1
|
Dmitriev AV, Linsenmeier RA. pH in the vertebrate retina and its naturally occurring and pathological changes. Prog Retin Eye Res 2025; 104:101321. [PMID: 39608565 PMCID: PMC11711014 DOI: 10.1016/j.preteyeres.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This review summarizes the existing information on the concentration of H+ (pH) in vertebrate retinae and its changes due to various reasons. Special features of H+ homeostasis that make it different from other ions will be discussed, particularly metabolic production of H+ and buffering. The transretinal distribution of extracellular H+ concentration ([H+]o) and its changes under illumination and other conditions will be described in detail, since [H+]o is more intensively investigated than intracellular pH. In vertebrate retinae, the highest [H+]o occurs in the inner part of the outer nuclear layer, and decreases toward the RPE, reaching the blood level on the apical side of the RPE. [H+]o falls toward the vitreous as well, but less, so that the inner retina is acidic to the vitreous. Light leads to complex changes with both electrogenic and metabolic origins, culminating in alkalinization. There is a rhythm of [H+]o with H+ being higher during circadian night. Extracellular pH can potentially be used as a signal in intercellular volume transmission, but evidence is against pH as a normal controller of fluid transport across the RPE or as a horizontal cell feedback signal. Pathological and experimentally created conditions (systemic metabolic acidosis, hypoxia and ischemia, vascular occlusion, excess glucose and diabetes, genetic disorders, and blockade of carbonic anhydrase) disturb H+ homeostasis, mostly producing retinal acidosis, with consequences for retinal blood flow, metabolism and function.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Neurobiology, Northwestern University, Evanston, IL, USA; Department of Ophthalmology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Huang S, Zhang W, Xuan S, Si H, Huang D, Ba M, Qi D, Pei X, Lu D, Li Z. Chronic sleep deprivation impairs retinal circadian transcriptome and visual function. Exp Eye Res 2024; 243:109907. [PMID: 38649019 DOI: 10.1016/j.exer.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
3
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Erofeeva N, Meshalkina D, Firsov M. Multiple Roles of cAMP in Vertebrate Retina. Cells 2023; 12:cells12081157. [PMID: 37190066 DOI: 10.3390/cells12081157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
cAMP is a key regulatory molecule that controls many important processes in the retina, including phototransduction, cell development and death, growth of neural processes, intercellular contacts, retinomotor effects, and so forth. The total content of cAMP changes in the retina in a circadian manner following the natural light cycle, but it also shows local and even divergent changes in faster time scales in response to local and transient changes in the light environment. Changes in cAMP might also manifest or cause various pathological processes in virtually all cellular components of the retina. Here we review the current state of knowledge and understanding of the regulatory mechanisms by which cAMP influences the physiological processes that occur in various retinal cells.
Collapse
Affiliation(s)
- Natalia Erofeeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Darya Meshalkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Michael Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
6
|
Malchow RP, Tchernookova BK, Choi JIV, Smith PJS, Kramer RH, Kreitzer MA. Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy-H . Front Cell Neurosci 2021; 15:693095. [PMID: 34539347 PMCID: PMC8446203 DOI: 10.3389/fncel.2021.693095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell-mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.
Collapse
Affiliation(s)
- Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ji-in Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Peter J. S. Smith
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| |
Collapse
|
7
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
8
|
Berkowitz BA, Qian H. OCT imaging of rod mitochondrial respiration in vivo. Exp Biol Med (Maywood) 2021; 246:2151-2158. [PMID: 34024141 DOI: 10.1177/15353702211013799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There remains a need for high spatial resolution imaging indices of mitochondrial respiration in the outer retina that probe normal physiology and measure pathogenic and reversible conditions underlying loss of vision. Mitochondria are involved in a critical, but somewhat underappreciated, support system that maintains the health of the outer retina involving stimulus-evoked changes in subretinal space hydration. The subretinal space hydration light-dark response is important because it controls the distribution of vision-critical interphotoreceptor matrix components, including anti-oxidants, pro-survival factors, ions, and metabolites. The underlying signaling pathway controlling subretinal space water management has been worked out over the past 30 years and involves cGMP/mitochondria respiration/pH/RPE water efflux. This signaling pathway has also been shown to be modified by disease-generating conditions, such as hypoxia or oxidative stress. Here, we review recent advances in MRI and commercially available OCT technologies that can measure stimulus-evoked changes in subretinal space water content based on changes in the external limiting membrane-retinal pigment epithelium region. Each step within the above signaling pathway can also be interrogated with FDA-approved pharmaceuticals. A highlight of these studies is the demonstration of first-in-kind in vivo imaging of mitochondria respiration of any cell in the body. Future examinations of subretinal space hydration are expected to be useful for diagnosing threats to sight in aging and disease, and improving the success rate when translating treatments from bench-to-bedside.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Goel M, Mangel SC. Dopamine-Mediated Circadian and Light/Dark-Adaptive Modulation of Chemical and Electrical Synapses in the Outer Retina. Front Cell Neurosci 2021; 15:647541. [PMID: 34025356 PMCID: PMC8131545 DOI: 10.3389/fncel.2021.647541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The vertebrate retina, like most other brain regions, undergoes relatively slow alterations in neural signaling in response to gradual changes in physiological conditions (e.g., activity changes to rest), or in response to gradual changes in environmental conditions (e.g., day changes into night). As occurs elsewhere in the brain, the modulatory processes that mediate slow adaptation in the retina are driven by extrinsic signals (e.g., changes in ambient light level) and/or by intrinsic signals such as those of the circadian (24-h) clock in the retina. This review article describes and discusses the extrinsic and intrinsic modulatory processes that enable neural circuits in the retina to optimize their visual performance throughout day and night as the ambient light level changes by ~10 billion-fold. In the first synaptic layer of the retina, cone photoreceptor cells form gap junctions with rods and signal cone-bipolar and horizontal cells (HCs). Distinct extrinsic and intrinsic modulatory processes in this synaptic layer are mediated by long-range feedback of the neuromodulator dopamine. Dopamine is released by dopaminergic cells, interneurons whose cell bodies are located in the second synaptic layer of the retina. Distinct actions of dopamine modulate chemical and electrical synapses in day and night. The retinal circadian clock increases dopamine release in the day compared to night, activating high-affinity dopamine D4 receptors on cones. This clock effect controls electrical synapses between rods and cones so that rod-cone electrical coupling is minimal in the day and robust at night. The increase in rod-cone coupling at night improves the signal-to-noise ratio and the reliability of very dim multi-photon light responses, thereby enhancing detection of large dim objects on moonless nights.Conversely, maintained (30 min) bright illumination in the day compared to maintained darkness releases sufficient dopamine to activate low-affinity dopamine D1 receptors on cone-bipolar cell dendrites. This non-circadian light/dark adaptive process regulates the function of GABAA receptors on ON-cone-bipolar cell dendrites so that the receptive field (RF) surround of the cells is strong following maintained bright illumination but minimal following maintained darkness. The increase in surround strength in the day following maintained bright illumination enhances the detection of edges and fine spatial details.
Collapse
Affiliation(s)
- Manvi Goel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
10
|
Lin HY, Huang RC. Glycolytic metabolism and activation of Na + pumping contribute to extracellular acidification in the central clock of the suprachiasmatic nucleus: Differential glucose sensitivity and utilization between oxidative and non-oxidative glycolytic pathways. Biomed J 2021; 45:143-154. [PMID: 35341719 PMCID: PMC9133309 DOI: 10.1016/j.bj.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The central clock of the suprachiasmatic nucleus (SCN) controls the metabolism of glucose and is sensitive to glucose shortage. However, it is only beginning to be understood how metabolic signals such as glucose availability regulate the SCN physiology. We previously showed that the ATP-sensitive K+ channel plays a glucose-sensing role in regulating SCN neuronal firing at times of glucose shortage. Nevertheless, it is unknown whether the energy-demanding Na+/K+-ATPase (NKA) is also sensitive to glucose availability. Furthermore, we recently showed that the metabolically active SCN constantly extrudes H+ to acidify extracellular pH (pHe). This study investigated whether the standing acidification is associated with Na+ pumping activity, energy metabolism, and glucose utilization, and whether glycolysis- and mitochondria-fueled NKAs may be differentially sensitive to glucose shortage. METHODS Double-barreled pH-selective microelectrodes were used to determine the pHe in the SCN in hypothalamic slices. RESULTS NKA inhibition with K+-free (0-K+) solution rapidly and reversibly alkalinized the pHe, an effect abolished by ouabain. Mitochondrial inhibition with cyanide acidified the pHe but did not inhibit 0-K+-induced alkalinization. Glycolytic inhibition with iodoacetate alkalinized the pHe, completely blocked cyanide-induced acidification, and nearly completely blocked 0-K+-induced alkalinization. The results indicate that glycolytic metabolism and activation of Na+ pumping contribute to the standing acidification. Glucoprivation also alkalinized the pHe, nearly completely eliminated cyanide-induced acidification, but only partially reduced 0-K+-induced alkalinization. In contrast, hypoglycemia preferentially and partially blocked cyanide-induced acidification. The result indicates sensitivity to glucose shortage for the mitochondria-associated oxidative glycolytic pathway. CONCLUSION Glycolytic metabolism and activation of glycolysis-fueled NKA Na+ pumping activity contribute to the standing acidification in the SCN. Furthermore, the oxidative and non-oxidative glycolytic pathways differ in their glucose sensitivity and utilization, with the oxidative glycolytic pathway susceptible to glucose shortage, and the non-oxidative glycolytic pathway able to maintain Na+ pumping even in glucoprivation.
Collapse
Affiliation(s)
- Hsin-Yi Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Cao J, Ribelayga CP, Mangel SC. A Circadian Clock in the Retina Regulates Rod-Cone Gap Junction Coupling and Neuronal Light Responses via Activation of Adenosine A 2A Receptors. Front Cell Neurosci 2021; 14:605067. [PMID: 33510619 PMCID: PMC7835330 DOI: 10.3389/fncel.2020.605067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Adenosine, a major neuromodulator in the central nervous system (CNS), is involved in a variety of regulatory functions such as the sleep/wake cycle. Because exogenous adenosine displays dark- and night-mimicking effects in the vertebrate retina, we tested the hypothesis that a circadian (24 h) clock in the retina uses adenosine to control neuronal light responses and information processing. Using a variety of techniques in the intact goldfish retina including measurements of adenosine overflow and content, tracer labeling, and electrical recording of the light responses of cone photoreceptor cells and cone horizontal cells (cHCs), which are post-synaptic to cones, we demonstrate that a circadian clock in the retina itself-but not activation of melatonin or dopamine receptors-controls extracellular and intracellular adenosine levels so that they are highest during the subjective night. Moreover, the results show that the clock increases extracellular adenosine at night by enhancing adenosine content so that inward adenosine transport ceases. Also, we report that circadian clock control of endogenous cone adenosine A2A receptor activation increases rod-cone gap junction coupling and rod input to cones and cHCs at night. These results demonstrate that adenosine and A2A receptor activity are controlled by a circadian clock in the retina, and are used by the clock to modulate rod-cone electrical synapses and the sensitivity of cones and cHCs to very dim light stimuli. Moreover, the adenosine system represents a separate circadian-controlled pathway in the retina that is independent of the melatonin/dopamine pathway but which nevertheless acts in concert to enhance the day/night difference in rod-cone coupling.
Collapse
Affiliation(s)
- Jiexin Cao
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Christophe P Ribelayga
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
12
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Doughty MJ. Short term effects of continuous lighting on the cornea of cage-reared laboratory rabbits. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 204:111764. [PMID: 31972451 DOI: 10.1016/j.jphotobiol.2019.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/24/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
This study was to assess the impact on the cornea and eye blink activity of adapting rabbits to continuous lighting (CL) compared to a 14:10 light:dark cycle. Female New Zealand White rabbits (2 to 2.5 kg) were maintained under a light: dark (L:D) cycle or switched to continuous fluorescent lighting (CL) for an average of 17 +/- 2 days. Animal behaviour in their cages was manually recorded using an event marker and in vivo slitlamp biomicroscopy at 40× undertaken in mid-afternoon. Animals were then euthanized and the corneas prepared for scanning electron microscopy (SEM). From images taken at 500× from the central region of the corneas, the number of exfoliating (desquamating) cells and the relative number of different cells with light, medium or dark reflexes were assessed for the corneal epithelial surface, while the number of cells/unit area were assessed for both corneal epithelium and endothelium. Exposure to continuous lighting was associated with higher number of eye blink events (15.7 vs 8.2/15 min) and mild corneal surface alterations evident by biomicroscopy with higher numbers of intra-epithelial 'granules' (32 +/- 14 vs. 4 +/- 3/sq. mm). SEM revealed low numbers of exfoliating cells on the corneal epithelial surface in all CL-adapted animals, but not in L:D controls. Trends were observed for there to be slightly higher numbers of epithelial cells/unit area, higher numbers of small light reflex cells and lower numbers of larger dark reflex cells in CL animals. The corneal endothelium showed no obvious adverse effects in CL-adapted animals but the percentage of 'hexagonal' cells was slightly higher compared to L:D controls. The results indicate that even a short period of exposure of laboratory-raised rabbits to constant lighting can be associated with mild adverse effects on the corneal epithelial surface.
Collapse
Affiliation(s)
- Michael J Doughty
- Department of Vision Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 OBA, United Kingdom.
| |
Collapse
|
14
|
Shakhmantsir I, Dooley SJ, Kishore S, Chen D, Pierce E, Bennett J, Sehgal A. RNA Splicing Factor Mutations That Cause Retinitis Pigmentosa Result in Circadian Dysregulation. J Biol Rhythms 2019; 35:72-83. [PMID: 31726916 DOI: 10.1177/0748730419887876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Circadian clocks regulate multiple physiological processes in the eye, but their requirement for retinal health remains unclear. We previously showed that Drosophila homologs of spliceosome proteins implicated in human retinitis pigmentosa (RP), the most common genetically inherited cause of blindness, have a role in the brain circadian clock. In this study, we report circadian phenotypes in murine models of RP. We found that mice carrying a homozygous H2309P mutation in Pre-mRNA splicing factor 8 (Prpf8) display a lengthened period of the circadian wheel-running activity rhythm. We show also that the daily cycling of circadian gene expression is dampened in the retina of Prpf8-H2309P mice. Surprisingly, molecular rhythms are intact in the eye cup, which includes the retinal pigment epithelium (RPE), even though the RPE is thought to be the primary tissue affected in this form of RP. Downregulation of Prp31, another RNA splicing factor implicated in RP, leads to period lengthening in a human cell culture model. The period of circadian bioluminescence in primary fibroblasts of human RP patients is not significantly altered. Together, these studies link a prominent retinal disorder to circadian deficits, which could contribute to disease pathology.
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Chronobiology and Sleep institute (CSI) and Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott J Dooley
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Siddharth Kishore
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dechun Chen
- Chronobiology and Sleep institute (CSI) and Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Pierce
- Ocular Genomics Institute, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Chronobiology and Sleep institute (CSI) and Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Ribelayga C, Mangel SC. Circadian clock regulation of cone to horizontal cell synaptic transfer in the goldfish retina. PLoS One 2019; 14:e0218818. [PMID: 31461464 PMCID: PMC6713326 DOI: 10.1371/journal.pone.0218818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
Although it is well established that the vertebrate retina contains endogenous circadian clocks that regulate retinal physiology and function during day and night, the processes that the clocks affect and the means by which the clocks control these processes remain unresolved. We previously demonstrated that a circadian clock in the goldfish retina regulates rod-cone electrical coupling so that coupling is weak during the day and robust at night. The increase in rod-cone coupling at night introduces rod signals into cones so that the light responses of both cones and cone horizontal cells, which are post-synaptic to cones, become dominated by rod input. By comparing the light responses of cones, cone horizontal cells and rod horizontal cells, which are post-synaptic to rods, under dark-adapted conditions during day and night, we determined whether the daily changes in the strength of rod-cone coupling could account entirely for rhythmic changes in the light response properties of cones and cone horizontal cells. We report that although some aspects of the day/night changes in cone and cone horizontal cell light responses, such as response threshold and spectral tuning, are consistent with modulation of rod-cone coupling, other properties cannot be solely explained by this phenomenon. Specifically, we found that at night compared to the day the time course of spectrally-isolated cone photoresponses was slower, cone-to-cone horizontal cell synaptic transfer was highly non-linear and of lower gain, and the delay in cone-to-cone horizontal cell synaptic transmission was longer. However, under bright light-adapted conditions in both day and night, cone-to-cone horizontal cell synaptic transfer was linear and of high gain, and no additional delay was observed at the cone-to-cone horizontal cell synapse. These findings suggest that in addition to controlling rod-cone coupling, retinal clocks shape the light responses of cone horizontal cells by modulating cone-to-cone horizontal cell synaptic transmission.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- MD Anderson/UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Stuart C. Mangel
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cheng PC, Lin HY, Chen YS, Cheng RC, Su HC, Huang RC. The Na +/H +-Exchanger NHE1 Regulates Extra- and Intracellular pH and Nimodipine-sensitive [Ca 2+] i in the Suprachiasmatic Nucleus. Sci Rep 2019; 9:6430. [PMID: 31015514 PMCID: PMC6478949 DOI: 10.1038/s41598-019-42872-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The central clock in the suprachiasmatic nucleus (SCN) has higher metabolic activity than extra-SCN areas in the anterior hypothalamus. Here we investigated whether the Na+/H+ exchanger (NHE) may regulate extracellular pH (pHe), intracellular pH (pHi) and [Ca2+]i in the SCN. In hypothalamic slices bathed in HEPES-buffered solution a standing acidification of ~0.3 pH units was recorded with pH-sensitive microelectrodes in the SCN but not extra-SCN areas. The NHE blocker amiloride alkalinised the pHe. RT-PCR revealed mRNA for plasmalemmal-type NHE1, NHE4, and NHE5 isoforms, whereas the NHE1-specific antagonist cariporide alkalinised the pHe. Real-time PCR and western blotting failed to detect day-night variation in NHE1 mRNA and protein levels. Cariporide induced intracellular acidosis, increased basal [Ca2+]i, and decreased depolarisation-induced Ca2+ rise, with the latter two effects being abolished with nimodipine blocking the L-type Ca2+ channels. Immunofluorescent staining revealed high levels of punctate colocalisation of NHE1 with serotonin transporter (SERT) or CaV1.2, as well as triple staining of NHE1, CaV1.2, and SERT or the presynaptic marker Bassoon. Our results indicate that NHE1 actively extrudes H+ to regulate pHi and nimodipine-sensitive [Ca2+]i in the soma, and along with CaV1.2 may also regulate presynaptic Ca2+ levels and, perhaps at least serotonergic, neurotransmission in the SCN.
Collapse
Affiliation(s)
- Pi-Cheng Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hsin-Yi Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ya-Shuan Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ruo-Ciao Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hung-Che Su
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, 33305, Taiwan.
| |
Collapse
|
17
|
Walton ZE, Patel CH, Brooks RC, Yu Y, Ibrahim-Hashim A, Riddle M, Porcu A, Jiang T, Ecker BL, Tameire F, Koumenis C, Weeraratna AT, Welsh DK, Gillies R, Alwine JC, Zhang L, Powell JD, Dang CV. Acid Suspends the Circadian Clock in Hypoxia through Inhibition of mTOR. Cell 2018; 174:72-87.e32. [PMID: 29861175 PMCID: PMC6398937 DOI: 10.1016/j.cell.2018.05.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.
Collapse
Affiliation(s)
- Zandra E Walton
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Chirag H Patel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rebekah C Brooks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yongjun Yu
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology and Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Malini Riddle
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Alessandra Porcu
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Brett L Ecker
- The Wistar Institute, Philadelphia, PA 19104, USA; Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feven Tameire
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - David K Welsh
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Robert Gillies
- Department of Cancer Physiology and Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - James C Alwine
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan D Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA.
| |
Collapse
|
18
|
Cruz-Rangel S, De Jesús-Pérez JJ, Aréchiga-Figueroa IA, Rodríguez-Menchaca AA, Pérez-Cornejo P, Hartzell HC, Arreola J. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A. J Physiol 2017; 595:1515-1531. [PMID: 27859335 DOI: 10.1113/jp273111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. ABSTRACT Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca2+ -dependent Cl- channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+ ]o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H+ ]o from 10-10 to 10-5.5 m caused a progressive increase in the chloride current (ICl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2+ sensitivity. Noise analysis showed that protons regulate TMEM16A by tuning its open probability without modifying the single channel current. We found a robust reduction of the proton effect at high [Ca2+ ]i . To identify protonation targets we mutated all extracellular glutamate and histidine residues and 4 of 11 aspartates. Most mutants were sensitive to protons. However, mutation that substituted glutamic acid (E) for glutamine (Q) at amino acid position 623 (E623Q) displayed a titration curve shifted to the left relative to wild type channels and the ICl was nearly insensitive to proton concentrations between 10-5.5 and 10-9.0 m. Additionally, ICl of the mutant containing an aspartic acid (D) to asparagine (N) substitution at position 405 (D405N) mutant was partially inhibited by a proton concentration of 10-5.5 m, but 10-9.0 m produced the same effect as in wild type. Based on our findings we propose that external protons titrate glutamic acid 623, which enables voltage activation of TMEM16A at non-saturating [Ca2+ ]i .
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - Iván A Aréchiga-Figueroa
- CONACYT-Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| |
Collapse
|
19
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
20
|
Abstract
Retinas of all classes of vertebrates contain endogenous circadian clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis, and cellular events such as rod disk shedding, intracellular signaling pathways, and gene expression. The vertebrate retina is an example of a “peripheral” oscillator that is particularly amenable to study because this tissue is well characterized, the relationships between the various cell types are extensively studied, and many local clock-controlled rhythms are known. Although the existence of a photoreceptor clock is well established in several species, emerging data are consistent with multiple or dual oscillators within the retina that interact to control local physiology. Aprominent example is the antiphasic regulation of melaton in and dopamine in photoreceptors and inner retina, respectively. This review focuses on the similarities and differences in the molecular mechanisms of the retinal versus the SCN oscillators, as well as on the expression of core components of the circadian clockwork in retina. Finally, the interactions between the retinal clock(s) and the master clock in the SCN are examined.
Collapse
Affiliation(s)
- Carla B Green
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
21
|
Dmitriev AV, Henderson D, Linsenmeier RA. Light-induced pH changes in the intact retinae of normal and early diabetic rats. Exp Eye Res 2016; 145:148-157. [PMID: 26639389 PMCID: PMC4842083 DOI: 10.1016/j.exer.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/26/2022]
Abstract
Double-barreled H(+)-selective microelectrodes were used to measure local extracellular concentration of H(+) ([H(+)]o) in the retina of dark-adapted anesthetized Long-Evans rats. The microelectrode advanced in steps of 30 μm throughout the retina from the vitreal surface to retinal pigment epithelium and then to the choroid, recording changes in [H(+)]o evoked by light stimulation. Recordings were performed in diabetic rats 1-3 months after intraperitoneal injection of streptozotocin and the results were compared with data obtained in age-matched control animals. Brief light stimulation (2.5 s) evoked changes of [H(+)]o with amplitudes of a few nM. Throughout the retina, there was a transient initial acidification for ∼200 ms followed by steady alkalinization, although amplitudes and kinetics of these components were slightly variable in different retinal layers. No significant difference was found when the light-induced [H(+)]o changes recorded in various retinal layers of early diabetic rats were compared with the [H(+)]o changes from corresponding layers of control animals. Also, when H(+)-selective microelectrodes were located in the retinal pigment epithelium (RPE) layer, an increase in H(+) was recorded, whose time course and amplitude were similar in control and diabetic rats. However, a striking difference between light-induced [H(+)]o changes in controls and diabetics was observed in the choriocapillaris, in the thin layer (10-20 μm) distal to the basal membrane of the RPE. In control rats, choroidal [H(+)]o decreased in a few cases, but much more often practically did not change. In contrast, diabetic rats demonstrated either an increase (in half of the cases) or no change in choroidal [H(+)]o. The data suggest that the active participation of the choroidal blood supply in stabilization of [H(+)]o could be partially compromised already at early stages of diabetes in rats. Interestingly, it appeared that the acid removal by the choroidal circulation was compromised most after 1 month of diabetes and tended to improve later.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States.
| | - Desmond Henderson
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States; Department of Neurobiology, 2205 Tech Drive, Northwestern University, Evanston, IL 60208, United States; Department of Ophthalmology, Northwestern University, 645 North Michigan Avenue, Suite 440, Chicago, IL 60611, United States.
| |
Collapse
|
22
|
Mammalian retinal Müller cells have circadian clock function. Mol Vis 2016; 22:275-83. [PMID: 27081298 PMCID: PMC4812508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 03/24/2016] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To test whether Müller glia of the mammalian retina have circadian rhythms. METHODS We used Müller glia cultures isolated from mouse lines or from humans and bioluminescent reporters of circadian clock genes to monitor molecular circadian rhythms. The clock gene dependence of the Müller cell rhythms was tested using clock gene knockout mouse lines or with siRNA for specific clock genes. RESULTS We demonstrated that retinal Müller glia express canonical circadian clock genes, are capable of sustained circadian oscillations in isolation from other cell types, and exhibit unique features of their molecular circadian clock compared to the retina as a whole. Mouse and human Müller cells demonstrated circadian clock function; however, they exhibited species-specific differences in the gene dependence of their clocks. CONCLUSIONS Müller cells are the first mammalian retinal cell type in which sustained circadian rhythms have been demonstrated in isolation from other retinal cells.
Collapse
|
23
|
Ail D, Rüfenacht V, Caprara C, Samardzija M, Kast B, Grimm C. Increased expression of the proton-sensing G protein-coupled receptor Gpr65 during retinal degeneration. Neuroscience 2015; 301:496-507. [DOI: 10.1016/j.neuroscience.2015.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 11/16/2022]
|
24
|
Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 2015; 95:179-217. [PMID: 25540142 DOI: 10.1152/physrev.00016.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.
Collapse
Affiliation(s)
- Francisco V Sepúlveda
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - L Pablo Cid
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - Jacques Teulon
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - María Isabel Niemeyer
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| |
Collapse
|
25
|
Marchesi A, Arcangeletti M, Mazzolini M, Torre V. Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels. J Physiol 2015; 593:857-70. [PMID: 25480799 DOI: 10.1113/jphysiol.2014.284216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Desensitization and inactivation provide a form of short-term memory controlling the firing patterns of excitable cells and adaptation in sensory systems. Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels are thought not to desensitize or inactivate. Here we report that CNG channels do inactivate and that inactivation is controlled by extracellular protons. Titration of a glutamate residue within the selectivity filter destabilizes the pore architecture, which collapses towards a non-conductive, inactivated state in a process reminiscent of the usual C-type inactivation observed in many K(+) channels. These results indicate that inactivation in CNG channels represents a regulatory mechanism that has been neglected thus far, with possible implications in several physiological processes ranging from signal transduction to growth cone navigation. ABSTRACT Ion channels control ionic fluxes across biological membranes by residing in any of three functionally distinct states: deactivated (closed), activated (open) or inactivated (closed). Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels do not desensitize or inactivate. Using patch recording techniques, we show that when extracellular pH (pHo ) is decreased from 7.4 to 6 or lower, wild-type CNGA1 channels inactivate in a voltage-dependent manner. pHo titration experiments show that at pHo < 7 the I-V relationships are outwardly rectifying and that inactivation is coupled to current rectification. Single-channel recordings indicate that a fast mechanism of proton blockage underlines current rectification while inactivation arises from conformational changes downstream from protonation. Furthermore, mutagenesis and ionic substitution experiments highlight the role of the selectivity filter in current decline, suggesting analogies with the C-type inactivation observed in K(+) channels. Analysis with Markovian models indicates that the non-independent binding of two protons within the transmembrane electrical field explains both the voltage-dependent blockage and the inactivation. Low pH, by inhibiting the CNGA1 channels in a state-dependent manner, may represent an unrecognized endogenous signal regulating CNG physiological functions in diverse tissues.
Collapse
Affiliation(s)
- Arin Marchesi
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
26
|
Li X, Fei J, Lei Z, Liu K, Wu J, Meng T, Yu J, Li J. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a. Toxicol Lett 2014; 228:200-6. [PMID: 24821433 DOI: 10.1016/j.toxlet.2014.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/29/2022]
Abstract
Acid-sensing ion channels (ASICs) are extracellular pH sensors activated by protons, which influence retinal activity and phototransduction. Among all ASICs, ASIC1a is abundantly expressed in the retina and involved in normal retinal activity. Chloroquine, which has been used in the treatment of malaria, rheumatoid arthritis and systemic lupus erythematosus, has been shown to be toxic to the retina. However, the underlying mechanisms remain unclear. In this study, we investigated the role of chloroquine in phototransduction by measuring the electroretinogram (ERG). The effect of chloroquine on acid-evoked currents in either isolated rat retinal ganglion neurons (RGNs) or Chinese hamster ovary (CHO) cells transfected with ASIC1a were assessed using a whole-cell patch-clamp technique. Chloroquine reduced the b-wave of scotopic 0.01 and photopic 3.0 and amplitudes of oscillatory potentials (OPs), an effect which was almost completely reversed by PcTx1, an ASIC1a-specific channel blocker. Further, patch-clamp experiments demonstrated that chloroquine reduced the peak current amplitude and prolonged the activation and desensitization of ASIC1a currents. These chloroquine-induced effects on the kinetics of ASIC 1a were dose-, pH- and Ca(2+)-dependent. Taken together, these results demonstrate that chloroquine affects vision conduction by directly modifying the kinetics of ASIC1a. Such a mechanism, may, in part, explain the retinal toxicity of chloroquine.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Kejing Liu
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingxin Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China.
| |
Collapse
|
27
|
McMahon DG, Iuvone PM, Tosini G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 2013; 39:58-76. [PMID: 24333669 DOI: 10.1016/j.preteyeres.2013.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data indicate that dysfunction of the retinal circadian system negatively impacts the retina and possibly the cornea and the lens.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, 30310 GA, USA.
| |
Collapse
|
28
|
Pannexin1 channel proteins in the zebrafish retina have shared and unique properties. PLoS One 2013; 8:e77722. [PMID: 24194896 PMCID: PMC3808535 DOI: 10.1371/journal.pone.0077722] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution. Homology searches strongly support the presence of pannexin sequences in cartilaginous fish and provide evidence that pannexins evolved when urochordata and chordata evolution split. Further, we confirm Panx1 ohnologs being solely present in teleosts. A hallmark of differential expression of drPanx1a and drPanx1b in various zebrafish brain areas is the non-overlapping protein localization of drPanx1a in the outer and drPanx1b in the inner fish retina. A functional comparison of the evolutionary distant fish and mouse Panx1s revealed both, preserved and unique properties. Preserved functions are the capability to form channels opening at resting potential, which are sensitive to known gap junction and hemichannel blockers, intracellular calcium, extracellular ATP and pH changes. However, drPanx1b is unique due to its highly complex glycosylation pattern and distinct electrophysiological gating kinetics. The existence of two Panx1 proteins in zebrafish displaying distinct tissue distribution, protein modification and electrophysiological properties, suggests that both proteins fulfill different functions in vivo.
Collapse
|
29
|
Ruan GX, Gamble KL, Risner ML, Young LA, McMahon DG. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. PLoS One 2012; 7:e38985. [PMID: 22701739 PMCID: PMC3372489 DOI: 10.1371/journal.pone.0038985] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/17/2012] [Indexed: 11/24/2022] Open
Abstract
The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period.
Collapse
Affiliation(s)
- Guo-Xiang Ruan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Karen L. Gamble
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Michael L. Risner
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Laurel A. Young
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Sandoval M, Burgos J, Sepúlveda FV, Cid LP. Extracellular pH in restricted domains as a gating signal for ion channels involved in transepithelial transport. Biol Pharm Bull 2011; 34:803-9. [PMID: 21628875 DOI: 10.1248/bpb.34.803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The importance of intracellular pH (pH(i)) in the regulation of diverse cellular activities ranging from cell proliferation and differentiation to cell cycle, migration and apoptosis has long been recognised. More recently, extracellular pH (pH₀), in particular that of relatively inaccessible compartments or domains that occur between cells in tissues, has begun to be acknowledged as a relevant signal in cell regulation. This should not be surprising given the abundant reports highlighting the pH₀-dependence of the activity of membrane proteins facing the extracellular space such as receptors, transporters, ion channels and enzymes. Changes in pH affect the ionisation state of proteins through the effect on their titratable groups. There are proteins, however, which respond to pH shifts with conformational changes that are crucial for catalysis or transport activity. In such cases protons act as signalling molecules capable of eliciting fast and localised responses. We provide examples of ion channels that appear fastidiously designed to respond to extracellular pH in a manner that suggests specific functions in transporting epithelia. We shall also present ideas as to how these channels participate in complex transepithelial transport processes and provide preliminary experiments illustrating a new way to gauge pH₀ in confined spaces of native epithelial tissue.
Collapse
|
31
|
Abstract
Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, University of Quilmes/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Quilmes, Argentina.
| | | |
Collapse
|
32
|
Kalt W, Hanneken A, Milbury P, Tremblay F. Recent research on polyphenolics in vision and eye health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4001-4007. [PMID: 20102149 DOI: 10.1021/jf903038r] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A long-standing yet controversial bioactivity attributed to polyphenols is their beneficial effects in vision. Although anecdotal case reports and in vitro research studies provide evidence for the visual benefits of anthocyanin-rich berries, rigorous clinical evidence of their benefits is still lacking. Recent in vitro studies demonstrate that anthocyanins and other flavonoids interact directly with rhodopsin and modulate visual pigment function. Additional in vitro studies show flavonoids protect a variety of retinal cell types from oxidative stress-induced cell death, a neuroprotective property of significance because the retina has the highest metabolic rate of any tissue and is particularly vulnerable to oxidative injury. However, more information is needed on the bioactivity of in vivo conjugates and the accumulation of flavonoids in ocular tissues. The direct and indirect costs of age-related vision impairment provide a powerful incentive to explore the potential for improved vision health through the intake of dietary polyphenolics.
Collapse
Affiliation(s)
- Wilhelmina Kalt
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
33
|
Jian K, Barhoumi R, Ko ML, Ko GYP. Inhibitory effect of somatostatin-14 on L-type voltage-gated calcium channels in cultured cone photoreceptors requires intracellular calcium. J Neurophysiol 2009; 102:1801-10. [PMID: 19605612 DOI: 10.1152/jn.00354.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inhibitory effects of somatostatin have been well documented for many physiological processes. The action of somatostatin is through G-protein-coupled receptor-mediated second-messenger signaling, which in turn affects other downstream targets including ion channels. In the retina, somatostatin is released from a specific class of amacrine cells. Here we report that there was a circadian phase-dependent effect of somatostatin-14 (SS14) on the L-type voltage-gated calcium channels (L-VGCCs) in cultured chicken cone photoreceptors, and our study reveals that this process is dependent on intracellular calcium stores. Application of 500 nM SS14 for 2 h caused a decrease in L-VGCC currents only during the subjective night but not the subjective day. We then explored the cellular mechanisms underlying the circadian phase-dependent effect of SS14. The inhibitory effect of SS14 on L-VGCCs was mediated through the pertussis-toxin-sensitive G-protein-dependent somatostatin receptor 2 (sst2). Activation of sst2 by SS14 further activated downstream signaling involving phospholipase C and intracellular calcium stores. Mobilization of intracellular Ca2+ was required for somatostatin induced inhibition of photoreceptor L-VGCCs, suggesting that somatostatin plays an important role in the modulation of photoreceptor physiology.
Collapse
Affiliation(s)
- Kuihuan Jian
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
Circadian clocks are thought to regulate retinal physiology in anticipation of the large variation in environmental irradiance associated with the earth's rotation upon its axis. In this review we discuss some of the rhythmic events that occur in the mammalian retina, and their consequences for retinal physiology. We also review methods of tracing retinal rhythmicity in vivo and highlight the electroretinogram (ERG) as a useful technique in this field. Principally, we discuss how this technique can be used as a quick and noninvasive way of assessing physiological changes that occur in the retina over the course of the day. We highlight some important recent findings facilitated by this approach and discuss its strengths and limitations.
Collapse
|
36
|
Chen CH, Hsu YT, Chen CC, Huang RC. Acid-sensing ion channels in neurones of the rat suprachiasmatic nucleus. J Physiol 2009; 587:1727-37. [PMID: 19255120 DOI: 10.1113/jphysiol.2008.166918] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We used reduced slice reparations to study ASIC-like currents in the rat central clock suprachiasmatic nucleus (SCN). In reduced SCN preparations, a drop of extracellular pH evoked a desensitizing inward current to excite SCN neurones to fire at higher rates. Under voltage-clamped conditions, all SCN neurones responded to a 5 s pH step to 6.4 with an inward current that decayed with an average time constant of 1.2 s to 10% of the peak at the end of step. The current was blocked by amiloride with an IC(50) of 14 microm and was carried mainly by Na(+), suggesting an origin of ASIC-like channels. The SCN neurones were sensitive to neutral pH, with 94% of cells responding to pH 7.0 with an inward current. The study of sensitivity to pH between 7.0 and 4.4 revealed a two-component dose-dependent H(+) activation in most SCN neurones, with the first component (85% in amplitude) having a pH(50) of 6.6, and the second (15%) a pH(50) of 5. The ASIC-like currents were potentiated by lactate and low Ca(2+), but were inhibited by Zn(2+). RT-PCR analysis demonstrated the presence of mRNA for ASIC1a, 2a, 2b, and 3 in SCN. Compared to other central neurones, the unique presence of ASIC3 along with ASIC1a in SCN neurones may contribute to the high pH sensitivity and unusual inhibition by Zn(2+). The high pH sensitivity suggests that the SCN neurones are susceptive to extracellular acidification of physiological origins and that the ASIC current might play a role in regulating SCN excitability.
Collapse
Affiliation(s)
- Chun-Hao Chen
- Department of Physiology and Pharmacology, Chang Gung University School of Medicine, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
37
|
Yanamala N, Tirupula KC, Balem F, Klein-Seetharaman J. pH-dependent Interaction of Rhodopsin with Cyanidin-3-glucoside. 1. Structural Aspects. Photochem Photobiol 2009; 85:454-62. [DOI: 10.1111/j.1751-1097.2008.00517.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Activation of TGF-beta/activin signalling resets the circadian clock through rapid induction of Dec1 transcripts. Nat Cell Biol 2008; 10:1463-9. [PMID: 19029909 DOI: 10.1038/ncb1806] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/11/2008] [Indexed: 11/09/2022]
Abstract
The circadian clock is reset by external time cues for synchronization to environmental changes. In mammals, the light-input signalling pathway mediated by Per gene induction has been extensively studied. On the other hand, little is known about resetting mechanisms that are independent of Per induction. Here we show that activation of activin receptor-like kinase (ALK), triggered by TGF-beta, activin or alkali signals, evoked resetting of the cellular clock independently of Per induction. The resetting was mediated by an immediate-early induction of Dec1, a gene whose physiological role in the function of the circadian clock has been unclear. Acute Dec1 induction was a prerequisite for ALK-mediated resetting and upregulation was dependent on SMAD3, which was phosphorylated for activation in response to the resetting stimuli. Intraperitoneal injection of TGF-beta into wild-type or Dec1-deficient mice demonstrated that Dec1 has an essential role in phase-shift of clock gene expression in the kidney and adrenal gland. These results indicate that ALK-SMAD3-Dec1 signalling provides an input pathway in the mammalian molecular clock.
Collapse
|
39
|
Urra J, Sandoval M, Cornejo I, Barros LF, Sepúlveda FV, Cid LP. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells. Pflugers Arch 2008; 457:233-42. [PMID: 18427834 DOI: 10.1007/s00424-008-0497-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/03/2008] [Accepted: 03/17/2008] [Indexed: 02/05/2023]
Abstract
Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.
Collapse
Affiliation(s)
- Javier Urra
- Centro de Estudios Científicos, Av. Arturo Prat 514, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
40
|
Lee EJ, Padilla M, Merwine DK, Grzywacz NM. Developmental regulation of the morphology of mouse retinal horizontal cells by visual experience. Eur J Neurosci 2008; 27:1423-31. [DOI: 10.1111/j.1460-9568.2008.06122.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Dorenbos R, Contini M, Hirasawa H, Gustincich S, Raviola E. Expression of circadian clock genes in retinal dopaminergic cells. Vis Neurosci 2007; 24:573-80. [PMID: 17705893 DOI: 10.1017/s0952523807070538] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 05/26/2007] [Indexed: 11/07/2022]
Abstract
The mammalian neural retina contains single or multiple intrinsic circadian oscillators that can be directly entrained by light cycles. Dopaminergic amacrine (DA) cells represent an especially interesting candidate as a site of the retinal oscillator because of the crucial role of dopamine in light adaptation, and the widespread distribution of dopamine receptors in the retina. We hereby show by single-cell, end-point RT-PCR that retinal DA cells contain the transcripts for six core components of the circadian clock: Bmal1, Clock, Cry1, Cry2, Per1, and Per2. Rod photoreceptors represented a negative control, because they did not appear to contain clock transcripts. We finally confirmed that DA cells contain the protein encoded by the Bmal1 gene by comparing immunostaining of the nuclei of DA cells in the retinas of wildtype and Bmal1-/- mice. It is therefore likely that DA cells contain a circadian clock that anticipates predictable variations in retinal illumination.
Collapse
Affiliation(s)
- Ronald Dorenbos
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Grewal R, Organisciak D, Wong P. Factors underlying circadian dependent susceptibility to light induced retinal damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:411-6. [PMID: 17249604 DOI: 10.1007/0-387-32442-9_58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ruby Grewal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
43
|
Doering CJ, McRory JE. Effects of extracellular pH on neuronal calcium channel activation. Neuroscience 2007; 146:1032-43. [PMID: 17434266 DOI: 10.1016/j.neuroscience.2007.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/23/2007] [Accepted: 02/28/2007] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that extracellular pH (pHo) alters gating and permeation properties of cardiac L- and T-type channels. However, a comprehensive study investigating the effects of pHo on all other voltage-gated calcium channels is lacking. Here, we report the effects of pHo on activation parameters slope factor (S), half-activation potential (Va), reversal potential (Erev), and maximum slope conductance (Gmax) of the nine known neuronal voltage-gated calcium channels transiently expressed in tsA-201 cells. In all cases, acidification of the extracellular bathing solution results in a depolarizing shift in the activation curve and reduction in peak current amplitudes. Relative to a physiological pHo of 7.25, statistically significant depolarizing shifts in Va were observed for all channels at pHo 7.00 except Cav1.3 and 3.2, which showed significant shifts at pHo 6.75 and below. All channels displayed significant reductions in Gmax relative to pHo 7.25 at pHo 7.00 except Cav1.2, 2.1, and 3.1 which required acidification to pHo 6.75. Upon acidification Cav3 channels displayed the largest changes in Vas and exhibited the largest reduction in Gmax compared with other channel subtypes. Taken together, these results suggest that significant modulation of calcium channel currents can occur with changes in pHo. Acidification of the external solution did not produce significant shifts in observed Erevs or blockade of outward currents for any of the nine channel subtypes. Finally, we tested a simple Woodhull-type model of current block by assuming blockade of the pore by a single proton. In all cases, the amount of blockade observed could not be explained in these simple terms, suggesting that proton modulation is more complicated, involving more than one site or gating modification as has been previously described for cardiac L- and T-type channels.
Collapse
Affiliation(s)
- C J Doering
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
44
|
Jonz MG, Barnes S. Proton modulation of ion channels in isolated horizontal cells of the goldfish retina. J Physiol 2007; 581:529-41. [PMID: 17331999 PMCID: PMC2075170 DOI: 10.1113/jphysiol.2006.125666] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transient changes in extracellular pH (pH(o)) occur in the retina and may have profound effects on neurotransmission and visual processing due to the pH sensitivity of ion channels. The present study characterized the effects of acidification on the activity of membrane ion channels in isolated horizontal cells (HCs) of the goldfish retina using whole-cell patch-clamp recording. Currents recorded from HCs were characterized by prominent inward rectification at potentials negative to -80 mV, a negative slope conductance between -70 and -40 mV, a sustained inward current, and outward rectification positive to 40 mV. Inward currents were identified as those of inward rectifier K(+) (Kir) channels and Ca(2+) channels by their sensitivity to 10 mM Cs(+) or 20 microm Cd(2+), respectively. Both of these currents were reduced when pH(o) decreased from 7.8 to 6.8. Glutamate (1 mM)-activated currents were also identified, as were hemichannel currents that were enhanced by removal of extracellular Ca(2+) and application of 1 mM quinidine. Both glutamate-activated and hemichannel currents were suppressed by a similar reduction of pH(o). When all of these H(+)-inhibited currents were blocked, a small, sustained inward current at -60 mV increased following a decrease in pH(o) from 7.8 to 6.8. In addition, slope conductance between -70 and -20 mV increased during this acidification. Suppression of this H(+)-activated current by removal of extracellular Na(+), and an extrapolated E(rev) near E(Na), indicated that this current was carried predominantly by Na(+) ions.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5 Canada.
| | | |
Collapse
|
45
|
Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG. Circadian organization of the mammalian retina. Proc Natl Acad Sci U S A 2006; 103:9703-8. [PMID: 16766660 PMCID: PMC1480470 DOI: 10.1073/pnas.0601940103] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian retina contains an endogenous circadian pacemaker that broadly regulates retinal physiology and function, yet the cellular origin and organization of the mammalian retinal circadian clock remains unclear. Circadian clock neurons generate daily rhythms via cell-autonomous autoregulatory clock gene networks, and, thus, to localize circadian clock neurons within the mammalian retina, we have studied the cell type-specific expression of six core circadian clock genes in individual, identified mouse retinal neurons, as well as characterized the clock gene expression rhythms in photoreceptor degenerate rd mouse retinas. Individual photoreceptors, horizontal, bipolar, dopaminergic (DA) amacrines, catecholaminergic (CA) amacrines, and ganglion neurons were identified either by morphology or by a tyrosine hydroxylase (TH) promoter-driven red fluorescent protein (RFP) fluorescent reporter. Cells were collected, and their transcriptomes were subjected to multiplex single-cell RT-PCR for the core clock genes Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1. Individual horizontal, bipolar, DA, CA, and ganglion neurons, but not photoreceptors, were found to coordinately express all six core clock genes, with the lowest proportion of putative clock cells in photoreceptors (0%) and the highest proportion in DA neurons (30%). In addition, clock gene rhythms were found to persist for >25 days in isolated, cultured rd mouse retinas in which photoreceptors had degenerated. Our results indicate that multiple types of retinal neurons are potential circadian clock neurons that express key elements of the circadian autoregulatory gene network and that the inner nuclear and ganglion cell layers of the mammalian retina contain functionally autonomous circadian clocks.
Collapse
Affiliation(s)
- Guo-Xiang Ruan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Dao-Qi Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Tongrong Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Shin Yamazaki
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
- *To whom correspondence should be addressed at:
Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235-1634. E-mail:
| |
Collapse
|
46
|
Dmitriev AV, Mangel SC. Electrical Feedback in the Cone Pedicle: A Computational Analysis. J Neurophysiol 2006; 95:1419-27. [PMID: 16319220 DOI: 10.1152/jn.00098.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the fundamental principles of neuroscience is that direct electrical interactions between neurons are not possible without specialized electrical contacts, gap junctions, because the transmembrane resistance of neurons is typically much higher than the resistance of the adjacent extracellular space. However it has been proposed that in the retina direct electrical interactions between cones and second-order neurons occur due to the specific morphology of the cone synaptic terminal. This electrical mechanism could potentially explain the phenomenon of “negative feedback” from horizontal cells to cones and the recent finding that the tips of horizontal cell dendrites contain hemichannels has rekindled interest in the idea. We quantitatively evaluated the possibility that hemichannels and/or glutamate channels mediate electrical feedback from horizontal cells to cones. The calculations show that it is unlikely that an electrical mechanism plays a significant functional role because 1) the necessity of preserving adequate cone-to-horizontal-cell synaptic transmission limits the extracellular space resistance and the horizontal-cell dendritic transmembrane resistances to values at which the effectiveness of electrical feedback is very low and its electrical effect on the cone presynaptic membrane is negligible, 2) electrical feedback is most effective in the dark and weaker during light adaptation, which contradicts the experimental data, and 3) electrical negative feedback is associated with much stronger electrical positive feedback from horizontal cells to cones, a phenomenon that has never been reported. Therefore it is likely that negative feedback from horizontal cells to cones is chemical in nature.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Dept. of Neuroscience, The Ohio State University College of Medicine, 333 W. 10th Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
47
|
Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS. Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 2005; 24:433-56. [PMID: 15845344 DOI: 10.1016/j.preteyeres.2005.01.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian clocks are self-sustaining genetically based molecular machines that impose approximately 24h rhythmicity on physiology and behavior that synchronize these functions with the solar day-night cycle. Circadian clocks in the vertebrate retina optimize retinal function by driving rhythms in gene expression, photoreceptor outer segment membrane turnover, and visual sensitivity. This review focuses on recent progress in understanding how clocks and light control arylalkylamine N-acetyltransferase (AANAT), which is thought to drive the daily rhythm in melatonin production in those retinas that synthesize the neurohormone; AANAT is also thought to detoxify arylalkylamines through N-acetylation. The review will cover evidence that cAMP is a major output of the circadian clock in photoreceptor cells; and recent advances indicating that clocks and clock networks occur in multiple cell types of the retina.
Collapse
Affiliation(s)
- P Michael Iuvone
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, rm. 5107, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Skatchkov SN, Eaton MJ, Shuba YM, Kucheryavykh YV, Derst C, Veh RW, Wurm A, Iandiev I, Pannicke T, Bringmann A, Reichenbach A. Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells. Glia 2005; 53:266-76. [PMID: 16265669 DOI: 10.1002/glia.20280] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tandem-pore domain (2P-domain) K+-channels regulate neuronal excitability, but their function in glia, particularly, in retinal glial cells, is unclear. We have previously demonstrated the immunocytochemical localization of the 2P-domain K+ channels TASK-1 and TASK-2 in retinal Müller glial cells of amphibians. The purpose of the present study was to determine whether these channels were functional, by employing whole-cell recording from frog and mammalian (guinea pig, rat and mouse) Müller cells and confocal microscopy to monitor swelling in rat Müller cells. TASK-like immunolabel was localized in these cells. The currents mediated by 2P-domain channels were studied in isolation after blocking Kir, K(A), K(D), and BK channels. The remaining cell conductance was mostly outward and was depressed by acid pH, bupivacaine, methanandamide, quinine, and clofilium, and activated by alkaline pH in a manner consistent with that described for TASK channels. Arachidonic acid (an activator of TREK channels) had no effect on this conductance. Blockade of the conductance with bupivacaine depolarized the Müller cell membrane potential by about 50%. In slices of the rat retina, adenosine inhibited osmotic glial cell swelling via activation of A1 receptors and subsequent opening of 2P-domain K+ channels. The swelling was strongly increased by clofilium and quinine (inhibitors of 2P-domain K+ channels). These data suggest that 2P-domain K+ channels are involved in homeostasis of glial cell volume, in activity-dependent spatial K+ buffering and may play a role in maintenance of a hyperpolarized membrane potential especially in conditions where Kir channels are blocked or downregulated.
Collapse
Affiliation(s)
- S N Skatchkov
- CMBN, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico 00960-6032.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Molina AJA, Verzi MP, Birnbaum AD, Yamoah EN, Hammar K, Smith PJS, Malchow RP. Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate. J Physiol 2004; 560:639-57. [PMID: 15272044 PMCID: PMC1665295 DOI: 10.1113/jphysiol.2004.065425] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 07/16/2004] [Indexed: 11/08/2022] Open
Abstract
Self-referencing H(+)-selective microelectrodes were used to measure extracellular H(+) fluxes from horizontal cells isolated from the skate retina. A standing H(+) flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H(+) flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na(+)-H(+) exchanger. Glutamate decreased H(+) flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H(+) flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H(+) flux. Immunocytochemical localization of the plasmalemma Ca(2+)-H(+)-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H(+) flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca(2+)-H(+)-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neurones.
Collapse
Affiliation(s)
- Anthony J A Molina
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pyza E, Borycz J, Giebultowicz JM, Meinertzhagen IA. Involvement of V-ATPase in the regulation of cell size in the fly's visual system. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:985-994. [PMID: 15607501 DOI: 10.1016/j.jinsphys.2004.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 05/24/2023]
Abstract
In the fly's visual system, two classes of lamina interneuron, L1 and L2, cyclically change both their size and shape in a rhythm that is circadian. Several neurotransmitters and the lamina's glial cells are known to be involved in regulating these rhythms. Moreover, vacuolar-type H+-ATPase (V-ATPase) in the optic lobe is thought also to participate in such regulation. We have detected V-ATPase-like immunoreactivity in the heads of both Drosophilla melanogaster and Musca domestica using antibodies raised against either the B- or H-subunits of V-ATPase from D. melanogaster or against the B-subunit from two other insect species Culex quinquefasciatus and Manduca sexta. In the visual systems of both fly species V-ATPase was localized immunocytochemically to the compound eye photoreceptors. In D. melanogaster immunoreactivity oscillated during the day and night and under constant darkness the signal was stronger during the subjective night than the subjective day. In turn, blocking V-ATPase by injecting a V-ATPase blocker, bafilomycin, in M. domestica increased the axon sizes of L1 and L2, but only when bafilomycin was applied during the night. As a result bafilomycin abolished the day/night difference in axon size in L1 and L2, their sizes being similar during the day and night.
Collapse
Affiliation(s)
- E Pyza
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland.
| | | | | | | |
Collapse
|