1
|
Schilliger Z, Pavan T, Alemán-Gómez Y, Steullet P, Céléreau E, Binz PA, Celen Z, Piguet C, Merglen A, Hagmann P, Do K, Conus P, Jelescu I, Klauser P, Dwir D. Sex-differences in brain multimodal estimates of white matter microstructure during early adolescence: Sex-specific associations with biological factors. Brain Behav Immun 2025; 126:98-110. [PMID: 39921149 DOI: 10.1016/j.bbi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/21/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Adolescence is marked by significant maturation of brain white matter microstructure, with evidence for sex-specific maturational trajectory. Most studies have examined conventional diffusion tensor imaging (DTI) metrics, which lack specificity to the underlying tissue modifications. In this study, we characterized sex-differences in white matter microstructure cross-sectionally using DTI, advanced diffusion spectrum imaging (DSI) and diffusion kurtosis imaging (DKI), as well as the white matter tract integrity-Watson (WMTI-W) biophysical model. We also aimed to explore the effect of age and biological systems undergoing sex-specific changes during adolescence, namely pubertal hormones, hypothalamic-pituitary-adrenal (HPA)-axis function, and glutathione-redox cycle homeostasis. The results indicate widespread sex-differences in all the white matter derived metrics, suggesting more advanced maturation in females compared to males as well as distinct tissue modifications underlying white matter maturation between males and females during this narrow developmental period. Additionally, the three biological factors explored appeared to be associated with indices of white matter maturation in females specifically, emphasizing this period as critical in female white matter development and sensitivity to environmental factors.
Collapse
Affiliation(s)
- Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tommaso Pavan
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Edgar Céléreau
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Alain Binz
- Division of General Pediatrics, Geneva University Hospitals & Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Zeynep Celen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arnaud Merglen
- Service of Clinical Chemistry, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Gattie M, Lieven EVM, Kluk K. Novel cVEMP procedure reveals sexual dimorphism in peak to trough latency. Front Integr Neurosci 2025; 19:1454924. [PMID: 40271199 PMCID: PMC12014665 DOI: 10.3389/fnint.2025.1454924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/19/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Sex difference in latency for cervical vestibular-evoked myogenic potential (VEMP) has been reported in Brown Norway rats. Human investigations of sex difference in VEMP latency have shown inconsistent results, although there are indicators of sexual dimorphism in vestibular function and a higher reporting rate for vestibular disorder in women than in men. Methods Sex effects in human VEMP were re-evaluated here using a procedure adapting clinical protocols for higher sensitivity. VEMP was compared between 24 women and 24 men using a novel procedure that (1) controlled neck tension with biofeedback and a padded head bar; (2) used body-conducted stimuli to eliminate sound exposure concerns and collect appreciably more data than is feasible with air-conducted stimuli; which in turn (3) increased statistical power because there were sufficient data for a linear mixed effects regression modelling analysis. Results Women had significantly shorter VEMP peak to trough latency than men. The sex difference of 2.4 ms (95% CI [-0.9, -3.9], p = 0.0020) was 21% of the mean 11.4 ms VEMP peak to trough latency measured across women and men. There was no significant sex difference in VEMP peak to trough amplitude. These findings are a reversal of several prior studies in humans, reviewed here with a simulation indicating the studies may have been underpowered. Discussion Findings are consistent with those in Brown Norway Rats, for which a study design featuring a custom rodent holder to control neck tension, extension of test sequences in comparison to those typically used in VEMP protocols for humans, and insertion of electrodes subcutaneously will have increased sensitivity compared to that achievable with clinical VEMP protocols for humans. Findings are interpreted as sex hormones affecting myelination or synaptic response; sexual dimorphism in neck/head size may also have contributed. The vestibular periphery and brainstem are highly conserved across vertebrates with similar findings in rat and human supporting use of VEMP as a reliable, non-invasive indicator of vestibular function. VEMP measures in humans may require higher sensitivity than is achievable using current clinical protocols in order to produce consistent results.
Collapse
Affiliation(s)
- Max Gattie
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Manchester Centre for Audiology and Deafness (ManCAD), The University of Manchester, Manchester, United Kingdom
| | - Elena V. M. Lieven
- The ESRC International Centre for Language and Communicative Development (LuCiD), The University of Manchester, Manchester, United Kingdom
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness (ManCAD), The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
LaBarre BA, King D, Ploumakis A, Pinzon AM, Guttmann CR, Patsopoulos N, Chitnis T. Sex differences in progressive multiple sclerosis brain gene expression in oligodendrocytes and OPCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636293. [PMID: 39974896 PMCID: PMC11838590 DOI: 10.1101/2025.02.05.636293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Multiple sclerosis is a neurological autoimmune disease with sex-imbalanced incidence; in the USA, the disease is more likely to effect females at a ratio of 3:1. In addition, males are more likely to have a more severe disease course at time of diagnosis. Questions about both causes and downstream effects of this disparity remain. We aim to investigate gene expression differences at a cellular level while considering sex to discover fine-scale sex disparities. These investigations could provide new avenues for treatment targeting, or treatment planning based on sex. Public single-nuclei RNA-sequencing data from three publications of progressive MS including control brains were analysed using the Seurat R package. Differential gene and pathway expression was looked at both within a specific data set which has sub-lesion level sample dissection and across all studies to provide a broader lens. This allowed for the consideration of cell types and spatial positioning in relation to the interrogated lesion in some of the calculations. Our analysis showed expression changes in the female MS oligodendrocytes and oligodendrocyte progenitor cells compared to healthy controls, which were not observed in the corresponding male affected cells. Differentially up-regulated genes in females include increased HLA-A in the oligodendrocytes, and increased clusterin in the oligodendrocyte progenitor cells. There are also several mitochondrial genes in both the oligodendrocytes and oligodendrocyte progenitors which are up-regulated in females, including several directly involved in electron transport and which have previously been associated with neurodegenerative diseases. These results point to altered states in oligodendrocyte progenitors and oligodendrocytes that in combination with known physiological dissimilarities between sexes may denote different programming in males and females in response to the onset of demyelinating lesions. The potential for increased debris clearance mediated by clusterin and availability of oligodendrocyte progenitors in females may indicate an environment more primed for repair, potentially including remyelination. This could contribute to the disparity in etiology in females versus males.
Collapse
Affiliation(s)
- Brenna A. LaBarre
- Translational Neuroimmunology Research Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Devin King
- Translational Neuroimmunology Research Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Athanasios Ploumakis
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
- Spatial Technologies Unit, Beth Israel Deaconess Hospital, Boston, MA, USA 02115
| | - Alfredo Morales Pinzon
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Charles R.G. Guttmann
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Nikolaos Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Tanuja Chitnis
- Translational Neuroimmunology Research Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
4
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
5
|
Benjamins J, Knapp P, Boullerne A. Robert Paul Skoff (1942-2023). ASN Neuro 2024; 16:2393559. [PMID: 39882646 PMCID: PMC11529190 DOI: 10.1080/17590914.2024.2393559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
|
6
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 PMCID: PMC11951035 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Nishat E, Scratch SE, Ameis SH, Wheeler AL. Disrupted Maturation of White Matter Microstructure After Concussion Is Associated With Internalizing Behavior Scores in Female Children. Biol Psychiatry 2024; 96:300-308. [PMID: 38237797 DOI: 10.1016/j.biopsych.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Some children who experience concussions, particularly females, develop long-lasting emotional and behavioral problems. Establishing the potential contribution of preexisting behavioral problems and disrupted white matter maturation has been challenging due to a lack of preinjury data. METHODS From the Adolescent Brain Cognitive Development cohort, 239 (90 female) children age 12.1 ± 0.6 years who experienced a concussion after study entry at 10.0 ± 0.6 years were compared to 6438 (3245 female) children without head injuries who were age 9.9 ± 0.6 years at baseline and 12.0 ± 0.6 years at follow-up. The Child Behavior Checklist was used to assess internalizing and externalizing behavior at study entry and follow-up. In the children with magnetic resonance imaging data available (concussion n = 134, comparison n = 3520), deep and superficial white matter was characterized by neurite density from restriction spectrum image modeling of diffusion magnetic resonance imaging. Longitudinal ComBat harmonization removed scanner effects. Linear regressions modeled 1) behavior problems at follow-up controlling for baseline behavior, 2) impact of concussion on white matter maturation, and 3) contribution of deviations in white matter maturation to postconcussion behavior problems. RESULTS Only female children with concussion had higher internalizing behavior problem scores. The youngest children with concussion showed less change in superficial white matter neurite density over 2 years than children with no concussion. In females with concussion, less change in superficial white matter neurite density was correlated with increased internalizing behavior problem scores. CONCLUSIONS Concussions in female children are associated with emotional problems beyond preinjury levels. Injury to superficial white matter may contribute to persistent internalizing behavior problems in females.
Collapse
Affiliation(s)
- Eman Nishat
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shannon E Scratch
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Risby-Jones G, Lee JD, Woodruff TM, Fung JN. Sex differences in Huntington's disease from a neuroinflammation perspective. Front Neurol 2024; 15:1384480. [PMID: 38915800 PMCID: PMC11194371 DOI: 10.3389/fneur.2024.1384480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative condition characterized by motor, cognitive and psychiatric abnormalities. Immune dysregulation, prominently featuring increased immune activity, plays a significant role in HD pathogenesis. In addition to the central nervous system (CNS), systemic innate immune activation and inflammation are observed in HD patients, exacerbating the effects of the Huntingtin (HTT) gene mutation. Recent attention to sex differences in HD symptom severity underscores the need to consider gender as a biological variable in neurodegenerative disease research. Understanding sex-specific immune responses holds promise for elucidating HD pathophysiology and informing targeted treatment strategies to mitigate cognitive and functional decline. This perspective will highlight the importance of investigating gender influence in HD, particularly focusing on sex-specific immune responses predisposing individuals to disease.
Collapse
Affiliation(s)
- Grace Risby-Jones
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - John D. Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
9
|
Wen X, Luo Z, Zhao W, Calandrelli R, Nguyen TC, Wan X, Charles Richard JL, Zhong S. Single-cell multiplex chromatin and RNA interactions in ageing human brain. Nature 2024; 628:648-656. [PMID: 38538789 PMCID: PMC11023937 DOI: 10.1038/s41586-024-07239-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.
Collapse
Affiliation(s)
- Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Riccardo Calandrelli
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Xueyi Wan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Wen X, Luo Z, Zhao W, Calandrelli R, Nguyen TC, Wan X, Richard JLC, Zhong S. Single-cell multiplex chromatin and RNA interactions in aging human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546457. [PMID: 37425846 PMCID: PMC10326989 DOI: 10.1101/2023.06.28.546457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA (caRNA) 1-3. Chromatin complex compositions change during cellular differentiation and aging, and are expected to be highly heterogeneous among terminally differentiated single cells 4-7. Here we introduce the Multi-Nucleic Acid Interaction Mapping in Single Cell (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression, and RNA-chromatin associations within individual nuclei. Applied to 14 human frontal cortex samples from elderly donors, MUSIC delineates diverse cortical cell types and states. We observed the nuclei exhibiting fewer short-range chromatin interactions are correlated with an "older" transcriptomic signature and with Alzheimer's pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci (cis eQTLs) and a promoter tends to be the cell type where these cis eQTLs specifically affect their target gene's expression. Additionally, the female cortical cells exhibit highly heterogeneous interactions between the XIST non-coding RNA and Chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploring chromatin architecture and transcription at cellular resolution in complex tissues.
Collapse
Affiliation(s)
- Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Riccardo Calandrelli
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tri C. Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xueyi Wan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
12
|
Morrissey ZD, Gao J, Shetti A, Li W, Zhan L, Li W, Fortel I, Saido T, Saito T, Ajilore O, Cologna SM, Lazarov O, Leow AD. Temporal Alterations in White Matter in An App Knock-In Mouse Model of Alzheimer's Disease. eNeuro 2024; 11:ENEURO.0496-23.2024. [PMID: 38290851 PMCID: PMC10897532 DOI: 10.1523/eneuro.0496-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and results in neurodegeneration and cognitive impairment. White matter (WM) is affected in AD and has implications for neural circuitry and cognitive function. The trajectory of these changes across age, however, is still not well understood, especially at earlier stages in life. To address this, we used the AppNL-G-F/NL-G-F knock-in (APPKI) mouse model that harbors a single copy knock-in of the human amyloid precursor protein (APP) gene with three familial AD mutations. We performed in vivo diffusion tensor imaging (DTI) to study how the structural properties of the brain change across age in the context of AD. In late age APPKI mice, we observed reduced fractional anisotropy (FA), a proxy of WM integrity, in multiple brain regions, including the hippocampus, anterior commissure (AC), neocortex, and hypothalamus. At the cellular level, we observed greater numbers of oligodendrocytes in middle age (prior to observations in DTI) in both the AC, a major interhemispheric WM tract, and the hippocampus, which is involved in memory and heavily affected in AD, prior to observations in DTI. Proteomics analysis of the hippocampus also revealed altered expression of oligodendrocyte-related proteins with age and in APPKI mice. Together, these results help to improve our understanding of the development of AD pathology with age, and imply that middle age may be an important temporal window for potential therapeutic intervention.
Collapse
Affiliation(s)
- Zachery D Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Jin Gao
- Department of Electrical & Computer Engineering, University of Illinois Chicago, Chicago, Illinois 60607
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois 60612
| | - Aashutosh Shetti
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607
| | - Liang Zhan
- Department of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Radiology, Northwestern University, Chicago, Illinois 60611
| | - Igor Fortel
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya 467-8601, Japan
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Alex D Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Computer Science, University of Illinois Chicago, Chicago, Illinois 60607
| |
Collapse
|
13
|
Hernandez DP, Cruz DM, Martinez CS, Garcia LM, Figueroa A, Villarreal M, Manoj LM, Lopez S, López-Lorenzo KD, López-Juárez A. Gender-Specific Fine Motor Skill Learning Is Impaired by Myelin-Targeted Neurofibromatosis Type 1 Gene Mutation. Cancers (Basel) 2024; 16:477. [PMID: 38339230 PMCID: PMC10854893 DOI: 10.3390/cancers16030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene. The clinical presentation of NF1 includes diverse neurological issues in pediatric and adult patients, ranging from learning disabilities, motor skill issues, and attention deficit disorder, to increased risk of depression and dementia. Preclinical research suggests that abnormal neuronal signaling mediates spatial learning and attention issues in NF1; however, drugs that improve phenotypes in models show inconclusive results in clinical trials, highlighting the need for a better understanding of NF1 pathophysiology and broader therapeutic options. Most NF1 patients show abnormalities in their brain white matter (WM) and myelin, and links with NF1 neuropathophysiology have been suggested; however, no current data can clearly support or refute this idea. We reported that myelin-targeted Nf1 mutation impacts oligodendrocyte signaling, myelin ultrastructure, WM connectivity, and sensory-motor behaviors in mice; however, any impact on learning and memory remains unknown. Here, we adapted a voluntary running test-the complex wheel (CW; a wheel with unevenly spaced rungs)-to delineate fine motor skill learning curves following induction of an Nf1 mutation in pre-existing myelinating cells (pNf1 mice). We found that pNf1 mutant females experience delayed or impaired learning in the CW, while proper learning in pNf1 males is predominantly disrupted; these phenotypes add complexity to the gender-dependent learning differences in the mouse strain used. No broad differences in memory of acquired CW skills were detected in any gender, but gene-dose effects were observed at the studied time points. Finally, nitric oxide signaling regulation differentially impacted learning in wild type (WT)/pNf1, male/female mice. Our results provide evidence for fine motor skill learning issues upon induction of an Nf1 mutation in mature myelinating cells. Together with previous connectivity, cellular, and molecular analyses, these results diversify the potential treatments for neurological issues in NF1.
Collapse
Affiliation(s)
- Daniella P. Hernandez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Daniela M. Cruz
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Celeste S. Martinez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Larisa M. Garcia
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Ashley Figueroa
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Marisol Villarreal
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Liya M. Manoj
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Saul Lopez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | | | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| |
Collapse
|
14
|
Brivio E, Kos A, Ulivi AF, Karamihalev S, Ressle A, Stoffel R, Hirsch D, Stelzer G, Schmidt MV, Lopez JP, Chen A. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep 2023; 42:112874. [PMID: 37516966 DOI: 10.1016/j.celrep.2023.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Abdullatef S, Farina C. Publicly available ex vivo transcriptomics datasets to explore CNS physiology and neurodegeneration: state of the art and perspectives. Front Neurosci 2023; 17:1211079. [PMID: 37680966 PMCID: PMC10481165 DOI: 10.3389/fnins.2023.1211079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
The central nervous system (CNS) is characterized by an intricate composition of diverse cell types, including neurons and glia cells (astrocytes, oligodendrocytes, and microglia), whose functions may differ along time, between sexes and upon pathology. The advancements in high-throughput transcriptomics are providing fundamental insights on cell phenotypes, so that molecular codes and instructions are ever more described for CNS physiology and neurodegeneration. To facilitate the search of relevant information, this review provides an overview of key CNS transcriptomics studies ranging from CNS development to ageing and from physiology to pathology as defined for five neurodegenerative disorders and their relative animal models, with a focus on molecular descriptions whose raw data were publicly available. Accurate phenotypic descriptions of cellular states correlate with functional changes and this knowledge may support research devoted to the development of therapeutic strategies supporting CNS repair and function.
Collapse
Affiliation(s)
- Sandra Abdullatef
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Calvo N, Einstein G. Steroid hormones: risk and resilience in women's Alzheimer disease. Front Aging Neurosci 2023; 15:1159435. [PMID: 37396653 PMCID: PMC10313425 DOI: 10.3389/fnagi.2023.1159435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
More women have Alzheimer disease (AD) than men, but the reasons for this phenomenon are still unknown. Including women in clinical research and studying their biology is key to understand not just their increased risk but also their resilience against the disease. In this sense, women are more affected by AD than men, but their reserve or resilience mechanisms might delay symptom onset. The aim of this review was to explore what is known about mechanisms underlying women's risk and resilience in AD and identify emerging themes in this area that merit further research. We conducted a review of studies analyzing molecular mechanisms that may induce neuroplasticity in women, as well as cognitive and brain reserve. We also analyzed how the loss of steroid hormones in aging may be linked to AD. We included empirical studies with human and animal models, literature reviews as well as meta-analyses. Our search identified the importance of 17-b-estradiol (E2) as a mechanism driving cognitive and brain reserve in women. More broadly, our analysis revealed the following emerging perspectives: (1) the importance of steroid hormones and their effects on both neurons and glia for the study of risk and resilience in AD, (2) E2's crucial role in women's brain reserve, (3) women's verbal memory advantage as a cognitive reserve factor, and (4) E2's potential role in linguistic experiences such as multilingualism and hearing loss. Future directions for research include analyzing the reserve mechanisms of steroid hormones on neuronal and glial plasticity, as well as identifying the links between steroid hormone loss in aging and risk for AD.
Collapse
Affiliation(s)
- Noelia Calvo
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Women’s College Research Institute, Toronto, ON, Canada
- Centre for Life Course and Aging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Piekarski DJ, Colich NL, Ho TC. The effects of puberty and sex on adolescent white matter development: A systematic review. Dev Cogn Neurosci 2023; 60:101214. [PMID: 36913887 PMCID: PMC10010971 DOI: 10.1016/j.dcn.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Adolescence, the transition between childhood and adulthood, is characterized by rapid brain development in white matter (WM) that is attributed in part to rising levels in adrenal and gonadal hormones. The extent to which pubertal hormones and related neuroendocrine processes explain sex differences in WM during this period is unclear. In this systematic review, we sought to examine whether there are consistent associations between hormonal changes and morphological and microstructural properties of WM across species and whether these effects are sex-specific. We identified 90 (75 human, 15 non-human) studies that met inclusion criteria for our analyses. While studies in human adolescents show notable heterogeneity, results broadly demonstrate that increases in gonadal hormones across pubertal development are associated with macro- and microstructural changes in WM tracts that are consistent with the sex differences found in non-human animals, particularly in the corpus callosum. We discuss limitations of the current state of the science and recommend important future directions for investigators in the field to consider in order to advance our understanding of the neuroscience of puberty and to promote forward and backward translation across model organisms.
Collapse
Affiliation(s)
| | | | - Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, United States.
| |
Collapse
|
18
|
Pregnenolone enhances the proliferation of mouse neural stem cells and promotes oligodendrogenesis, together with Sox10, and neurogenesis, along with Notch1 and Pax6. Neurochem Int 2023; 163:105489. [PMID: 36657722 DOI: 10.1016/j.neuint.2023.105489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Pregnenolone is a precursor of various steroid hormones involved in osteoblast proliferation, microtubules polymerization and cell survival protection. Previous reports focused on the effects of pregnenolone metabolites on stem cell proliferation and differentiation; however, the effects of pregnenolone itself has not been well explored. The present study aimed to investigate the role of pregnenolone on NSC proliferation and to determine the doses required for NSC differentiation as well as the various genes involved in its mechanism of action. METHODS NSCs were isolated from the embryonic cortex of E14 mice, incubated for 5 days, and then treated with pregnenolone doses of 2, 5, 10, 15 and 20 μM for another 5 days. The number of neurospheres and neurosphere derived cells were then counted. Flow cytometry was used to evaluate the differentiation of NSCs into oligodendrocytes, astrocytes, and neurons. The expression level of Notch1, Pax6 and Sox10 genes were also measured by Real Time PCR after 5 days of treatment. RESULTS Our data suggest that treatment with 10 μM pregnenolone is optimal for NSC proliferation. In fact, this concentration caused the highest increase in the number of neurospheres and neurosphere derived cells, compared to the control group. In addition, treatment with low doses of pregnenolone (5 and 10 μM) caused a significant increase in NSC differentiation towards immature (Olig2+) and mature (MBP+) oligodendrocyte cell populations, compared to controls. However, NSC differentiation into neurons (beta III tubulin + cells) increased in all treatment groups, with the highest and most significant increase obtained at 15 μM concentration. It is worth noting that pregnenolone at the highest concentration of 15 μM decreased the number of astrocytes (GFAP+). Furthermore, there was an increase of Sox10 expression with low pregnenolone doses, leading to oligodendrogenesis, whereas Notch1 and Pax6 gene expression increased in pregnenolone groups with more neurogenesis. CONCLUSION Pregnenolone regulates NSCs proliferation in vitro. Treatment with low doses of pregnenolone caused an increase in the differentiation of NSCs into mature oligodendrocytes while higher doses increased the differentiation of NSCs into neurons. Oligodendrogenesis was accompanied by Sox10 while neurogenesis occurred together with Notch1 and Pax6 expression.
Collapse
|
19
|
Alvarez-Sanchez N, Dunn SE. Potential biological contributers to the sex difference in multiple sclerosis progression. Front Immunol 2023; 14:1175874. [PMID: 37122747 PMCID: PMC10140530 DOI: 10.3389/fimmu.2023.1175874] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that targets the myelin sheath of central nervous system (CNS) neurons leading to axon injury, neuronal death, and neurological progression. Though women are more highly susceptible to developing MS, men that develop this disease exhibit greater cognitive impairment and accumulate disability more rapidly than women. Magnetic resonance imaging and pathology studies have revealed that the greater neurological progression seen in males correlates with chronic immune activation and increased iron accumulation at the rims of chronic white matter lesions as well as more intensive whole brain and grey matter atrophy and axon loss. Studies in humans and in animal models of MS suggest that male aged microglia do not have a higher propensity for inflammation, but may become more re-active at the rim of white matter lesions as a result of the presence of pro-inflammatory T cells, greater astrocyte activation or iron release from oligodendrocytes in the males. There is also evidence that remyelination is more efficient in aged female than aged male rodents and that male neurons are more susceptible to oxidative and nitrosative stress. Both sex chromosome complement and sex hormones contribute to these sex differences in biology.
Collapse
Affiliation(s)
- Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
| | - Shannon E. Dunn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- *Correspondence: Shannon E. Dunn,
| |
Collapse
|
20
|
Wawrzyniak A, Balawender K, Lalak R, Golan MP, Wróbel K, Boroń D, Staszkiewicz R, Grabarek BO. Distribution and Morphological Characteristics of Oligodendrocytes in Selected Areas of the Brain of Male and Female Red Kangaroos (Macropus rufus). Brain Sci 2022; 12:brainsci12081035. [PMID: 36009098 PMCID: PMC9405871 DOI: 10.3390/brainsci12081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
This study was carried out on six adult red kangaroos of both sexes. To determine the location of the oligodendrocytes (OLGs) of the hippocampus (Hip) and corpus callosum (CC), the method of impregnation of the neuroglia with silver salts was applied. The iron distribution in the OLGs was determined by the histochemical method. The Nissl method was used to determine the location of the brain structure and to analyze the number of OLGs. In the Hip, these cells are located one beside another, mainly in blood vessels and neurons; in the neocortex (NC), they are located in layers I–VI; and in the CC, they are arranged in characteristic rows and accompany both nerve fibers and blood vessels. The analysis of the results obtained by the chosen methods in the Hip, NC, and CC in males and females did not show statistically significant differences in the distribution and location of the red kangaroo OLGs. The involvement of these cells is a physiological process that proceeds in a similar manner throughout the life of individuals and actively influences the metabolism of neurons and myelin.
Collapse
Affiliation(s)
- Agata Wawrzyniak
- Department of Morphological Sciences, College of Medical Sciences, Institute of Medical Sciences, University of Rzeszow, 35-315 Rzeszow, Poland
| | - Krzysztof Balawender
- Department of Morphological Sciences, College of Medical Sciences, Institute of Medical Sciences, University of Rzeszow, 35-315 Rzeszow, Poland
- Correspondence:
| | - Roman Lalak
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-400 Lublin, Poland
| | - Maciej Przemysław Golan
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine in Warsaw, 04-141 Warsaw, Poland
| | - Konrad Wróbel
- Department of Morphological Sciences, College of Medical Sciences, Institute of Medical Sciences, University of Rzeszow, 35-315 Rzeszow, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| |
Collapse
|
21
|
Winek K, Tzur Y, Soreq H. Biological underpinnings of sex differences in neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:27-67. [PMID: 36038206 DOI: 10.1016/bs.irn.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The importance of sex differences in neurological disorders has been increasingly acknowledged in recent clinical and basic research studies, but the complex biology and genetics underlying sex-linked biological heterogeneity and its brain-to-body impact remained incompletely understood. Men and women differ substantially in their susceptibility to certain neurological diseases, in the severity of symptoms, prognosis as well as the nature and efficacy of their response to treatments. The detailed mechanisms underlying these differences, especially at the molecular level, are being addressed in many studies but leave a lot to be further revealed. Here, we provide an overview of recent advances in our understanding of how sex differences in the brain and brain-body signaling contribute to neurological disorders and further present some future prospects entailed in terms of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonat Tzur
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
22
|
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 2022; 4:813-825. [PMID: 35879459 PMCID: PMC7613794 DOI: 10.1038/s42255-022-00610-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood-brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
23
|
Baringer SL, Neely EB, Palsa K, Simpson IA, Connor JR. Regulation of brain iron uptake by apo- and holo-transferrin is dependent on sex and delivery protein. Fluids Barriers CNS 2022; 19:49. [PMID: 35689283 PMCID: PMC9188189 DOI: 10.1186/s12987-022-00345-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The brain requires iron for a number of processes, including energy production. Inadequate or excessive amounts of iron can be detrimental and lead to a number of neurological disorders. As such, regulation of brain iron uptake is required for proper functioning. Understanding both the movement of iron into the brain and how this process is regulated is crucial to both address dysfunctions with brain iron uptake in disease and successfully use the transferrin receptor uptake system for drug delivery. Methods Using in vivo steady state infusions of apo- and holo-transferrin into the lateral ventricle, we demonstrate the regulatory effects of brain apo- and holo-transferrin ratios on the delivery of radioactive 55Fe bound to transferrin or H-ferritin in male and female mice. In discovering sex differences in the response to apo- and holo-transferrin infusions, ovariectomies were performed on female mice to interrogate the influence of circulating estrogen on regulation of iron uptake. Results Our model reveals that apo- and holo-transferrin significantly regulate iron uptake into the microvasculature and subsequent release into the brain parenchyma and their ability to regulate iron uptake is significantly influenced by both sex and type of iron delivery protein. Furthermore, we show that cells of the microvasculature act as reservoirs of iron and release the iron in response to cues from the interstitial fluid of the brain. Conclusions These findings extend our previous work to demonstrate that the regulation of brain iron uptake is influenced by both the mode in which iron is delivered and sex. These findings further emphasize the role of the microvasculature in regulating brain iron uptake and the importance of cues regarding iron status in the extracellular fluid.
Collapse
Affiliation(s)
| | - Elizabeth B Neely
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Ian A Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA. .,Penn State College of Medicine, 500 University Drive, 17033, Hershey, PA, United States.
| |
Collapse
|
24
|
Shen X, Raghavan S, Przybelski SA, Lesnick TG, Ma S, Reid RI, Graff-Radford J, Mielke MM, Knopman DS, Petersen RC, Jack CR, Simon GJ, Vemuri P. Causal structure discovery identifies risk factors and early brain markers related to evolution of white matter hyperintensities. Neuroimage Clin 2022; 35:103077. [PMID: 35696810 PMCID: PMC9194644 DOI: 10.1016/j.nicl.2022.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
Our goal was to understand the complex relationship between age, sex, midlife risk factors, and early white matter changes measured by diffusion tensor imaging (DTI) and their role in the evolution of longitudinal white matter hyperintensities (WMH). We identified 1564 participants (1396 cognitively unimpaired, 151 mild cognitive impairment and 17 dementia participants) with age ranges of 30-90 years from the population-based sample of Mayo Clinic Study of Aging. We used computational causal structure discovery and regression analyses to evaluate the predictors of WMH and DTI, and to ascertain the mediating effect of DTI on WMH. We further derived causal graphs to understand the complex interrelationships between midlife protective factors, vascular risk factors, diffusion changes, and WMH. Older age, female sex, and hypertension were associated with higher baseline and progression of WMH as well as DTI measures (P ≤ 0.003). The effects of hypertension and sex on WMH were partially mediated by microstructural changes measured on DTI. Higher midlife physical activity was predictive of lower WMH through a direct impact on better white matter tract integrity as well as an indirect effect through reducing the risk of hypertension by lowering BMI. This study identified key risks factors, early brain changes, and pathways that may lead to the evolution of WMH.
Collapse
Affiliation(s)
- Xinpeng Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA; Departments of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Robert I Reid
- Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Departments of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - György J Simon
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
25
|
McCombe PA. The role of sex and pregnancy in multiple sclerosis: what do we know and what should we do? Expert Rev Neurother 2022; 22:377-392. [PMID: 35354378 DOI: 10.1080/14737175.2022.2060079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is more prevalent in women than in men. The sex of the patient, and pregnancy, are reported to be associated with the clinical features of MS. The mechanism of this is unclear. AREAS COVERED This review summarizes data about sex differences in MS and the role of pregnancy. Possible mechanisms for the effects of sex and pregnancy are summarized, and practical suggestions for addressing these issues are provided. EXPERT OPINION There is considerable interdependence of the variables that are associated with MS. Men have a worse outcome of MS, and this could be due to the same factors that lead to greater incidence of neurodegenerative disease in men. The possible role of parity on the long-term outcome of MS is of interest. Future studies that look at the mechanisms of the effects of the sex of the patient on the outcome of MS are required. However, there are some actions that can be taken without further research. We can concentrate on public health measures that address the modifiable risk factors for MS and ensure that disease is controlled in women who intend to become pregnant and use appropriate disease modifying agents during pregnancy.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Australia
| |
Collapse
|
26
|
Ohashi K, Anderson CM, Khan A, Rohan ML, Bolger EA, McGreenery CE, Teicher MH. Sex and sensitive period differences in potential effects of maltreatment on axial versus radial diffusivity in the corpus callosum. Neuropsychopharmacology 2022; 47:953-964. [PMID: 35022536 PMCID: PMC8882181 DOI: 10.1038/s41386-021-01260-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Abstract
Corpus callosum (CC) abnormalities have been observed in several psychiatric disorders. Maltreatment has also been associated with marked differences in CC anatomy and microstructure, though rarely controlled for in psychiatric neuroimaging studies. The aim of this study was to identify type and timing of maltreatment associated with alterations in CC microstructure and to ascertain if they differ by sex. T1 and diffusion-weighted MRIs were obtained from 345 (135 M/210 F) healthy 18-25-year-olds. The Maltreatment and Abuse Chronology of Exposure scale provided retrospective data on exposure to ten types of maltreatment across each year of childhood. AI predictive analytics were used to identify the most significant type and time risk factors. The most striking maltreatment-associated alterations in males were in axial diffusivity and were most specifically associated with exposure to emotional abuse or neglect during segment-specific sensitive periods. In contrast, maltreatment was associated with marked alteration in radial diffusivity and fractional anisotropy in females and was most specifically associated with early physical neglect during one common sensitive period involving all segments except the splenium. Overall sex differences, controlling for maltreatment, brain size, and sociodemographic factors were limited to the genu with greater fractional anisotropy in males and radial diffusivity in females. These findings suggest that maltreatment may target myelinization in females and axonal development in males and that these sex differences need to be taken into account in studies seeking to delineate the contribution of CC abnormalities and interhemispheric communication to psychiatric disorders.
Collapse
Affiliation(s)
- Kyoko Ohashi
- Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA. .,Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Carl M. Anderson
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Alaptagin Khan
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Michael L. Rohan
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XMcLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Elizabeth A. Bolger
- grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Cynthia E. McGreenery
- grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Martin H. Teicher
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| |
Collapse
|
27
|
MPO/HOCl Facilitates Apoptosis and Ferroptosis in the SOD1G93A Motor Neuron of Amyotrophic Lateral Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8217663. [PMID: 35178161 PMCID: PMC8845144 DOI: 10.1155/2022/8217663] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Background. Oxidative stress and reactive oxygen species (ROS) are important in the pathogenesis of amyotrophic lateral sclerosis (ALS). Hypochlorous acid (HOCl) is a powerful oxidant of the reactive oxygen species (ROS) family. HOCl’s role in the progress of ALS remains unclear due to the lack of an effective HOCl detection method. Cumulative evidence supports oxidative damage incurred by mutant hSOD1 contributing to motor neuron death; however, whether HOCl as well as its catalytic enzyme myeloperoxidase (MPO) function in the cell death of SOD1G93A ALS remains elusive. Methods. The hSOD1WT and hSOD1G93A NSC-34 cell and SOD1G93A ALS mouse models were employed. With a novel fluorescent HOCl probe, HKOCl-3, we detected the expressions of HOCl and its catalytic enzyme, MPO, in the above models in vitro and in vivo. The regulation of MPO/HOCl by hSOD1G93A mutation and cell deaths by MPO/HOCl were also assayed, including apoptosis, ferroptosis, and autophagy. Results. Our results showed that hSOD1G93A mutation promoted the activation of the MPO/HOCl pathway in SOD1G93A ALS cell models. The activation of MPO/HOCl pathways facilitated apoptosis and ferroptosis through increasing the Bax/Bcl-2 ratio and expression of caspase-3 or inhibiting the expressions of GPX4 and NQO1 and thus leading to irreversible lipid peroxidation. Overexpressed FSP1, a glutathione-independent suppressor, could ameliorate ferroptosis. In vivo, we demonstrated that the activation of the MPO/HOCl pathway occurred differently in motor neurons of the motor cortices, brain stems, and spinal cords in male and female SOD1G93A transgenic mice. In addition, inhibiting MPO improved the motor performance of SOD1G93A transgenic mice, as demonstrated by the rotarod test. Conclusions. We concluded that aggregation of mutant hSOD1 proteins contributed to activation of the MPO/HOCl pathway, triggering apoptosis and ferroptosis in motor neuronal deaths and exerting impaired motor performance.
Collapse
|
28
|
Thomason EJ, Suárez-Pozos E, Afshari FS, Rosenberg PA, Dupree JL, Fuss B. Deletion of the Sodium-Dependent Glutamate Transporter GLT-1 in Maturing Oligodendrocytes Attenuates Myelination of Callosal Axons During a Postnatal Phase of Central Nervous System Development. Front Cell Neurosci 2022; 16:905299. [PMID: 35722615 PMCID: PMC9203689 DOI: 10.3389/fncel.2022.905299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The sodium-dependent glutamate transporter GLT-1 (EAAT2, SLC1A2) has been well-described as an important regulator of extracellular glutamate homeostasis in the central nervous system (CNS), a function that is performed mainly through its presence on astrocytes. There is, however, increasing evidence for the expression of GLT-1 in CNS cells other than astrocytes and in functional roles that are mediated by mechanisms downstream of glutamate uptake. In this context, GLT-1 expression has been reported for both neurons and oligodendrocytes (OLGs), and neuronal presynaptic presence of GLT-1 has been implicated in the regulation of glutamate uptake, gene expression, and mitochondrial function. Much less is currently known about the functional roles of GLT-1 expressed by OLGs. The data presented here provide first evidence that GLT-1 expressed by maturing OLGs contributes to the modulation of developmental myelination in the CNS. More specifically, using inducible and conditional knockout mice in which GLT-1 was deleted in maturing OLGs during a peak period of myelination (between 2 and 4 weeks of age) revealed hypomyelinated characteristics in the corpus callosum of preferentially male mice. These characteristics included reduced percentages of smaller diameter myelinated axons and reduced myelin thickness. Interestingly, this myelination phenotype was not found to be associated with major changes in myelin gene expression. Taken together, the data presented here demonstrate that GLT-1 expressed by maturing OLGs is involved in the modulation of the morphological aspects associated with CNS myelination in at least the corpus callosum and during a developmental window that appears of particular vulnerability in males compared to females.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Fatemah S Afshari
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
29
|
Wegener AJ, Neigh GN. Animal Models of Anxiety and Depression: Incorporating the Underlying Mechanisms of Sex Differences in Macroglia Biology. Front Behav Neurosci 2021; 15:780190. [PMID: 34955780 PMCID: PMC8695436 DOI: 10.3389/fnbeh.2021.780190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Animal models have been utilized to explore the mechanisms by which mood disorders develop. Ethologically based stress paradigms are used to induce behavioral responses consistent with those observed in humans suffering from anxiety and depression. While mood disorders are more often diagnosed in women, animal studies are more likely to be carried out in male rodents. However, understanding the mechanisms behind anxiety- and depressive-like behaviors in both sexes is necessary to increase the predictive and construct validity of the models and identify therapeutic targets. To understand sex differences following stress, we must consider how all cell types within the central nervous system are influenced by the neuroendocrine system. This review article discusses the effects of stress and sex steroids on the macroglia: astrocytes and oligodendrocytes. Glia are involved in shaping the synapse through the regulation of neurotransmitter levels and energy resources, making them essential contributors to neural dynamics following stress. As the role of glia in neuromodulation has become more apparent, studies exploring the mechanisms by which glia are altered by stress and steroids will provide insight into sex differences in animal models. These insights will facilitate the optimization of animal models of psychiatric disorders and development of future therapeutic targets.
Collapse
Affiliation(s)
- Amy J Wegener
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
30
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
31
|
Long KLP, Chao LL, Kazama Y, An A, Hu KY, Peretz L, Muller DCY, Roan VD, Misra R, Toth CE, Breton JM, Casazza W, Mostafavi S, Huber BR, Woodward SH, Neylan TC, Kaufer D. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Transl Psychiatry 2021; 11:631. [PMID: 34903726 PMCID: PMC8668977 DOI: 10.1038/s41398-021-01745-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.
Collapse
Affiliation(s)
- Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry and Behavioral Sciences, University of California, SanFrancisco, San Francisco, CA, 94143, USA
| | - Linda L Chao
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yurika Kazama
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anjile An
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelsey Y Hu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lior Peretz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dyana C Y Muller
- Department of Computer Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Vivian D Roan
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rhea Misra
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Claire E Toth
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry, Columbia University, New York, NY, 10027, USA
| | - William Casazza
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | - Bertrand R Huber
- Department of Neurology, Boston University, Boston, MA, 02215, USA
- National Center for PTSD, VA New England Health Care System, Boston, MA, 02130, USA
| | - Steven H Woodward
- National Center for PTSD, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Thomas C Neylan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- San Francisco VA Health Care System, San Francisco, CA, 94121, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
32
|
Sex differences in myelin content of white matter tracts in adolescents with depression. Neuropsychopharmacology 2021; 46:2295-2303. [PMID: 34215842 PMCID: PMC8580976 DOI: 10.1038/s41386-021-01078-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Depression is a chronic and debilitating condition that often emerges during adolescence, a period of significant brain maturation. Few studies, however, have examined how mechanisms of neuroplasticity, including myelination, are affected by adolescent-onset depression. Here, we used multimodal MR imaging to characterize myelin, indexed by R1, in white matter tracts previously associated with depression and compare 48 adolescents with lifetime depression (45 with current depression, 3 remitted) and 35 healthy controls in R1. Compared to healthy controls, R1 was higher in adolescents with lifetime depression in the uncinate fasciculus and corpus callosum genu (all βs > 0.42; all ps < 0.037). Sex significantly moderated the association between depression and R1 in the left uncinate fasciculus and corpus callosum genu (all βs > 0.86; all ps < 0.02), such that depressed female adolescents had significantly higher R1 in these tracts than did healthy female adolescents (all βs > 0.82; all ps < 0.0012). In contrast, depressed and non-depressed male adolescents did not differ in R1 in these tracts (all ps > 0.32). While fractional anisotropy (FA), a commonly examined measure of white matter organization based on diffusion-weighted MRI, in the left uncinate was positively associated with lifetime depression in our sample (β = 0.56; p = 0.016), we found no evidence of sex-specific effects of depression in FA. Our results suggest that R1 is more sensitive to sex-specific effects of depression than FA, particularly in female adolescents. Given evidence that myelin inhibits synapse formation and reduces brain plasticity, our findings implicate experience-driven regional myelination as a mechanism underlying depression during periods of significant neural maturation such as adolescence.
Collapse
|
33
|
Delevich K, Klinger M, Okada NJ, Wilbrecht L. Coming of age in the frontal cortex: The role of puberty in cortical maturation. Semin Cell Dev Biol 2021; 118:64-72. [PMID: 33985902 PMCID: PMC12018213 DOI: 10.1016/j.semcdb.2021.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022]
Abstract
Across species, adolescence is a period of growing independence that is associated with the maturation of cognitive, social, and affective processing. Reorganization of neural circuits within the frontal cortex is believed to contribute to the emergence of adolescent changes in cognition and behavior. While puberty coincides with adolescence, relatively little is known about which aspects of frontal cortex maturation are driven by pubertal development and gonadal hormones. In this review, we highlight existing work that suggests puberty plays a role in the maturation of specific cell types in the medial prefrontal cortex (mPFC) of rodents, and highlight possible routes by which gonadal hormones influence frontal cortical circuit development.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| | - Madeline Klinger
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Nana J Okada
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Sutiwisesak R, Burns TC, Rodriguez M, Warrington AE. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs 2021; 30:857-876. [PMID: 34126015 DOI: 10.1080/13543784.2021.1942840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age. Encouraging timely remyelination can restore axon conduction and minimize deficits.Areas covered: We discuss and correlate human MS pathology with animal models, propose methods to deplete resident oligodendrocyte progenitor cells (OPCs) to determine whether mature oligodendrocytes support remyelination, and review remyelinating agents, mechanisms of action, and available clinical trial data.Expert opinion: The heterogeneity of human MS may limit successful translation of many candidate remyelinating agents; some patients lack the biological targets necessary to leverage current approaches. Development of therapeutics for remyelination has concentrated almost exclusively on mobilization of innate OPCs. However, mature oligodendrocytes appear an important contributor to remyelination in humans. Limiting the contribution of OPC mediated repair in models of MS would allow the evaluation of remyelination-promoting agents on mature oligodendrocytes. Among remyelinating reagents reviewed, only rHIgM22 targets both OPCs and mature oligodendrocytes.
Collapse
Affiliation(s)
- Rujapope Sutiwisesak
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Terry C Burns
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Moses Rodriguez
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Bouhrara M, Cortina LE, Khattar N, Rejimon AC, Ajamu S, Cezayirli DS, Spencer RG. Maturation and degeneration of the human brainstem across the adult lifespan. Aging (Albany NY) 2021; 13:14862-14891. [PMID: 34115614 PMCID: PMC8221341 DOI: 10.18632/aging.203183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/20/2021] [Indexed: 04/12/2023]
Abstract
Brainstem tissue microstructural properties change across the adult lifespan. However, studies elucidating the biological processes that govern brainstem maturation and degeneration in-vivo are lacking. In the present work, conducted on a large cohort of 140 cognitively unimpaired subjects spanning a wide age range of 21 to 94 years, we implemented a multi-parameter approach to characterize the sex- and age differences. In addition, we examined regional correlations between myelin water fraction (MWF), a direct measure of myelin content, and diffusion tensor imaging indices, and transverse and longitudinal relaxation rates to evaluate whether these metrics provide information complementary to MWF. We observed region-dependent differences in myelin content and axonal density with age and found that both exhibit an inverted U-shape association with age in several brainstem substructures. We emphasize that the microstructural differences captured by our distinct MRI metrics, along with their weak associations with MWF, strongly indicate the potential of using these outcome measures in a multi-parametric approach. Furthermore, our results support the gain-predicts-loss hypothesis of tissue maturation and degeneration in the brainstem. Indeed, our results indicate that myelination follows a temporally symmetric time course across the adult life span, while axons appear to degenerate significantly more rapidly than they mature.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luis E. Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Abinand C. Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Ajamu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Defne S. Cezayirli
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
36
|
Campbell KSJ, Williams LJ, Bjornson BH, Weik E, Brain U, Grunau RE, Miller SP, Oberlander TF. Prenatal antidepressant exposure and sex differences in neonatal corpus callosum microstructure. Dev Psychobiol 2021; 63:e22125. [PMID: 33942888 DOI: 10.1002/dev.22125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants may influence white matter (WM) development, as previous studies report widespread microstructural alterations and reduced interhemispheric connectivity in SSRI-exposed infants. In rodents, perinatal SSRIs had sex-specific disruptions in corpus callosum (CC) axon architecture and connectivity; yet it is unknown whether SSRI-related brain outcomes in humans are sex specific. In this study, the neonate CC was selected as a region-of-interest to investigate whether prenatal SSRI exposure has sex-specific effects on early WM microstructure. On postnatal day 7, diffusion tensor imaging was used to assess WM microstructure in SSRI-exposed (n = 24; 12 male) and nonexposed (n = 48; 28 male) term-born neonates. Fractional anisotropy was extracted from CC voxels and a multivariate discriminant analysis was used to identify latent patterns differing between neonates grouped by SSRI-exposure and sex. Analysis revealed localized variations in CC fractional anisotropy that significantly discriminated neonate groups and correctly predicted group membership with an 82% accuracy. Such effects were identified across three dimensions, representing sex differences in SSRI-exposed neonates (genu, splenium), SSRI-related effects independent of sex (genu-to-rostral body), and sex differences in nonexposed neonates (isthmus-splenium, posterior midbody). Our findings suggest that CC microstructure may have a sex-specific, localized, developmental sensitivity to prenatal SSRI exposure.
Collapse
Affiliation(s)
- Kayleigh S J Campbell
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
| | | | - Bruce H Bjornson
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ella Weik
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Ursula Brain
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Steven P Miller
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Tim F Oberlander
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Ward PJ, Davey RA, Zajac JD, English AW. Neuronal androgen receptor is required for activity dependent enhancement of peripheral nerve regeneration. Dev Neurobiol 2021; 81:411-423. [PMID: 33864349 DOI: 10.1002/dneu.22826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/11/2022]
Abstract
Neuronal activity after nerve injury can enhance axon regeneration and the restoration of function. The mechanism for this enhancement relies in part on hormone receptors, and we previously demonstrated that systemic androgen receptor antagonism blocked the effect of exercise or electrical stimulation on enhancing axon regeneration after nerve injury in both sexes. Here, we tested the hypothesis that the site of this androgen receptor signaling is both neuronal and involves the classical, genomic signaling pathway. In vivo, dorsal root ganglion neurons successfully regenerate in response to activity-dependent neuronal activation, and conditional deletion of the DNA-binding domain of the androgen receptor in adults blocks this effect in males and females. Motoneurons in males and females also respond in this manner, but we also observed a sex difference. In vitro, cultured sensory dorsal root ganglion neurons respond to androgens via traditional androgen receptor signaling mechanisms leading to enhanced neurite growth and did not respond to a testosterone conjugate that is unable to cross the cell membrane. Given our previous observation of a requirement for activity-dependent androgen receptor signaling to promote regeneration in both sexes, we interpret our results to indicate that genomic neuronal androgen receptor signaling is required for activity-dependent axon regeneration in both sexes.
Collapse
Affiliation(s)
- Patricia J Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
38
|
Chowen JA, Garcia-Segura LM. Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging. Mech Ageing Dev 2021; 196:111473. [PMID: 33766745 DOI: 10.1016/j.mad.2021.111473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Diseases and aging-associated alterations of the nervous system often show sex-specific characteristics. Glial cells play a major role in the endogenous homeostatic response of neural tissue, and sex differences in the glial transcriptome and function have been described. Therefore, the possible role of these cells in the generation of sex differences in pathological alterations of the nervous system is reviewed here. Studies have shown that glia react to pathological insults with sex-specific neuroprotective and regenerative effects. At least three factors determine this sex-specific response of glia: sex chromosome genes, gonadal hormones and neuroactive steroid hormone metabolites. The sex chromosome complement determines differences in the transcriptional responses in glia after brain injury, while gonadal hormones and their metabolites activate sex-specific neuroprotective mechanisms in these cells. Since the sex-specific neuroprotective and regenerative activity of glial cells causes sex differences in the pathological alterations of the nervous system, glia may represent a relevant target for sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, and IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain.
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
39
|
Long KLP, Breton JM, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021; 11:biom11020283. [PMID: 33672939 PMCID: PMC7918364 DOI: 10.3390/biom11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.
Collapse
Affiliation(s)
- Kimberly L. P. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Correspondence:
| | - Jocelyn M. Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
| | - Matthew K. Barraza
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Olga S. Perloff
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
40
|
Sunny DE, Hammer E, Strempel S, Joseph C, Manchanda H, Ittermann T, Hübner S, Weiss FU, Völker U, Heckmann M. Nup133 and ERα mediate the differential effects of hyperoxia-induced damage in male and female OPCs. Mol Cell Pediatr 2020; 7:10. [PMID: 32844334 PMCID: PMC7447710 DOI: 10.1186/s40348-020-00102-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hyperoxia is a well-known cause of cerebral white matter injury in preterm infants with male sex being an independent and critical risk factor for poor neurodevelopmental outcome. Sex is therefore being widely considered as one of the major decisive factors for prognosis and treatment of these infants. But unfortunately, we still lack a clear view of the molecular mechanisms that lead to such a profound difference. Hence, using mouse-derived primary oligodendrocyte progenitor cells (OPCs), we investigated the molecular factors and underlying mechanisms behind the differential response of male and female cells towards oxidative stress. Results We demonstrate that oxidative stress severely affects cellular functions related to energy metabolism, stress response, and maturation in the male-derived OPCs, whereas the female cells remain largely unaffected. CNPase protein level was found to decline following hyperoxia in male but not in female cells. This impairment of maturation was accompanied by the downregulation of nucleoporin and nuclear lamina proteins in the male cells. We identify Nup133 as a novel target protein affected by hyperoxia, whose inverse regulation may mediate this differential response in the male and female cells. Nup133 protein level declined following hyperoxia in male but not in female cells. We show that nuclear respiratory factor 1 (Nrf1) is a direct downstream target of Nup133 and that Nrf1 mRNA declines following hyperoxia in male but not in female cells. The female cells may be rendered resistant due to synergistic protection via the estrogen receptor alpha (ERα) which was upregulated following hyperoxia in female but not in male cells. Both Nup133 and ERα regulate mitochondrial function and oxidative stress response by transcriptional regulation of Nrf1. Conclusions These findings from a basic cell culture model establish prominent sex-based differences and suggest a novel mechanism involved in the differential response of OPCs towards oxidative stress. It conveys a strong message supporting the need to study how complex cellular processes are regulated differently in male and female brains during development and for a better understanding of how the brain copes up with different forms of stress after preterm birth.
Collapse
Affiliation(s)
- Donna Elizabeth Sunny
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany.
| | - Elke Hammer
- Department of Functional Genomics, University of Medicine Greifswald, Greifswald, Germany
| | | | - Christy Joseph
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Himanshu Manchanda
- Department of Bioinformatics, University of Medicine Greifswald, Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University of Medicine Greifswald, Greifswald, Germany
| | - Stephanie Hübner
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, University of Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University of Medicine Greifswald, Greifswald, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany
| |
Collapse
|
41
|
Schmied A, Soda T, Gerig G, Styner M, Swanson MR, Elison JT, Shen MD, McKinstry RC, Pruett JR, Botteron KN, Estes AM, Dager SR, Hazlett HC, Schultz RT, Piven J, Wolff JJ. Sex differences associated with corpus callosum development in human infants: A longitudinal multimodal imaging study. Neuroimage 2020; 215:116821. [PMID: 32276067 PMCID: PMC7292750 DOI: 10.1016/j.neuroimage.2020.116821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 02/02/2023] Open
Abstract
The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6-24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females.
Collapse
Affiliation(s)
- Astrid Schmied
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Takahiro Soda
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Guido Gerig
- Department of Computer Science & Engineering, New York University, New York City, NY, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Meghan R Swanson
- School of Behavioral & Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark D Shen
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Heather C Hazlett
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert T Schultz
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
42
|
Mohamed E, Paisley CE, Meyer LC, Bigbee JW, Sato-Bigbee C. Endogenous opioid peptides and brain development: Endomorphin-1 and Nociceptin play a sex-specific role in the control of oligodendrocyte maturation and brain myelination. Glia 2020; 68:1513-1530. [PMID: 32065429 PMCID: PMC11006003 DOI: 10.1002/glia.23799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
The generation of fully functional oligodendrocytes, the myelinating cells of the central nervous system, is preceded by a complex maturational process. We previously showed that the timing of oligodendrocyte differentiation and rat brain myelination were altered by perinatal exposure to buprenorphine and methadone, opioid analogs used for the management of pregnant addicts. Those observations suggested the involvement of the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOR). However, it remained to be determined if these receptors and their endogenous ligands could indeed control the timing of myelination under normal physiological conditions of brain development. We now found that the endogenous MOR ligand endomorphin-1 (EM-1) exerts a striking stimulatory action on cellular and morphological maturation of rat pre-oligodendrocytes, but unexpectedly, these effects appear to be restricted to the cells from the female pups. Critically, this stimulation is abolished by coincubation with the endogenous NOR ligand nociceptin. Furthermore, NOR antagonist treatment of 9-day-old female pups results in accelerated brain myelination. Interestingly, the lack of sex-dependent differences in developmental brain levels of EM-1 and nociceptin, or oligodendroglial expression of MOR and NOR, suggests that the observed sex-specific responses may be highly dependent on important intrinsic differences between the male and female oligodendrocytes. The discovery of a significant effect of EM-1 and nociceptin in the developing female oligodendrocytes and brain myelination, underscores the need for further studies investigating brain sex-related differences and their implications in opioid use and abuse, pain control, and susceptibility and remyelinating capacity in demyelinating disease as multiple sclerosis.
Collapse
Affiliation(s)
- Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Caitlin E Paisley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Logan C Meyer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
43
|
Zilkha-Falb R, Kaushansky N, Ben-Nun A. The Median Eminence, A New Oligodendrogenic Niche in the Adult Mouse Brain. Stem Cell Reports 2020; 14:1076-1092. [PMID: 32413277 PMCID: PMC7355143 DOI: 10.1016/j.stemcr.2020.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
The subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus are known as neurogenic niches. We show that the median eminence (ME) of the hypothalamus comprises BrdU+ newly proliferating cells co-expressing NG2 (oligodendrocyte progenitors) and RIP (pre-myelinating oligodendrocytes), suggesting their differentiation toward mature oligodendrocytes (OLs). ME cells can generate neurospheres (NS) in vitro, which differentiate mostly to OLs compared with SVZ-NS that typically generate neurons. Interestingly, this population of oligodendrocyte progenitors is increased in the ME from experimental autoimmune encephalomyelitis (EAE)-affected mice. Notably, the thrombospondin 1 (TSP1) expressed by astrocytes, acts as negative regulator of oligodendrogenesis in vitro and is downregulated in the ME of EAE mice. Importantly, transplanted ME-NS preferentially differentiate to MBP+ OLs compared with SVZ-NS in Shiverer mice. Hence, discovering the ME as a new site for myelin-producing cells has a great importance for advising future therapy for demyelinating diseases and spinal cord injury.
Collapse
Affiliation(s)
- Rina Zilkha-Falb
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Yasuda K, Maki T, Kinoshita H, Kaji S, Toyokawa M, Nishigori R, Kinoshita Y, Ono Y, Kinoshita A, Takahashi R. Sex-specific differences in transcriptomic profiles and cellular characteristics of oligodendrocyte precursor cells. Stem Cell Res 2020; 46:101866. [PMID: 32563975 DOI: 10.1016/j.scr.2020.101866] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/21/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The susceptibility to neurological and psychiatric disorders reveals sexual dimorphism in the structure and function of human brains. Recent evidence has also demonstrated the sex-related differences in cellular components of the brain, including neurons, microglia, astrocytes, and endothelial cells. Oligodendrocyte precursor cells (OPCs) regulate the neuronal system in various ways and play crucial roles in brain homeostasis beyond their well-known role as a reservoir for mature oligodendrocytes. Although recent studies have shown regional diversities and heterogeneities of OPCs, sex-related differences in OPCs are largely unknown. Here, we revealed transcriptomic differences in OPCs isolated from male and female neonatal rat brains. Furthermore, we demonstrated sex-dependent differences in OPCs regarding proliferation, migration, differentiation, tolerance against ischemic stress, energy metabolism, and the ability to regulate the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Ken Yasuda
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
| | - Hisanori Kinoshita
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Seiji Kaji
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Masaru Toyokawa
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryusei Nishigori
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Yusuke Kinoshita
- Department of Developmental Neurobiology, KAN Research Institute, Inc., Kobe, Hyogo 650-0047, Japan
| | - Yuichi Ono
- Department of Developmental Neurobiology, KAN Research Institute, Inc., Kobe, Hyogo 650-0047, Japan
| | - Ayae Kinoshita
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| |
Collapse
|
45
|
Roles of Progesterone, Testosterone and Their Nuclear Receptors in Central Nervous System Myelination and Remyelination. Int J Mol Sci 2020; 21:ijms21093163. [PMID: 32365806 PMCID: PMC7246940 DOI: 10.3390/ijms21093163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Progesterone and testosterone, beyond their roles as sex hormones, are neuroactive steroids, playing crucial regulatory functions within the nervous system. Among these, neuroprotection and myelin regeneration are important ones. The present review aims to discuss the stimulatory effects of progesterone and testosterone on the process of myelination and remyelination. These effects have been demonstrated in vitro (i.e., organotypic cultures) and in vivo (cuprizone- or lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE)). Both steroids stimulate myelin formation and regeneration by acting through their respective intracellular receptors: progesterone receptors (PR) and androgen receptors (AR). Activation of these receptors results in multiple events involving direct transcription and translation, regulating general homeostasis, cell proliferation, differentiation, growth and myelination. It also ameliorates immune response as seen in the EAE model, resulting in a significant decrease in inflammation leading to a fast recovery. Although natural progesterone and testosterone have a therapeutic potential, their synthetic derivatives—the 19-norprogesterone (nestorone) and 7α-methyl-nortestosterone (MENT), already used as hormonal contraception or in postmenopausal hormone replacement therapies, may offer enhanced benefits for myelin repair. We summarize here a recent advancement in the field of myelin biology, to treat demyelinating disorders using the natural as well as synthetic analogs of progesterone and testosterone.
Collapse
|
46
|
Ho TC, Colich NL, Sisk LM, Oskirko K, Jo B, Gotlib IH. Sex differences in the effects of gonadal hormones on white matter microstructure development in adolescence. Dev Cogn Neurosci 2020; 42:100773. [PMID: 32452463 PMCID: PMC7058897 DOI: 10.1016/j.dcn.2020.100773] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
Adolescence is characterized by rapid brain development in white matter (WM) that is attributed in part to surges in gonadal hormones. To date, however, there have been few longitudinal investigations relating changes in gonadal hormones and WM development in adolescents. We acquired diffusion-weighted MRI to estimate mean fractional anisotropy (FA) from 10 WM tracts and salivary testosterone from 51 females and 29 males (ages 9-14 years) who were matched on pubertal stage and followed, on average, for 2 years. We tested whether interactions between sex and changes in testosterone levels significantly explained changes in FA. We found positive associations between changes in testosterone and changes in FA within the corpus callosum, cingulum cingulate, and corticospinal tract in females (all ps<0.05, corrected) and non-significant associations in males. We also collected salivary estradiol from females and found that increases in estradiol were associated with increases in FA in the left uncinate fasciculus (p = 0.04, uncorrected); however, this effect was no longer significant after accounting for changes in testosterone. Our findings indicate there are sex differences in how changes in testosterone relate to changes in WM microstructure of tracts that support impulse control and emotion regulation across the pubertal transition.
Collapse
Affiliation(s)
- Tiffany C Ho
- Stanford University, Department of Psychology, Stanford, CA, United States; Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States; University of California, San Francisco, Department of Psychiatry & Weill Institute for Neurosciences, San Francisco, CA, United States.
| | - Natalie L Colich
- University of Washington, Department of Psychology, Seattle, WA, United States
| | - Lucinda M Sisk
- Stanford University, Department of Psychology, Stanford, CA, United States; Yale University, Department of Psychology, New Haven, CT, United States
| | - Kira Oskirko
- Stanford University, Department of Psychology, Stanford, CA, United States
| | - Booil Jo
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States
| | - Ian H Gotlib
- Stanford University, Department of Psychology, Stanford, CA, United States
| |
Collapse
|
47
|
Almuslehi MSM, Sen MK, Shortland PJ, Mahns DA, Coorssen JR. CD8 T-cell Recruitment Into the Central Nervous System of Cuprizone-Fed Mice: Relevance to Modeling the Etiology of Multiple Sclerosis. Front Cell Neurosci 2020; 14:43. [PMID: 32210765 PMCID: PMC7076139 DOI: 10.3389/fncel.2020.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cuprizone (CPZ)-feeding in mice induces atrophy of peripheral immune organs (thymus and spleen) and suppresses T-cell levels, thereby limiting its use as a model for studying the effects of the immune system in demyelinating diseases such as Multiple Sclerosis (MS). To investigate whether castration (Cx) can protect the peripheral immune organs from CPZ-induced atrophy and enable T-cell recruitment into the central nervous system (CNS) following a breach of the blood-brain barrier (BBB), three related studies were carried out. In Study 1, Cx prevented the dose-dependent reductions (0.1% < 0.2% CPZ) in thymic and splenic weight, size of the thymic medulla and splenic white pulp, and CD4 and CD8 (CD4/8) levels remained comparable to gonadally intact (Gi) control males. Importantly, 0.1% and 0.2% CPZ were equipotent at inducing central demyelination and glial activation. In Study 2, combining Cx with 0.1% CPZ-feeding and BBB disruption with pertussis toxin (PT) enhanced CD8+ T-cell recruitment into the CNS. The increased CD8+ T-cell level observed in the parenchyma of the cerebrum, cerebellum, brainstem and spinal cord were confirmed by flow cytometry and western blot analyses of CNS tissue. In Study 3, PT+0.1% CPZ-feeding to Gi female mice resulted in similar effects on the peripheral immune organs, CNS demyelination, and gliosis comparable to Gi males, indicating that testosterone levels alone were not responsible for the immune response seen in Study 2. The combination of Cx+0.1% CPZ-feeding+PT indicates that CPZ-induced demyelination can trigger an “inside-out” immune response when the peripheral immune system is spared and may provide a better model to study the initiating events in demyelinating conditions such as MS.
Collapse
Affiliation(s)
- Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, Diyala University, Diyala, Iraq
| | - Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, St. Catharines, ON, Canada.,Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
48
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
49
|
Oberoi R, Chu T, Mellen N, Jagadapillai R, Ouyang H, Devlin LA, Cai J. Diverse changes in myelin protein expression in rat brain after perinatal methadone exposure. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2019-034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Le Dieu-Lugon B, Dupré N, Legouez L, Leroux P, Gonzalez BJ, Marret S, Leroux-Nicollet I, Cleren C. Why considering sexual differences is necessary when studying encephalopathy of prematurity through rodent models. Eur J Neurosci 2019; 52:2560-2574. [PMID: 31885096 DOI: 10.1111/ejn.14664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
Preterm birth is a high-risk factor for the development of gray and white matter abnormalities, referred to as "encephalopathy of prematurity," that may lead to life-long motor, cognitive, and behavioral impairments. The prevalence and clinical outcomes of encephalopathy of prematurity differ between sexes, and elucidating the underlying biological basis has become a high-priority challenge. Human studies are often limited to assessment of brain region volumes by MRI, which does not provide much information about the underlying mechanisms of lesions related to very preterm birth. However, models using KO mice or pharmacological manipulations in rodents allow relevant observations to help clarify the mechanisms of injury sustaining sex-differential vulnerability. This review focuses on data obtained from mice aged P1-P5 or rats aged P3 when submitted to cerebral damage such as hypoxia-ischemia, as their brain lesions share similarities with lesion patterns occurring in very preterm human brain, before 32 gestational weeks. We first report data on the mechanisms underlying the development of sexual brain dimorphism in rodent, focusing on the hippocampus. In the second part, we describe sex specificities of rodent models of encephalopathy of prematurity (RMEP), focusing on mechanisms underlying differences in hippocampal vulnerability. Finally, we discuss the relevance of these RMEP. Together, this review highlights the need to systematically search for potential effects of sex when studying the mechanisms underlying deficits in RMEP in order to design effective sex-specific medical interventions in human preterms.
Collapse
Affiliation(s)
- Bérénice Le Dieu-Lugon
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Nicolas Dupré
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Lou Legouez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Philippe Leroux
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Bruno J Gonzalez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Stéphane Marret
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France.,Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Isabelle Leroux-Nicollet
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Carine Cleren
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| |
Collapse
|