1
|
Williams IR, Ryugo DK. Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse. Front Neural Circuits 2024; 18:1430598. [PMID: 39184455 PMCID: PMC11341401 DOI: 10.3389/fncir.2024.1430598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 μm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
2
|
Beebe NL, Zhang C, Burger RM, Schofield BR. Multiple Sources of Cholinergic Input to the Superior Olivary Complex. Front Neural Circuits 2021; 15:715369. [PMID: 34335196 PMCID: PMC8319744 DOI: 10.3389/fncir.2021.715369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
The superior olivary complex (SOC) is a major computation center in the brainstem auditory system. Despite previous reports of high expression levels of cholinergic receptors in the SOC, few studies have addressed the functional role of acetylcholine in the region. The source of the cholinergic innervation is unknown for all but one of the nuclei of the SOC, limiting our understanding of cholinergic modulation. The medial nucleus of the trapezoid body, a key inhibitory link in monaural and binaural circuits, receives cholinergic input from other SOC nuclei and also from the pontomesencephalic tegmentum. Here, we investigate whether these same regions are sources of cholinergic input to other SOC nuclei. We also investigate whether individual cholinergic cells can send collateral projections bilaterally (i.e., into both SOCs), as has been shown at other levels of the subcortical auditory system. We injected retrograde tract tracers into the SOC in gerbils, then identified retrogradely-labeled cells that were also immunolabeled for choline acetyltransferase, a marker for cholinergic cells. We found that both the SOC and the pontomesencephalic tegmentum (PMT) send cholinergic projections into the SOC, and these projections appear to innervate all major SOC nuclei. We also observed a small cholinergic projection into the SOC from the lateral paragigantocellular nucleus of the reticular formation. These various sources likely serve different functions; e.g., the PMT has been associated with things such as arousal and sensory gating whereas the SOC may provide feedback more closely tuned to specific auditory stimuli. Further, individual cholinergic neurons in each of these regions can send branching projections into both SOCs. Such projections present an opportunity for cholinergic modulation to be coordinated across the auditory brainstem.
Collapse
Affiliation(s)
- Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Chao Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
3
|
Ashida G, Tollin DJ, Kretzberg J. Robustness of neuronal tuning to binaural sound localization cues against age-related loss of inhibitory synaptic inputs. PLoS Comput Biol 2021; 17:e1009130. [PMID: 34242210 PMCID: PMC8270189 DOI: 10.1371/journal.pcbi.1009130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
Sound localization relies on minute differences in the timing and intensity of sound arriving at both ears. Neurons of the lateral superior olive (LSO) in the brainstem process these interaural disparities by precisely detecting excitatory and inhibitory synaptic inputs. Aging generally induces selective loss of inhibitory synaptic transmission along the entire auditory pathways, including the reduction of inhibitory afferents to LSO. Electrophysiological recordings in animals, however, reported only minor functional changes in aged LSO. The perplexing discrepancy between anatomical and physiological observations suggests a role for activity-dependent plasticity that would help neurons retain their binaural tuning function despite loss of inhibitory inputs. To explore this hypothesis, we use a computational model of LSO to investigate mechanisms underlying the observed functional robustness against age-related loss of inhibitory inputs. The LSO model is an integrate-and-fire type enhanced with a small amount of low-voltage activated potassium conductance and driven with (in)homogeneous Poissonian inputs. Without synaptic input loss, model spike rates varied smoothly with interaural time and level differences, replicating empirical tuning properties of LSO. By reducing the number of inhibitory afferents to mimic age-related loss of inhibition, overall spike rates increased, which negatively impacted binaural tuning performance, measured as modulation depth and neuronal discriminability. To simulate a recovery process compensating for the loss of inhibitory fibers, the strength of remaining inhibitory inputs was increased. By this modification, effects of inhibition loss on binaural tuning were considerably weakened, leading to an improvement of functional performance. These neuron-level observations were further confirmed by population modeling, in which binaural tuning properties of multiple LSO neurons were varied according to empirical measurements. These results demonstrate the plausibility that homeostatic plasticity could effectively counteract known age-dependent loss of inhibitory fibers in LSO and suggest that behavioral degradation of sound localization might originate from changes occurring more centrally.
Collapse
Affiliation(s)
- Go Ashida
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
- * E-mail:
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jutta Kretzberg
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Klug J, Schmors L, Ashida G, Dietz M. Neural rate difference model can account for lateralization of high-frequency stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:678. [PMID: 32873019 DOI: 10.1121/10.0001602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Lateralization of complex high-frequency sounds is conveyed by interaural level differences (ILDs) and interaural time differences (ITDs) in the envelope. In this work, the authors constructed an auditory model and simulate data from three previous behavioral studies obtained with, in total, over 1000 different amplitude-modulated stimuli. The authors combine a well-established auditory periphery model with a functional count-comparison model for binaural excitatory-inhibitory (EI) interaction. After parameter optimization of the EI-model stage, the hemispheric rate-difference between pairs of EI-model neurons relates linearly with the extent of laterality in human listeners. If a certain ILD and a certain envelope ITD each cause a similar extent of laterality, they also produce a similar rate difference in the same model neurons. After parameter optimization, the model accounts for 95.7% of the variance in the largest dataset, in which amplitude modulation depth, rate of modulation, modulation exponent, ILD, and envelope ITD were varied. The model also accounts for 83% of the variances in each of the other two datasets using the same EI model parameters.
Collapse
Affiliation(s)
- Jonas Klug
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Lisa Schmors
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Go Ashida
- Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Dorkoski R, Hancock KE, Whaley GA, Wohl TR, Stroud NC, Day ML. Stimulus-frequency-dependent dominance of sound localization cues across the cochleotopic map of the inferior colliculus. J Neurophysiol 2020; 123:1791-1807. [PMID: 32186439 DOI: 10.1152/jn.00713.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The horizontal direction of a sound source (i.e., azimuth) is perceptually determined in a frequency-dependent manner: low- and high-frequency sounds are localized via differences in the arrival time and intensity of the sound at the two ears, respectively, called interaural time and level differences (ITDs and ILDs). In the central auditory system, these binaural cues to direction are thought to be separately encoded by neurons tuned to low and high characteristic frequencies (CFs). However, at high sound levels a neuron often responds to frequencies far from its CF, raising the possibility that individual neurons may encode the azimuths of both low- and high-frequency sounds using both binaural cues. We tested this possibility by measuring auditory-driven single-unit responses in the central nucleus of the inferior colliculus (ICC) of unanesthetized female Dutch Belted rabbits with a multitetrode drive. At 70 dB SPL, ICC neurons across the cochleotopic map transmitted information in their firing rates about the direction of both low- and high-frequency noise stimuli. We independently manipulated ITD and ILD cues in virtual acoustic space and found that sensitivity to ITD and ILD, respectively, shaped the directional sensitivity of ICC neurons to low (<1.5 kHz)- and high (>3 kHz)-pass stimuli, regardless of the neuron's CF. We also found evidence that high-CF neurons transmit information about both the fine-structure and envelope ITD of low-frequency sound. Our results indicate that at conversational sound levels the majority of the cochleotopic map is engaged in transmitting directional information, even for sources with narrowband spectra.NEW & NOTEWORTHY A "division of labor" has previously been assumed in which the directions of low- and high-frequency sound sources are thought to be encoded by neurons preferentially sensitive to low and high frequencies, respectively. Contrary to this, we found that auditory midbrain neurons encode the directions of both low- and high-frequency sounds regardless of their preferred frequencies. Neural responses were shaped by different sound localization cues depending on the stimulus spectrum-even within the same neuron.
Collapse
Affiliation(s)
- Ryan Dorkoski
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Gareth A Whaley
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Timothy R Wohl
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Noelle C Stroud
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Mitchell L Day
- Department of Biological Sciences, Ohio University, Athens, Ohio.,Quantitative Biology Institute, Ohio University, Athens, Ohio
| |
Collapse
|
6
|
Yin TC, Smith PH, Joris PX. Neural Mechanisms of Binaural Processing in the Auditory Brainstem. Compr Physiol 2019; 9:1503-1575. [DOI: 10.1002/cphy.c180036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Kan A, Goupell MJ, Litovsky RY. Effect of channel separation and interaural mismatch on fusion and lateralization in normal-hearing and cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1448. [PMID: 31472555 PMCID: PMC6713556 DOI: 10.1121/1.5123464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 05/29/2023]
Abstract
Bilateral cochlear implantation has provided access to some of the benefits of binaural hearing enjoyed by normal-hearing (NH) listeners. However, a gap in performance still exists between the two populations. Single-channel stimulation studies have shown that interaural place-of-stimulation mismatch (IPM) due to differences in implantation depth leads to decreased binaural fusion and lateralization of interaural time and level differences (ITDs and ILDs, respectively). While single-channel studies are informative, multi-channel stimulation is needed for good speech understanding with cochlear implants (CIs). Some multi-channel studies have shown that channel interaction due to current spread can affect ITD sensitivity. In this work, we studied the effect of IPM and channel spacing, along with their potential interaction, on binaural fusion and ITD/ILD lateralization. Experiments were conducted in adult NH listeners and CI listeners with a history of acoustic hearing. Results showed that IPM reduced the range of lateralization for ITDs but not ILDs. CI listeners were more likely to report a fused percept in the presence of IPM with multi-channel stimulation than NH listeners. However, no effect of channel spacing was found. These results suggest that IPM should be accounted for in clinical mapping practices in order to maximize bilateral CI benefits.
Collapse
Affiliation(s)
- Alan Kan
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
8
|
Ashida G, Tollin DJ, Kretzberg J. Physiological models of the lateral superior olive. PLoS Comput Biol 2017; 13:e1005903. [PMID: 29281618 PMCID: PMC5744914 DOI: 10.1371/journal.pcbi.1005903] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
In computational biology, modeling is a fundamental tool for formulating, analyzing and predicting complex phenomena. Most neuron models, however, are designed to reproduce certain small sets of empirical data. Hence their outcome is usually not compatible or comparable with other models or datasets, making it unclear how widely applicable such models are. In this study, we investigate these aspects of modeling, namely credibility and generalizability, with a specific focus on auditory neurons involved in the localization of sound sources. The primary cues for binaural sound localization are comprised of interaural time and level differences (ITD/ILD), which are the timing and intensity differences of the sound waves arriving at the two ears. The lateral superior olive (LSO) in the auditory brainstem is one of the locations where such acoustic information is first computed. An LSO neuron receives temporally structured excitatory and inhibitory synaptic inputs that are driven by ipsi- and contralateral sound stimuli, respectively, and changes its spike rate according to binaural acoustic differences. Here we examine seven contemporary models of LSO neurons with different levels of biophysical complexity, from predominantly functional ones (‘shot-noise’ models) to those with more detailed physiological components (variations of integrate-and-fire and Hodgkin-Huxley-type). These models, calibrated to reproduce known monaural and binaural characteristics of LSO, generate largely similar results to each other in simulating ITD and ILD coding. Our comparisons of physiological detail, computational efficiency, predictive performances, and further expandability of the models demonstrate (1) that the simplistic, functional LSO models are suitable for applications where low computational costs and mathematical transparency are needed, (2) that more complex models with detailed membrane potential dynamics are necessary for simulation studies where sub-neuronal nonlinear processes play important roles, and (3) that, for general purposes, intermediate models might be a reasonable compromise between simplicity and biological plausibility. Computational models help our understanding of complex biological systems, by identifying their key elements and revealing their operational principles. Close comparisons between model predictions and empirical observations ensure our confidence in a model as a building block for further applications. Most current neuronal models, however, are constructed to replicate only a small specific set of experimental data. Thus, it is usually unclear how these models can be generalized to different datasets and how they compare with each other. In this paper, seven neuronal models are examined that are designed to reproduce known physiological characteristics of auditory neurons involved in the detection of sound source location. Despite their different levels of complexity, the models generate largely similar results when their parameters are tuned with common criteria. Comparisons show that simple models are computationally more efficient and theoretically transparent, and therefore suitable for rigorous mathematical analyses and engineering applications including real-time simulations. In contrast, complex models are necessary for investigating the relationship between underlying biophysical processes and sub- and suprathreshold spiking properties, although they have a large number of unconstrained, unverified parameters. Having identified their advantages and drawbacks, these auditory neuron models may readily be used for future studies and applications.
Collapse
Affiliation(s)
- Go Ashida
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jutta Kretzberg
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Oertel D, Cao XJ, Ison JR, Allen PD. Cellular Computations Underlying Detection of Gaps in Sounds and Lateralizing Sound Sources. Trends Neurosci 2017; 40:613-624. [PMID: 28867348 DOI: 10.1016/j.tins.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K+ conductance (gKL) and a hyperpolarization-activated conductance (gh). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.
Collapse
Affiliation(s)
- Donata Oertel
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA.
| | - Xiao-Jie Cao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA
| | - James R Ison
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY 14627, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Hakvoort B, van der Leij A, van Setten E, Maurits N, Maassen B, van Zuijen T. Dichotic listening as an index of lateralization of speech perception in familial risk children with and without dyslexia. Brain Cogn 2016; 109:75-83. [PMID: 27648974 DOI: 10.1016/j.bandc.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
Atypical language lateralization has been marked as one of the factors that may contribute to the development of dyslexia. Indeed, atypical lateralization of linguistic functions such as speech processing in dyslexia has been demonstrated using neuroimaging studies, but also using the behavioral dichotic listening (DL) method. However, so far, DL results have been mixed. The current study assesses lateralization of speech processing by using DL in a sample of children at familial risk (FR) for dyslexia. In order to determine whether atypical lateralization of speech processing relates to reading ability, or is a correlate of being at familial risk, the current study compares the laterality index of FR children who did and did not become dyslexic, and a control group of readers without dyslexia. DL was tested in 3rd grade and in 5/6th grade. Results indicate that at both time points, all three groups have a right ear advantage, indicative of more pronounced left-hemispheric processing. However, the FR-dyslexic children are less good at reporting from the left ear than controls and FR-nondyslexic children. This impediment relates to reading fluency.
Collapse
Affiliation(s)
- Britt Hakvoort
- Research Institute of Child Development and Education, Faculty of Social and Behavioral Sciences, University of Amsterdam, The Netherlands.
| | - Aryan van der Leij
- Research Institute of Child Development and Education, Faculty of Social and Behavioral Sciences, University of Amsterdam, The Netherlands
| | - Ellie van Setten
- Centre for Language and Cognition Groningen (CLCG) & University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Natasha Maurits
- Department of Neurology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Ben Maassen
- Centre for Language and Cognition Groningen (CLCG) & University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Titia van Zuijen
- Research Institute of Child Development and Education, Faculty of Social and Behavioral Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
11
|
Evolution of mammalian sound localization circuits: A developmental perspective. Prog Neurobiol 2016; 141:1-24. [PMID: 27032475 DOI: 10.1016/j.pneurobio.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above 10kHz, which likely induced positive selection for novel mechanisms of sound localization. How this change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. I will argue that the major VGlut2(+) excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Atoh1(+)/Wnt1(+) cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound localization in all three dimensions. Genetic analyses indicate that auditory nuclei in fish, birds, and mammals receive contributions from the same progenitor lineages. Anatomical and physiological differences and the independent evolution of tympanic ears in vertebrate groups, however, argue for convergent evolution of sound localization circuits in tetrapods (amphibians, reptiles, birds, and mammals). These disparate findings are discussed in the context of the genetic architecture of the developing hindbrain, which facilitates convergent evolution. Yet, it will be critical to decipher the gene regulatory networks underlying development of auditory neurons across vertebrates to explore the possibility of homologous neuronal populations.
Collapse
|
12
|
Kelvasa D, Dietz M. Auditory Model-Based Sound Direction Estimation With Bilateral Cochlear Implants. Trends Hear 2015; 19:19/0/2331216515616378. [PMID: 26631106 PMCID: PMC4771030 DOI: 10.1177/2331216515616378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Users of bilateral cochlear implants (CIs) show above-chance performance in localizing the source of a sound in the azimuthal (horizontal) plane; although localization errors are far worse than for normal-hearing listeners, they are considerably better than for CI listeners with only one implant. In most previous studies, subjects had access to interaural level differences and to interaural time differences conveyed in the temporal envelope. Here, we present a binaural model that predicts the azimuthal direction of sound arrival from a two-channel input signal as it is received at the left and right CI processor. The model includes a replication of a clinical speech-coding strategy, a model of the electrode-nerve interface and binaural brainstem neurons, and three different prediction stages that are trained to map the neural response rate to an azimuthal angle. The model is trained and tested with various noise and speech stimuli created by means of virtual acoustics. Localization error patterns of the model match experimental data and are explicable largely in terms of the nonmonotonic relationship between interaural level difference and azimuthal angle.
Collapse
|
13
|
Day ML, Delgutte B. Neural population encoding and decoding of sound source location across sound level in the rabbit inferior colliculus. J Neurophysiol 2015; 115:193-207. [PMID: 26490292 DOI: 10.1152/jn.00643.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/17/2015] [Indexed: 11/22/2022] Open
Abstract
At lower levels of sensory processing, the representation of a stimulus feature in the response of a neural population can vary in complex ways across different stimulus intensities, potentially changing the amount of feature-relevant information in the response. How higher-level neural circuits could implement feature decoding computations that compensate for these intensity-dependent variations remains unclear. Here we focused on neurons in the inferior colliculus (IC) of unanesthetized rabbits, whose firing rates are sensitive to both the azimuthal position of a sound source and its sound level. We found that the azimuth tuning curves of an IC neuron at different sound levels tend to be linear transformations of each other. These transformations could either increase or decrease the mutual information between source azimuth and spike count with increasing level for individual neurons, yet population azimuthal information remained constant across the absolute sound levels tested (35, 50, and 65 dB SPL), as inferred from the performance of a maximum-likelihood neural population decoder. We harnessed evidence of level-dependent linear transformations to reduce the number of free parameters in the creation of an accurate cross-level population decoder of azimuth. Interestingly, this decoder predicts monotonic azimuth tuning curves, broadly sensitive to contralateral azimuths, in neurons at higher levels in the auditory pathway.
Collapse
Affiliation(s)
- Mitchell L Day
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts; and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts; and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Koka K, Tollin DJ. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs. Front Neural Circuits 2014; 8:144. [PMID: 25565971 PMCID: PMC4267272 DOI: 10.3389/fncir.2014.00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022] Open
Abstract
The interaural level difference (ILD) cue to sound location is first encoded in the lateral superior olive (LSO). ILD sensitivity results because the LSO receives excitatory input from the ipsilateral cochlear nucleus and inhibitory input indirectly from the contralateral cochlear nucleus via glycinergic neurons of the ipsilateral medial nucleus of the trapezoid body (MNTB). It is hypothesized that in order for LSO neurons to encode ILDs, the sound spectra at both ears must be accurately encoded via spike rate by their afferents. This spectral-coding hypothesis has not been directly tested in MNTB, likely because MNTB neurons have been mostly described and studied recently in regards to their abilities to encode temporal aspects of sounds, not spectral. Here, we test the hypothesis that MNTB neurons and their inputs from the cochlear nucleus and auditory nerve code sound spectra via discharge rate. The Random Spectral Shape (RSS) method was used to estimate how the levels of 100-ms duration spectrally stationary stimuli were weighted, both linearly and non-linearly, across a wide band of frequencies. In general, MNTB neurons, and their globular bushy cell inputs, were found to be well-modeled by a linear weighting of spectra demonstrating that the pathways through the MNTB can accurately encode sound spectra including those resulting from the acoustical cues to sound location provided by head-related directional transfer functions (DTFs). Together with the anatomical and biophysical specializations for timing in the MNTB-LSO complex, these mechanisms may allow ILDs to be computed for complex stimuli with rapid spectrotemporally-modulated envelopes such as speech and animal vocalizations and moving sound sources.
Collapse
Affiliation(s)
- Kanthaiah Koka
- Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, CO, USA
| | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
15
|
Grothe B, Pecka M. The natural history of sound localization in mammals--a story of neuronal inhibition. Front Neural Circuits 2014; 8:116. [PMID: 25324726 PMCID: PMC4181121 DOI: 10.3389/fncir.2014.00116] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Our concepts of sound localization in the vertebrate brain are widely based on the general assumption that both the ability to detect air-borne sounds and the neuronal processing are homologous in archosaurs (present day crocodiles and birds) and mammals. Yet studies repeatedly report conflicting results on the neuronal circuits and mechanisms, in particular the role of inhibition, as well as the coding strategies between avian and mammalian model systems. Here we argue that mammalian and avian phylogeny of spatial hearing is characterized by a convergent evolution of hearing air-borne sounds rather than by homology. In particular, the different evolutionary origins of tympanic ears and the different availability of binaural cues in early mammals and archosaurs imposed distinct constraints on the respective binaural processing mechanisms. The role of synaptic inhibition in generating binaural spatial sensitivity in mammals is highlighted, as it reveals a unifying principle of mammalian circuit design for encoding sound position. Together, we combine evolutionary, anatomical and physiological arguments for making a clear distinction between mammalian processing mechanisms and coding strategies and those of archosaurs. We emphasize that a consideration of the convergent nature of neuronal mechanisms will significantly increase the explanatory power of studies of spatial processing in both mammals and birds.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig Maximilians University Munich Munich, Germany
| | - Michael Pecka
- Division of Neurobiology, Department of Biology II, Ludwig Maximilians University Munich Munich, Germany
| |
Collapse
|
16
|
Jones AE, Ruhland JL, Gai Y, Yin TCT. Simultaneous comparison of two sound localization measures. Hear Res 2014; 317:33-40. [PMID: 25261773 DOI: 10.1016/j.heares.2014.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
Almost all behavioral studies of sound localization have used either an approach-to-target or pointing/orienting task to assess absolute sound localization performance, yet there are very few direct comparisons of these measures. In an approach-to-target task, the subject is trained to walk to a sound source from a fixed location. In an orienting task, finger, head and/or eye movements are monitored while the subject's body is typically constrained. The fact that subjects may also initiate head and eye movements toward the target during the approach-to-target task allows us to measure the accuracy of the initial orienting response and compare it with subsequent target selection. To perform this comparison, we trained cats to localize a broadband noise presented randomly from one of four speakers located ± 30° and ± 60° in azimuth. The cat responded to each sound presentation by walking to and pressing a lever at the perceived location, and a food reward was delivered if the first attempt was correct. In tandem, we recorded initial head and eye orienting movements, via magnetic search coils, immediately following target onset and prior to the walking response. Reducing either stimulus duration or level resulted in a systematic decline in both measurements of localization performance. When the task was easy, localization performance was accurate for both measures. When the task was more difficult, the number of incorrect (i.e., wrong selection) and no-go (i.e., no selection) responses increased. Interestingly, for many of the incorrect trials, there was a dissociation between the orienting response and the target selected, and for many of the no-go trials, the gaze oriented towards the correct target even though the cat did not move to it. This suggests different neural systems governing walking to a target as compared to unconditioned gaze orienting.
Collapse
Affiliation(s)
- Amy E Jones
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA.
| | - Janet L Ruhland
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA.
| | - Yan Gai
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA.
| | - Tom C T Yin
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Kuwada S, Bishop B, Kim DO. Azimuth and envelope coding in the inferior colliculus of the unanesthetized rabbit: effect of reverberation and distance. J Neurophysiol 2014; 112:1340-55. [PMID: 24944219 DOI: 10.1152/jn.00826.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recognition and localization of a sound are the major functions of the auditory system. In real situations, the listener and different degrees of reverberation transform the signal between the source and the ears. The present study was designed to provide these transformations and examine their influence on neural responses. Using the virtual auditory space (VAS) method to create anechoic and moderately and highly reverberant environments, we found the following: 1) In reverberation, azimuth tuning was somewhat degraded with distance whereas the direction of azimuth tuning remained unchanged. These features remained unchanged in the anechoic condition. 2) In reverberation, azimuth tuning and envelope synchrony were degraded most for neurons with low best frequencies and least for neurons with high best frequencies. 3) More neurons showed envelope synchrony to binaural than to monaural stimulation in both anechoic and reverberant environments. 4) The percentage of envelope-coding neurons and their synchrony decreased in reverberation with distance, whereas it remained constant in the anechoic condition. 5) At far distances, for both binaural and monaural stimulation, the neural gain in reverberation could be as high as 30 dB and as much as 10 dB higher than those in the anechoic condition. 6) The majority of neurons were able to code both envelope and azimuth in all of the environments. This study provides a foundation for understanding the neural coding of azimuth and envelope synchrony at different distances in reverberant and anechoic environments. This is necessary to understand how the auditory system processes "where" and "what" information in real environments.
Collapse
Affiliation(s)
- Shigeyuki Kuwada
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Brian Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Duck O Kim
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
18
|
Sayegh R, Aubie B, Faure PA. Dichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat. Front Physiol 2014; 5:215. [PMID: 24959149 PMCID: PMC4050336 DOI: 10.3389/fphys.2014.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/20/2014] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological studies on duration-tuned neurons (DTNs) from the mammalian auditory midbrain have typically evoked spiking responses from these cells using monaural or free-field acoustic stimulation focused on the contralateral ear, with fewer studies devoted to examining the electrophysiological properties of duration tuning using binaural stimulation. Because the inferior colliculus (IC) receives convergent inputs from lower brainstem auditory nuclei that process sounds from each ear, many midbrain neurons have responses shaped by binaural interactions and are selective to binaural cues important for sound localization. In this study, we used dichotic stimulation to vary interaural level difference (ILD) and interaural time difference (ITD) acoustic cues and explore the binaural interactions and response properties of DTNs and non-DTNs from the IC of the big brown bat (Eptesicus fuscus). Our results reveal that both DTNs and non-DTNs can have responses selective to binaural stimulation, with a majority of IC neurons showing some type of ILD selectivity, fewer cells showing ITD selectivity, and a number of neurons showing both ILD and ITD selectivity. This study provides the first demonstration that the temporally selective responses of DTNs from the vertebrate auditory midbrain can be selective to binaural cues used for sound localization in addition to having spiking responses that are selective for stimulus frequency, amplitude, and duration.
Collapse
Affiliation(s)
- Riziq Sayegh
- McMaster Batlab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| | - Brandon Aubie
- McMaster Batlab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| | - Paul A Faure
- McMaster Batlab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| |
Collapse
|
19
|
Prediction of human's ability in sound localization based on the statistical properties of spike trains along the brainstem auditory pathway. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2014; 2014:575716. [PMID: 24799888 PMCID: PMC3988722 DOI: 10.1155/2014/575716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 02/06/2014] [Accepted: 03/02/2014] [Indexed: 11/17/2022]
Abstract
The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time delay, interaural level differences, and spectral information about the acoustic stimulus. These physical properties are estimated at different stages along the brainstem auditory pathway. The interaural time delay is ambiguous at certain frequencies, thus confusion arises as to the source of these frequencies. It is assumed that in a typical minimum audible angle experiment, the brain acts as an unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds. Two types of lower bounds are tested: the Cramer-Rao and the Barankin. The Cramer-Rao bound only takes into account the approximation of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase information. These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural cues are estimated. An agreement between human experimental data was obtained only when the superior olivary complex was considered and the Barankin lower bound was used. This result suggests that sound localization is estimated by the auditory nuclei using ambiguous binaural information.
Collapse
|
20
|
Chen Y, Zhang H, Wang H, Yu L, Chen Y. The role of coincidence-detector neurons in the reliability and precision of subthreshold signal detection in noise. PLoS One 2013; 8:e56822. [PMID: 23418604 PMCID: PMC3572097 DOI: 10.1371/journal.pone.0056822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Subthreshold signal detection is an important task for animal survival in complex environments, where noise increases both the external signal response and the spontaneous spiking of neurons. The mechanism by which neurons process the coding of signals is not well understood. Here, we propose that coincidence detection, one of the ways to describe the functionality of a single neural cell, can improve the reliability and the precision of signal detection through detection of presynaptic input synchrony. Using a simplified neuronal network model composed of dozens of integrate-and-fire neurons and a single coincidence-detector neuron, we show how the network reads out the subthreshold noisy signals reliably and precisely. We find suitable pairing parameters, the threshold and the detection time window of the coincidence-detector neuron, that optimize the precision and reliability of the neuron. Furthermore, it is observed that the refractory period induces an oscillation in the spontaneous firing, but the neuron can inhibit this activity and improve the reliability and precision further. In the case of intermediate intrinsic states of the input neuron, the network responds to the input more efficiently. These results present the critical link between spiking synchrony and noisy signal transfer, which is utilized in coincidence detection, resulting in enhancement of temporally sensitive coding scheme.
Collapse
Affiliation(s)
- Yueling Chen
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
- Department of Physics, Gansu College of Traditional Chinese Medicine, Lanzhou, China
| | - Hui Zhang
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Hengtong Wang
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Lianchun Yu
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Yong Chen
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
- Department of Mathematics, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Greene NT, Davis KA. Discharge patterns in the lateral superior olive of decerebrate cats. J Neurophysiol 2012; 108:1942-53. [PMID: 22745462 DOI: 10.1152/jn.00908.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anatomical and pharmacological studies have shown that the lateral superior olive (LSO) receives inputs from a number of sources and that LSO cells can alter the balance of their own excitatory and inhibitory drive. It is thus likely that the ongoing sound-evoked responses of LSO cells reflect a complex interplay of excitatory and inhibitory events, which may be affected by anesthesia. The goal of this study was to characterize the temporal discharge patterns of single units in the LSO of unanesthetized, decerebrate cats in response to long-duration ipsilateral best-frequency tone bursts. A decision tree is presented to partition LSO units on the basis of poststimulus time histogram shape, adaptation of instantaneous firing rate as a function of time, and sustained discharge rate. The results suggest that LSO discharge patterns form a continuum with four archetypes: sustained choppers that show two or more peaks of activity at stimulus onset and little adaptation of rate throughout the response, transient choppers that undergo a decrease in rate that eventually stabilizes with time, primary-like units that display an initial peak of activity followed by a monotonic decline in rate to a steady-state value, and onset-sustained units that exhibit an initial peak of activity at stimulus onset followed by a low sustained activity. Compared with the chopper units, the nonchopper units tend to show longer first-spike latencies, lower peak firing rates, and more irregular sustained discharge patterns. Modeling studies show that the full range of LSO response types can be obtained from an underlying sustained chopper by varying the strength and latency of a sound-driven ipsilateral inhibition relative to that of excitation. Together, these results suggest that inhibition plays a major role in shaping the temporal discharge patterns of units in unanesthetized preparations.
Collapse
Affiliation(s)
- Nathaniel T Greene
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
22
|
Wall JA, McDaid LJ, Maguire LP, McGinnity TM. Spiking neural network model of sound localization using the interaural intensity difference. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:574-586. [PMID: 24805041 DOI: 10.1109/tnnls.2011.2178317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, a spiking neural network (SNN) architecture to simulate the sound localization ability of the mammalian auditory pathways using the interaural intensity difference cue is presented. The lateral superior olive was the inspiration for the architecture, which required the integration of an auditory periphery (cochlea) model and a model of the medial nucleus of the trapezoid body. The SNN uses leaky integrate-and-fire excitatory and inhibitory spiking neurons, facilitating synapses and receptive fields. Experimentally derived head-related transfer function (HRTF) acoustical data from adult domestic cats were employed to train and validate the localization ability of the architecture, training used the supervised learning algorithm called the remote supervision method to determine the azimuthal angles. The experimental results demonstrate that the architecture performs best when it is localizing high-frequency sound data in agreement with the biology, and also shows a high degree of robustness when the HRTF acoustical data is corrupted by noise.
Collapse
|
23
|
Oertel D, Wright S, Cao XJ, Ferragamo M, Bal R. The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus. Hear Res 2011; 276:61-9. [PMID: 21056098 PMCID: PMC3078527 DOI: 10.1016/j.heares.2010.10.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/14/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brainstem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons, phasic excitation from the auditory nerve is made more tonic by feedforward excitation, coactivation of inhibitory with excitatory inputs, relatively large excitatory currents through NMDA receptors, and relatively little synaptic depression. The mechanisms that make firing tonic also obscure the fine structure of sounds that is represented in the excitatory inputs from the auditory nerve and account for the characteristic chopping response patterns with which T stellate cells respond to tones. In contrast with other principal cells of the ventral cochlear nucleus (VCN), T stellate cells lack a low-voltage-activated potassium conductance and are therefore sensitive to small, steady, neuromodulating currents. The presence of cholinergic, serotonergic and noradrenergic receptors allows the excitability of these cells to be modulated by medial olivocochlear efferent neurons and by neuronal circuits associated with arousal. T Stellate cells deliver acoustic information to the ipsilateral dorsal cochlear nucleus (DCN), ventral nucleus of the trapezoid body (VNTB), periolivary regions around the lateral superior olivary nucleus (LSO), and to the contralateral ventral lemniscal nuclei (VNLL) and inferior colliculus (IC). It is likely that T stellate cells participate in feedback loops through both medial and lateral olivocochlear efferent neurons and they may be a source of ipsilateral excitation of the LSO.
Collapse
Affiliation(s)
- Donata Oertel
- Department of Physiology, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
24
|
Karcz A, Hennig MH, Robbins CA, Tempel BL, Rübsamen R, Kopp-Scheinpflug C. Low-voltage activated Kv1.1 subunits are crucial for the processing of sound source location in the lateral superior olive in mice. J Physiol 2011; 589:1143-57. [PMID: 21224222 PMCID: PMC3060593 DOI: 10.1113/jphysiol.2010.203331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/05/2011] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated potassium (Kv) channels containing Kv1.1 subunits are strongly expressed in neurons that fire temporally precise action potentials (APs). In the auditory system, AP timing is used to localize sound sources by integrating interaural differences in time (ITD) and intensity (IID) using sound arriving at both cochleae. In mammals, the first nucleus to encode IIDs is the lateral superior olive (LSO), which integrates excitation from the ipsilateral ventral cochlear nucleus and contralateral inhibition mediated via the medial nucleus of the trapezoid body. Previously we reported that neurons in this pathway show reduced firing rates, longer latencies and increased jitter in Kv1.1 knockout (Kcna1−/−) mice. Here, we investigate whether these differences have direct impact on IID processing by LSO neurons. Single-unit recordings were made from LSO neurons of wild-type (Kcna1+/+) and from Kcna1−/− mice. IID functions were measured to evaluate genotype-specific changes in integrating excitatory and inhibitory inputs. In Kcna1+/+ mice, IID sensitivity ranged from +27 dB (excitatory ear more intense) to −20 dB (inhibitory ear more intense), thus covering the physiologically relevant range of IIDs. However, the distribution of IID functions in Kcna1−/− mice was skewed towards positive IIDs, favouring ipsilateral sound positions. Our computational model revealed that the reduced performance of IID encoding in the LSO of Kcna1−/− mice is mainly caused by a decrease in temporal fidelity along the inhibitory pathway. These results imply a fundamental role for Kv1.1 in temporal integration of excitation and inhibition during sound source localization.
Collapse
Affiliation(s)
- Anita Karcz
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proc Natl Acad Sci U S A 2011; 108:4435-40. [PMID: 21368198 DOI: 10.1073/pnas.1013928108] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study of the congenitally blind (CB) represents a unique opportunity to explore experience-dependant plasticity in a sensory region deprived of its natural inputs since birth. Although several studies have shown occipital regions of CB to be involved in nonvisual processing, whether the functional organization of the visual cortex observed in sighted individuals (SI) is maintained in the rewired occipital regions of the blind has only been recently investigated. In the present functional MRI study, we compared the brain activity of CB and SI processing either the spatial or the pitch properties of sounds carrying information in both domains (i.e., the same sounds were used in both tasks), using an adaptive procedure specifically designed to adjust for performance level. In addition to showing a substantial recruitment of the occipital cortex for sound processing in CB, we also demonstrate that auditory-spatial processing mainly recruits the right cuneus and the right middle occipital gyrus, two regions of the dorsal occipital stream known to be involved in visuospatial/motion processing in SI. Moreover, functional connectivity analyses revealed that these reorganized occipital regions are part of an extensive brain network including regions known to underlie audiovisual spatial abilities (i.e., intraparietal sulcus, superior frontal gyrus). We conclude that some regions of the right dorsal occipital stream do not require visual experience to develop a specialization for the processing of spatial information and to be functionally integrated in a preexisting brain network dedicated to this ability.
Collapse
|
26
|
Monaural spectral processing differs between the lateral superior olive and the inferior colliculus: physiological evidence for an acoustic chiasm. Hear Res 2010; 269:134-45. [PMID: 20600738 DOI: 10.1016/j.heares.2010.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/21/2022]
Abstract
Evidence suggests that the lateral superior olive (LSO) initiates an excitatory pathway specialized to process interaural level differences (ILDs), the primary cues used by mammals to localize high-frequency sounds in the horizontal plane. Type I units in the central nucleus of the inferior colliculus (ICC) of decerebrate cats exhibit monaural and binaural response properties qualitatively similar to those of LSO units, and are thus supposed to be the midbrain component of the ILD pathway. Studies have shown, however, that the responses of ICC cells do not often reflect simply the output of any single source of excitatory inputs. The goal of this study was to compare directly the monaural, spectral response properties of LSO and type I units measured in unanesthetized decerebrate cats. Compared to LSO units, type I units have narrower V-shaped excitatory tuning curves, higher spontaneous rates, lower maximum stimulus-evoked firing rates and more nonmonotonic rate-level curves for tones and noise. In addition, low-frequency type I units have lower thresholds to tones than corresponding LSO units. Taken together, these results suggest that the excitatory ILD pathway from LSO to ICC is mostly a high-frequency channel, and that additional inputs transform LSO influences in the ICC.
Collapse
|
27
|
Zhou Y, Colburn HS. A modeling study of the effects of membrane afterhyperpolarization on spike interval statistics and on ILD encoding in the lateral superior olive. J Neurophysiol 2010; 103:2355-71. [PMID: 20107123 DOI: 10.1152/jn.00385.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lateral superior olive (LSO) is the first nucleus in the ascending auditory pathway that encodes acoustic level information from both ears, the interaural level difference (ILD). This sensitivity is believed to result from the relative strengths of ipsilateral excitation and contralateral inhibition. The study reported here simulated sound-evoked responses of LSO chopper units with a focus on the role of the heterogeneity in membrane afterhyperpolarization (AHP) channels on spike interval statistics and on ILD encoding. A relatively simplified cell model was used so that the effects of interest could be isolated. Specifically, the amplitude and time constant of the AHP conductance within a leaky integrate-and-fire (LIF) cell model were studied. This extends the work of others who used a more physiologically detailed model. Results show that differences in these two parameters lead to both the distinctive chopper response patterns and to the level-dependent interval statistics as observed in vivo. In general, diverse AHP characteristics enable an enhanced contrast across population responses with respect to rate gain and temporal correlations. This membrane heterogeneity provides an internal, cell-specific dimension for the neural representation of stimulus information, allowing sensitivity to ILDs of dynamic stimuli.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Biomedical Engineering, Center for Hearing Research, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
28
|
Tsai JJ, Koka K, Tollin DJ. Varying overall sound intensity to the two ears impacts interaural level difference discrimination thresholds by single neurons in the lateral superior olive. J Neurophysiol 2009; 103:875-86. [PMID: 20018829 DOI: 10.1152/jn.00911.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lateral superior olive (LSO) is one of the earliest sites in the auditory pathway involved in processing acoustical cues to sound location. LSO neurons encode the interaural level difference (ILD) cue to azimuthal location. Here we investigated the effect of variations in the overall stimulus levels of sounds at the two ears on the sensitivity of LSO neurons to small differences in ILDs of pure tones. The neuronal firing rate versus ILD functions were found to depend greatly on the overall stimulus level, typically shifting along the ILD axis toward the excitatory ear and attaining greater maximal firing rates as stimulus level increased. Seventy-five percent of neurons showed significant shifts with changes in overall sound level. The range of ILDs corresponding to best neural acuity for ILDs shifted accordingly. In a simulation using the empirical data, when the overall stimulus level was randomly changed from one trial to the next, the neural discrimination thresholds for ILD, or ILD acuities, were worsened by 50-60% across the population of neurons relative to fixed stimulus levels whether ILD acuity was measured at the azimuthal midline or the ILD pedestal producing the best acuity. The impairment in ILD discrimination was attributed to the increased neural response variance imparted by varying the stimulus level. These results contrast to those observed in psychophysical studies where ILD discrimination thresholds under similar experimental conditions are invariant to overall changes in stimulus level. A simple computational model that incorporated the antagonistic inputs of bilateral LSO nuclei as well as the dorsal nuclei of the lateral lemniscus to the inferior colliculus produced a more robust encoding of ILD even in the setting of roving stimulus level. Testable predictions of this model and comparison to other computational models addressing stimulus invariance were considered.
Collapse
Affiliation(s)
- Jeffrey J Tsai
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Aurora, Colorado, USA.
| | | | | |
Collapse
|
29
|
Abstract
Neural information is characterized by sets of spiking events that travel within the brain through neuron junctions that receive, transmit, and process streams of spikes. Coincidence detection is one of the ways to describe the functionality of a single neural cell. This letter presents an analytical derivation of the output stochastic behavior of a coincidence detector (CD) cell whose stochastic inputs behave as a nonhomogeneous Poisson process (NHPP) with both excitatory and inhibitory inputs. The derivation, which is based on an efficient breakdown of the cell into basic functional elements, results in an output process whose behavior can be approximated as an NHPP as long as the coincidence interval is much smaller than the refractory period of the cell's inputs. Intuitively, the approximation is valid as long as the processing rate is much faster than the incoming information rate. This type of modeling is a simplified but very useful description of neurons since it enables analytical derivations. The statistical properties of single CD cell's output make it possible to integrate and analyze complex neural cells in a feedforward network using the methodology presented here. Accordingly, basic biological characteristics of neural activity are demonstrated, such as a decrease in the spontaneous rate at higher brain levels and improved signal-to-noise ratio for harmonic input signals.
Collapse
Affiliation(s)
- Ram Krips
- Department of Electrical Engineering-Systems, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
30
|
Kadner A, Berrebi AS. Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience 2008; 151:868-87. [PMID: 18155850 PMCID: PMC2267689 DOI: 10.1016/j.neuroscience.2007.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/22/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
Abstract
Neurons in the superior paraolivary nucleus (SPON) of the rat respond to the offset of pure tones with a brief burst of spikes. Medial nucleus of the trapezoid body (MNTB) neurons, which inhibit the SPON, produce a sustained pure tone response followed by an offset response characterized by a period of suppressed spontaneous activity. This MNTB offset response is duration dependent and critical to the formation of SPON offset spikes [Kadner A, Kulesza RJ Jr, Berrebi AS (2006) Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J Neurophysiol. 95:1499-1508; Kulesza RJ Jr, Kadner A, Berrebi AS (2007) Distinct roles for glycine and GABA in shaping the response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 97:1610-1620]. Here we examine the temporal resolution of the rat's MNTB/SPON circuit by assessing its capability to i) detect gaps in tones, and ii) synchronize to sinusoidally amplitude modulated (SAM) tones. Gap detection was tested by presenting two identical pure tone markers interrupted by gaps ranging from 0 to 25 ms duration. SPON neurons responded to the offset of the leading marker even when the two markers were separated only by their ramps (i.e. a 0 ms gap); longer gap durations elicited progressively larger responses. MNTB neurons produced an offset response at gap durations of 2 ms or longer, with a subset of neurons responding to 0 ms gaps. SAM tone stimuli used the unit's characteristic frequency as a carrier, and modulation rates ranged from 40 to 1160 Hz. MNTB neurons synchronized to modulation rates up to approximately 1 kHz, whereas spiking of SPON neurons decreased sharply at modulation rates >or=400 Hz. Modulation transfer functions based on spike count were all-pass for MNTB neurons and low-pass for SPON neurons; the modulation transfer functions based on vector strength were low-pass for both nuclei, with a steeper cutoff for SPON neurons. Thus, the MNTB/SPON circuit encodes episodes of low stimulus energy, such as gaps in pure tones and troughs in amplitude modulated tones. The output of this circuit consists of brief SPON spiking episodes; their potential effects on the auditory midbrain and forebrain are discussed.
Collapse
Affiliation(s)
- A Kadner
- Department of Otolaryngology-Head and Neck Surgery, and the Sensory Neuroscience Research Center, Health Sciences Center, West Virginia University School of Medicine, PO Box 9303, Morgantown, WV 26506, USA
| | | |
Collapse
|
31
|
Goksoy C, Demirtas S, Yagcioglu S, Ungan P. Interaural delay-dependent changes in the binaural interaction component of the guinea pig brainstem responses. Brain Res 2005; 1054:183-91. [PMID: 16054603 DOI: 10.1016/j.brainres.2005.06.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 06/26/2005] [Accepted: 06/28/2005] [Indexed: 11/25/2022]
Abstract
Auditory brainstem responses to monaural and binaural clicks with 23 different interaural time differences (ITDs) were recorded from ten guinea pigs without anesthesia. Binaural interaction component was obtained by subtracting the sum of the appropriately time-shifted left and right monaural responses from the binaural one. With increasing ITD, the most prominent peak of the binaural difference potential so obtained shifted to longer latencies and its amplitude gradually decreased. The way these changes depended on binaural delay was basically similar to that previously observed in a cat study [P. Ungan, S. Yagcioglu, B. Ozmen. Interaural delay-dependent changes in the binaural difference potential in cat auditory brainstem response: implications about the origin of the binaural interaction component. Hear. Res. 106 (1997) 66-82]. The data were successfully simulated by the model suggested in that report. We therefore concluded that the same model, which was based on the difference between the mean onset latencies of the ipsilateral excitation and contralateral inhibition in a typical neuron in the lateral superior olive, their standard deviations, and the duration of the contralateral inhibition, should also be valid for the binaural interaction in the guinea pig brainstem. The results, which were discussed in connection with sound lateralization models, supported a model based on population coding, where the lateral position of a sound source is coded by the ratio of the discharge intensity in the left and right lateral superior olives, rather than the models based on coincidence detection.
Collapse
Affiliation(s)
- Cuneyt Goksoy
- Gulhane Military Medical Academy, Faculty of Medicine, Department of Biophysics, Ankara, Turkey
| | | | | | | |
Collapse
|
32
|
Kadner A, Kulesza RJ, Berrebi AS. Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J Neurophysiol 2005; 95:1499-508. [PMID: 16319207 DOI: 10.1152/jn.00902.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe neurons in two nuclei of the superior olivary complex that display differential sensitivities to sound duration. Single units in the medial nucleus of the trapezoid body (MNTB) and superior paraolivary nucleus (SPON) of anesthetized rats were studied. MNTB neurons produced primary-like responses to pure tones and displayed a period of suppressed spontaneous activity after stimulus offset. In contrast, neurons of the SPON, which receive a strong glycinergic input from MNTB, showed very little or no spontaneous activity and responded with short bursts of action potentials after the stimulus offset. Because SPON spikes were restricted to the same time window during which suppressed spontaneous activity occurs in the MNTB, we presume that SPON offset activity represents a form of postinhibitory rebound. Using characteristic frequency tones of 2- to 1,000-ms duration presented 20 dB above threshold, we show that the profundity and duration of the suppression of spontaneous activity in MNTB as well as the magnitude and first spike latency of the SPON offset response depend on stimulus duration as well as on stimulus intensity, showing a tradeoff between intensity and duration. Pairwise comparisons of the responses to stimuli of various durations revealed that the duration sensitivity in both nuclei is sharpest for stimuli <50 ms.
Collapse
Affiliation(s)
- Alexander Kadner
- Department of Otolaryngology--Head and Neck Surgery, Neurobiology Health Sciences Center, West Virginia Univ. School of Medicine, Morgantown, WV 26506-9303, USA
| | | | | |
Collapse
|
33
|
Campbell RAA, Doubell TP, Nodal FR, Schnupp JWH, King AJ. Interaural timing cues do not contribute to the map of space in the ferret superior colliculus: a virtual acoustic space study. J Neurophysiol 2005; 95:242-54. [PMID: 16162823 DOI: 10.1152/jn.00827.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we used individualized virtual acoustic space (VAS) stimuli to investigate the representation of auditory space in the superior colliculus (SC) of anesthetized ferrets. The VAS stimuli were generated by convolving broadband noise bursts with each animal's own head-related transfer function and presented over earphones. Comparison of the amplitude spectra of the free-field and VAS signals and of the spatial receptive fields of neurons recorded in the inferior colliculus with each form of stimulation confirmed that the VAS provided an accurate simulation of sounds presented in the free field. Units recorded in the deeper layers of the SC responded predominantly to virtual sound directions within the contralateral hemifield. In most cases, increasing the sound level resulted in stronger spike discharges and broader spatial receptive fields. However, the preferred sound directions, as defined by the direction of the centroid vector, remained largely unchanged across different levels and, as observed in previous free-field studies, varied topographically in azimuth along the rostrocaudal axis of the SC. We also examined the contribution of interaural time differences (ITDs) to map topography by digitally manipulating the VAS stimuli so that ITDs were held constant while allowing other spatial cues to vary naturally. The response properties of the majority of units, including centroid direction, remained unchanged with fixed ITDs, indicating that sensitivity to this cue is not responsible for tuning to different sound directions. These results are consistent with previous data suggesting that sensitivity to interaural level differences and spectral cues provides the basis for the map of auditory space in the mammalian SC.
Collapse
Affiliation(s)
- Robert A A Campbell
- University Laboratory of Physiology, University of Oxford, Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
34
|
Oertel D. Importance of Timing for Understanding Speech. Focus on “Perceptual Consequences of Disrupted Auditory Nerve Activity”. J Neurophysiol 2005; 93:3044-5. [PMID: 15911889 DOI: 10.1152/jn.00020.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Park TJ, Klug A, Holinstat M, Grothe B. Interaural Level Difference Processing in the Lateral Superior Olive and the Inferior Colliculus. J Neurophysiol 2004; 92:289-301. [PMID: 15056693 DOI: 10.1152/jn.00961.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaural level differences (ILDs) provide salient cues for localizing high-frequency sounds in space, and populations of neurons that are sensitive to ILDs are found at almost every synaptic level from brain stem to cortex. These cells are predominantly excited by stimulation of one ear and predominantly inhibited by stimulation of the other ear, such that the magnitude of their response is determined in large part by the intensities at the 2 ears. However, in many cases ILD sensitivity is also influenced by overall intensity, which challenges the idea of unambiguous ILD coding. We investigated whether ambiguity is reduced from one synaptic level to another for 2 centers in the so-called ILD processing pathway. We recorded from single cells in the free-tailed bat lateral superior olive (LSO), the first station where ILDs are coded, and the central nucleus of the inferior colliculus (ICC), which receives a strong projection from the LSO, as well as convergent projections from many other auditory centers. We assessed effects of overall intensity by comparing ILD functions generated with different fixed intensities to the excitatory ear. LSO cells were characterized by functions that shifted in a systematic manner with increasing intensity to the excitatory ear. In contrast, significantly more ICC cells had functions that were stable across overall sound intensity, indicating that hierarchical transformations increase stability. Furthermore, a population analysis based on proportion of active cells indicated that stability in the ICC was greatly enhanced when overall population activity was considered.
Collapse
Affiliation(s)
- Thomas J Park
- University of Illinois at Chicago, Laboratory of Integrative Neuroscience, Department of Biological Sciences, 840 W. Taylor St., Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Behavioral, anatomical, and physiological approaches can be integrated in the study of sound localization in barn owls. Space representation in owls provides a useful example for discussion of place and ensemble coding. Selectivity for space is broad and ambiguous in low-order neurons. Parallel pathways for binaural cues and for different frequency bands converge on high-order space-specific neurons, which encode space more precisely. An ensemble of broadly tuned place-coding neurons may converge on a single high-order neuron to create an improved labeled line. Thus, the two coding schemes are not alternate methods. Owls can localize sounds by using either the isomorphic map of auditory space in the midbrain or forebrain neural networks in which space is not mapped.
Collapse
Affiliation(s)
- Masakazu Konishi
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
37
|
Abstract
We assessed the ability of cats to detect repeated noise (RN), a stimulus generated by seamlessly presenting short segments of white noise in a continuous loop, in a modified go-nogo task. A recent study of the gerbil suggested that animals might have an extremely limited ability to detect RN compared to human subjects. We find that cats can discriminate RN from continuous noise with reasonable accuracy until the period length of the RN sequence reaches 450-500 ms. This is slightly longer than the maximum detectable RN period length found in gerbils, but falls far short of human performance.
Collapse
Affiliation(s)
- Hans Peter Frey
- Institute of Neuroinformatics, University/ETH Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
38
|
Doucet JR, Ryugo DK. Axonal pathways to the lateral superior olive labeled with biotinylated dextran amine injections in the dorsal cochlear nucleus of rats. J Comp Neurol 2003; 461:452-65. [PMID: 12746862 DOI: 10.1002/cne.10722] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral superior olive (LSO) contains cells that are sensitive to intensity differences between the two ears, a feature used by the brain to localize sounds in space. This report describes a source of input to the LSO that complements bushy cell projections from the ventral cochlear nucleus (VCN). Injections of biotinylated dextran amine (BDA) into the dorsal cochlear nucleus (DCN) of the rat label axons and swellings in several brainstem structures, including the ipsilateral LSO. Labeling in the ipsilateral LSO was confined to a thin band that extended throughout the length of the structure such that it resembled an LSO isofrequency lamina. The source of this labeled pathway was not obvious, because DCN neurons do not project to the LSO, and VCN bushy cells were not filled by these injections. Filled neurons in several brainstem structures emerged as possible sources. Three observations suggest that most of the axonal labeling in the LSO derives from a single source. First, the number of labeled VCN planar multipolar cells and the amount of labeling in the LSO were consistent and robust across animals. In contrast, the number of labeled cells in most other structures was small and highly variable. Second, the locations of planar cells and filled axons in the LSO were related topographically to the position of the DCN injection site. Third, labeled terminal arborizations in the LSO arose from collaterals of axons in the trapezoid body (output tract of planar cells). We infer that planar multipolar cells, in addition to bushy cells, are a source of ascending input from the cochlear nucleus to the LSO.
Collapse
Affiliation(s)
- John R Doucet
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
39
|
Spezio ML, Takahashi TT. Frequency-specific interaural level difference tuning predicts spatial response patterns of space-specific neurons in the barn owl inferior colliculus. J Neurosci 2003; 23:4677-88. [PMID: 12805307 PMCID: PMC6740778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Space-specific neurons in the barn owl's inferior colliculus have spatial receptive fields (RFs) because of sensitivity to interaural time difference and frequency-specific interaural level difference (ILD). These neurons are assumed to be tuned to the frequency-specific ILDs occurring at their spatial RFs, but attempts to assess this tuning with traditional narrowband stimuli have had limited success. Indeed, tuning assessed in this manner, when processed via a linear model of spectral integration, typically explains only approximately half the variance in spatial response patterns. Here we report our findings that frequency-specific ILD tuning of space-specific neurons, when assessed from responses to broadband stimuli, predicted nearly 75% of the variance in spatial responses, using a linear model of spectral integration (p < 0.0001; n = 97 neurons). Furthermore, when we tested neurons using only those frequencies we found to be spatially relevant, we saw that their responses were similar to those elicited by broadband stimuli. When we used frequencies not identified as spatially relevant, such similarity was lacking. Furthermore, spectral components that elicited high firing rates when presented as narrowband stimuli were found in several cases to be irrelevant for or detrimental to the definition of spatial RFs. Thus, neurons achieved sharp spatial tuning by selecting for ILDs of a subset of spectral components in noise, some of which were not identified using narrowband stimuli.
Collapse
Affiliation(s)
- Michael L Spezio
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA.
| | | |
Collapse
|
40
|
Poirier P, Samson FK, Imig TJ. Spectral shape sensitivity contributes to the azimuth tuning of neurons in the cat's inferior colliculus. J Neurophysiol 2003; 89:2760-77. [PMID: 12740413 DOI: 10.1152/jn.00640.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded high-best-frequency single-unit responses to free-field noise bursts that varied in intensity and azimuth to determine whether inferior colliculus (IC) neurons derive directionality from monaural spectral-shape. Sixty-nine percent of the sample was directional (much more responsive at some azimuths than others). One hundred twenty-nine directional units were recorded under monaural conditions (unilateral ear plugging). Binaural directional (BD) cells showed weak monaural directionality. Monaural directional (MD) cells showed strong monaural directionality, i.e., were much more responsive at some directions than others. Some MD cells were sensitive to both monaural and binaural directional cues. MD cells were monaurally nondirectional in response to tone bursts that lack direction-dependent variation in spectral shape. MD cells were unresponsive to noise bursts at certain azimuths even at high intensities showing that particular spectral shapes inhibit their responses. Two-tone inhibition was stronger where MD cells were unresponsive to noise stimulation than at directions where they were responsive. According to the side-band inhibition model, MD cells derive monaural directionality by comparing energy in excitatory and inhibitory frequency domains and thus should have stronger inhibitory side-bands than BD cells. MD and BD cells showed differences in breadth of excitatory frequency domains, strength of nonmonotonic level tuning, and responsiveness to tones and noise that were consistent with this prediction. Comparison of these data with previous findings shows that strength of spectral inhibition increases greatly between the level of the cochlear nucleus and the IC, and there is relatively little change in strength of spectral inhibition among the IC, auditory thalamus, and cortex.
Collapse
Affiliation(s)
- Pierre Poirier
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City 66160-7401, USA
| | | | | |
Collapse
|
41
|
Abstract
Sound location in azimuth is signaled by differences in the times of arrival (interaural time difference, ITDs) and the amplitudes (interaural level differences, ILDs) of the stimuli at the ears. Psychophysical studies have shown that low- and high-frequency sounds are localized based on ITDs and ILDs, respectively, suggesting that dual mechanisms mediate localization. The anatomical and physiological bases for this "duplex theory" of localization are found in the medial (MSO) and lateral (LSO) superior olives, two of the most peripheral sites in the ascending auditory pathway receiving inputs from both ears. The MSO and LSO are believed to be responsible for the initial encoding of ITDs and ILDs, respectively. Here the author focuses on ILDs as a cue to location and the role of the LSO in encoding ILDs. Evidence from disparate fields of study supports the hypothesis that the LSO is the initial ILD processor in the mammalian auditory system.
Collapse
Affiliation(s)
- Daniel J Tollin
- Department of Physiology, University of Wisconsin-Madison, 53706, USA.
| |
Collapse
|
42
|
Reale RA, Jenison RL, Brugge JF. Directional sensitivity of neurons in the primary auditory (AI) cortex: effects of sound-source intensity level. J Neurophysiol 2003; 89:1024-38. [PMID: 12574478 DOI: 10.1152/jn.00563.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transient sounds were delivered from different directions in virtual acoustic space while recording from single neurons in primary auditory cortex (AI) of cats under general anesthesia. The intensity level of the sound source was varied parametrically to determine the operating characteristics of the spatial receptive field. The spatial receptive field was constructed from the onset latency of the response to a sound at each sampled direction. Spatial gradients of response latency composing a receptive field are due partially to a systematic co-dependence on sound-source direction and intensity level. Typically, at any given intensity level, the distribution of response latency within the receptive field was unimodal with a range of approximately 3-4 ms, although for some cells and some levels, the spread could be as much as 20 or as little as 2 ms. Response latency, averaged across directions, differed among neurons for the same intensity level, and also differed among intensity levels for the same neuron. Generally, increases in intensity level resulted in decreases in the mean and variance, which follows an inverse Gaussian distribution. Receptive field models, based on response latency, are developed using multiple parameters (azimuth, elevation, intensity), validated with Monte Carlo simulation, and their spatial filtering described using spherical harmonic analysis. Observations from an ensemble of modeled receptive fields are obtained by linking the inverse Gaussian density to the probabilistic inverse problem of estimating sound-source direction and intensity. Upper bounds on acuity is derived from the ensemble using Fisher information, and the predicted patterns of estimation errors are related to psychophysical performance.
Collapse
Affiliation(s)
- Richard A Reale
- Department of Physiology, Waisman Center, University of Wisconsin, Madison, Wisconsin 53711, USA.
| | | | | |
Collapse
|
43
|
Ramachandran R, May BJ. Functional segregation of ITD sensitivity in the inferior colliculus of decerebrate cats. J Neurophysiol 2002; 88:2251-61. [PMID: 12424267 DOI: 10.1152/jn.00356.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decerebration allows single-unit responses in the central nucleus of the inferior colliculus (ICC) to be studied in the absence of anesthesia and descending efferent influences. When this procedure is applied to cats, three neural response types (V, I, and O) can be identified by distinct patterns of excitation and inhibition in pure-tone frequency-response maps. Similarities of the definitive response map features with those of projection neurons in the auditory brain stem have led to the proposal that the ICC response types are derived from different sources of ascending input that remain functionally segregated within the midbrain. Additional evidence for the existence of these hypothesized parallel processing pathways has been obtained in our previous investigations of the effects of interaural level differences, brain stem lesions, and pharmacological manipulations on physiologically classified units. This study extends our characterization of the functional segregation of single-unit activity in the ICC by investigating how sensitivity to interaural time differences (ITDs) is related to the response types that are observed in decerebrate cats. The results of these experiments support our parallel-processing model of the ICC by linking the ITD sensitivity of type V and I units to putative inputs from the medial superior olive and lateral superior olive and by showing that most type O units lack a systematic sensitivity to binaural temporal information presumably because their dominant ascending inputs arise from weakly binaural neurons in the dorsal cochlear nucleus.
Collapse
Affiliation(s)
- Ramnarayan Ramachandran
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
44
|
Hartmann WM, Constan ZA. Interaural level differences and the level-meter model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 112:1037-1045. [PMID: 12243152 DOI: 10.1121/1.1500759] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interaural level difference (ILD) plays a significant role in sound localization. However, the definition of ILD for noise is open to some interpretation because it is not obvious how to deal with the inevitable level fluctuations. In this article, the ILD is interpreted as an energylike (time-integrated) measure of stimulus level, independent of other stimulus details-particularly interaural correlation. This concept is called the "level-meter model." The model was tested by measuring human ILD thresholds for noise stimuli that were interaurally correlated, or anticorrelated, or uncorrelated. An additional test (not involving lateralization) measured the threshold for level discrimination based on loudness. According to the level-meter model, all four thresholds should be the same. The experimental results showed that the predictions of the level-meter model held good to within about half a dB, although thresholds for level discrimination were systematically higher than ILDs. Among the ILDs themselves, thresholds were slightly higher for uncorrelated noise. The latter result could be explained by replacing the level-meter model with a loudness-meter model, incorporating temporal integration. The same model accounted for the bandwidth dependence of the threshold.
Collapse
Affiliation(s)
- William M Hartmann
- Department of Physics and Astronomy, Michigan State University, East Lansing 48824, USA.
| | | |
Collapse
|
45
|
Tollin DJ, Yin TCT. The coding of spatial location by single units in the lateral superior olive of the cat. II. The determinants of spatial receptive fields in azimuth. J Neurosci 2002; 22:1468-79. [PMID: 11850473 PMCID: PMC6757562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The lateral superior olive (LSO) is one of the most peripheral nuclei in the auditory pathway to receive inputs from both ears, and its cells are sensitive to interaural level disparities (ILDs) when stimulated by sounds presented over earphones. It has, accordingly, long been hypothesized that the functional role of the LSO is to encode a correlate of ILDs, one of the acoustical cues to the spatial location of sound. In the companion paper, we used the virtual space (VS) technique to present over earphones stimuli containing all the acoustical cues to the location of broadband stimuli and measured the spatial receptive fields (SRFs) in azimuth of single LSO cells. The shapes of the SRFs were generally consistent with the ILD sensitivity of the cells (Tollin and Yin, 2002), but because the only variable under our control was azimuth, and not ILD directly, the precise cues responsible for the SRFs could not be unambiguously determined. Here, we test more directly the hypothesis that ILDs are the primary determinants of the SRFs in azimuth of LSO cells by digitally manipulating the head-related transfer functions used to create the VS stimuli by independently varying (or holding constant) in azimuth each of the primary localization cues in isolation while holding constant (or varying) the others. Our results support the classical view of the LSO that the form of the SRFs of the cells in azimuth is determined primarily by the ILDs in a small band of frequencies around the characteristic frequencies of the cells.
Collapse
Affiliation(s)
- Daniel J Tollin
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|