Salazar-Olivo LA. SERPINA3 is expressed in human adipocytes and modulated by TNF-α and vitamin B6. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01053-y. [PMID: 40425899 DOI: 10.1007/s11626-025-01053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/10/2025] [Indexed: 05/29/2025]
Abstract
SERPINA3G participates in the antiadipogenesis and insulin resistance induced by TNF-α in 3T3-F442A murine cells. Here, we show that the human orthologue SERPINA3 is expressed in human subcutaneous and visceral adipose depots of normal-weight individuals and that TNF-α and RA induced the overexpression of SERPINA3 mRNA in cultured human subcutaneous and visceral adipocytes, although only TNF-α induced the expression of serpin A3 protein. We also demonstrate that vitamin B6 abrogated the expression of the SERPINA3 gene and diminished the anti-adipogenic effects of TNF-α on mature adipocytes. Our results indicate that SERPINA3 is expressed in human adipose tissues and modulates the antiadipogenic effects of TNF-α, and suggest serpin A3 could be a promissory target in the inflammatory processes linked to obesity and other adipose dysfunctions.
Collapse
Affiliation(s)
- Nataly Guzmán-Herrera
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, San Luis Potosí, 78216, México
| | - Bertha Ruíz-Madrigal
- Microbiology Research Laboratory, Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Sierra Mojada 950, Guadalajara, 44340, Jalisco, México
| | - Jaime Parés-Hipólito
- Health Sciences Division, Universidad Autónoma del Estado de Quintana Roo, Blvd. Bahía S/N del Bosque, Quintana Roo, 77019, Chetumal, México
- Present Address: Hospital Militar de Especialidades Oftalmológicas, Alcaldía Miguel Hidalgo, Av Constituyentes 240, Col. Ampliación Daniel Garza, CP, 11830, Mexico City, México
| | - Luis A Salazar-Olivo
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, San Luis Potosí, 78216, México.
| |
Collapse
|
2
|
Moda F, Ferracin C, Dellarole IL, Bistaffa E, De Luca CMG, Zattoni M, Legari D, Nikolic L, Burato A, Brce M, Bufano G, Bacınoğlu MB, Cazzaniga FA, Rovis TL, Legname G. Exploring the impact of SerpinA3n deficiency on prion strains propagation. Neurobiol Dis 2025:106973. [PMID: 40425129 DOI: 10.1016/j.nbd.2025.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/09/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of devastating neurodegenerative diseases characterized by the conversion of the normal cellular prion protein (PrPC) into its misfolded, pathogenic form, PrPSc. Despite significant research, the exact molecular mechanisms driving PrPC to PrPSc conversion remain elusive and are thought to involve multiple molecules or cofactors. One protein of interest, SERPINA3 (murine SerpinA3n), is an acute-phase protein, a member of the serine protease inhibitor family. Intriguingly, SERPINA3 expression is notably upregulated in the brains of patients with Creutzfeldt-Jakob disease and in mice experimentally infected with prions, suggesting a potential role in prion disease pathology. In this study, we deepened the role of SerpinA3n in prion conversion and propagation by utilizing SerpinA3n-deficient (SerpinA3n-/-) mice intracerebrally injected with the RML, 139A, or ME7 prion strains. Our results demonstrated that the specific absence of SerpinA3n did not significantly affect prion propagation, as evidenced by the lack of notable changes in clinical and neuropathological assessments. Compensatory mechanisms involving other serpins or molecules may mitigate the effects of the specific absence of SerpinA3n, thereby maintaining efficient prion propagation.
Collapse
Affiliation(s)
- Fabio Moda
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy; Unit of Laboratory Medicine - Laboratory of Clinical Pathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Ferracin
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Ilaria Linda Dellarole
- Unit of Laboratory Medicine - Laboratory of Clinical Pathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Edoardo Bistaffa
- Unit of Neurology 5 and Neuropathology - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | | | - Lea Nikolic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Anna Burato
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martina Brce
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Bufano
- Unit of Laboratory Medicine - Laboratory of Clinical Pathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Merve Begüm Bacınoğlu
- Unit of Laboratory Medicine - Laboratory of Clinical Pathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federico Angelo Cazzaniga
- Unit of Laboratory Medicine - Laboratory of Clinical Pathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy; ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.
| |
Collapse
|
3
|
Liu C, Zhao XM, Wang Q, Du TT, Zhang MX, Wang HZ, Li RP, Liang K, Gao Y, Zhou SY, Xue T, Zhang JG, Han CL, Shi L, Zhang LW, Meng FG. Astrocyte-derived SerpinA3N promotes neuroinflammation and epileptic seizures by activating the NF-κB signaling pathway in mice with temporal lobe epilepsy. J Neuroinflammation 2023; 20:161. [PMID: 37422673 DOI: 10.1186/s12974-023-02840-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Impaired activation and regulation of the extinction of inflammatory cells and molecules in injured neuronal tissues are key factors in the development of epilepsy. SerpinA3N is mainly associated with the acute phase response and inflammatory response. In our current study, transcriptomics analysis, proteomics analysis, and Western blotting showed that the expression level of Serpin clade A member 3N (SerpinA3N) is significantly increased in the hippocampus of mice with kainic acid (KA)-induced temporal lobe epilepsy, and this molecule is mainly expressed in astrocytes. Notably, in vivo studies using gain- and loss-of-function approaches revealed that SerpinA3N in astrocytes promoted the release of proinflammatory factors and aggravated seizures. Mechanistically, RNA sequencing and Western blotting showed that SerpinA3N promoted KA-induced neuroinflammation by activating the NF-κB signaling pathway. In addition, co-immunoprecipitation revealed that SerpinA3N interacts with ryanodine receptor type 2 (RYR2) and promotes RYR2 phosphorylation. Overall, our study reveals a novel SerpinA3N-mediated mechanism in seizure-induced neuroinflammation and provides a new target for developing neuroinflammation-based strategies to reduce seizure-induced brain injury.
Collapse
Affiliation(s)
- Chong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Xue-Min Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Qiao Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Ting-Ting Du
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Mo-Xuan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Hui-Zhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Ren-Peng Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Kun Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Yuan Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Si-Yu Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Tao Xue
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Jian-Guo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chun-Lei Han
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Lin Shi
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Liang-Wen Zhang
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Li Y, Guo L. The versatile role of Serpina3c in physiological and pathological processes: a review of recent studies. Front Endocrinol (Lausanne) 2023; 14:1189007. [PMID: 37288300 PMCID: PMC10242157 DOI: 10.3389/fendo.2023.1189007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Murine Serpina3c belongs to the family of serine protease inhibitors (Serpins), clade "A" and its human homologue is SerpinA3. Serpina3c is involved in some physiological processes, including insulin secretion and adipogenesis. In the pathophysiological process, the deletion of Serpina3c leads to more severe metabolic disorders, such as aggravated non-alcoholic fatty liver disease (NAFLD), insulin resistance and obesity. In addition, Serpina3c can improve atherosclerosis and regulate cardiac remodeling after myocardial infarction. Many of these processes are directly or indirectly mediated by its inhibition of serine protease activity. Although its function has not been fully revealed, recent studies have shown its potential research value. Here, we aimed to summarize recent studies to provide a clearer view of the biological roles and the underlying mechanisms of Serpina3c.
Collapse
Affiliation(s)
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Wang D, Chen B, Bai S, Zhao L. Screening and identification of tissue-infiltrating immune cells and genes for patients with emphysema phenotype of COPD. Front Immunol 2022; 13:967357. [PMID: 36248880 PMCID: PMC9563378 DOI: 10.3389/fimmu.2022.967357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo study the tissue-infiltrating immune cells of the emphysema phenotype of chronic obstructive pulmonary disease (COPD) and find the molecular mechanism related to the development of emphysema to offer potential targets for more precise treatment of patients with COPD.MethodsCombined analyses of COPD emphysema phenotype lung tissue-related datasets, GSE47460 and GSE1122, were performed. CIBERSORT was used to assess the distribution of tissue-infiltrating immune cells. Weighted gene co-expression network analysis (WGCNA) was used to select immune key genes closely related to clinical features. Rt-qPCR experiments were used for the validation of key genes. Emphysema risk prediction models were constructed by logistic regression analysis and a nomogram was developed.ResultsIn this study, three immune cells significantly associated with clinical features of emphysema (FEV1 post-bronchodilator % predicted, GOLD Stage, and DLCO) were found. The proportion of neutrophils (p=0.025) infiltrating in the emphysema phenotype was significantly increased compared with the non-emphysema phenotype, while the proportions of M2 macrophages (p=0.004) and resting mast cells (p=0.01) were significantly decreased. Five immune-related differentially expressed genes (DEGs) were found. WGCNA and clinical lung tissue validation of patients with emphysema phenotype were performed to further screen immune-related genes closely related to clinical features. A key gene (SERPINA3) was selected and included in the emphysema risk prediction model. Compared with the traditional clinical prediction model (AUC=0.923), the combined prediction model, including SERPINA3 and resting mast cells (AUC=0.941), had better discrimination power and higher net benefit.ConclusionThis study comprehensively analyzed the tissue-infiltrating immune cells significantly associated with emphysema phenotype, including M2 macrophages, neutrophils, and resting mast cells, and identified SERPINA3 as a key immune-related gene.
Collapse
Affiliation(s)
- Di Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bingnan Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
7
|
Zattoni M, Mearelli M, Vanni S, Colini Baldeschi A, Tran TH, Ferracin C, Catania M, Moda F, Di Fede G, Giaccone G, Tagliavini F, Zanusso G, Ironside JW, Ferrer I, Legname G. Serpin Signatures in Prion and Alzheimer's Diseases. Mol Neurobiol 2022; 59:3778-3799. [PMID: 35416570 PMCID: PMC9148297 DOI: 10.1007/s12035-022-02817-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
Serpins represent the most broadly distributed superfamily of proteases inhibitors. They contribute to a variety of physiological functions and any alteration of the serpin-protease equilibrium can lead to severe consequences. SERPINA3 dysregulation has been associated with Alzheimer's disease (AD) and prion diseases. In this study, we investigated the differential expression of serpin superfamily members in neurodegenerative diseases. SERPIN expression was analyzed in human frontal cortex samples from cases of sporadic Creutzfeldt-Jakob disease (sCJD), patients at early stages of AD-related pathology, and age-matched controls not affected by neurodegenerative disorders. In addition, we studied whether Serpin expression was dysregulated in two animal models of prion disease and AD.Our analysis revealed that, besides the already observed upregulation of SERPINA3 in patients with prion disease and AD, SERPINB1, SERPINB6, SERPING1, SERPINH1, and SERPINI1 were dysregulated in sCJD individuals compared to controls, while only SERPINB1 was upregulated in AD patients. Furthermore, we analyzed whether other serpin members were differentially expressed in prion-infected mice compared to controls and, together with SerpinA3n, SerpinF2 increased levels were observed. Interestingly, SerpinA3n transcript and protein were upregulated in a mouse model of AD. The SERPINA3/SerpinA3nincreased anti-protease activity found in post-mortem brain tissue of AD and prion disease samples suggest its involvement in the neurodegenerative processes. A SERPINA3/SerpinA3n role in neurodegenerative disease-related protein aggregation was further corroborated by in vitro SerpinA3n-dependent prion accumulation changes. Our results indicate SERPINA3/SerpinA3n is a potential therapeutic target for the treatment of prion and prion-like neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Marika Mearelli
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.,German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Silvia Vanni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.,Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.,Institute of Biomedicine, Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - Thanh Hoa Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.,VN-UK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | - Chiara Ferracin
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Marcella Catania
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - James W Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,Institute of Biomedical Research of Bellvitge (IDIBELL), Hospitalet de Llobregat, Spain.,Biomedical Research Network Center of Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
8
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
9
|
Regional, cellular and species difference of two key neuroinflammatory genes implicated in schizophrenia. Brain Behav Immun 2020; 88:826-839. [PMID: 32450195 DOI: 10.1016/j.bbi.2020.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) regulates the expression of many inflammatory genes that are overexpressed in a subset of people with schizophrenia. Transcriptional reduction in one NF-κB inhibitor, Human Immunodeficiency Virus Enhancer Binding Protein 2 (HIVEP2), is found in the brain of patients, aligning with evidence of NF-κB over-activity. Cellular co-expression of HIVEP2 and cytokine transcripts is a prerequisite for a direct effect of HIVEP2 on pro-inflammatory transcription, and we do not know if changes in HIVEP2 and markers of neuroinflammation are occurring in the same brain cell type. We performed in situ hybridisation on postmortem dorsolateral prefrontal cortex tissue to map and compare the expression of HIVEP2 and Serpin Family A Member 3 (SERPINA3), one of the most consistently increased inflammatory genes in schizophrenia, between schizophrenia patients and controls. We find that HIVEP2 expression is neuronal and is decreased in almost all grey matter cortical layers in schizophrenia patients with neuroinflammation, and that SERPINA3 is increased in the dorsolateral prefrontal cortex grey matter and white matter in the same group of patients. We are the first to map the upregulation of SERPINA3 to astrocytes and to some neurons, and find evidence to suggest that blood vessel-associated astrocytes are the main cellular source of SERPINA3 in the schizophrenia cortex. We show that a lack of HIVEP2 in mice does not cause astrocytic upregulation of Serpina3n but does induce its transcription in neurons. We speculate that HIVEP2 downregulation is not a direct cause of astrocytic pro-inflammatory cytokine synthesis in schizophrenia but may contribute to neuronally-mediated neuroinflammation.
Collapse
|
10
|
Murphy CE, Lawther AJ, Webster MJ, Asai M, Kondo Y, Matsumoto M, Walker AK, Weickert CS. Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J Neuroinflammation 2020; 17:215. [PMID: 32680547 PMCID: PMC7368759 DOI: 10.1186/s12974-020-01890-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background High inflammation status despite an absence of known infection characterizes a subpopulation of people with schizophrenia who suffer from more severe cognitive deficits, less cortical grey matter, and worse neuropathology. Transcripts encoding factors upstream of nuclear factor kappa B (NF-κB), a major transcriptional activator for the synthesis of pro-inflammatory cytokines, are increased in the frontal cortex in schizophrenia compared to controls. However, the extent to which these changes are disease-specific, restricted to those with schizophrenia and high-neuroinflammatory status, or caused by loss of a key NF-κB inhibitor (HIVEP2) found in schizophrenia brain, has not been tested. Methods Post-mortem prefrontal cortex samples were assessed in 141 human brains (69 controls and 72 schizophrenia) and 13 brains of wild-type mice and mice lacking HIVEP2 (6 wild-type, 7 knockout mice). Gene expression of pro-inflammatory cytokines and acute phase protein SERPINA3 was used to categorize high and low neuroinflammation biotype groups in human samples via cluster analysis. Expression of 18 canonical and non-canonical NF-κB pathway genes was assessed by qPCR in human and mouse tissue. Results In humans, we found non-canonical upstream activators of NF-κB were generally elevated in individuals with neuroinflammation regardless of diagnosis, supporting NF-κB activation in both controls and people with schizophrenia when cytokine mRNAs are high. However, high neuroinflammation schizophrenia patients had weaker (or absent) transcriptional increases of several canonical upstream activators of NF-κB as compared to the high neuroinflammation controls. HIVEP2 mRNA reduction was specific to patients with schizophrenia who also had high neuroinflammatory status, and we also found decreases in NF-κB transcripts typically induced by activated microglia in mice lacking HIVEP2. Conclusions Collectively, our results show that high cortical expression of pro-inflammatory cytokines and low cortical expression of HIVEP2 in a subset of people with schizophrenia is associated with a relatively weak NF-κB transcriptional signature compared to non-schizophrenic controls with high cytokine expression. We speculate that this comparatively milder NF-κB induction may reflect schizophrenia-specific suppression possibly related to HIVEP2 deficiency in the cortex.
Collapse
Affiliation(s)
- Caitlin E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam J Lawther
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Maree J Webster
- Stanley Medical Research Institute, Kensington, Maryland, USA
| | - Makoto Asai
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | - Yuji Kondo
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | | | - Adam K Walker
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Drug Discovery Biology Theme, Monash University, Parkville, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. .,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
11
|
Mankhong S, Iawsipo P, Srisook E, Srisook K. 4-methoxycinnamyl p-coumarate isolated from Etlingera pavieana rhizomes inhibits inflammatory response via suppression of NF-κB, Akt and AP-1 signaling in LPS-stimulated RAW 264.7 macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:89-97. [PMID: 30668386 DOI: 10.1016/j.phymed.2018.09.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND 4-methoxycinnamyl p-coumarate (MCC) was isolated from rhizomes of Etlingera pavieana by bioactivity-guided isolation, however, the molecular mechanism underlying its anti-inflammatory activity remains inadequately understood. PURPOSE In this study, we elucidated the suppressive effect of MCC on LPS-induced expression of inflammatory mediators and the molecular mechanisms responsible for anti-inflammatory activities in RAW 264.7 macrophages. METHODS Cell viability of MCC-treated RAW 264.7 macrophage was measured by MTT assay. Anti-inflammatory activity was evaluated by measurement of NO, PGE2, and cytokine production in LPS-stimulated cells. qRT-PCR and Western blotting analysis were used to investigate mRNA and protein levels of inflammatory responsive genes. NF-κB activation and transactivation activity were determined by immunofluorescence and reporter gene assay, respectively. RESULTS MCC considerably suppressed both the production of NO, PGE2, IL-1β as well as TNF-α and their expression. MCC inactivated NF-κB by reducing phosphorylation of IκBα and inhibiting NF-κB p65 nuclear translocation. Also, MCC significantly inhibited NF-κB transactivation activity. However, the inhibitory effect of MCC was independent of the MAPK signaling pathway. Furthermore, MCC significantly decreased phosphorylation of Akt and c-Jun, a main component of AP-1. CONCLUSION These findings suggest that the anti-inflammatory effect of MCC could be mediated by the inhibition of LPS-induced expression of inflammatory mediators by down-regulation of the NF-κB, Akt and AP-1 signaling pathways in murine macrophages.
Collapse
Key Words
- 4-methoxycinnamyl p-coumarate
- AP-1, activator protein-1
- Abbreviations: MCC, 4-methoxycinnamyl p-coumarate
- Akt, Protein Kinase B
- Anti-inflammatory Activity
- COX-2, cyclooxygenase-2
- Cytokines
- ERK, Extracellular signal-regulated kinase
- IL-1β, interleukin-1β
- JNK, c-Jun N-terminal Kinase
- LPS, Lipopolysaccharide
- MAPK, mitogen-activated protein kinase
- Macrophage
- NF-κB, Nuclear factor-kappa B
- NO, nitric oxide
- Nitric Oxide
- PGE(2), prostaglandins E(2)
- Prostaglandins E(2)
- TNF-α, tumor necrosis factor-α
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Biochemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Panata Iawsipo
- Department of Biochemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Ekaruth Srisook
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Klaokwan Srisook
- Department of Biochemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
12
|
Chen C, Xu XF, Zhang RQ, Ma Y, Lv Y, Li JL, Shi Q, Xiao K, Sun J, Yang XD, Shi Q, Dong XP. Remarkable increases of α1-antichymotrypsin in brain tissues of rodents during prion infection. Prion 2018; 11:338-351. [PMID: 28956708 DOI: 10.1080/19336896.2017.1349590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
α1-Antichymotrypsin (α1-ACT) belongs to a kind of acute-phase inflammatory protein. Recently, such protein has been proved exist in the amyloid deposits which is the hallmark of Alzheimer's disease, but limitedly reported in prion disease. To estimate the change of α1-ACT during prion infection, the levels of α1-ACT in the brain tissues of scrapie agents 263K-, 139A- and ME7-infected rodents were analyzed, respectively. Results shown that α1-ACT levels were significantly increased in the brain tissues of the three kinds of scrapie-infected rodents, displaying a time-dependent manner during prion infection. Immunohistochemistry assays revealed the increased α1-ACT mainly accumulated in some cerebral regions of rodents infected with prion, such as cortex, thalamus and cerebellum. Immunofluorescent assays illustrated ubiquitously localization of α1-ACT with GFAP positive astrocytes, Iba1-positive microglia and NeuN-positive neurons. Moreover, double-stained immunofluorescent assays and immunohistochemistry assays using series of brain slices demonstrated close morphological colocalization of α1-ACT signals with that of PrP and PrPSc in the brain slices of 263K-infected hamster. However, co-immunoprecipitation does not identify any detectable molecular interaction between the endogenous α1-ACT and PrP either in the brain homogenates of 263K-infected hamsters or in the lysates of prion-infected cultured cells. Our data here imply that brain α1-ACT is increased abnormally in various scrapie-infected rodent models. Direct molecular interaction between α1-ACT and PrP seems not to be essential for the morphological colocalization of those two proteins in the brain tissues of prion infection.
Collapse
Affiliation(s)
- Cao Chen
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Xiao-Feng Xu
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Ren-Qing Zhang
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing , People's Republic of China
| | - Yue Ma
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Yan Lv
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Jian-Le Li
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Qiang Shi
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Kang Xiao
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Jing Sun
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Xiao-Dong Yang
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Qi Shi
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| | - Xiao-Ping Dong
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China
| |
Collapse
|
13
|
Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch Toxicol 2015; 89:1439-67. [DOI: 10.1007/s00204-015-1496-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023]
|
14
|
Salazar-Olivo LA, Mejia-Elizondo R, Alonso-Castro AJ, Ponce-Noyola P, Maldonado-Lagunas V, Melendez-Zajgla J, Saavedra-Alanis VM. SerpinA3g participates in the antiadipogenesis and insulin-resistance induced by tumor necrosis factor-α in 3T3-F442A cells. Cytokine 2014; 69:180-8. [PMID: 24973688 DOI: 10.1016/j.cyto.2014.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 01/20/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) is a proven modulator of adipose metabolism, but the mechanisms by which this cytokine affects the development and function of adipose tissue have not been fully elucidated to date. Using differential display analysis, in this study, we demonstrate that gene expression of the serine protease inhibitor A3g (SerpinA3g) is specifically induced in 3T3-F442A preadipocytes by TNF-α but not by other adipogenic inhibitors, such as retinoic acid (RA) or transforming growth factor type beta (TGF-β). The specific induction of SerpinA3g by TNF-α was confirmed by RT-PCR in both preadipose and terminally differentiated 3T3-F442A cells. The knockdown of SerpinA3g using small interfering RNA prevented the antiadipogenesis elicited by TNF-α in 3T3-F442A cells but not the antiadipogenesis induced by RA or TGF-β. SerpinA3g-silenced 3T3-F442A cells also did not display TNF-α-induced insulin resistance. Our results demonstrate that SerpinA3g is specifically induced by TNF-α in 3T3-F442A cells, regardless of their stage of differentiation, and participates in the antiadipogenesis and insulin resistance induced by this cytokine. Our results suggest that SerpinA3g plays a role in the TNF-α modulation of adipose tissue development and metabolism. Additional studies are warranted regarding the mechanisms mediating adipose SerpinA3g effects.
Collapse
Affiliation(s)
- Luis A Salazar-Olivo
- Instituto Potosino de Investigación Científica y Tecnológica, Molecular Biology Division, San Luis Potosí, México.
| | - Rebeca Mejia-Elizondo
- Instituto Potosino de Investigación Científica y Tecnológica, Molecular Biology Division, San Luis Potosí, México
| | - Angel Josabad Alonso-Castro
- Instituto Potosino de Investigación Científica y Tecnológica, Molecular Biology Division, San Luis Potosí, México
| | - Patricia Ponce-Noyola
- Universidad de Guanajuato, Department of Biology, Division of Natural and Exact Sciences, Guanajuato, México
| | | | | | | |
Collapse
|
15
|
Malekzadeh A, Teunissen C. Recent progress in omics-driven analysis of MS to unravel pathological mechanisms. Expert Rev Neurother 2014; 13:1001-16. [PMID: 24053344 DOI: 10.1586/14737175.2013.835602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, the pathophysiology and specific biological markers reflecting pathology of multiple sclerosis (MS) remain undetermined. The risk of developing MS is considered to depend on genetic susceptibility and environmental factors. The interaction of environmental factors with epigenetic mechanisms could affect the transcriptional level and therefore also the translational level. In the last decade, growing amount of hypothesis-free 'omics' studies have shed light on the potential MS mechanisms and raised potential biomarker targets. To understand MS pathophysiology and discover a subset of biomarkers, it is becoming essential to take a step forward and integrate the findings of the different fields of 'omics' into a systems biology network. In this review, we will discuss the recent findings of the genomic, transcriptomic and proteomic fields for MS and aim to make a unifying model.
Collapse
Affiliation(s)
- Arjan Malekzadeh
- Department of Clinical Chemistry, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Ross D, Zhou H, Siegel D. Benzene toxicity: The role of the susceptibility factor NQO1 in bone marrow endothelial cell signaling and function. Chem Biol Interact 2011; 192:145-9. [PMID: 20970411 PMCID: PMC3155573 DOI: 10.1016/j.cbi.2010.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/01/2010] [Accepted: 10/14/2010] [Indexed: 12/12/2022]
Abstract
The homozygous NQO1*2 polymorphism results in a null NQO1 phenotype and is a susceptibility factor for occupational benzene poisoning. NQO1 plays an important role in detoxification of benzene-derived quinones but plays a role in numerous other non-metabolic cellular functions. NQO1 is expressed in endothelial cells of bone marrow which form the vascular stem cell niche important in stem cell homing and mobilization. We therefore employed a transformed human bone marrow endothelial cell (HBMEC) line to define the effects of compromising NQO1 on endothelial function. Either inhibition or knockdown of NQO1 led to decreased expression of the adhesion molecules E-selectin, VCAM-1 and ICAM-1 and decreased functional adhesion of CD34+ progenitor cells after TNFα stimulation. Suicide inhibition or knockdown of NQO1 decreased NFκB p105 precursor and NFκB p50 subunit levels as well as leading to decreased nuclear levels of NFκB phospho-p65. An additional function of endothelial cells is tube formation and angiogenesis which was inhibited by the benzene metabolite hydroquinone suggesting that endothelial function may be affected at multiple levels after exposure of NQO1*2 polymorphic individuals to benzene. These data demonstrate that NQO1 plays an upstream role in NFκB signaling and adhesion molecule expression in HBMEC and that NQO1 has important regulatory effects in its own right in addition to being a marker for Nrf-2 activation. Metabolic susceptibility factors such as NQO1 have roles in addition to detoxification of reactive intermediates and interrogation of these novel roles can inform both mechanisms of toxicity and human risk assessment.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
17
|
Ianni M, Manerba M, Di Stefano G, Porcellini E, Chiappelli M, Carbone I, Licastro F. Altered glycosylation profile of purified plasma ACT from Alzheimer's disease. Immun Ageing 2010; 7 Suppl 1:S6. [PMID: 21172065 PMCID: PMC3024880 DOI: 10.1186/1742-4933-7-s1-s6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most frequent cause of neurodegenerative disorder in the elderly. Inflammation has been implicated in brain degenerative processes and peripheral markers of brain AD related impairment would be useful. Plasma levels of alpha-1-antichymotrypsin (ACT), an acute phase protein and a secondary component of amyloid plaques, are often increased in AD patients and high blood ACT levels correlate with progressive cognitive deterioration. During inflammatory responses changes in the micro-heterogeneity of ACT sugar chains have been described. METHODS N-Glycanase digestion from Flavobacterium meningosepticum (PNGase F) was performed on both native and denatured purified ACT condition and resolved to Western blot with the purpose to revealed the ACT de-glycosylation pattern.Further characterization of the ACT glycan profile was obtained by a glycoarray; each lectin group in the assay specifically recognizes one or two glycans/epitopes. Lectin-bound ACT produced a glyco-fingerprint and mayor differences between AD and controls samples were assessed by a specific algorithms. RESULTS Western blot analysis of purified ACT after PNGase F treatment and analysis of sugar composition of ACT showed significantly difference in "glyco-fingerprints" patterns from controls (CTR) and AD; ACT from AD showing significantly reduced levels of sialic acid. A difference in terminal GlcNac residues appeared to be related with progressive cognitive deterioration. CONCLUSIONS Low content of terminal GlcNac and sialic acid in peripheral ACT in AD patients suggests that a different pattern of glycosylation might be a marker of brain inflammation. Moreover ACT glycosylation analysis could be used to predict AD clinical progression and used in clinical trials as surrogate marker of clinical efficacy.
Collapse
Affiliation(s)
- Manuela Ianni
- Department of Experimental Pathology, School of Medicine, University of Bologna, 14 San Giacomo St, 40126 Bologna, Italy
| | - Marcella Manerba
- Department of Experimental Pathology, School of Medicine, University of Bologna, 14 San Giacomo St, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental Pathology, School of Medicine, University of Bologna, 14 San Giacomo St, 40126 Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental Pathology, School of Medicine, University of Bologna, 14 San Giacomo St, 40126 Bologna, Italy
| | - Martina Chiappelli
- Department of Experimental Pathology, School of Medicine, University of Bologna, 14 San Giacomo St, 40126 Bologna, Italy
| | - Ilaria Carbone
- Department of Experimental Pathology, School of Medicine, University of Bologna, 14 San Giacomo St, 40126 Bologna, Italy
| | - Federico Licastro
- Department of Experimental Pathology, School of Medicine, University of Bologna, 14 San Giacomo St, 40126 Bologna, Italy
| |
Collapse
|
18
|
Zhou H, Dehn D, Kepa JK, Siegel D, Scott DE, Tan W, Ross D. NAD(P)H:quinone oxidoreductase 1-compromised human bone marrow endothelial cells exhibit decreased adhesion molecule expression and CD34+ hematopoietic cell adhesion. J Pharmacol Exp Ther 2010; 334:260-8. [PMID: 20378716 PMCID: PMC2912043 DOI: 10.1124/jpet.110.167841] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/05/2010] [Indexed: 12/14/2022] Open
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) deficiency resulting from a homozygous NQO1*2 polymorphism has been associated with an increased risk of benzene-induced myeloid toxicity and a variety of de novo and therapy-induced leukemias. Endothelial cells in human bone marrow form one of the two known hematopoietic stem cell microenvironments and are one of the major cell types that express NQO1 in bone marrow. We have used a transformed human bone marrow endothelial cell (TrHBMEC) line to study the potential impact of a lack of NQO1 activity on adhesion molecule [endothelial leukocyte adhesion molecule 1 (E-selectin), vascular cell adhesion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-1] expression and functional adhesion to bone marrow progenitor cells. We used both 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936), a mechanism-based inhibitor of NQO1, and anti-NQO1 small interfering RNA to abrogate NQO1 activity. Real-time reverse transcription-polymerase chain reaction data demonstrated a significant inhibition of tumor necrosis factor (TNF)alpha-induced E-selectin mRNA levels after ES936 pretreatment. Immunoblot assays demonstrated a significant reduction in TNFalpha-stimulated E-selectin, VCAM-1, and ICAM-1 proteins after inhibition or knockdown of NQO1. The mechanisms underlying this effect remain undefined, but modulation of nuclear factor-kappaB (p65), c-Jun, and activating transcription factor 2, transcriptional regulators of adhesion molecules, were observed after inhibition or knockdown of NQO1. Decreased level of E-selectin, VCAM-1, and ICAM-1 also resulted in a functional deficit in adhesion. A parallel plate flow chamber study demonstrated a marked reduction in CD34(+) cell (KG1a) adhesion to NQO1-deficient TrHBMECs relative to controls. The reduced adhesive ability of TrHBMECs may affect the function of the vascular stem cell niche and also may contribute to the increased susceptibility of polymorphic individuals lacking NQO1 to leukemias and hematotoxicants such as benzene.
Collapse
Affiliation(s)
- Hongfei Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yu G, Jia J. Is there an association of regulatory region polymorphism in the alpha-1-antichymotrypsin gene with sporadic Alzheimer’s disease in the northern Han-Chinese population? J Clin Neurosci 2010; 17:766-9. [DOI: 10.1016/j.jocn.2009.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 08/06/2009] [Accepted: 10/11/2009] [Indexed: 12/22/2022]
|
20
|
Sama MA, Mathis DM, Furman JL, Abdul HM, Artiushin IA, Kraner SD, Norris CM. Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem 2008; 283:21953-64. [PMID: 18541537 PMCID: PMC2494911 DOI: 10.1074/jbc.m800148200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 06/04/2008] [Indexed: 01/13/2023] Open
Abstract
Interleukin-1beta (IL-1beta) and the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, have each been shown to play an important role in neuroinflammation. However, whether these signaling molecules interact to coordinate immune/inflammatory processes and neurodegeneration has not been investigated. Here, we show that exogenous application of IL-1beta (10 ng/ml) recruited calcineurin/NFAT (nuclear factor of activated T cells) activation in primary astrocyte-enriched cultures within minutes, through a pathway involving IL-1 receptors and L-type Ca(2+) channels. Adenovirus-mediated delivery of the NFAT inhibitor, VIVIT, suppressed the IL-1beta-dependent induction of several inflammatory mediators and/or markers of astrocyte activation, including tumor necrosis factor alpha, granulocyte/macrophage colony-stimulating factor, and vimentin. Expression of an activated form of calcineurin in one set of astrocyte cultures also triggered the release of factors that, in turn, stimulated NFAT activity in a second set of "naive" astrocytes. This effect was prevented when calcineurin-expressing cultures co-expressed VIVIT, suggesting that the calcineurin/NFAT pathway coordinates positive feedback signaling between astrocytes. In the presence of astrocytes and neurons, 48-h delivery of IL-1beta was associated with several excitotoxic effects, including NMDA receptor-dependent neuronal death, elevated extracellular glutamate, and hyperexcitable synaptic activity. Each of these effects were reversed or ameliorated by targeted delivery of VIVIT to astrocytes. IL-1beta also caused an NFAT-dependent reduction in excitatory amino acid transporter levels, indicating a possible mechanism for IL-1beta-mediated excitotoxicity. Taken together, the results have potentially important implications for the propagation and maintenance of neuroinflammatory signaling processes associated with many neurodegenerative conditions and diseases.
Collapse
Affiliation(s)
- Michelle A Sama
- Department of Molecular and Biomedical Pharmacology, Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Belbin O, Dunn JL, Chappell S, Ritchie AE, Ling Y, Morgan L, Pritchard A, Warden DR, Lendon CL, Lehmann DJ, Mann DMA, Smith AD, Kalsheker N, Morgan K. A SNP in the ACT gene associated with astrocytosis and rapid cognitive decline in AD. Neurobiol Aging 2008; 29:1167-76. [PMID: 17368652 DOI: 10.1016/j.neurobiolaging.2007.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/19/2006] [Accepted: 02/10/2007] [Indexed: 11/27/2022]
Abstract
There is biochemical and animal model evidence supporting a pathological role of the ACT gene in AD. However, direct genetic evidence remains controversial and has been mostly limited to individual single nucleotide polymorphism (SNP) analysis. To resolve this apparent conflict we have used a high-density ACT SNP map, constructed haplotypes and explored correlations with phenotype. SNPs were identified by sequencing and used to construct haplotypes in 668 AD patients and 419 controls and a case-control association study was performed. Five SNPs, comprising five common haplotypes, represented 93% of ACT gene variation. Although no single SNP or haplotype was associated with AD status, a SNP in intron 2 was associated with later onset and more rapid cognitive decline (P=0.04). This SNP was both individually associated with severe astrocytosis (P=0.004) in AD patients and when combined with the signal sequence SNP (P=0.002). This suggests that astrocytosis may have a protective function for a limited period in some patients. These SNP associations either support a direct role for the ACT gene, in AD pathology or alternatively reflect linkage with polymorphisms in other genes nearby.
Collapse
Affiliation(s)
- O Belbin
- Division of Clinical Chemistry, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Y, Liu Y, Zheng D. Alpha 1-antichymotrypsin/SerpinA3 is a novel target of orphan nuclear receptor Nur77. FEBS J 2008; 275:1025-38. [PMID: 18248459 DOI: 10.1111/j.1742-4658.2008.06269.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nur77 is one member of the nuclear receptor superfamily. As a transcription factor, Nur77 participates in a variety of biological processes, including T cell development, inflammatory responses, steroid hormone synthesis, and hepatic glucose metabolism. It typically acts via binding to the Nur77 responsive element (NBRE) in the promoter regions of its target genes. In the present study, we identified a novel Nur77-regulated gene, alpha1-antichymotrypsin/SerpinA3, via an approach combining computational prediction and wet-laboratory validations. First, we identified 483 candidate genes via a human genome-wide scan for NBREs in their proximal promoters. Three out of 14 function-associated genes were further identified to be transactivated by Nur77 in luciferase reporter gene assays in HEK 293T cells. The transactivation assay proved that the NBRE (-182 to -175) in the SerpinA3 promoter region is a novel Nur77-dependent functional motif in HEK 293T and HepG2 cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that Nur77 physically associates with the SerpinA3 promoter region both in vitro and in vivo. Nur77 overexpression and RNA interference-mediated Nur77 gene knockdown analysis confirmed that SerpinA3 is indeed a novel Nur77-targeted gene. These data may throw light on the function of Nur77 in inflammatory responses and acute-phase reactions as well as the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Yongjuan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
23
|
Giunta S, Galeazzi R, Marcellini M, Corder EH, Galeazzi L. The inflammation-sensitive protein alpha 1-anti-chymotrypsin neutralizes fibrillar aggregation and cytotoxicity of the beta-amyloid peptide more effectively than alpha 1-antitrypsin. Clin Biochem 2007; 40:887-92. [PMID: 17512513 DOI: 10.1016/j.clinbiochem.2007.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVES A neuroinflammatory process, triggered by amyloid-beta (Abeta)-peptide, is thought to play a central role in the neurodegenerative process leading to Alzheimer's disease (AD). Abeta(25-35) retains the functionality of Abeta(42) and was employed to investigate the effects of inflammation-sensitive proteins (ISPs) alpha1-antichymotrypsin (A1ACT) and alpha1-antitrypsin (A1AT) on fibrillar aggregation and cytotoxicity. DESIGN AND METHODS Inhibitory concentrations of the ISPs were determined in an established human red blood cell lysis model of Abeta-cytotoxicity. For studies of Abeta-fibrillar aggregation CSF levels of A1ACT (0.041 microM)/A1AT (0.11 microM) were incubated with Congo Red dye 25 microM+Abeta(25-35) 10 microM noting the formation of visible aggregates and spectrophotometric changes over 24 h. RESULTS A1ACT at CSF reported levels inhibited fibrillar aggregation and cytotoxicity while A1AT at CSF reported levels failed to cause a similar inhibition. CONCLUSIONS A1ACT neutralizes fibrillar aggregation and cytotoxicity of Abeta-peptide more effectively than A1AT. Both proteins are known to be co-deposited with Abeta within senile plaques of AD brains.
Collapse
Affiliation(s)
- S Giunta
- Laboratorio Analisi Chimico-Cliniche, Microbiologiche e Diagnostica Molecolare, Ospedale Geriatrico INRCA (IRCCS), via della Montagnola 81, 60100, Ancona, Italy.
| | | | | | | | | |
Collapse
|
24
|
Neimark E, Chen F, Li X, Magid MS, Alasio TM, Frankenberg T, Sinha J, Dawson PA, Shneider BL. c-Fos is a critical mediator of inflammatory-mediated repression of the apical sodium-dependent bile acid transporter. Gastroenterology 2006; 131:554-67. [PMID: 16890608 DOI: 10.1053/j.gastro.2006.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 04/27/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Ileal bile acid malabsorption is present in Crohn's ileitis. The molecular mechanisms of regulation of the apical sodium-dependent bile acid transporter (ASBT) by inflammatory cytokines in vitro and in vivo are investigated. METHODS Transient transfection studies of the human, mouse, and rat ASBT promoters and Northern analyses were performed in cells treated with the inflammatory cytokines and/or various activator protein-1 constructs. Rat ASBT promoter transgenic, wild-type, and c-fos-null mice were treated with indomethacin to assess the response to acute inflammation of the ileal mucosa. RESULTS In Caco-2 cells, ASBT messenger RNA expression was reduced 65% after interleukin-1beta treatment, while c-fos and c-jun were up-regulated 2-fold. Human ASBT promoter activity was enhanced by c-jun and repressed by a dominant negative c-jun, c-fos, or a dominant negative c-fos. Meanwhile, c-fos antisense treatment activated the human ASBT promoter 5-fold and not only abrogated interleukin-1beta-mediated repression but led to a paradoxical increase in ASBT promoter activity. Indomethacin-induced acute ileitis led to repression of ASBT in wild-type mice and in the transgenic rat ASBT promoter reporter, while paradoxical activation of ASBT was seen in c-fos-null mice. Indomethacin-induced ileal injury was greater in the c-fos-null mice compared with the wild-type littermates. CONCLUSIONS Human, rat, and mouse ASBT is inhibited by inflammatory cytokines via direct interactions of c-fos with the ASBT promoter.
Collapse
Affiliation(s)
- Ezequiel Neimark
- Division of Pediatric Hepatology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Irie H, Shiga J. Pathogenesis of herpes simplex hepatitis in macrophage-depleted mice: possible involvement of tumor necrosis factor-alpha and inducible nitric oxide synthase in massive apoptosis. Anat Sci Int 2006; 80:199-211. [PMID: 16333916 DOI: 10.1111/j.1447-073x.2005.00113.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Massive liver cell death provoked in silica-treated mice subsequently infected with herpes simplex virus (HSV)-1 is very similar pathohistologically to the cell death observed in human fulminant hepatitis. Previously, we have shown this liver cell death to be extensive apoptosis. In the present study, we examined various factors related to liver damage patho- and immunologically, as well as by reverse transcription-polymerase chain reaction. Tumor necrosis factor (TNF)-alpha, inducible nitric oxide synthase (iNOS), interferon (IFN)-alpha, and interleukin-6 mRNAs were detected to a much greater extent in silica-treated mice compared with control mice after HSV-1 infection, and excessive expression of iNOS mRNA and cytokine mRNAs in the liver may be closely related to massive liver cell apoptosis. The apoptosis was less related to the fas ligand than to TNF-alpha. Silica blockage of macrophages makes the liver cell extremely vulnerable to HSV-1 infection, and it induced expression of E-selectin and neutrophil margination in the liver. Subsequent HSV-1 infection induced excessive production of iNOS and cytokines, particularly TNF-alpha, but administration of anti-TNF-alpha antibody or NG-monomethyl-L-arginine was not completely efficacious for the survival of the mice. Overproduction of free radicals in combination with cytokines, such as TNF-alpha, IL-6 and IFN-alpha, may result in hepatic cell apoptosis.
Collapse
Affiliation(s)
- Hiroshi Irie
- Teikyo University School of Medicine, Department of Anatomy, Tokyo, Japan.
| | | |
Collapse
|
26
|
Gopalan SM, Wilczynska KM, Konik BS, Bryan L, Kordula T. Nuclear factor-1-X regulates astrocyte-specific expression of the alpha1-antichymotrypsin and glial fibrillary acidic protein genes. J Biol Chem 2006; 281:13126-13133. [PMID: 16565071 DOI: 10.1074/jbc.m601194200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Discrete tissue-specific changes in chromatin structure of the distal serpin subcluster on human chromosome 14q32.1 allow a single gene encoding alpha1-antichymotrypsin (ACT) to be expressed in astrocytes and glioma cells. This astrocyte-specific regulation involves activatory protein-1 (AP-1) because overexpression of dominant-negative c-jun(TAM67) abolishes ACT expression in glioma cells. Here we identify a new regulatory element, located within the -13-kb enhancer of the ACT gene, that binds nuclear factor-1 (NFI) and is indispensable for the full basal transcriptional activity of the ACT gene. Furthermore, down-regulation of NFI expression by siRNA abolishes basal ACT expression in glioma cells. However, NFI does not mediate astrocyte-specific expression by itself, but likely cooperates with AP-1. A detailed analysis of the 14-kb long 5'-flanking region of the ACT gene indicated the presence of adjacent NFI and AP-1 elements that colocalized with DNase I-hypersensitive sites found in astrocytes and glioma cells. Interestingly, knock-down of NFI expression also specifically abrogates the expression of glial acidic fibrillary protein (GFAP), which is an astrocyte-specific marker protein. Mutations introduced into putative NFI and AP-1 elements within the 5'-flanking region of the GFAP gene also diminished basal expression of the reporter. In addition, we found, using isoform-specific siRNAs, that NFI-X regulates the astrocyte-specific expression of ACT and GFAP. We propose that NFI-X cooperates with AP-1 by an unknown mechanism in astrocytes, which results in the expression of a subset of astrocyte-specific genes.
Collapse
Affiliation(s)
- Sunita M Gopalan
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Katarzyna M Wilczynska
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Barbara S Konik
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lauren Bryan
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Tomasz Kordula
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
27
|
Gopalan SM, Wilczynska KM, Konik BS, Bryan L, Kordula T. Astrocyte-specific expression of the alpha1-antichymotrypsin and glial fibrillary acidic protein genes requires activator protein-1. J Biol Chem 2005; 281:1956-63. [PMID: 16303762 DOI: 10.1074/jbc.m510935200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An amyloid-associated serine proteinase inhibitor (serpin), alpha(1)-antichymotrypsin (ACT), is encoded by a gene located within the distal serpin subcluster on human chromosome 14q32.1. The expression of these distal serpin genes is determined by tissue-specific chromatin structures that allow their ubiquitous expression in hepatocytes; however, their expression is limited to a single ACT gene in astrocytes. In astrocytes and glioma cells, six specific DNase I-hypersensitive sites (DHSs) were found located exclusively in the 5'-flanking region of the ACT gene. We identified two enhancers that mapped to the two DHSs at -13 kb and -11.5 kb which contain activator protein-1 (AP-1) binding sites, both of which are critical for basal astrocyte-specific expression of ACT reporters. In vivo, these elements are occupied by c-jun homodimers in unstimulated cells and c-jun/c-fos heterodimers in interleukin-1-treated cells. Moreover, functional c-jun is required for the expression of ACT in glioma cells because both transient and stable inducible overexpression of dominant-negative c-jun(TAM67) specifically abrogates basal and reduces cytokine-induced expression of ACT. Expression-associated methylation of lysine 4 of histone H3 was also lost in these cells, but the DHS distribution pattern and global histone acetylation were not changed upstream of the ACT locus. Interestingly, functional AP-1 is also indispensable for the expression of glial fibrillary acidic protein (GFAP), which is an astrocyte-specific marker. We propose that AP-1 is a key transcription factor that, in part, controls astrocyte-specific expression of genes including the ACT and GFAP genes.
Collapse
Affiliation(s)
- Sunita M Gopalan
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
28
|
Uddin J, Garcia HH, Gilman RH, Gonzalez AE, Friedland JS. Monocyte-astrocyte networks and the regulation of chemokine secretion in neurocysticercosis. THE JOURNAL OF IMMUNOLOGY 2005; 175:3273-81. [PMID: 16116219 DOI: 10.4049/jimmunol.175.5.3273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurocysticercosis, caused by infection with larval Taenia solium, is a major cause of epilepsy worldwide. Larval degeneration, which is symptomatic, results in inflammatory cell influx. Astrocytes, the most abundant cell type and major cytokine-producing cell within the CNS, may be important in orchestrating inflammatory responses after larval degeneration. We investigated the effects of direct stimulation and of conditioned medium from T. solium larval Ag (TsAg)-stimulated monocytes (CoMTsAg) on neutrophil and astrocyte chemokine release. CoMTsAg, but not control conditioned medium, stimulated astrocyte CCL2/MCP-1 (161.5 +/- 16 ng/ml), CXCL8/IL-8 (416 +/- 6.2 ng/ml), and CXCL10/IFN-gamma-inducible protein (9.07 +/- 0.6 ng/ml) secretion after 24 h, whereas direct astrocyte or neutrophil stimulation with TsAg had no effect. There was rapid accumulation of CCL2 and CXCL8 mRNA within 1 h, with somewhat delayed expression of CXCL10 mRNA initially detected 8 h poststimulation. Neutralizing anti-TNF-alpha inhibited CoMTsAg-induced CCL2 mRNA accumulation by up to 99%, causing total abolition of CXCL10 and up to 77% reduction in CXCL8 mRNA. CoMTsAg induced maximal nuclear binding of NF-kappaB p65 and p50 by 1 h, with IkappaBalpha and IkappaBbeta decay within 15 min. In addition, CoMTsAg induced transient nuclear binding of AP-1, which peaked 4 h poststimulation. In NF-kappaB blocking experiments using pyrrolidine dithiocarbamate, CoMTsAg-induced CCL2 secretion was reduced by up to 80% (p = 0.0006), whereas CXCL8 was inhibited by up to 75% (p = 0.0003). In summary, the data show that astrocytes are an important source of chemokines following larval Ag stimulation. Such chemokine secretion is NF-kappaB dependent, likely to involve AP-1, and is regulated in a paracrine loop by monocyte-derived TNF-alpha.
Collapse
Affiliation(s)
- Jasim Uddin
- Department of Infectious Diseases, Faculty of Medicine and Wellcome Trust Centre for Clinical Tropical Medicine, Imperial College (Hammersmith Campus), London, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Gopalan S, Kasza A, Xu W, Kiss DL, Wilczynska KM, Rydel RE, Kordula T. Astrocyte- and hepatocyte-specific expression of genes from the distal serpin subcluster at 14q32.1 associates with tissue-specific chromatin structures. J Neurochem 2005; 94:763-73. [PMID: 15969742 PMCID: PMC4557805 DOI: 10.1111/j.1471-4159.2005.03204.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distal serpin subcluster contains genes encoding alpha1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL) and the KAL-like protein, which are expressed in hepatocytes, but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified 12 Dnase I-hypersensitive sites (DHSs) that were distributed throughout the entire subcluster, with the promoters of expressed genes accessible to restriction enzyme digestion. In astrocytes, only six DHSs were located exclusively in the 5' flanking region of the act gene, with its promoter also accessible to restriction enzyme digestion. The acetylation of histone H3 and H4 was found throughout the subcluster in both cell types but this acetylation did not correlate with the expression pattern of these serpin genes. Analysis of histone modifications at the promoters of the act and pci genes revealed that methylation of histone H3 on lysine 4 correlated with their expression pattern in both cell types. In addition, inhibition of methyltransferase activity resulted in suppression of ACT and PCI mRNA expression. We propose that lysine 4 methylation of histone H3 correlates with the tissue-specific expression pattern of these serpin genes.
Collapse
Affiliation(s)
- Sunita Gopalan
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Aneta Kasza
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Weili Xu
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Daniel L. Kiss
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Katarzyna M. Wilczynska
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | - Tomasz Kordula
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- Corresponding author: Dr. Tomasz Kordula, Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, tel. (804) 828-0771, fax. (804) 828-1473,
| |
Collapse
|
30
|
Morihara T, Teter B, Yang F, Lim GP, Boudinot S, Boudinot FD, Frautschy SA, Cole GM. Ibuprofen suppresses interleukin-1beta induction of pro-amyloidogenic alpha1-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer's models. Neuropsychopharmacology 2005; 30:1111-20. [PMID: 15688088 DOI: 10.1038/sj.npp.1300668] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epidemiological and basic research suggests that nonsteroidal anti-inflammatory drugs (NSAIDs) should protect against the most common forms of Alzheimer's disease (AD). Ibuprofen reduces amyloid (Abeta) pathology in some transgenic models, but the precise mechanisms remain unclear. Although some reports show select NSAIDs inhibit amyloid production in vitro, the possibility that in vivo suppression of amyloid pathology occurs independent of Abeta production has not been ruled out. We show that ibuprofen reduced Abeta brain levels in rats from exogenously infused Abeta in the absence of altered Abeta production. To determine whether ibuprofen inhibits pro-amyloidogenic factors, APPsw (Tg2576) mice were treated with ibuprofen for 6 months, and expression levels of the Abeta and inflammation-related molecules alpha1 antichymotrypsin (ACT), apoE, BACE1, and peroxisome proliferator-activated receptor gamma) (PPARgamma) were measured. Among these, ACT, a factor whose overexpression accelerates amyloid pathology, was reduced by ibuprofen both in vivo and in vitro. IL-1beta, which was reduced in our animals by ibuprofen, induced mouse ACT in vitro. While some NSAIDs may inhibit Abeta42 production, these observations suggest that ibuprofen reduction of Abeta pathology may not be mediated by altered Abeta42 production. We present evidence supporting the hypothesis that ibuprofen-dependent amyloid reduction is mediated by inhibition of an alternate pathway (IL-1beta and its downstream target ACT).
Collapse
Affiliation(s)
- Takashi Morihara
- Greater Los Angeles VA Healthcare System, GRECC, Sepulveda, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kiss DL, Xu W, Gopalan S, Buzanowska K, Wilczynska KM, Rydel RE, Kordula T. Duration of alpha 1-antichymotrypsin gene activation by interleukin-1 is determined by efficiency of inhibitor of nuclear factor kappa B alpha resynthesis in primary human astrocytes. J Neurochem 2005; 92:730-8. [PMID: 15686474 PMCID: PMC4558886 DOI: 10.1111/j.1471-4159.2004.02900.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression of alpha1antichymotrypsin (ACT) is significantly activated by interleukin-1 (IL-1) in human astrocytes; however, it is barely affected by IL-1 in hepatocytes. This tissue-specific regulation depends upon an enhancer that contains both nuclear factor kappaB (NF-kappaB) and activating protein 1 (AP-1) elements, and is also observed for an NF-kappaB reporter but not for an AP-1 reporter. We found efficient activation of NF-kappaB binding in both cell types; however, this binding was persistent in glial cells and only transient in hepatocytes. IL-1-activated NF-kappaB complexes consisted of p65 and p50, with p65 transiently phosphorylated on serine 536 in glial cells whereas more persistently in hepatic cells. Overexpression of p65 or constitutively active IKKbeta (inhibitor of NF-kappaB kinase beta) resulted in an efficient activation of the ACT reporter in hepatic cells, indicating that a specific mechanism exists in these cells terminating IL-1 signaling. IL-1 effectively induced the degradation of inhibitor of NF-kappaBalpha (IkBalpha) and IkBepsilon in both cell types but IkBbeta was not affected. However, IkBalpha was resynthesized much more rapidly in hepatic cells in comparison to glial cells. In addition, the initial levels of IkBalpha were much lower in glial cells. We propose that the tissue-specific regulation of the ACT gene expression by IL-1 is determined by different efficiencies of IkBalpha resynthesis in glial and hepatic cells.
Collapse
Affiliation(s)
- Daniel L. Kiss
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Weili Xu
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Sunita Gopalan
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Katarzyna Buzanowska
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Katarzyna M. Wilczynska
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | - Tomasz Kordula
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- Corresponding author: Dr. Tomasz Kordula, Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, tel. (804) 828-0771, fax. (804) 828-1473,
| |
Collapse
|
32
|
Montel V, Pestonjamasp K, Mose E, Tarin D. Tumor–host interactions contribute to the elevated expression level of α1-antichymotrypsin in metastatic breast tumor xenografts. Differentiation 2005; 73:88-98. [PMID: 15811132 DOI: 10.1111/j.1432-0436.2005.07302001.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated alpha1-antichymotrypsin (ACT) gene expression in xenograft tumors generated by two isogenic human breast cancer cell lines derived from the same parent, MDA-MB-435, which display opposite metastatic behaviors. Microarray and real-time PCR experiments showed an overexpression of this serine protease inhibitor in the metastatic tumors (M-4A4T) and its derived metastases (M4-Mets) compared with the weakly metastatic tumors (NM-2C5T), and its release into the blood was confirmed by western-blotting. However, functional assays in vivo using genetically engineered tumor cells demonstrated that ACT up-regulation was not, by itself, responsible for the metastatic phenotype. We also made observations that ACT gene regulation was sensitive to tumor-host interactions: inoculation of these lines into the mouse mammary gland greatly increased ACT production and accentuated the intrinsic difference observed when they are cultured in vitro. Sensitivity of tumor cells to their environment was further analyzed by in vitro experiments, which demonstrated that a purified ECM environment and soluble components from normal host mammary cells were both able to significantly promote ACT expression. In addition, we took advantage of the xenogeneic nature of the model to measure ACT expression by the host cells (mouse) and the tumor cells (human) within the neoplasm using species-specific primers in real-time PCR experiments. It was found that the presence of tumor cells, irrespective of their metastatic capabilities, induced local ACT production by host cells at the primary and secondary tumor sites. Thus, this work indicates that there is a specific association of ACT overexpression with the metastatic phenotype in our breast cancer metastasis model. Moreover, because of the xenogeneic nature of our system, we were able to provide evidence of tumor-host reciprocal regulation of ACT production.
Collapse
Affiliation(s)
- Valerie Montel
- Department of Pathology and Moores Comprehensive Cancer Center, University of California-San Diego, 9500 Gilman Drive MC0912, La Jolla, CA 92093-0912, USA
| | | | | | | |
Collapse
|
33
|
Hou B, Eren M, Painter CA, Covington JW, Dixon JD, Schoenhard JA, Vaughan DE. Tumor Necrosis Factor α Activates the Human Plasminogen Activator Inhibitor-1 Gene through a Distal Nuclear Factor κB Site. J Biol Chem 2004; 279:18127-36. [PMID: 14963043 DOI: 10.1074/jbc.m310438200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major inhibitor of plasminogen activation and likely plays important roles in coronary thrombosis and arteriosclerosis. Tumor necrosis factor-alpha (TNFalpha) is one of many recognized physiological regulators of PAI-1 expression and may contribute to elevated plasma PAI-1 levels in sepsis and obesity. Although TNFalpha is a potent inducer of PAI-1 expression in vitro and in vivo, the precise location of the TNFalpha response site in the PAI-1 promoter has yet to be determined. Transient transfection studies using luciferase reporter constructs containing PAI-1 promoter sequence up to 6.4 kb failed to detect a response to TNFalpha. Moreover, TNFalpha failed to induce expression of enhanced green fluorescent protein under the control of a 2.9-kb human PAI-1 promoter in transgenic mice, although endogenous murine PAI-1 was strongly induced. These data suggested that the TNFalpha response element in the PAI-1 gene is remote from the proximal promoter region. In this study, seven candidate regulatory regions were identified using cross-species sequence homology analysis as well as DNase I-hypersensitive site analysis. We identified a 5' distal TNFalpha-responsive enhancer of the PAI-1 gene located 15 kb upstream of the transcription start site containing a conserved NFkappaB-binding site that mediates the response to TNFalpha. This newly recognized site is fully capable of binding NFkappaB subunits p50 and p65, whereas overexpression of the NFkappaB inhibitor IkappaB prevents TNFalpha-induced activation of this enhancer element.
Collapse
Affiliation(s)
- Baidong Hou
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Ling Y, Morgan K, Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol 2003; 35:1505-35. [PMID: 12824062 DOI: 10.1016/s1357-2725(03)00133-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processing of amyloid precursor protein (APP) generates amyloid-beta (Abeta) peptides 1-40 and 1-42. The latter is neurotoxic and its accumulation results in amyloid fibril formation and the generation of senile plaques, the hallmark of Alzheimer's disease (AD). Whilst there has been considerable progress made in understanding the generation of Abeta by alpha-, beta- and gamma-secretase activity on APP, recently enzymes involved in the degradation of Abeta have been identified including neprilysin and insulin-degrading enzyme (IDE). We review the pathways involved in proteolytic processing of APP and discuss the potential implications of aberrant proteolysis on neurodegeneration. It is conceivable that single nucleotide polymorphisms (SNPs) in the regulatory regions of genes in these proteolytic cascades, which alter their expression, could contribute to some of the age-related changes seen in AD.
Collapse
Affiliation(s)
- Yan Ling
- Division of Clinical Chemistry, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
35
|
Chen F, Ma L, Sartor RB, Li F, Xiong H, Sun AQ, Shneider B. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation. Gastroenterology 2002; 123:2005-16. [PMID: 12454857 DOI: 10.1053/gast.2002.37055] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Ileal malabsorption of bile salts is observed in Crohn's ileitis. We define the transcriptional mechanisms involved in cytokine-mediated repression of the rat apical sodium-dependent bile acid transporter (ASBT). METHODS ASBT regulation was studied in IL-1beta-treated IEC-6 and Caco-2 cells and in indomethacin-treated rats. RESULTS Indomethacin-induced ileitis in Lewis rats leads to specific reductions in ileal ASBT messenger RNA and protein levels, whereas c-jun and c-fos are induced. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor repress the activity of the ASBT promoter in Caco-2 and intestinal epithelial cell-6 cells. This effect is blocked by the proteasome inhibitor, MG-132, or by the phosphatidyl inositol 3-kinase inhibitor, wortmannin. Indomethacin (in vivo) or proinflammatory cytokine (in vitro) treatment leads to serine phosphorylation and nuclear translocation of c-fos. Mutation of a 5' activated protein (AP)-1 site inactivates the ASBT promoter, whereas mutation of the 3' site abrogates the proinflammatory cytokine-mediated repression. The 5' site binds a c-jun homodimer, whereas the 3' site binds a c-jun/c-fos heterodimer. c-Jun overexpression enhances ASBT promoter activity, whereas a dominant negative c-jun construct inactivates the promoter. c-Fos overexpression represses promoter activity. A 27 base pair cis-element from the 3' site in the ASBT promoter imparts cytokine-mediated down-regulation to a heterologous SV40 promoter construct. CONCLUSIONS The ASBT promoter contains 2 distinct cis AP-1 elements; the 5' element binds homodimeric c-jun and mediates basal transcription. Inflammation is associated with up-regulation, phosphorylation, and nuclear translocation of c-fos, which then represses ASBT promoter activity via binding of the 3' AP-1 element by a c-fos/c-jun heterodimer.
Collapse
Affiliation(s)
- Frank Chen
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Department of Pediatrics and the Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kasza A, Kiss DL, Gopalan S, Xu W, Rydel RE, Koj A, Kordula T. Mechanism of plasminogen activator inhibitor-1 regulation by oncostatin M and interleukin-1 in human astrocytes. J Neurochem 2002; 83:696-703. [PMID: 12390531 PMCID: PMC4567031 DOI: 10.1046/j.1471-4159.2002.01163.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glial cells that produce and respond to various cytokines mediate inflammatory processes in the brain. Here, we show that oncostatin M (OSM) and interleukin-1 (IL-1) regulate the expression of plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) in human astrocytes. Using the PAI-1 reporter constructs we show that the -58 to -51 proximal element mediates activation by both cytokines. This element is already bound by c-fos/c-jun heterodimers in unstimulated astrocytes, and treatment with cytokine strongly stimulates both expression of c-fos and binding of c-fos/c-jun heterodimers. In addition, IL-1 activates an inhibitory mechanism that down-regulates PAI-1 expression after longer exposure to this cytokine. Overexpression of dominant-negative signal transducer and activator of transcription-1 (STAT1), STAT3, STAT5 and inhibitor of nuclear factor-kappaB (IkappaB) suppressed OSM/IL-1-induced expression of the PAI-1 reporter construct. We conclude that OSM and IL-1 regulate the PAI-1 gene expression via up-regulating c-fos levels and subsequent binding of c-fos/c-jun heterodimers to the proximal element of the PAI-1 gene.
Collapse
Affiliation(s)
- Aneta Kasza
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Cell Biochemistry, Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | - Daniel L. Kiss
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Sunita Gopalan
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Weili Xu
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | | | - Aleksander Koj
- Department of Cell Biochemistry, Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | - Tomasz Kordula
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Corresponding author: Dr. Tomasz Kordula, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, tel. (216) 687-2435, fax. (216) 687-6972,
| |
Collapse
|
37
|
Kannan-Thulasiraman P, Shapiro DJ. Modulators of inflammation use nuclear factor-kappa B and activator protein-1 sites to induce the caspase-1 and granzyme B inhibitor, proteinase inhibitor 9. J Biol Chem 2002; 277:41230-9. [PMID: 12177049 DOI: 10.1074/jbc.m200379200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinase inhibitor 9 (PI-9) inhibits caspase-1 (interleukin (IL)-1beta-converting enzyme) and granzyme B, thereby regulating production of the pro-inflammatory cytokine IL-1beta and susceptibility to granzyme B-induced apoptosis. We show that cellular PI-9 mRNA and protein are induced by IL-1beta, lipopolysaccharide, and 12-O-tetradecanoylphorbol-13-acetate. We identified functional imperfect nuclear factor-kappaB (NF-kappaB) sites at -135 and -88 and a consensus activator protein-1 (AP-1) site at -308 in the PI-9 promoter region. Using transient transfections in HepG2 cells to assay PI-9 promoter mutations, we find that mutational ablation of the AP-1 site or of either NF-kappaB site reduces IL-1beta-induced expression of PI-9 by approximately 60%. Mutational ablation of the two NF-kappaB sites and of the AP-1 site nearly abolishes both basal and IL-1beta-induced expression of PI-9. Nuclear extracts from IL-1beta-treated HepG2 cells exhibited strong, IL-1beta-inducible binding to the NF-kappaB sites and to the AP-1 site. Electrophoretic mobility shift assays show that after IL-1beta treatment c-Jun/c-Fos and JunD bind to the AP-1 site, whereas the p50/p65 heterodimer binds to the two NF-kappaB sites. Estrogens induce PI-9, but induction of PI-9 by estrogens and IL-1beta is not synergistic. In transiently transfected, estrogen receptor-positive HepG2ER7 cells, estrogens do not interfere with IL-1beta induction, whereas IL-1beta exhibits dose-dependent repression of estrogen-inducible PI-9 expression. Our surprising finding that the pro-inflammatory cytokine IL-1beta strongly induces PI-9 suggests a novel mechanism for regulating inflammation and apoptosis through a negative feedback loop controlling expression of the anti-inflammatory and anti-apoptotic protein, PI-9.
Collapse
Affiliation(s)
- Padma Kannan-Thulasiraman
- Department of Biochemistry, University of Illinois, 600 S Matthews Avenue, Urbana, IL 61801-3602, USA
| | | |
Collapse
|
38
|
Wilcockson DC, Campbell SJ, Anthony DC, Perry VH. The systemic and local acute phase response following acute brain injury. J Cereb Blood Flow Metab 2002; 22:318-26. [PMID: 11891437 DOI: 10.1097/00004647-200203000-00009] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is not known whether acute brain injury results in a systemic acute phase response (APR) or whether an APR influences outcome after an insult to the CNS. The present study sought to establish whether brain injury elicits a systemic or local APR. The expression of acute phase protein (APP) mRNA in liver and brain tissues was measured by Taqman reverse transcriptase-polymerase chain reaction after an excitotoxic lesion in the striatum or challenge with a proinflammatory cytokine. N-methyl-d-aspartate (NMDA)-induced brain lesion did not elicit a systemic APR. In contrast, proinflammatory challenge with mouse recombinant interleukin-1beta (mrIL-1beta) resulted in a significant hepatic APP mRNA expression within 6 hours. Thus, an inflammatory challenge that results in a meningitis leads to a hepatic APR, whereas acute brain injury alone, with no evidence of a meningitis, does not produce an APR. This is surprising because NMDA leads to an increase in endogenous IL-1beta synthesis. This suggests that the brain has an endogenous antiinflammatory mechanism, which protects against the spread of inflammation after an acute injury. In the brain, both excitotoxic lesions and proinflammatory challenge resulted in a profound parenchymal upregulation of APP mRNA after 6 and 12 hours in the injected hemisphere. These results suggest that the local APR may play a role as an antiinflammatory mechanism. These findings indicate a potentially pivotal role for peripheral and local APP production on outcome after brain injury.
Collapse
Affiliation(s)
- David C Wilcockson
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Southampton, Hampshire, UK
| | | | | | | |
Collapse
|
39
|
Sun YX, Wright HT, Janciauskiene S. Alpha1-antichymotrypsin/Alzheimer's peptide Abeta(1-42) complex perturbs lipid metabolism and activates transcription factors PPARgamma and NFkappaB in human neuroblastoma (Kelly) cells. J Neurosci Res 2002; 67:511-22. [PMID: 11835318 DOI: 10.1002/jnr.10144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid-beta peptide (Abeta) and the serpin proteinase inhibitor alpha1-antichymotrypsin (ACT) are components of the amyloid plaques associated with Alzheimer's disease (AD). Abeta exists in soluble monomeric and oligomeric forms and in an insoluble polymerised fibrillar form, but it is not clear which of these plays the most important role in the etiology of AD. In vitro, Abeta(1-42) interacts with ACT, and as a result of this, ACT loses its proteinase inhibitor activity and polymerisation of Abeta(1-42) is promoted. Here we provide evidence that new molecular forms resulting from incubation of ACT with Abeta(1-42) have multiple cellular level effects on neuronal cells. The mixture of soluble Abeta and an ACT/Abeta complex formed by 2 hr incubation at a 10:1 molar ratio of Abeta:ACT strongly induce cellular proliferation and expression of transcription factors peroxisome proliferator-activated receptor-gamma (PPARgamma) and NFkappaB, and also increase uptake and depress degradation of native and oxidised low-density lipoprotein (LDL) by cells. Similar but less pronounced effects are seen when cells are exposed to the Abeta peptide alone preincubated for 2 hr. Abeta(1-42) and to a lesser extent ACT/Abeta(1-42) complex mixture prepared by 2 hr incubation both inhibit association of native LDL with cells. Neither ACT alone nor the Abeta(1-42) and ACT/Abeta(1-42) forms prepared by 24-hr incubation show any significant effects in these assays. We propose that specific molecular forms of Abeta(1-42) and ACT/Abeta(1-42) complex mixture, both dependent on the abundances of Abeta(1-42) and ACT/Abeta(1-42) in vivo and on their time of exposure to each other, have cellular effects which are important for the initiation and progression of the pathologies associated with AD.
Collapse
Affiliation(s)
- Yong-Xin Sun
- Department of Medicine, Wallenberg Laboratory, University Hospital Malmö, S-20502 Malmö, Sweden
| | | | | |
Collapse
|
40
|
Abstract
Cytokines have been implicated as mediators and inhibitors of diverse forms of neurodegeneration. They are induced in response to brain injury and have diverse actions that can cause, exacerbate, mediate and/or inhibit cellular injury and repair. Here we review evidence for the contribution of cytokines to acute neurodegeneration, focusing primarily on interleukin 1 (IL-1), tumour necrosis factor-alpha (TNFalpha) and transforming growth factor-beta (TGFbeta). TGFbeta seems to exert primarily neuroprotective actions, whereas TNFalpha might contribute to neuronal injury and exert protective effects. IL-1 mediates ischaemic, excitotoxic and traumatic brain injury, probably through multiple actions on glia, neurons and the vasculature. Understanding cytokine action in acute neurodegeneration could lead to novel and effective therapeutic strategies, some of which are already in clinical trials.
Collapse
|
41
|
Janciauskiene S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:221-35. [PMID: 11278163 DOI: 10.1016/s0925-4439(01)00025-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serine proteinase inhibitors (Serpins) are irreversible suicide inhibitors of proteases that regulate diverse physiological processes such as coagulation, fibrinolysis, complement activation, angiogenesis, apoptosis, inflammation, neoplasia and viral pathogenesis. The molecular structure and physical properties of serpins permit these proteins to adopt a number of variant conformations under physiological conditions including the native inhibitory form and several inactive, non-inhibitory forms, such as complexes with protease or other ligands, cleaved, polymerised and oxidised. Alterations of a serpin which affect its structure and/or secretion and thus reduce its functional levels may result in pathology. Serpin dysfunction has been implicated in thrombosis, emphysema, liver cirrhosis, immune hypersensitivity and mental disorders. The loss of inhibitory activity of serpins necessarily results in an imbalance between proteases and their inhibitors, but it may also have other physiological effects through the generation of abnormal concentrations of modified, non-inhibitory forms of serpins. Although these forms of inhibitory serpins are detected in tissues and fluids recovered from inflammatory sites, the important questions of which conditions result in generation of different molecular forms of serpins, what biological function these forms have, and which of them are directly linked to pathologies and/or may be useful markers for characterisation of disease states, remain to be answered. Elucidation of the biological activities of non-inhibitory forms of serpins may provide useful insights into the pathogenesis of diseases and suggest new therapeutic strategies.
Collapse
Affiliation(s)
- S Janciauskiene
- Department of Medicine, Wallenberg Laboratory, Ing. 46, Malmö University Hospital, S-20502, Malmö, Sweden.
| |
Collapse
|