1
|
Oya R, Woo KM, Fabella B, Alonso RG, Bravo P, Hudspeth AJ. Influence of Myosin Regulatory Light Chain and Myosin Light Chain Kinase on the Physiological Function of Inner Ear Hair Cells. J Assoc Res Otolaryngol 2025:10.1007/s10162-025-00986-1. [PMID: 40240732 DOI: 10.1007/s10162-025-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE In the receptor organs of the inner ear, hair cells detect mechanical stimuli such as sounds and accelerations by deflection of their hair bundles. Myosin regulatory light chain (RLC) and non-muscle myosin II (NM2) are expressed at the apical surfaces of hair cells, and NM2 and the phosphorylation of RLC by myosin light chain kinase (MLCK) have earlier been shown to regulate the shapes of hair cells' apical surfaces in rodents. The aim of our study was to elucidate the function of myosin molecules on hair cell physiology. METHODS We investigated the expression of NM2 and RLC in the bullfrog's saccule by immunostaining. Using NM2 and MLCK inhibitors, we measured the stiffness, spontaneous oscillation, and resting open probability of frog hair bundles. Six to ten saccules from pleural animals were used in each experiment. In addition, we recorded auditory brainstem responses in ten mice after transtympanic injection of an MLCK inhibitor. RESULTS We confirmed the expression of NM2A/B and MYL9 on the apical surfaces of hair cells and of NM2A and MYL12A in hair bundles. We found that NM2 and MLCK inhibitors reduce the stiffness of hair bundles from the bullfrog's saccule. Moreover, MLCK inhibition inhibits the spontaneous oscillation of hair bundles and increases the resting open probability of transduction channels. In addition, MLCK inhibition elevates hearing thresholds in mice. CONCLUSION We conclude that NM2 and the phosphorylation of RLC modulate the physiological function of hair cells and thereby help to set the normal operating conditions of hair bundles.
Collapse
Affiliation(s)
- Ryohei Oya
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Department of Otorhinolaryngology Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan.
| | - Kwang Min Woo
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Brian Fabella
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - R G Alonso
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Paloma Bravo
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
2
|
Diaz-Valencia JD, Estrada-Abreo LA, Rodríguez-Cruz L, Salgado-Aguayo AR, Patiño-López G. Class I Myosins, molecular motors involved in cell migration and cancer. Cell Adh Migr 2022; 16:1-12. [PMID: 34974807 PMCID: PMC8741282 DOI: 10.1080/19336918.2021.2020705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 01/13/2023] Open
Abstract
Class I Myosins are a subfamily of motor proteins with ATPase activity and a characteristic structure conserved in all myosins: A N-Terminal Motor Domain, a central Neck and a C terminal Tail domain. Humans have eight genes for these myosins. Class I Myosins have different functions: regulate membrane tension, participate in endocytosis, exocytosis, intracellular trafficking and cell migration. Cell migration is influenced by many cellular components including motor proteins, like myosins. Recently has been reported that changes in myosin expression have an impact on the migration of cancer cells, the formation of infiltrates and metastasis. We propose that class I myosins might be potential markers for future diagnostic, prognostic or even as therapeutic targets in leukemia and other cancers.Abbreviations: Myo1g: Myosin 1g; ALL: Acute Lymphoblastic Leukemia, TH1: Tail Homology 1; TH2: Tail Homology 2; TH3: Tail Homology 3.
Collapse
Affiliation(s)
- Juan D. Diaz-Valencia
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| | - Laura A. Estrada-Abreo
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Leonor Rodríguez-Cruz
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Alfonso R. Salgado-Aguayo
- Rheumatic Diseases Laboratory, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Genaro Patiño-López
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss. Dev Cell 2022; 57:2204-2220.e6. [PMID: 36113482 PMCID: PMC9529990 DOI: 10.1016/j.devcel.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Aminoglycosides (AGs) are potent antibiotics that are capable of treating a wide variety of life-threatening infections; however, they are ototoxic and cause irreversible damage to cochlear hair cells. Despite substantial progress, little is known about the molecular pathways critical for hair cell function and survival that are affected by AG exposure. We demonstrate here that gentamicin, a representative AG antibiotic, binds to and within minutes triggers translocation of RIPOR2 in murine hair cells from stereocilia to the pericuticular area. Then, by interacting with a central autophagy component, GABARAP, RIPOR2 affects autophagy activation. Reducing the expression of RIPOR2 or GABARAP completely prevents AG-induced hair cell death and subsequent hearing loss in mice. Additionally, abolishing the expression of PINK1 or Parkin, two key mitochondrial autophagy proteins, prevents hair cell death and subsequent hearing loss caused by AG. In summary, our study demonstrates that RIPOR2-mediated autophagic dysfunction is essential for AG-induced hearing loss.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Ji HH, Ostap EM. The regulatory protein 14-3-3β binds to the IQ motifs of myosin-IC independent of phosphorylation. J Biol Chem 2020; 295:3749-3756. [PMID: 31811090 PMCID: PMC7086031 DOI: 10.1074/jbc.ra119.011227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Myosin-IC (Myo1c) has been proposed to function in delivery of glucose transporter type 4 (GLUT4)-containing vesicles to the plasma membrane in response to insulin stimulation. Current evidence suggests that, upon insulin stimulation, Myo1c is phosphorylated at Ser701, leading to binding of the signaling protein 14-3-3β. Biochemical and functional details of the Myo1c-14-3-3β interaction have yet to be described. Using recombinantly expressed proteins and mass spectrometry-based analyses to monitor Myo1c phosphorylation, along with pulldown, fluorescence binding, and additional biochemical assays, we show here that 14-3-3β is a dimer and, consistent with previous work, that it binds to Myo1c in the presence of calcium. This interaction was associated with dissociation of calmodulin (CaM) from the IQ motif in Myo1c. Surprisingly, we found that 14-3-3β binds to Myo1c independent of Ser701 phosphorylation in vitro Additionally, in contrast to previous reports, we did not observe Myo1c Ser701 phosphorylation by Ca2+/CaM-dependent protein kinase II (CaMKII), although CaMKII phosphorylated four other Myo1c sites. The presence of 14-3-3β had little effect on the actin-activated ATPase or motile activities of Myo1c. Given these results, it is unlikely that 14-3-3β acts as a cargo adaptor for Myo1c-powered transport; rather, we propose that 14-3-3β binds Myo1c in the presence of calcium and stabilizes the calmodulin-dissociated, nonmotile myosin.
Collapse
Affiliation(s)
- Huan-Hong Ji
- Pennsylvania Muscle Institute, Department of Physiology, and Center for Engineering Mechanobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Department of Physiology, and Center for Engineering Mechanobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
5
|
Chemomechanical regulation of myosin Ic cross-bridges: Deducing the elastic properties of an ensemble from single-molecule mechanisms. PLoS Comput Biol 2017; 13:e1005566. [PMID: 28549064 PMCID: PMC5470724 DOI: 10.1371/journal.pcbi.1005566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/14/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Myosin Ic is thought to be the principal constituent of the motor that adjusts mechanical responsiveness during adaptation to prolonged stimuli by hair cells, the sensory receptors of the inner ear. In this context myosin molecules operate neither as filaments, as occurs in muscles, nor as single or few molecules, as characterizes intracellular transport. Instead, myosin Ic molecules occur in a complex cluster in which they may exhibit cooperative properties. To better understand the motor’s remarkable function, we introduce a theoretical description of myosin Ic’s chemomechanical cycle based on experimental data from recent single-molecule studies. The cycle consists of distinct chemical states that the myosin molecule stochastically occupies. We explicitly calculate the probabilities of the occupancy of these states and show their dependence on the external force, the availability of actin, and the nucleotide concentrations as required by thermodynamic constraints. This analysis highlights that the strong binding of myosin Ic to actin is dominated by the ADP state for small external forces and by the ATP state for large forces. Our approach shows how specific parameter values of the chemomechanical cycle for myosin Ic result in behaviors distinct from those of other members of the myosin family. Integrating this single-molecule cycle into a simplified ensemble description, we predict that the average number of bound myosin heads is regulated by the external force and nucleotide concentrations. The elastic properties of such an ensemble are determined by the average number of myosin cross-bridges. Changing the binding probabilities and myosin’s stiffness under a constant force results in a mechanical relaxation which is large enough to account for fast adaptation in hair cells. Myosin molecules are biological nanomachines that transduce chemical energy into mechanical work and thus produce directed motion in living cells. These molecules proceed through cyclic reactions in which they change their conformational states upon the binding and release of nucleotides while attaching to and detaching from filaments. The myosin family consists of many distinct members with diverse functions such as muscle contraction, cargo transport, cell migration, and sensory adaptation. How these functions emerge from the biophysical properties of the individual molecules is an open question. We present an approach that integrates recent findings from single-molecule experiments into a thermodynamically consistent description of myosin Ic and demonstrate how the specific parameter values of the cycle result in a distinct function. The free variables of our description are the chemical input and external force, both of which are experimentally accessible and define the cellular environment in which these proteins function. We use this description to predict the elastic properties of an ensemble of molecules and discuss the implications for myosin Ic’s function in the inner ear as a tension regulator mediating adaptation, a hallmark of biological sensory systems. In this situation myosin molecules cooperate in an intermediate regime, neither as a large ensemble as in muscle nor as a single or a few molecules as in intracellular transport.
Collapse
|
6
|
Liu X, Shu S, Billington N, Williamson CD, Yu S, Brzeska H, Donaldson JG, Sellers JR, Korn ED. Mammalian Nonmuscle Myosin II Binds to Anionic Phospholipids with Concomitant Dissociation of the Regulatory Light Chain. J Biol Chem 2016; 291:24828-24837. [PMID: 27697842 DOI: 10.1074/jbc.m116.739185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells express three Class II nonmuscle myosins (NM): NM2A, NM2B, and NM2C. The three NM2s have well established essential roles in cell motility, adhesion, and cytokinesis and less well defined roles in vesicle transport and other processes that would require association of NM2s with cell membranes. Previous evidence for the mechanism of NM2-membrane association includes direct interaction of NM2s with membrane lipids and indirect interaction by association of NM2s with membrane-bound F-actin or peripheral membrane proteins. Direct binding of NM2s to phosphatidylserine-liposomes, but not to phosphatidylcholine-liposomes, has been reported, but the molecular basis of the interaction between NM2s and acidic phospholipids has not been previously investigated. We now show that filamentous, full-length NM2A, NM2B, and NM2C and monomeric, non-filamentous heavy meromyosin bind to liposomes containing one or more acidic phospholipids (phosphatidylserine, phosphatidylinositol 4,5-diphosphate, and phosphatidylinositol 3,4,5-triphosphate) but do not bind to 100% phosphatidylcholine-liposomes. Binding of NM2s to acidic liposomes occurs predominantly through interaction of the liposomes with the regulatory light chain (RLC) binding site in the myosin heavy chain with concomitant dissociation of the RLC. Phosphorylation of myosin-bound RLC by myosin light chain kinase substantially inhibits binding to liposomes of both filamentous NM2 and non-filamentous heavy meromyosin; the addition of excess unbound RLC, but not excess unbound essential light chain, competes with liposome binding. Consistent with the in vitro data, we show that endogenous and expressed NM2A associates with the plasma membrane of HeLa cells and fibrosarcoma cells independently of F-actin.
Collapse
Affiliation(s)
- Xiong Liu
- From the Laboratories of Cell Biology and
| | - Shi Shu
- From the Laboratories of Cell Biology and
| | - Neil Billington
- Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1583
| | | | - Shuhua Yu
- From the Laboratories of Cell Biology and
| | | | | | - James R Sellers
- Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1583
| | | |
Collapse
|
7
|
Langelaan DN, Liburd J, Yang Y, Miller E, Chitayat S, Crawley SW, Côté GP, Smith SP. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition. J Biol Chem 2016; 291:19607-17. [PMID: 27466369 DOI: 10.1074/jbc.m116.746313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 01/06/2023] Open
Abstract
Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.
Collapse
Affiliation(s)
- David N Langelaan
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Janine Liburd
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yidai Yang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily Miller
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Seth Chitayat
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Scott W Crawley
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Graham P Côté
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Steven P Smith
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
8
|
Abstract
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin.
Collapse
Affiliation(s)
- Sarah M Heissler
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| | - James R Sellers
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
9
|
Kittelberger N, Breunig M, Martin R, Knölker HJ, Miklavc P. The role of myosin 1c and myosin 1b in surfactant exocytosis. J Cell Sci 2016; 129:1685-96. [PMID: 26940917 PMCID: PMC4852769 DOI: 10.1242/jcs.181313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.
Collapse
Affiliation(s)
- Nadine Kittelberger
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - Markus Breunig
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - René Martin
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Pika Miklavc
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| |
Collapse
|
10
|
Brzeska H, Koech H, Pridham KJ, Korn ED, Titus MA. Selective localization of myosin-I proteins in macropinosomes and actin waves. Cytoskeleton (Hoboken) 2016; 73:68-82. [PMID: 26801966 DOI: 10.1002/cm.21275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/19/2023]
Abstract
Class I myosins are widely expressed with roles in endocytosis and cell migration in a variety of cell types. Dictyostelium express multiple myosin Is, including three short-tailed (Myo1A, Myo1E, Myo1F) and three long-tailed (Myo1B, Myo1C, Myo1D). Here we report the molecular basis of the specific localizations of short-tailed Myo1A, Myo1E, and Myo1F compared to our previously determined localization of long-tailed Myo1B. Myo1A and Myo1B have common and unique localizations consistent with the various features of their tail region; specifically the BH sites in their tails are required for their association with the plasma membrane and heads are sufficient for relocalization to the front of polarized cells. Myo1A does not localize to actin waves and macropinocytic protrusions, in agreement with the absence of a tail region which is required for these localizations of Myo1B. However, in spite of the overall similarity of their domain structures, the cellular distributions of Myo1E and Myo1F are quite different from Myo1A. Myo1E and Myo1F, but not Myo1A, are associated with macropinocytic cups and actin waves. The localizations of Myo1E and Myo1F in macropinocytic structures and actin waves differ from the localization of Myo1B. Myo1B colocalizes with F-actin in the actin waves and at the tips of mature macropinocytic cups whereas Myo1E and Myo1F are in the interior of actin waves and along the entire surface of macropinocytic cups. Our results point to different mechanisms of targeting of short- and long-tailed myosin Is, and are consistent with these myosins having both shared and divergent cellular functions.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hilary Koech
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J Pridham
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward D Korn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Kruszka P, Uwineza A, Mutesa L, Martinez AF, Abe Y, Zackai EH, Ganetzky R, Chung B, Stevenson RE, Adelstein RS, Ma X, Mullikin JC, Hong SK, Muenke M. Limb body wall complex, amniotic band sequence, or new syndrome caused by mutation in IQ Motif containing K (IQCK)? Mol Genet Genomic Med 2015; 3:424-32. [PMID: 26436108 PMCID: PMC4585450 DOI: 10.1002/mgg3.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022] Open
Abstract
Limb body wall complex (LBWC) and amniotic band sequence (ABS) are multiple congenital anomaly conditions with craniofacial, limb, and ventral wall defects. LBWC and ABS are considered separate entities by some, and a continuum of severity of the same condition by others. The etiology of LBWC/ABS remains unknown and multiple hypotheses have been proposed. One individual with features of LBWC and his unaffected parents were whole exome sequenced and Sanger sequenced as confirmation of the mutation. Functional studies were conducted using morpholino knockdown studies followed by human mRNA rescue experiments. Using whole exome sequencing, a de novo heterozygous mutation was found in the gene IQCK: c.667C>G; p.Q223E and confirmed by Sanger sequencing in an individual with LBWC. Morpholino knockdown of iqck mRNA in the zebrafish showed ventral defects including failure of ventral fin to develop and cardiac edema. Human wild-type IQCK mRNA rescued the zebrafish phenotype, whereas human p.Q223E IQCK mRNA did not, but worsened the phenotype of the morpholino knockdown zebrafish. This study supports a genetic etiology for LBWC/ABS, or potentially a new syndrome.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland
| | - Annette Uwineza
- Center for Medical Genetics, College of Medicine and Health Sciences, University of Rwanda Huye, Rwanda
| | - Leon Mutesa
- Center for Medical Genetics, College of Medicine and Health Sciences, University of Rwanda Huye, Rwanda
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland
| | - Yu Abe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland
| | - Elaine H Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Clinical Genetics Center, Perelman School of Medicine of the University of Pennsylvania Philadelphia, Pennsylvania
| | - Rebecca Ganetzky
- Division of Human Genetics, The Children's Hospital of Philadelphia, Clinical Genetics Center, Perelman School of Medicine of the University of Pennsylvania Philadelphia, Pennsylvania
| | - Brian Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong Pokfulam, Hong Kong
| | | | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart Lung and Blood Institute, National Institutes of Health Bethesda, Maryland
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart Lung and Blood Institute, National Institutes of Health Bethesda, Maryland
| | - James C Mullikin
- Comparative Genomics Analysis Unit, National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland
| | - Sung-Kook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland
| |
Collapse
|
12
|
Ihnatovych I, Sielski NL, Hofmann WA. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues. PLoS One 2014; 9:e108609. [PMID: 25259793 PMCID: PMC4178219 DOI: 10.1371/journal.pone.0108609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022] Open
Abstract
Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Neil L. Sielski
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Wilma A. Hofmann
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Andrews CD, Payne JF, Rise ML. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar. JOURNAL OF FISH BIOLOGY 2014; 84:1793-1819. [PMID: 24814183 PMCID: PMC4277336 DOI: 10.1111/jfb.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Functional genomic studies were carried out on the inner ear of Atlantic salmon Salmo salar following exposure to a seismic airgun. Microarray analyses revealed 79 unique transcripts (passing background threshold), with 42 reproducibly up-regulated and 37 reproducibly down-regulated in exposed v. control fish. Regarding the potential effects on cellular energetics and cellular respiration, altered transcripts included those with roles in oxygen transport, the glycolytic pathway, the Krebs cycle and the electron transport chain. Of these, a number of transcripts encoding haemoglobins that are important in oxygen transport were up-regulated and among the most highly expressed. Up-regulation of transcripts encoding nicotinamide riboside kinase 2, which is also important in energy production and linked to nerve cell damage, points to evidence of neuronal damage in the ear following noise exposure. Transcripts related to protein modification or degradation also indicated potential damaging effects of sound on ear tissues. Notable in this regard were transcripts associated with the proteasome-ubiquitin pathway, which is involved in protein degradation, with the transcript encoding ubiquitin family domain-containing protein 1 displaying the highest response to exposure. The differential expression of transcripts observed for some immune responses could potentially be linked to the rupture of cell membranes. Meanwhile, the altered expression of transcripts for cytoskeletal proteins that contribute to the structural integrity of the inner ear could point to repair or regeneration of ear tissues including auditory hair cells. Regarding potential effects on hormones and vitamins, the protein carrier for thyroxine and retinol (vitamin A), namely transthyretin, was altered at the transcript expression level and it has been suggested from studies in mammalian systems that retinoic acid may play a role in the regeneration of damaged hair cells. The microarray experiment identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure-response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones.
Collapse
Affiliation(s)
- C D Andrews
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 East White Hills Rd, St John's, NL, A1C 5X1, Canada
| | | | | |
Collapse
|
14
|
Sielski NL, Ihnatovych I, Hagen JJ, Hofmann WA. Tissue specific expression of myosin IC isoforms. BMC Cell Biol 2014; 15:8. [PMID: 24618359 PMCID: PMC3984714 DOI: 10.1186/1471-2121-15-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/03/2014] [Indexed: 11/13/2022] Open
Abstract
Background Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus and is implicated in a variety of processes in both compartments. We recently identified a novel isoform of myosin IC and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C) that differ only in the addition of short isoform-specific N-terminal peptides. The expression pattern of the isoforms and the mechanisms of expression regulation remain unknown. Results To determine the expression patterns of myosin IC isoforms, we performed a comprehensive expression analysis of the two myosin IC isoforms (isoform A and B) that contain isoform-specific sequences. By immunoblotting with isoform-specific antibodies and by qRT-PCR with isoform-specific primer we demonstrate that myosin IC isoforms A and B have distinct expression patterns in mouse tissues. Specifically, we show that myosin IC isoform A is expressed in a tissue specific pattern, while myosin IC isoform B is ubiquitously expressed at comparable levels in mouse tissues. Conclusions The differences in the expression profile of the myosin IC isoforms indicate a tissue-specific MYOIC gene regulation and further suggest that the myosin IC isoforms, despite their high sequence homology, might have tissue-specific and isoform-specific functions.
Collapse
Affiliation(s)
| | | | | | - Wilma A Hofmann
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
15
|
Sarshad AA, Percipalle P. New Insight into Role of Myosin Motors for Activation of RNA Polymerases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:183-230. [DOI: 10.1016/b978-0-12-800179-0.00004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Schwab RS, Ihnatovych I, Yunus SZSA, Domaradzki T, Hofmann WA. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC. Exp Cell Res 2013; 319:1111-23. [PMID: 23438938 DOI: 10.1016/j.yexcr.2013.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/29/2023]
Abstract
Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms.
Collapse
Affiliation(s)
- Ryan S Schwab
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
17
|
Greenberg MJ, Ostap EM. Regulation and control of myosin-I by the motor and light chain-binding domains. Trends Cell Biol 2012. [PMID: 23200340 DOI: 10.1016/j.tcb.2012.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the myosin-I family of molecular motors are expressed in many eukaryotes, where they are involved in a multitude of critical processes. Humans express eight distinct members of the myosin-I family, making it the second largest family of myosins expressed in humans. Despite the high degree of sequence conservation in the motor and light chain-binding domains (LCBDs) of these myosins, recent studies have revealed surprising diversity of function and regulation arising from isoform-specific differences in these domains. Here we review the regulation of myosin-I function and localization by the motor and LCBDs.
Collapse
Affiliation(s)
- Michael J Greenberg
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
18
|
Moore CM, Hoey EM, Trudgett A, Timson DJ. A plasma membrane Ca2+-ATPase (PMCA) from the liver fluke, Fasciola hepatica. Int J Parasitol 2012; 42:851-8. [DOI: 10.1016/j.ijpara.2012.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/08/2022]
|
19
|
Ihnatovych I, Migocka-Patrzalek M, Dukh M, Hofmann WA. Identification and characterization of a novel myosin Ic isoform that localizes to the nucleus. Cytoskeleton (Hoboken) 2012; 69:555-65. [PMID: 22736583 DOI: 10.1002/cm.21040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/05/2022]
Abstract
In vertebrates, two myosin Ic isoforms that localize to the cytoplasm and to the nucleus have been characterized. The isoform that predominantly localizes to the nucleus is called nuclear myosin I (NMI). NMI has been identified as a key factor involved in nuclear processes such as transcription by RNA polymerases I and II and intranuclear transport processes. We report here the identification of a previously uncharacterized third MYOIC gene product that is called isoform A. Similar to NMI, this isoform contains a unique N-terminal peptide sequence, localizes to the nucleus and colocalizes with RNA polymerase II. However, unlike NMI, upon exposure to inhibitors of RNA polymerase II transcription the newly identified isoform translocates to nuclear speckles. Furthermore, in contrast to NMI, this new isoform is absent from nucleoli and does not colocalize with RNA polymerase I. Our results suggest an unexpected diversity among nuclear myosin Ic isoforms in respect to their intranuclear localization and interaction with nuclear binding partners that could provide new insights into the regulation of myosin-dependent nuclear processes.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
20
|
Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease. The Journal of Laryngology & Otology 2011; 125:991-1003. [PMID: 21774850 DOI: 10.1017/s0022215111001459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stereocilia of the inner ear are unique cellular structures which correlate anatomically with distinct cochlear functions, including mechanoelectrical transduction, cochlear amplification, adaptation, frequency selectivity and tuning. Their function is impaired by inner ear stressors, by various types of hereditary deafness, syndromic hearing loss and inner ear disease (e.g. Ménière's disease). The anatomical and physiological characteristics of stereocilia are discussed in relation to inner ear malfunctions.
Collapse
|
21
|
Feeser EA, Ignacio CMG, Krendel M, Ostap EM. Myo1e binds anionic phospholipids with high affinity. Biochemistry 2010; 49:9353-60. [PMID: 20860408 PMCID: PMC2976041 DOI: 10.1021/bi1012657] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myo1e is a single-headed motor protein that has been shown to play roles in clathrin-mediated endocytosis in HeLa cells and podocyte function in the kidney. The myo1e C-terminal tail domain includes a basic region that is required for localization to clathrin-coated vesicles and contains a putative pleckstrin-homology (PH) domain that has been shown to play a role in phospholipid binding in other myosin-I proteins. We used sedimentation assays, stopped-flow fluorescence, and fluorescence microscopy to determine the membrane binding affinities, kinetics, and in vivo localization of fluorescently labeled recombinant myo1e-tail constructs. We found that the myo1e tail binds tightly to large unilamellar vesicles (LUVs) containing physiological concentrations of the anionic phospholipids phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) or phosphatidylserine. The rate of myo1e attachment to LUVs nears the diffusion limit while the calculated rate of detachment from LUVs is slow (k(diss) ≤ 0.4 s(-1)). Mutation of conserved residues in the myo1e PH domain has little effect on lipid binding in vitro or membrane localization in vivo. Soluble inositol phosphate headgroups, such as inositol 1,4,5-trisphosphate, can compete with PtdIns(4,5)P(2) for binding, but the apparent affinity for the soluble inositol phosphate is substantially lower than that for PtdIns(4,5)P(2). These results suggest that myo1e binds lipids through nonspecific electrostatic interactions rather than a stereospecific protein-phosphoinositide interaction.
Collapse
Affiliation(s)
- Elizabeth A. Feeser
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Cherry Mae G. Ignacio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - E. Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
22
|
Calmodulin dissociation regulates Myo5 recruitment and function at endocytic sites. EMBO J 2010; 29:2899-914. [PMID: 20647997 DOI: 10.1038/emboj.2010.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 06/21/2010] [Indexed: 11/09/2022] Open
Abstract
Myosins-I are conserved proteins that bear an N-terminal motor head followed by a Tail Homology 1 (TH1) lipid-binding domain. Some myosins-I have an additional C-terminal extension (C(ext)) that promotes Arp2/3 complex-dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin-related light chains. Myosins-I are known to participate in actin-dependent membrane remodelling. However, the molecular mechanisms controlling their recruitment and their biochemical activities in vivo are far from being understood. In this study, we provided evidence suggesting the existence of an inhibitory interaction between the TH1 domain of the yeast myosin-I Myo5 and its C(ext). The TH1 domain prevented binding of the Myo5 C(ext) to the yeast WIP homologue Vrp1, Myo5 C(ext)-induced actin polymerization and recruitment of the Myo5 C(ext) to endocytic sites. Our data also indicated that calmodulin dissociation from Myo5 weakened the interaction between the neck and TH1 domains and the C(ext). Concomitantly, calmodulin dissociation triggered Myo5 binding to Vrp1, extended the myosin-I lifespan at endocytic sites and activated Myo5-induced actin polymerization.
Collapse
|
23
|
McConnell RE, Tyska MJ. Leveraging the membrane - cytoskeleton interface with myosin-1. Trends Cell Biol 2010; 20:418-26. [PMID: 20471271 DOI: 10.1016/j.tcb.2010.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 12/19/2022]
Abstract
Class 1 myosins are small motor proteins with the ability to simultaneously bind to actin filaments and cellular membranes. Given their ability to generate mechanical force, and their high prevalence in many cell types, these molecules are well positioned to carry out several important biological functions at the interface of membrane and the actin cytoskeleton. Indeed, recent studies implicate these motors in endocytosis, exocytosis, release of extracellular vesicles, and the regulation of tension between membrane and the cytoskeleton. Many class 1 myosins also exhibit a load-dependent mechano-chemical cycle that enables them to maintain tension for long periods of time without hydrolyzing ATP. These properties put myosins-1 in a unique position to regulate dynamic membrane-cytoskeleton interactions and respond to physical forces during these events.
Collapse
Affiliation(s)
- Russell E McConnell
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37205, USA
| | | |
Collapse
|
24
|
Abstract
Mechanotransduction, the transformation of mechanical force into an electrical signal, allows living organisms to hear, register movement and gravity, detect touch, and sense changes in cell volume and shape. Hair cells in the inner ear are specialized mechanoreceptor cells that detect sound and head movement. The mechanotransduction machinery of hair cells is extraordinarily sensitive and responds to minute physical displacements on a submillisecond timescale. The recent discovery of several molecular constituents of the mechanotransduction machinery of hair cells provides a new framework for the interpretation of biophysical data and necessitates revision of prevailing models of mechanotransduction.
Collapse
|
25
|
Coffin AB, Reinhart KE, Owens KN, Raible DW, Rubel EW. Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hear Res 2009; 253:42-51. [PMID: 19285547 DOI: 10.1016/j.heares.2009.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/11/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
Aminoglycoside antibiotics cause death of sensory hair cells. Research over the past decade has identified several key players in the intracellular cascade. However, the role of the extracellular environment in aminoglycoside ototoxicity has received comparatively little attention. The present study uses the zebrafish lateral line to demonstrate that extracellular calcium and magnesium ions modulate hair cell death from neomycin and gentamicin in vivo, with high levels of either divalent cation providing significant protection. Imaging experiments with fluorescently-tagged gentamicin show that drug uptake is reduced under high calcium conditions. Treating fish with the hair cell transduction blocker amiloride also reduces aminoglycoside uptake, preventing the toxicity, and experiments with variable calcium and amiloride concentrations suggest complementary effects between the two protectants. Elevated magnesium, in contrast, does not appear to significantly attenuate drug uptake, suggesting that the two divalent cations may protect hair cells from aminoglycoside damage through different mechanisms. These results provide additional evidence for calcium- and transduction-dependent aminoglycoside uptake. Divalent cations provided differential protection from neomycin and gentamicin, with high cation concentrations almost completely protecting hair cells from neomycin and acute gentamicin toxicity, but offering reduced protection from continuous (6 h) gentamicin exposure. These experiments lend further support to the hypothesis that aminoglycoside toxicity occurs via multiple pathways in a both a drug and time course-specific manner.
Collapse
Affiliation(s)
- Allison B Coffin
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Box 357923, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Ramunno-Johnson D, Strimbu CE, Fredrickson L, Arisaka K, Bozovic D. Distribution of frequencies of spontaneous oscillations in hair cells of the bullfrog sacculus. Biophys J 2009; 96:1159-68. [PMID: 19186151 DOI: 10.1016/j.bpj.2008.09.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022] Open
Abstract
Under in vitro conditions, free-standing hair bundles of the bullfrog (Rana catesbeiana) sacculus have exhibited spontaneous oscillations. We used a high-speed complementary metal oxide semiconductor camera to track the active movements of multiple hair cells in a single field of view. Our techniques enabled us to probe for correlations between pairs of cells, and to acquire records on over 100 actively oscillating bundles per epithelium. We measured the statistical distribution of oscillation periods of cells from different areas within the sacculus, and on different epithelia. Spontaneous oscillations exhibited a peak period of 33 ms (+29 ms, -14 ms) and uniform spatial distribution across the sacculus.
Collapse
Affiliation(s)
- D Ramunno-Johnson
- Department of Physics and Astronomy and California Nanosytems Institute University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
27
|
How hair cells hear: the molecular basis of hair-cell mechanotransduction. Curr Opin Otolaryngol Head Neck Surg 2009; 16:445-51. [PMID: 18797287 DOI: 10.1097/moo.0b013e32830f4ac8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize our current knowledge regarding mechanotransduction by hair cells and to highlight unresolved questions. RECENT FINDINGS Despite over a quarter of a century of electrophysiological data describing hair-cell mechanotransduction, the molecular basis of this process is just now being revealed. Recent work has begun to identify candidate transduction complex molecules, and current work is aimed at confirming these hypotheses and identifying other proteins important for hair-cell function. SUMMARY Our senses of hearing and balance rely on the exquisite sensitivity of the hair cell and its transduction complex. Understanding the molecular basis for hair-cell mechanotransduction may provide us with the foundation for understanding the causes of, and perhaps the treatments for, auditory and vestibular deficits resulting from hair-cell dysfunction.
Collapse
|
28
|
Burns JC, Burns J, Christophel JJ, Collado MS, Magnus C, Carfrae M, Corwin JT. Reinforcement of cell junctions correlates with the absence of hair cell regeneration in mammals and its occurrence in birds. J Comp Neurol 2008; 511:396-414. [PMID: 18803241 DOI: 10.1002/cne.21849] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Debilitating hearing and balance deficits often arise through damage to the inner ear's hair cells. For humans and other mammals, such deficits are permanent, but nonmammalian vertebrates can quickly recover hearing and balance through their innate capacity to regenerate hair cells. The biological basis for this difference has remained unknown, but recent investigations in wounded balance epithelia have shown that proliferation follows cellular spreading at sites of injury. As mammalian ears mature during the first weeks after birth, the capacity for spreading and proliferation declines sharply. In seeking the basis for those declines, we investigated the circumferential bands of F-actin that bracket the apical junctions between supporting cells in the gravity-sensitive utricle. We found that those bands grow much thicker as mice and humans mature postnatally, whereas their counterparts in chickens remain thin from hatching through adulthood. When we cultured utricular epithelia from chickens, we found that cellular spreading and proliferation both continued at high levels, even in the epithelia from adults. In contrast, the substantial reinforcement of the circumferential F-actin bands in mammals coincides with the steep declines in cell spreading and production established in earlier experiments. We propose that the presence of thin F-actin bands at the junctions between avian supporting cells may contribute to the lifelong persistence of their capacity for shape change, cell proliferation, and hair cell replacement and that the postnatal reinforcement of the F-actin bands in maturing humans and other mammals may have an important role in limiting hair cell regeneration.
Collapse
Affiliation(s)
- Joseph C Burns
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Science, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lieto-Trivedi A, Coluccio LM. Calcium, nucleotide, and actin affect the interaction of mammalian Myo1c with its light chain calmodulin. Biochemistry 2008; 47:10218-26. [PMID: 18729383 DOI: 10.1021/bi8011059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the interaction of mammalian class I myosin, Myo1c, with its light chain calmodulin, we expressed (with calmodulin) truncation mutants consisting of the Myo1c motor domain followed by 0-4 presumed calmodulin-binding (IQ) domains (Myo1c (0IQ)-Myo1c (4IQ)). The amount of calmodulin associating with the Myo1c heavy chain increased with increasing number of IQ domains from Myo1c (0IQ) to Myo1c (3IQ). No calmodulin beyond that associated with Myo1c (3IQ) was found with Myo1c (4IQ) despite its availability, showing that Myo1c binds three molecules of calmodulin with no evidence of a fourth IQ domain. Unlike Myo1c (0IQ), the basal ATPase activity of Myo1c (1IQ) was >10-fold higher in Ca (2+) vs EGTA +/- exogenous calmodulin, showing that regulation is by Ca (2+) binding to calmodulin on the first IQ domain. The K m and V max of the actin-activated Mg (2+)-ATPase activity were largely independent of the number of IQ domains present and moderately affected by Ca (2+). In binding assays, some calmodulin pelleted with Myo1c heavy chain when actin was present, but a considerable fraction remained in the supernatant, suggesting that calmodulin is displaced most likely from the second IQ domain. The Myo1c heavy chain associated with actin in a nucleotide-dependent fashion. In ATP a smaller proportion of calmodulin pelleted with the heavy chain, suggesting that Myo1c undergoes nucleotide-dependent conformational changes that affect the affinity of calmodulin for the heavy chain. The studies support a model in which Myo1c in the inner ear is regulated by both Ca (2+) and nucleotide, which exert their effects on motor activity through the light-chain-binding region.
Collapse
Affiliation(s)
- Alena Lieto-Trivedi
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, Massachusetts 02472, USA
| | | |
Collapse
|
30
|
Zuo H, Cui B, She X, Wu M. Changes in Guinea pig cochlear hair cells after sound conditioning and noise exposure. J Occup Health 2008; 50:373-9. [PMID: 18654041 DOI: 10.1539/joh.l8032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sound conditioning has reduced noise-induced hearing loss in experimental mammalian animals and in clinical observation. Forty guinea pigs were grouped as: A, control; B, conditioning noise exposure group; C, high level noise exposure group; and D, conditioning noise exposure followed by a high level noise exposure group. Auditory brainstem response thresholds were measured. The cochlear sensory epithelia surface was observed microscopically. Calmodulin, F-actin and heat shock protein 70 (HSP70) in hair cells were immunohistochemistrically stained. The intracellular free calcium was stained for confocal microscopy. The ABR threshold shift after noise exposure was higher in group C than D, and showed a quicker and better recovery in group D than C. Stereocilia loss and the disarrangement of outer hair cells were observed, with the greatest changes seen in group C, followed by groups D and B. The most intensive immunohistochemical intracellular expressions of calmodulin, F-actin, and HSP70 were found in group D, followed by groups C, B and A. The highest intensity of the fluorescent intracellular free Ca2+ staining in the isolated outer hair cells was observed in group C. The ABR and morphological studies confirmed the protective effect from noise trauma of sound conditioning. The protective mechanism of hair cells during sound conditioning was enforced through the increase of cellular cytoskeleton proteins and through the relieving of intracellular calcium overloading caused by the traumatic noise.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Occupational Hygiene, Institute of Health and Environmental Medicine of Tianjin, PR China
| | | | | | | |
Collapse
|
31
|
Tang N, Lin T, Yang J, Foskett JK, Ostap EM. CIB1 and CaBP1 bind to the myo1c regulatory domain. J Muscle Res Cell Motil 2007; 28:285-91. [PMID: 17994197 PMCID: PMC2901637 DOI: 10.1007/s10974-007-9124-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/25/2007] [Indexed: 01/08/2023]
Abstract
Myo1c is a member of the myosin-I family that binds phosphoinositides and links the actin cytoskeleton to cellular membranes. Recent investigations suggest that targeting of myo1c to some subcellular regions requires the binding of an unknown protein to the IQ motifs in the myo1c regulatory domain. We identify two myristoylated proteins that bind the myo1c regulatory domain: calcium-binding protein 1 (CaBP1) and calcium- and integrin-binding-protein-1 (CIB1). CIB1 and CaBP1 interact with myo1c in vivo as determined by pull-down experiments and fluorescence microscopy where the endogenously expressed proteins show extensive cellular colocalization with myo1c. CIB1 and CaBP1 bind to the myo1c IQ motifs in the regulatory domain where they compete with calmodulin for binding. CaBP1 has a higher apparent affinity for myo1c than CIB1, and both proteins better compete with calmodulin in the presence of calcium. We propose that these proteins may play a role in specifying subcellular localization of myo1c.
Collapse
Affiliation(s)
- Nanyun Tang
- The Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA. Department of Physiology, University of Pennsylvania School of Medicine, B400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | - Tianming Lin
- The Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA. Department of Physiology, University of Pennsylvania School of Medicine, B400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | - Jun Yang
- Department of Physiology, University of Pennsylvania School of Medicine, B400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | - J. Kevin Foskett
- Department of Physiology, University of Pennsylvania School of Medicine, B400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | - E. Michael Ostap
- The Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA. Department of Physiology, University of Pennsylvania School of Medicine, B400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| |
Collapse
|
32
|
Abstract
Mechanical stimuli generated by head movements and changes in sound pressure are detected by hair cells with amazing speed and sensitivity. The mechanosensitive organelle, the hair bundle, is a highly elaborated structure of actin-based stereocilia arranged in precise rows of increasing height. Extracellular linkages contribute to its cohesion and convey forces to mechanically gated channels. Channel opening is nearly instantaneous and is followed by a process of sensory adaptation that keeps the channels poised in their most sensitive range. This process is served by motors, scaffolds, and homeostatic mechanisms. The molecular constituents of this process are rapidly being elucidated, especially by the discovery of deafness genes and antibody targets.
Collapse
Affiliation(s)
- Melissa A Vollrath
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
33
|
Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR. Activation of RalA Is Required for Insulin-Stimulated Glut4 Trafficking to the Plasma Membrane via the Exocyst and the Motor Protein Myo1c. Dev Cell 2007; 13:391-404. [PMID: 17765682 DOI: 10.1016/j.devcel.2007.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/06/2007] [Accepted: 07/18/2007] [Indexed: 12/25/2022]
Abstract
Insulin stimulates glucose transport in muscle and adipose tissue by producing translocation of the glucose transporter Glut4. The exocyst, an evolutionarily conserved vesicle tethering complex, is crucial for targeting Glut4 to the plasma membrane. Here we report that insulin regulates this process via the G protein RalA, which is present in Glut4 vesicles and interacts with the exocyst in adipocytes. Insulin stimulates the activity of RalA in a PI 3-kinase-dependent manner. Disruption of RalA function by dominant-negative mutants or siRNA-mediated knockdown attenuates insulin-stimulated glucose transport. RalA also interacts with Myo1c, a molecular motor implicated in Glut4 trafficking. This interaction is modulated by Calmodulin, which functions as the light chain for Myo1c during insulin-stimulated glucose uptake. Thus, RalA serves two functions in insulin action: as a cargo receptor for the Myo1c motor, and as a signal for the unification of the exocyst to target Glut4 vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
34
|
Xu T, Nie L, Zhang Y, Mo J, Feng W, Wei D, Petrov E, Calisto LE, Kachar B, Beisel KW, Vazquez AE, Yamoah EN. Roles of Alternative Splicing in the Functional Properties of Inner Ear-specific KCNQ4 Channels. J Biol Chem 2007; 282:23899-909. [PMID: 17561493 DOI: 10.1074/jbc.m702108200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the KCNQ4 channel in the auditory setting is crucial to hearing, underpinned by the finding that mutations of the channel result in an autosomal dominant form of nonsyndromic progressive high frequency hearing loss. The precise function of KCNQ4 in the inner ear has not been established. However, recently we demonstrated that there is differential expression among four splice variants of KCNQ4 (KCNQ4_v1-v4) along the tonotopic axis of the cochlea. Alternative splicing specifies the outcome of functional channels by modifying the amino acid sequences within the C terminus at a site designated as the membrane proximal region. We show that variations within the C terminus of splice variants produce profound differences in the voltage-dependent phenotype and functional expression of the channel. KCNQ4_v4 lacks exons 9-11, resulting in deletion of 54 amino acid residues adjacent to the S6 domain compared with KCNQ4_v1. Consequently, the voltage-dependent activation of KCNQ4_v4 is shifted leftward by approximately 20 mV, and the number of functional channels is increased severalfold compared with KCNQ4_v1. The properties of KCNQ4_v2 and KCNQ4_v3 fall between KCNQ4_v1 and KCNQ4_v4. Because of variations in the calmodulin binding domains of the splice variants, the channels are differentially modulated by calmodulin. Co-expression of these splice variants yielded current magnitudes suggesting that the channels are composed of heterotetramers. Indeed, a dominant negative mutant of KCNQ4_v1 cripples the currents of the entire KCNQ4 channel family. Furthermore, the dominant negative KCNQ4 mutant stifles the activity of KCNQ2-5, raising the possibility of a global disruption of KCNQ channel activity and the ensuing auditory phenotype.
Collapse
Affiliation(s)
- Tonghui Xu
- Center for Neuroscience and Communication Science Program, University of California, Davis, California 95618, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ricci AJ, Kachar B. Hair cell mechanotransduction: the dynamic interplay between structure and function. CURRENT TOPICS IN MEMBRANES 2007; 59:339-74. [PMID: 25168142 DOI: 10.1016/s1063-5823(06)59012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hair cells are capable of detecting mechanical vibrations of molecular dimensions at frequencies in the 10s to 100s of kHz. This remarkable feat is accomplished by the interplay of mechanically gated ion channels located near the top of a complex and dynamic sensory hair bundle. The hair bundle is composed of a series of actin-filled stereocilia that has both active and passive mechanical components as well as a highly active turnover process, whereby the components of the hair bundle are rapidly and continually recycled. Hair bundle mechanical properties have significant impact on the gating of the mechanically activated channels, and delineating between attributes intrinsic to the ion channel and those imposed by the channel's microenvironment is often difficult. This chapter describes what is known and accepted regarding hair-cell mechanotransduction and what remains to be explored, particularly, in relation to the interplay between hair bundle properties and mechanotransducer channel response. The interplay between hair bundle dynamics and mechanotransduction are discussed.
Collapse
Affiliation(s)
- Anthony J Ricci
- Department of Otolaryngology, Stanford University, Stanford, California 94305
| | - Bechara Kachar
- Section of Structural Biology, National Institutes of Deafness and Communicative Disorders, Bethesda, Maryland 20892
| |
Collapse
|
36
|
Phillips KR, Cyr JL. In situ binding assay to detect Myosin-1c interactions with hair-cell proteins. Methods Mol Biol 2007; 392:117-131. [PMID: 17951714 DOI: 10.1007/978-1-59745-490-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Myosin-1c is an unconventional myosin involved in hair-cell mechanotransduction, a process that underlies our senses of hearing and balance. To study the interaction of myosin-1c with other components of the hair-cell transduction complex, we have developed an in situ binding assay that permits visualization of myosin-1c binding to hair-cell proteins. In this chapter we describe in detail the methods needed for the expression and purification of recombinant myosin-1c fragments and their use in the in situ binding assay.
Collapse
Affiliation(s)
- Kelli R Phillips
- Sensory Neuroscience Research Center, Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | |
Collapse
|
37
|
Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM. Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 2006; 17:4856-65. [PMID: 16971510 PMCID: PMC1635404 DOI: 10.1091/mbc.e06-05-0449] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myo1c is a member of the myosin superfamily that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), links the actin cytoskeleton to cellular membranes and plays roles in mechano-signal transduction and membrane trafficking. We located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. By sequence, secondary structure, and ab initio computational analyses, we identified a phosphoinositide binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for polyphosphoinositide binding in previously characterized PH domains inhibit myo1c binding to PIP(2) in vitro, disrupt in vivo membrane binding, and disrupt cellular localization. The extended sequence of this binding site is conserved within other myosin-I isoforms, suggesting they contain this putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphoinositide specific, but it binds anionic phospholipids in a calcium-dependent manner. However, this site is not essential for in vivo membrane binding.
Collapse
Affiliation(s)
- David E. Hokanson
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - Joseph M. Laakso
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - Tianming Lin
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Biology, Washington University, St. Louis, MO 63130
| | - E. Michael Ostap
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| |
Collapse
|
38
|
Abstract
Despite being bilaterally symmetric, most Metazoa exhibit clear, genetically determined left-right differences. In several animals, microtubule-based structures are thought to be the source of chiral information used to establish handedness. Now, two new studies in Drosophila identify a role for unconventional myosin motors in this process.
Collapse
Affiliation(s)
- Buzz Baum
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1W 7BS, UK.
| |
Collapse
|
39
|
Abstract
Myo1b is a widely expressed myosin-I isoform that concentrates on endosomal and ruffling membranes and is thought to play roles in membrane trafficking and dynamics. Myo1b is alternatively spliced within the regulatory domain of the molecule, yielding isoforms with six (myo1b(a)), five (myo1b(b)), or four (myo1b(c)) non-identical IQ motifs. The calmodulin binding properties of the myo1b IQ motifs have not been investigated, and the mechanical and cell biological consequences of alternative splicing are not known. Therefore, we expressed the alternatively spliced myo1b isoforms truncated after the final IQ motif and included a sequence at their C termini that is a substrate for bacterial biotin ligase. Site-specific biotinylation allows us to specifically attach the myosin to motility surfaces via a biotin-streptavidin linkage. We measured the ATPase and motile properties of the recombinant myo1b splice isoforms, and we correlated these properties with calmodulin binding. We confirmed that calcium-dependent changes in the ATPase activity are due to calcium binding to the calmodulin closest to the motor. We found that calmodulin binds tightly to some of the IQ motifs (Kd < 0.2 microM) and very weakly to the others (Kd > 5 microM), suggesting that a subset of the IQ motifs are not calmodulin bound under physiological conditions. Finally, we found the in vitro motility rate to be dependent on the myo1b isoform and the calmodulin concentration and that the myo1b regulatory domain acts as a rigid lever arm upon calmodulin binding to the high affinity and low affinity IQ motifs.
Collapse
Affiliation(s)
- Tianming Lin
- Department of Physiology and The Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
40
|
Leibovici M, Verpy E, Goodyear RJ, Zwaenepoel I, Blanchard S, Lainé S, Richardson GP, Petit C. Initial characterization of kinocilin, a protein of the hair cell kinocilium. Hear Res 2005; 203:144-53. [PMID: 15855039 DOI: 10.1016/j.heares.2004.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Accepted: 12/14/2004] [Indexed: 11/16/2022]
Abstract
A subtracted library prepared from vestibular sensory areas [Nat. Genet. 26 (2000) 51] was used to identify a 960bp murine transcript preferentially expressed in the inner ear and testis. The cDNA predicts a basic 124aa protein that does not share any significant sequence homology with known proteins. Immunofluorescence and immunoelectron microscopy revealed that the protein is located mainly in the kinocilium of sensory cells in the inner ear. The protein was thus named kinocilin. In the mouse, kinocilin is first detected in the kinocilia of vestibular and auditory hair cells at embryonic days 14.5, and 18.5, respectively. In the mature vestibular hair cells, kinocilin is still present in the kinocilium. As the auditory hair cells begin to lose the kinocilium during postnatal development, kinocilin becomes distributed in an annular pattern at the apex of these cells, where it co-localizes with the tubulin belt [Hear. Res. 42 (1989) 1]. In mature auditory hair cells, kinocilin is also present at the level of the cuticular plate, at the base of each stereocilium. In addition, as the kinocilium regresses from developing auditory hair cells, kinocilin begins to be expressed by the pillar cells and Deiters cells, that both contain prominent transcellular and apical bundles of microtubules. By contrast, kinocilin was not detected in the supporting cells in the vestibular end organs. The protein is also present in the manchette of the spermatids, a transient structure enriched in interconnected microtubules. We propose that kinocilin has a role in stabilizing dense microtubular networks or in vesicular trafficking.
Collapse
Affiliation(s)
- Michel Leibovici
- Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Etournay R, El-Amraoui A, Bahloul A, Blanchard S, Roux I, Pézeron G, Michalski N, Daviet L, Hardelin JP, Legrain P, Petit C. PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa. J Cell Sci 2005; 118:2891-9. [PMID: 15976448 DOI: 10.1242/jcs.02424] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using the yeast two-hybrid technique, we identified a candidate protein ligand of the myosin 1c tail, PHR1, and found that this protein can also bind to the myosin VIIa tail. PHR1 is an integral membrane protein that contains a pleckstrin homology (PH) domain. Myosin 1c and myosin VIIa are two unconventional myosins present in the inner ear sensory cells. We showed that PHR1 immunoprecipitates with either myosin tail by using protein extracts from cotransfected HEK293 cells. In vitro binding assays confirmed that PHR1 directly interacts with these two myosins. In both cases the binding involves the PH domain. In vitro interactions between PHR1 and the myosin tails were not affected by the presence or absence of Ca2+ and calmodulin. Finally, we found that PHR1 is able to dimerise. As PHR1 is expressed in the vestibular and cochlear sensory cells, its direct interactions with the myosin 1c and VIIa tails are likely to play a role in anchoring the actin cytoskeleton to the plasma membrane of these cells. Moreover, as both myosins have been implicated in the mechanotransduction slow adaptation process that takes place in the hair bundles, we propose that PHR1 is also involved in this process.
Collapse
Affiliation(s)
- Raphaël Etournay
- Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oberholzer U, Iouk TL, Thomas DY, Whiteway M. Functional characterization of myosin I tail regions in Candida albicans. EUKARYOTIC CELL 2005; 3:1272-86. [PMID: 15470256 PMCID: PMC522603 DOI: 10.1128/ec.3.5.1272-1286.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular motor myosin I is required for hyphal growth in the pathogenic yeast Candida albicans. Specific myosin I functions were investigated by a deletion analysis of five neck and tail regions. Hyphal formation requires both the TH1 region and the IQ motifs. The TH2 region is important for optimal hyphal growth. All of the regions, except for the SH3 and acidic (A) regions that were examined individually, were required for the localization of myosin I at the hyphal tip. Similarly, all of the domains were required for the association of myosin I with pelletable actin-bound complexes. Moreover, the hyphal tip localization of cortical actin patches, identified by both rhodamine-phalloidin staining and Arp3-green fluorescent protein signals, was dependent on myosin I. Double deletion of the A and SH3 domains depolarized the distribution of the cortical actin patches without affecting the ability of the mutant to form hyphae, suggesting that myosin I has distinct functions in these processes. Among the six myosin I tail domain mutants, the ability to form hyphae was strictly correlated with endocytosis. We propose that the uptake of cell wall remodeling enzymes and excess plasma membrane is critical for hyphal formation.
Collapse
Affiliation(s)
- Ursula Oberholzer
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H3A 2B2, Canada.
| | | | | | | |
Collapse
|
43
|
Wagner MC, Blazer-Yost BL, Boyd-White J, Srirangam A, Pennington J, Bennett S. Expression of the unconventional myosin Myo1c alters sodium transport in M1 collecting duct cells. Am J Physiol Cell Physiol 2005; 289:C120-9. [PMID: 15716323 DOI: 10.1152/ajpcell.00569.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial cells rely on proper targeting of cellular components to perform their physiological function. This dynamic process utilizes the cytoskeleton and involves movement of vesicles to and from the plasma membrane, thus traversing the actin cortical cytoskeleton. Studies support both direct interaction of actin with channels and an indirect mechanism whereby actin may serve as a track in the final delivery of the channel to the plasma membrane. Actin-dependent processes are often mediated via a member of the myosin family of proteins. Myosin I family members have been implicated in multiple cellular events occurring at the plasma membrane. In these studies, we investigated the function of the unconventional myosin I Myo1c in the M1 mouse collecting duct cell line. Myo1c was observed to be concentrated at or near the plasma membrane, often in discrete membrane domains. To address the possible role of Myo1c in channel regulation, we expressed a truncated Myo1c, lacking ATP and actin domains, in M1 cells and compared electrophysiological responses to control M1 cells, M1 cells expressing the empty vector, and M1 cells expressing the full-length Myo1c construct. Interestingly, cells expressing the Myo1c constructs had modulated antidiuretic hormone (ADH)-stimulated short-circuit current and showed little inhibition of short-circuit current with amiloride addition. Evaluation of enhanced green fluorescent protein-Myo1c constructs supports the importance of the IQ region in targeting the Myo1c to its respective cellular domain. These data are consistent with Myo1c participating in the regulation of the Na+ channel after ADH stimulation.
Collapse
Affiliation(s)
- Mark C Wagner
- Department of Medicine/Nephrology, Indiana University School of Medicine, 950 West Walnut St., R2-202, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Hirono M, Denis CS, Richardson GP, Gillespie PG. Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 2004; 44:309-20. [PMID: 15473969 DOI: 10.1016/j.neuron.2004.09.020] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/17/2004] [Accepted: 08/24/2004] [Indexed: 11/22/2022]
Abstract
After opening in response to mechanical stimuli, hair cell transduction channels adapt with fast and slow mechanisms that each depend on Ca(2+). We demonstrate here that transduction and adaptation require phosphatidylinositol 4,5-bisphosphate (PIP(2)) for normal kinetics. PIP(2) has a striking distribution in hair cells, being excluded from the basal region of hair bundles and apical surfaces of frog saccular hair cells. Localization of a phosphatidylinositol lipid phosphatase, Ptprq, to these PIP(2)-free domains suggests that Ptprq maintains low PIP(2) levels there. Depletion of PIP(2) by inhibition of phosphatidylinositol 4-kinase or sequestration by aminoglycosides reduces the rates of fast and slow adaptation. PIP(2) and other anionic phospholipids bind directly to the IQ domains of myosin-1c, the motor that mediates slow adaptation, permitting a strong interaction with membranes and likely regulating the motor's activity. PIP(2) depletion also causes a loss in transduction current. PIP(2) therefore plays an essential role in hair cell adaptation and transduction.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Immunohistochemistry
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/physiology
- Microscopy, Electron
- Myosins/metabolism
- Patch-Clamp Techniques
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Protein Tyrosine Phosphatases/drug effects
- Protein Tyrosine Phosphatases/metabolism
- Rana pipiens
Collapse
Affiliation(s)
- Moritoshi Hirono
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Given their prominent actin-rich subcellular specializations, it is no surprise that mechanosensitive hair cells of the inner ear exploit myosin molecules-the only known actin-dependent molecular motors-to carry out exotic but essential tasks. Recent experiments have confirmed that an unconventional myosin isozyme, myosin-1c, is a component of the hair cell's adaptation-motor complex. This complex carries out slow adaptation, provides tension to sensitize transduction channels, and may participate in assembly of the transduction apparatus. This review focuses on the detailed operation of the adaptation motor and the functional consequences of the incorporation of this specific myosin isozyme into the motor complex.
Collapse
Affiliation(s)
- Peter G Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
46
|
Abstract
Development of the nervous system requires remarkable changes in cell structure that are dependent upon the cytoskeleton. The importance of specific components of the neuronal cytoskeleton, such as microtubules and neurofilaments, to neuronal function and development has been well established. Recently, increasing focus has been put on understanding the functional role of the actin cytoskeleton in neurons. Important modulators of the actin cytoskeleton are the large family of myosins, many of which (classes I, II, III, V, VI, VII, IX, and XV; Fig. 1) are expressed in developing neurons or sensory cells. Myosins are force-producing proteins that have been implicated in a wide variety of cellular functions in the developing nervous system, including neuronal migration, process outgrowth, and growth cone motility, as well as other aspects of morphogenesis, axonal transport, and synaptic and sensory functions. We review the roles that neuronal myosins play in these functions with particular focus on the first three events listed above, as well as sensory function.
Collapse
Affiliation(s)
- Michael E Brown
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
47
|
Si F, Brodie H, Gillespie PG, Vazquez AE, Yamoah EN. Developmental assembly of transduction apparatus in chick basilar papilla. J Neurosci 2003; 23:10815-26. [PMID: 14645474 PMCID: PMC6740977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Hair cells, the sensory receptors of auditory and vestibular systems, use a transducer apparatus that renders them remarkably sensitive to mechanical displacement as minute as 1 nm. To study the embryonic development of the transducer apparatus in hair cells of the chick auditory papilla, we examined hair cells that have been labeled with N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridiniumdibromide, which has been shown to permeate the transducer channels. In addition, mechanotransduction currents were recorded directly using whole-cell patch-clamp techniques. The structure of the hair bundle was examined using scanning electron microscopy, and immunofluorescence labeling for myosin 1c, myosin 7a, and plasma membrane Ca2+ ATPase 2 was studied to determine the developmental expression of these proteins in embryonic chick papillas. We demonstrate that the transducer apparatus is assembled jointly at embryonic day 11 (E11) of the developing chick basilar papilla. The resting open probability of the transducer channels was high at E12 (approximately 0.5) and remained substantially elevated at E14-16; it then declined to the mature value of approximately 0.15 at E21. The displacement sensitivity of the transduction apparatus, the gating force, increased from E12 to E21. Although the expression of different components of the transducer apparatus and the transduction current peaked at approximately E14-16, marked refinement occurred beyond E16. For example, myosin 1c appeared diffusely localized in hair bundles from E12 to E16, but subsequently consolidated into punctate pattern. The fine temporal and precise spatial assembly of the transducer apparatus likely contributes toward the exquisite sensitivity of the transduction ensemble.
Collapse
Affiliation(s)
- Fan Si
- Center for Neuroscience, Department of Otolaryngology, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The narrow stimulus limits of hair cell transduction, equivalent to a total excursion of about 100nm at the tip of the hair bundle, demand tight regulation of the mechanical input to ensure that the mechanoelectrical transducer (MET) channels operate in their linear range. This control is provided by multiple components of Ca(2+)-dependent adaptation. A slow mechanism limits the mechanical stimulus through the action of one or more unconventional myosins. There is also a fast, sub-millisecond, Ca(2+) regulation of the MET channel, which can generate resonance and confer tuning on transduction. Changing the conductance or kinetics of the MET channels can vary their resonant frequency. The tuning information conveyed in transduction may combine with the somatic motility of outer hair cells to produce an active process that supplies amplification and augments frequency selectivity in the mammalian cochlea.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Physiology, University of Wisconsin Medical School, Madison, WI 53706, USA.
| | | |
Collapse
|
49
|
Bozovic D, Hudspeth AJ. Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Proc Natl Acad Sci U S A 2003; 100:958-63. [PMID: 12538849 PMCID: PMC298708 DOI: 10.1073/pnas.0337433100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrically evoked otoacoustic emission is a manifestation of reverse transduction by the inner ear. We present evidence for a single-cell correlate of this phenomenon, hair-bundle movement driven by transepithelial electrical stimulation of the frog's sacculus. Responses could be observed at stimulus frequencies up to 1 kHz, an order of magnitude higher than the organ's natural range of sensitivity to acceleration or sound. Measurements at high-stimulus frequencies and pharmacological treatments allow us to distinguish two mechanisms that mediate the electrical responses: myosin-based adaptation and Ca(2+)-dependent reclosure of transduction channels. These mechanisms also participate in the active process that amplifies and tunes the mechanical responses of this receptor organ. Transient application of the channel blocker gentamicin demonstrated the crucial role of mechanoelectrical transduction channels in the rapid responses to electrical stimulation. A model for electrically driven bundle motion that incorporates the negative stiffness of the hair bundle as well as its two mechanisms of motility captures the essential features of the measured responses.
Collapse
Affiliation(s)
- D Bozovic
- The Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
50
|
Abstract
Myosin-I is the single-headed member of the myosin superfamily that associates with lipid membranes. Biochemical experiments have shown that myosin-I membrane binding is the result of electrostatic interactions between the basic tail domain and acidic phospholipids. To better understand the dynamics of myosin-I membrane association, we measured the rates of association and dissociation of a recombinant myo1c tail domain (which includes three IQ domains and bound calmodulins) to and from large unilamellar vesicles using fluorescence resonance energy transfer. The apparent second-order rate constant for lipid-tail association in the absence of calcium is fast with nearly every lipid-tail collision resulting in binding. The rate of binding is decreased in the presence of calcium. Time courses of myo1c-tail dissociation are best fit by two exponential rates: a fast component that has a rate that depends on the ratio of acidic phospholipid to myo1c-tail (phosphatidylserine (PS)/tail) and a slow component that predominates at high PS/tail ratios. The dissociation rate of the slow component is slower than the myo1c ATPase rate, suggesting that myo1c is able to stay associated with the lipid membrane during multiple catalytic cycles of the motor. Calcium significantly increases the lifetimes of the membrane-bound state, resulting in dissociation rates 0.001 s(-1).
Collapse
Affiliation(s)
- Nanyun Tang
- Pennsylvania Muscle Institute and the Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | |
Collapse
|