1
|
Zhou C, Segura-Covarrubias G, Tajima N. Structural Insights into Kainate Receptor Desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645769. [PMID: 40236080 PMCID: PMC11996427 DOI: 10.1101/2025.03.27.645769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Kainate receptors (KARs), along with AMPA and NMDA receptors, belong to the ionotropic glutamate receptor (iGluR) family and play critical roles in mediating excitatory neurotransmission throughout the central nervous system. KARs also regulate neurotransmitter release and modulate neuronal excitability and plasticity. Receptor desensitization plays a critical role in modulating the strength of synaptic transmission and synaptic plasticity. While KARs share overall structural similarity with AMPA receptors, the desensitized state of KARs differs strikingly from that of other iGluRs. Despite extensive studies on KARs, a fundamental question remains unsolved: why do KARs require large conformational changes upon desensitization, unlike other iGluRs? To address this, we present cryo-electron microscopy structures of GluK2 with double cysteine mutations in non-desensitized, shallow-desensitized and deep-desensitized conformations. In the shallow-desensitized conformation, two cysteine crosslinks stabilize the receptors in a conformation that resembles the desensitized state of AMPA receptors. However, unlike the tightly closed pore observed in the deep-desensitized KAR and desensitized AMPAR conformations, the channel pore in the shallow-desensitized state remains incompletely closed. Patch-clamp recordings and fluctuation analysis suggest that this state remains ion-permeable, indicating that the lateral rotational movement of KAR ligand-binding domains (LBDs) is critical for complete channel closure and stabilization of the receptor in desensitization states. Together with the multiple conformations representing different degree of desensitization, our results define the unique mechanism and conformational dynamics of KAR desensitization. Highlights We present cryo-EM structures of GluK2 kainate receptors with engineered cysteine crosslinks at the inter-dimer interface, which restrict subunit lateral rotation and attenuate receptor desensitization.The structure of GluK2 double cysteine mutant in complex with the allosteric potentiator BPAM344 and glutamate represents a non-desensitized state, highlighting the critical conformational changes required for ion channel gating.The glutamate-bound GluK2 mutant adopts multiple conformations, representing both shallow- and deep-desensitized states. Electrophysiological recordings indicate that the GluK2 kainate receptor mutant recovers from desensitization more rapidly, resembling AMPA receptors. Our structural and functional data suggest that shallow-desensitized KARs remain conductive, implying that the large lateral LBD rotation during KAR desensitization is essential for complete channel closure, distinguishing KARs from other iGluRs.
Collapse
|
2
|
Scholefield CL, Atlason PT, Jane DE, Molnár E. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites. Neurochem Res 2018; 44:585-599. [PMID: 30302614 PMCID: PMC6420462 DOI: 10.1007/s11064-018-2654-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
Kainate receptors (KARs) are a subfamily of ionotropic glutamate receptors (iGluRs) mediating excitatory synaptic transmission. Cell surface expressed KARs modulate the excitability of neuronal networks. The transfer of iGluRs from the endoplasmic reticulum (ER) to the cell surface requires occupation of the agonist binding sites. Here we used molecular modelling to produce a range of ligand binding domain (LBD) point mutants of GluK1-3 KAR subunits with and without altered agonist efficacy to further investigate the role of glutamate binding in surface trafficking and activation of homomeric and heteromeric KARs using endoglycosidase digestion, cell surface biotinylation and imaging of changes in intracellular Ca2+ concentration [Ca2+]i. Mutations of conserved amino acid residues in the LBD that disrupt agonist binding to GluK1-3 (GluK1-T675V, GluK2-A487L, GluK2-T659V and GluK3-T661V) reduced both the total expression levels and cell surface delivery of all of these mutant subunits compared to the corresponding wild type in transiently transfected human embryonic kidney 293 (HEK293) cells. In contrast, the exchange of non-conserved residues in the LBD that convert antagonist selectivity of GluK1-3 (GluK1-T503A, GluK2-A487T, GluK3-T489A, GluK1-N705S/S706N, GluK2-S689N/N690S, GluK3-N691S) did not alter the biosynthesis and trafficking of subunit proteins. Co-assembly of mutant GluK2 with an impaired LBD and wild type GluK5 subunits enables the cell surface expression of both subunits. However, [Ca2+]i imaging indicates that the occupancy of both GluK2 and GluK5 LBDs is required for the full activation of GluK2/GluK5 heteromeric KAR channels.
Collapse
Affiliation(s)
- Caroline L Scholefield
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Palmi T Atlason
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
3
|
Carbofuran causes neuronal vulnerability to glutamate by decreasing GluA2 protein levels in rat primary cortical neurons. Arch Toxicol 2017; 92:401-409. [PMID: 28725974 DOI: 10.1007/s00204-017-2018-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Glutamate receptor 2 (GluA2/GluR2) is one of the four subunits of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR); an increase in GluA2-lacking AMPARs contributes to neuronal vulnerability to excitotoxicity because of the receptor's high Ca2+ permeability. Carbofuran is a carbamate pesticide used in agricultural areas to increase crop productivity. Due to its broad-spectrum action, carbofuran has also been used as an insecticide, nematicide, and acaricide. In this study, we investigated the effect of carbofuran on GluA2 protein expression. The 9-day treatment of rat primary cortical neurons with 1 µM and 10 µM carbofuran decreased GluA2 protein expression, but not that of GluA1, GluA3, or GluA4 (i.e., other AMPAR subunits). Decreased GluA2 protein expression was also observed on the cell surface membrane of 10 µM carbofuran-treated neurons, and these neurons showed an increase in 25 µM glutamate-triggered Ca2+ influx. Treatment with 50 µM glutamate, which did not affect the viability of control neurons, significantly decreased the viability of 10 µM carbofuran-treated neurons, and this effect was abolished by pre-treatment with 300 µM 1-naphthylacetylspermine, an antagonist of GluA2-lacking AMPAR. At a concentration of 100 µM, but not 1 or 10 µM, carbofuran significantly decreased acetylcholine esterase activity, a well-known target of this chemical. These results suggest that carbofuran decreases GluA2 protein expression and increases neuronal vulnerability to glutamate toxicity at concentrations that do not affect acetylcholine esterase activity.
Collapse
|
4
|
Han Y, Lin CY, Niu L. Functional Roles of the Edited Isoform of GluA2 in GluA2-Containing AMPA Receptor Channels. Biochemistry 2017; 56:1620-1631. [DOI: 10.1021/acs.biochem.6b01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yan Han
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| | - Chi-Yen Lin
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| | - Li Niu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| |
Collapse
|
5
|
Meyerson JR, Chittori S, Merk A, Rao P, Han TH, Serpe M, Mayer ML, Subramaniam S. Structural basis of kainate subtype glutamate receptor desensitization. Nature 2016; 537:567-571. [PMID: 27580033 PMCID: PMC5161608 DOI: 10.1038/nature19352] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
Abstract
Glutamate receptors are ligand-gated tetrameric ion channels that mediate synaptic transmission in the central nervous system. They are instrumental in vertebrate cognition and their dysfunction underlies diverse diseases. In both the resting and desensitized states of AMPA and kainate receptor subtypes, the ion channels are closed, whereas the ligand-binding domains, which are physically coupled to the channels, adopt markedly different conformations. Without an atomic model for the desensitized state, it is not possible to address a central problem in receptor gating: how the resting and desensitized receptor states both display closed ion channels, although they have major differences in the quaternary structure of the ligand-binding domain. Here, by determining the structure of the kainate receptor GluK2 subtype in its desensitized state by cryo-electron microscopy (cryo-EM) at 3.8 Å resolution, we show that desensitization is characterized by the establishment of a ring-like structure in the ligand-binding domain layer of the receptor. Formation of this 'desensitization ring' is mediated by staggered helix contacts between adjacent subunits, which leads to a pseudo-four-fold symmetric arrangement of the ligand-binding domains, illustrating subtle changes in symmetry that are important for the gating mechanism. Disruption of the desensitization ring is probably the key switch that enables restoration of the receptor to its resting state, thereby completing the gating cycle.
Collapse
Affiliation(s)
- Joel R Meyerson
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| | - Sagar Chittori
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, Bethesda, Maryland 20892, USA
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| | - Tae Hee Han
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland 20892, USA
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland 20892, USA
| | - Mark L Mayer
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, Bethesda, Maryland 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Dawe GB, Aurousseau MR, Daniels BA, Bowie D. Retour aux sources: defining the structural basis of glutamate receptor activation. J Physiol 2015; 593:97-110. [PMID: 25556791 PMCID: PMC4293057 DOI: 10.1113/jphysiol.2014.277921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/05/2014] [Indexed: 01/12/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are the major excitatory neurotransmitter receptor in the vertebrate CNS and, as a result, their activation properties lie at the heart of much of the neuronal network activity observed in the developing and adult brain. iGluRs have also been implicated in many nervous system disorders associated with postnatal development (e.g. autism, schizophrenia), cerebral insult (e.g. stroke, epilepsy), and disorders of the ageing brain (e.g. Alzheimer's disease, Parkinsonism). In view of this, an emphasis has been placed on understanding how iGluRs activate and desensitize in functional and structural terms. Early structural models of iGluRs suggested that the strength of the agonist response was primarily governed by the degree of closure induced in the ligand-binding domain (LBD). However, recent studies have suggested a more nuanced role for the LBD with current evidence identifying the iGluR LBD interface as a "hotspot" regulating agonist behaviour. Such ideas remain to be consolidated with recently solved structures of full-length iGluRs to account for the global changes that underlie channel activation and desensitization.
Collapse
Affiliation(s)
- G Brent Dawe
- Integrated Program in Neuroscience, McGill UniversityMontréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| | - Mark R Aurousseau
- Graduate Program in Pharmacology, McGill UniversityMontréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| | - Bryan A Daniels
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| |
Collapse
|
7
|
Fisher JL, Housley PR. Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors. Cell Mol Neurobiol 2013; 33:1099-108. [PMID: 23975096 PMCID: PMC3806634 DOI: 10.1007/s10571-013-9976-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Trafficking of ionotropic glutamate receptors to the plasma membrane commonly requires occupation of the agonist binding sites. This quality control check does not typically involve receptor activation, as binding by competitive antagonists or to non-functional channels may also permit surface expression. The tetrameric kainate receptors can be assembled from five different subunits (GluK1-GluK5). While the "low-affinity" GluK1-3 subunits are able to produce functional homomeric receptors, the "high-affinity" GluK4 and GluK5 subunits require co-assembly with GluK1, 2, or 3 for surface expression. These two different types of subunits have distinct functional roles in the receptor. Therefore, we examined the relative importance of occupancy of the agonist site of the GluK2 or GluK5 subunit for surface expression of heteromeric receptors. We created subunits with a mutation within the S2 ligand-binding domain which decreased agonist affinity. Mutations at this site reduced functional surface expression of homomeric GluK2 receptors, but surface expression of these receptors could be increased with either a competitive antagonist or co-assembly with wild-type GluK5. In contrast, mutations in the GluK5 subunit reduced the production of functional heteromeric receptors at the membrane, and could not be rescued with either an antagonist or wild-type GluK2. These findings indicate that ligand binding to only the GluK5 subunit is both necessary and sufficient to allow trafficking of recombinant GluK2/K5 heteromers to the cell membrane, but that occupancy of the GluK2 site alone is not. Our results suggest a distinct role for the GluK5 subunit in regulating surface expression of heteromeric kainate receptors.
Collapse
Affiliation(s)
- Janet L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA,
| | | |
Collapse
|
8
|
Sun C, Qiao H, Zhou Q, Wang Y, Wu Y, Zhou Y, Li Y. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins. J Biol Chem 2013; 288:24676-90. [PMID: 23861400 PMCID: PMC3750165 DOI: 10.1074/jbc.m113.462069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/11/2013] [Indexed: 11/06/2022] Open
Abstract
Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs.
Collapse
Affiliation(s)
- Changcheng Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Daniels BA, Andrews ED, Aurousseau MRP, Accardi MV, Bowie D. Crosslinking the ligand-binding domain dimer interface locks kainate receptors out of the main open state. J Physiol 2013; 591:3873-85. [PMID: 23713029 PMCID: PMC3764634 DOI: 10.1113/jphysiol.2013.253666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022] Open
Abstract
Kainate-selective ionotropic glutamate receptors (iGluRs) fulfil key roles in the CNS, making them the subject of detailed structural and functional analyses. Although they are known to gate a channel pore with high and low ion-permeation rates, it is still not clear how switches between these gating modes are achieved at the structural level. Here, we uncover an unexpected role for the ligand-binding domain (LBD) dimer assembly in this process. Covalent crosslinking of the dimer interface keeps kainate receptors out of the main open state but permits access to lower conductance states suggesting that significant rearrangements of the dimer interface are required for the receptor to achieve full activation. These observations differ from NMDA-selective iGluRs where constraining dimer movement reduces open-channel probability. In contrast, our data show that restricting movement of the dimer interface interferes with conformational changes that underlie both activation and desensitization. Working within the limits of a common architectural design, we propose functionally diverse iGluR families were able to emerge during evolution by re-deploying existing gating structures to fulfil different tasks.
Collapse
Affiliation(s)
- Bryan A Daniels
- Department of Pharmacology and Therapeutics, Bellini Building, Room 164, McGill University, 3649 Promenade Sir William Osler, Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|
10
|
Nayeem N, Mayans O, Green T. Correlating efficacy and desensitization with GluK2 ligand-binding domain movements. Open Biol 2013; 3:130051. [PMID: 23720540 PMCID: PMC3866869 DOI: 10.1098/rsob.130051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Gating of AMPA- and kainate-selective ionotropic glutamate receptors can be defined in terms of ligand affinity, efficacy and the rate and extent of desensitization. Crucial insights into all three elements have come from structural studies of the ligand-binding domain (LBD). In particular, binding-cleft closure is associated with efficacy, whereas dissociation of the dimer formed by neighbouring LBDs is linked with desensitization. We have explored these relationships in the kainate-selective subunit GluK2 by studying the effects of mutating two residues (K531 and R775) that form key contacts within the LBD dimer interface, but whose truncation unexpectedly attenuates desensitization. One mutation (K531A) also switches the relative efficacies of glutamate and kainate. LBD crystal structures incorporating these mutations revealed several conformational changes that together explain their phenotypes. K531 truncation results in new dimer contacts, consistent with slower desensitization and sideways movement in the ligand-binding cleft correlating with efficacy. The tested mutants also disrupted anion binding; no chloride was detected in the dimer-interface site, including in R775A where absence of chloride was the only structural change evident. From this, we propose that the charge balance in the GluK2 LBD dimer interface maintains a degree of instability, necessary for rapid and complete desensitization.
Collapse
Affiliation(s)
- Naushaba Nayeem
- Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Tim Green
- Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
11
|
Carbone AL, Plested AJR. Coupled control of desensitization and gating by the ligand binding domain of glutamate receptors. Neuron 2012; 74:845-57. [PMID: 22681689 DOI: 10.1016/j.neuron.2012.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
The kinetics of ligand gated ion channels are tuned to permit diverse roles in cellular signaling. To follow high-frequency excitatory synaptic input, postsynaptic AMPA-type glutamate receptors must recover rapidly from desensitization. Chimeras between AMPA and the related kainate receptors demonstrate that the ligand binding domains alone control the lifetime of the desensitized state. Mutation of nonconserved amino acids in the lower lobe (domain 2) of the ligand binding domain conferred slow recovery from desensitization on AMPA receptors, and fast recovery on kainate receptors. Single-channel recordings and a correlation between the rate of deactivation and the rate of recovery across panels of mutant receptors revealed that domain 2 also controls ion channel gating. Our results demonstrate that the same mechanism that ensures fast recovery also sharpens the response of AMPA channels to synaptically released glutamate.
Collapse
Affiliation(s)
- Anna L Carbone
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
12
|
Kainate induces various domain closures in AMPA and kainate receptors. Neurochem Int 2012; 61:536-45. [PMID: 22425692 DOI: 10.1016/j.neuint.2012.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 11/23/2022]
Abstract
Ionotropic glutamate receptors are key players in fast excitatory synaptic transmission within the central nervous system. These receptors have been divided into three subfamilies: the N-methyl-d-aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) and kainate receptors. Kainate has previously been crystallized with the ligand binding domain (LBD) of AMPA receptors (GluA2 and GluA4) and kainate receptors (GluK1 and GluK2). Here, we report the structures of the kainate receptor GluK3 LBD in complex with kainate and GluK1 LBD in complex with kainate in the absence of glycerol. Kainate introduces a conformational change in GluK3 LBD comparable to that of GluK2, but different from the conformational changes induced in GluA2 and GluK1. Compared to their domain closures in a glutamate bound state, GluA2 and GluK1 become more open and kainate induces a domain closure of 60% and 62%, respectively, relative to glutamate (100%). In GluK2 and GluK3 with kainate, the domain closure is 88% and 83%, respectively. In previously determined structures of GluK1 LBD in complex with kainate, glycerol is present in the binding site where it bridges interlobe residues and thus, might contribute to the large domain opening. However, the structure of GluK1 LBD with kainate in the absence of glycerol confirms that the observed domain closure is not an artifact of crystallization conditions. Comparison of the LBD structures with glutamate and kainate reveals that contacts are lost upon binding of kainate in the three kainate receptors, which is in contrast to the AMPA receptors where similar contacts are seen. It was revealed by patch clamp electrophysiology studies that kainate is a partial agonist at GluK1 with 36% efficacy compared to glutamate, which is in between the published efficacies of kainate at GluK2 and AMPA receptors. The ranking of efficacies seems to correlate with LBD domain closures.
Collapse
|
13
|
Cao JY, Qiu S, Zhang J, Wang JJ, Zhang XM, Luo JH. Transmembrane region of N-methyl-D-aspartate receptor (NMDAR) subunit is required for receptor subunit assembly. J Biol Chem 2011; 286:27698-705. [PMID: 21659529 DOI: 10.1074/jbc.m111.235333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs), one of three main classes of ionotropic glutamate receptors, play major roles in synaptic plasticity, synaptogenesis, and excitotoxicity. Unlike non-NMDA receptors, NMDARs are thought to comprise obligatory heterotetrameric complexes mainly composed of GluN1 and GluN2 subunits. When expressed alone in heterogenous cells, such as HEK293 cells, most of the NMDAR subunits can neither leave the endoplasmic reticulum (ER) nor be expressed in the cell membrane because of the ER retention signals. Only when NMDARs are heteromerically assembled can the ER retention signals be masked and NMDARs be expressed in the surface membrane. However, the mechanisms underlying NMDAR assembly remain poorly understood. To identify regions in subunits that mediate this assembly, we made a series of truncated or chimeric cDNA constructs. Using FRET measurement in living cells combined with immunostaining and coimmunoprecipitation analysis, we examined the assembly-determining domains of NMDAR subunits. Our results indicate that the transmembrane region of subunits is necessary for the assembly of NMDAR subunits, both for the homodimer and the heteromer.
Collapse
Affiliation(s)
- Jing-yuan Cao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | |
Collapse
|
14
|
Kainate receptor modulation by sodium and chloride. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 717:93-113. [PMID: 21713670 DOI: 10.1007/978-1-4419-9557-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kainate-type glutamate receptor displays strong modulation by monovalent anions and cations. This modulation is independent of permeation of the ion channel. Instead, structural, computational and biophysical evidence shows that receptor activity is controlled by binding of sodium and chloride ions at sites that stabilize active dimers of glutamate binding domains. Modulation by monovalent ions is a surprisingly general property across ion channel families. However, evidence of a physiological role for ion-dependent effects on glutamate receptors is lacking, perhaps reflecting the adventitious use of ions as structural components of the kainate receptor. "ergo, Hercules, vita humanior sine sale non quit degree […]" "Heaven known, a civilized life is impossible without salt" -Pliny the Elder, Natural History XXXI 88.
Collapse
|
15
|
Nakagawa T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol Neurobiol 2010; 42:161-84. [PMID: 21080238 PMCID: PMC2992128 DOI: 10.1007/s12035-010-8149-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Terunaga Nakagawa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Hansen KB, Furukawa H, Traynelis SF. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol Pharmacol 2010; 78:535-49. [PMID: 20660085 PMCID: PMC2981397 DOI: 10.1124/mol.110.067157] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 07/21/2010] [Indexed: 12/29/2022] Open
Abstract
The extracellular amino-terminal domains (ATDs) of the ionotropic glutamate receptor subunits form a semiautonomous component of all glutamate receptors that resides distal to the membrane and controls a surprisingly diverse set of receptor functions. These functions include subunit assembly, receptor trafficking, channel gating, agonist potency, and allosteric modulation. The many divergent features of the different ionotropic glutamate receptor classes and different subunits within a class may stem from differential regulation by the amino-terminal domains. The emerging knowledge of the structure and function of the amino-terminal domains reviewed here may enable targeting of this region for the therapeutic modulation of glutamatergic signaling. Toward this end, NMDA receptor antagonists that interact with the GluN2B ATD show promise in animal models of ischemia, neuropathic pain, and Parkinson's disease.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA
| | | | | |
Collapse
|
17
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2711] [Impact Index Per Article: 180.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ligand-gated ion channels are an important class of signalling protein that depend on small chemical neurotransmitters such as acetylcholine, l-glutamate, glycine and gamma-aminobutyrate for activation. Although numerous in number, neurotransmitter substances have always been thought to drive the receptor complex into the open state in much the same way and not rely substantially on other factors. However, recent work on kainate-type (KAR) ionotropic glutamate receptors (iGluRs) has identified an exception to this rule. Here, the activation process fails to occur unless external monovalent anions and cations are present. This absolute requirement of ions singles out KARs from all other ligand-gated ion channels, including closely related AMPA- and NMDA-type iGluR family members. The uniqueness of ion-dependent gating has earmarked this feature of KARs as a putative target for the development of selective ligands; a prospect all the more compelling with the recent elucidation of distinct anion and cation binding pockets. Despite these advances, much remains to be resolved. For example, it is still not clear how ion effects on KARs impacts glutamatergic transmission. I conclude by speculating that further analysis of ion-dependent gating may provide clues into how functionally diverse iGluRs families emerged by evolution. Consequently, ion-dependent gating of KARs looks set to continue to be a subject of topical inquiry well into the future.
Collapse
Affiliation(s)
- Derek Bowie
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada H3A 1Y6.
| |
Collapse
|
19
|
Nayeem N, Zhang Y, Schweppe DK, Madden DR, Green T. A nondesensitizing kainate receptor point mutant. Mol Pharmacol 2009; 76:534-42. [PMID: 19561126 PMCID: PMC2730386 DOI: 10.1124/mol.109.056598] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/25/2009] [Indexed: 02/05/2023] Open
Abstract
Ionotropic glutamate receptor (iGluR) desensitization can be modulated by mutations that change the stability of a dimer formed by the agonist binding domain. Desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be blocked by a single point mutation (e.g., GluR2 L483Y) that stabilizes this dimer in an active conformation. In contrast, desensitization of kainate receptors can be slowed, but not blocked, by similar dimer interface mutations. Only covalent cross-linking via introduced disulfides has been previously shown to block kainate receptor desensitization completely. We have now identified an apparently nondesensitizing GluR6 point mutant (D776K) located at the apex of the ligand binding (S1S2) domain dimer interface. Asp776 is one of a cluster of four charged residues in this region that together mediate direct dimer interactions and contribute to the binding sites for one chloride and two sodium ions. Despite the localized +4 change in the net charge of the S1S2 dimer, the D776K mutation actually increased the thermodynamic stability of the dimer. Unlike GluR6 wild type, the D776K mutant is insensitive to external cations but retains sensitivity to external anions. We therefore hypothesize that the unexpected phenotype of this charge reversal mutation results from the substitution of the sodium ions bound within the dimer interface by the introduced lysine NH(3)(+) groups. The nondesensitizing D776K mutant provides insights into kainate receptor gating and represents a potentially useful new tool for dissecting kainate receptor function.
Collapse
Affiliation(s)
- Naushaba Nayeem
- Department of Pharmacology, School of Biomedical Sciences, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | | | | | | | | |
Collapse
|
20
|
Du M, Rambhadran A, Jayaraman V. Vibrational spectroscopic investigation of the ligand binding domain of kainate receptors. Protein Sci 2009; 18:1585-91. [PMID: 19544581 PMCID: PMC2776946 DOI: 10.1002/pro.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 11/09/2022]
Abstract
Fourier transform infrared spectroscopy has been used to probe the agonist-protein interactions in the ligand binding domain of the GluR6 subunit, one subunit of the kainate subtype of glutamate receptors. In order to study the changes in the interactions over a range of activations the investigations were performed using the wild type, N690S, and T661E mutations. These studies show that the strength of the interactions at the alpha-amine group of the agonist, as probed by studying the environment of the nondisulphide bonded Cys 432, acts as a switch with weaker interactions at lower activations and stronger interactions at higher activations. The alpha-carboxylate interactions of the agonist, however, are not significantly different over the wide range of activations, as measured by the maximum currents mediated by the receptors at saturating concentrations of agonists. Previous investigations of AMPA receptors show a similar dependence of the alpha-amine interactions on activation indicating that the roles of the alpha-amine interactions in mediating receptor activation are similar for both subtypes of receptors; however, in the case of the AMPA receptors a tug of war type of change was observed between the alpha-amine and alpha-carboxylate interactions and this is not observed in kainate receptors. This decoupling of the two interactions could arise due to the larger cleft observed in kainate receptors, which allows for a more flexible interaction for the alpha-amine and alpha-carboxylate groups of the agonists.
Collapse
Affiliation(s)
| | | | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science CenterHouston, Texas 77030
| |
Collapse
|
21
|
Gill MB, Vivithanaporn P, Swanson GT. Glutamate binding and conformational flexibility of ligand-binding domains are critical early determinants of efficient kainate receptor biogenesis. J Biol Chem 2009; 284:14503-12. [PMID: 19342380 PMCID: PMC2682899 DOI: 10.1074/jbc.m900510200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/13/2009] [Indexed: 11/06/2022] Open
Abstract
Intracellular glutamate binding within the endoplasmic reticulum (ER) is thought to be necessary for plasma membrane expression of ionotropic glutamate receptors. Here we determined the importance of glutamate binding to folding and assembly of soluble ligand-binding domains (LBDs), as well as full-length receptors, by comparing the secretion of a soluble GluR6-S1S2 protein versus the plasma membrane localization of GluR6 kainate receptors following mutagenesis of the LBD. The mutations were designed to either eliminate glutamate binding, thereby trapping the bilobate LBD in an "open" conformation, or "lock" the LBD in a closed conformation with an engineered interdomain disulfide bridge. Analysis of plasma membrane localization, medium secretion of soluble LBD proteins, and measures of folding efficiency suggested that loss of glutamate binding affinity significantly impacted subunit protein folding and assembly. In contrast, receptors with conformationally restricted LBDs also exhibited decreased PM expression and altered oligomeric receptor assembly but did not exhibit any deficits in subunit folding. Secretion of the closed LBD protein was enhanced compared with wild-type GluR6-S1S2. Our results suggest that glutamate acts as a chaperone molecule for appropriate folding of nascent receptors and that relaxation of LBDs from fully closed states during oligomerization represents a critical transition that necessarily engages other determinants within receptor dimers. Glutamate receptor LBDs therefore must access multiple conformations for efficient biogenesis.
Collapse
Affiliation(s)
- Martin B Gill
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
22
|
Chaudhry C, Weston MC, Schuck P, Rosenmund C, Mayer ML. Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization. EMBO J 2009; 28:1518-30. [PMID: 19339989 DOI: 10.1038/emboj.2009.86] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/06/2009] [Indexed: 12/29/2022] Open
Abstract
AMPA and kainate receptors mediate fast synaptic transmission. AMPA receptor ligand-binding domains form dimers, which are key functional units controlling ion-channel activation and desensitization. Dimer stability is inversely related to the rate and extent of desensitization. Kainate and AMPA receptors share common structural elements, but functional measurements suggest that subunit assembly and gating differs between these subtypes. To investigate this, we constructed a library of GluR6 kainate receptor mutants and directly measured changes in kainate receptor dimer stability by analytical ultracentrifugation, which, combined with electrophysiological experiments, revealed an inverse correlation between dimer stability and the rate of desensitization. We solved crystal structures for a series of five GluR6 mutants, to understand the molecular mechanisms for dimer stabilization. We demonstrate that the desensitized state of kainate receptors acts as a deep energy well offsetting the stabilizing effects of dimer interface mutants, and that the deactivation of kainate receptor responses is dominated by entry into desensitized states. Our results show how neurotransmitter receptors with similar structures and gating mechanisms can exhibit strikingly different functional properties.
Collapse
Affiliation(s)
- Charu Chaudhry
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, DHHS, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
23
|
Martin S, Bouschet T, Jenkins EL, Nishimune A, Henley JM. Bidirectional regulation of kainate receptor surface expression in hippocampal neurons. J Biol Chem 2008; 283:36435-40. [PMID: 18955488 PMCID: PMC2662304 DOI: 10.1074/jbc.m806447200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/22/2008] [Indexed: 11/06/2022] Open
Abstract
Kainate receptors (KARs) are crucial for the regulation of both excitatory and inhibitory neurotransmission, but little is known regarding the mechanisms controlling KAR surface expression. We used super ecliptic pHluorin (SEP)-tagged KAR subunit GluR6a to investigate real-time changes in KAR surface expression in hippocampal neurons. Sindbis virus-expressed SEP-GluR6 subunits efficiently co-assembled with native KAR subunits to form heteromeric receptors. Diffuse surface-expressed dendritic SEP-GluR6 is rapidly internalized following either N-methyl-d-aspartate or kainate application. Sustained kainate or transient N-methyl-d-aspartate application resulted in a slow decrease of base-line surface KAR levels. Surprisingly, however, following the initial loss of surface receptors, a short kainate application caused a long lasting increase in surface-expressed KARs to levels significantly greater than those prior to the agonist challenge. These data suggest that after initial endocytosis, transient agonist activation evokes increased KAR exocytosis and reveal that KAR surface expression is bidirectionally regulated. This process may provide a mechanism for hippocampal neurons to differentially adapt their physiological responses to changes in synaptic activation and extrasynaptic glutamate concentration.
Collapse
Affiliation(s)
- Stéphane Martin
- Department of Anatomy, Medical Research Council Centre for Synaptic Plasticity, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Du M, Rambhadran A, Jayaraman V. Luminescence resonance energy transfer investigation of conformational changes in the ligand binding domain of a kainate receptor. J Biol Chem 2008; 283:27074-8. [PMID: 18658129 PMCID: PMC2556009 DOI: 10.1074/jbc.m805040200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/23/2008] [Indexed: 11/06/2022] Open
Abstract
The apo state structure of the isolated ligand binding domain of the GluR6 subunit and the conformational changes induced by agonist binding to this protein have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances show that agonist binding induces cleft closure, and the extent of cleft closure is proportional to the extent of activation over a wide range of activations, thus establishing that the cleft closure conformational change is one of the mechanisms by which the agonist mediates receptor activation. The LRET distances also provide insight into the apo state structure, for which there is currently no crystal structure available. The distance change between the glutamate-bound state and the apo state is similar to that observed between the glutamate-bound and antagonist UBP-310-bound form of the GluR5 ligand binding domain, indicating that the cleft for the apo state of the GluR6 ligand binding domain should be similar to the UBP-310-bound form of GluR5. This observation implies that te apo state of GluR6 undergoes a cleft closure of 29-30 degrees upon binding full agonists, one of the largest observed in the glutamate receptor family.
Collapse
Affiliation(s)
- Mei Du
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
25
|
Zhang Y, Nayeem N, Green T. Mutations to the kainate receptor subunit GluR6 binding pocket that selectively affect domoate binding. Mol Pharmacol 2008; 74:1163-9. [PMID: 18664604 DOI: 10.1124/mol.108.048819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Kainate receptor responses to domoate are characterized by large steady-state currents and slow deactivation kinetics. To improve our understanding of these responses, we mutated residues at the mouth of the agonist binding pocket of GluR6 using whole-cell electrophysiology to characterize the effects of the mutants. We identified two residues where mutations had significant ligand-specific effects. One, Met691, forms a hydrogen bond that seems to facilitate domoate binding by affecting the main-chain conformation. We found that mutation of Met691 to alanine significantly attenuated responses to domoate but had no effect on responses to glutamate, confirming the importance of this main-chain interaction in GluR6. The second residue, Val685, is located at the mouth of the binding pocket, adjacent to the domoate side-arm. Mutation of Val685 to glutamine increased the rate of decay from steady-state responses to domoate by more than 50-fold but had no effect on the rate or extent of desensitization or on the kinetics of responses to either glutamate or kainate. The V685Q mutant also significantly reduced the potencies of both glutamate (peak) and domoate (peak and steady-state). Empirical analysis using a basic kinetic model indicated that the V685Q phenotype could be fully explained by faster ligand dissociation. The V685Q mutant accelerated receptor deactivation without affecting either desensitization or gating, making it a potentially useful tool for further dissection of ligand binding and gating in kainate receptors.
Collapse
MESH Headings
- Alanine/metabolism
- Amino Acid Substitution/genetics
- Animals
- Binding Sites
- Cell Line
- Dose-Response Relationship, Drug
- Electrophysiology
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Glutamine/metabolism
- Humans
- Hydrogen Bonding
- Kainic Acid/analogs & derivatives
- Kainic Acid/chemistry
- Kainic Acid/metabolism
- Kainic Acid/pharmacology
- Kidney/cytology
- Kinetics
- Models, Molecular
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rats
- Receptors, AMPA/agonists
- Receptors, AMPA/chemistry
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/chemistry
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Transfection
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Yihong Zhang
- Department of Pharmacology, School of Biomedical Sciences, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | | | | |
Collapse
|
26
|
Compensatory evolution in diploid populations. Theor Popul Biol 2008; 74:199-207. [DOI: 10.1016/j.tpb.2008.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/07/2008] [Accepted: 07/14/2008] [Indexed: 11/19/2022]
|
27
|
Coussen F. Molecular determinants of kainate receptor trafficking. Neuroscience 2008; 158:25-35. [PMID: 18358623 DOI: 10.1016/j.neuroscience.2007.12.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/19/2022]
Abstract
Glutamate receptors of the kainate subtype are ionotropic receptors that play a key role in the modulation of neuronal network activity. The role of kainate receptors depends on their precise membrane and subcellular localization in presynaptic, extrasynaptic and postsynaptic domains. These receptors are composed of the combination of five subunits, three of them having several splice variants. The subunits and splice variants show great divergence in their C-terminal cytoplasmic tail domains, which have been implicated in intracellular trafficking of homomeric and heteromeric receptors. Differential trafficking of kainate receptors to specific neuronal compartments likely relies on interactions between the different kainate receptor subunits with distinct subsets of protein partners that interact with C-terminal domains. These C-terminal domains have also been implicated in the degradation of kainate receptors. Finally, the phosphorylation of the C-terminal domain regulates receptor trafficking and function. This review summarizes our knowledge on the regulation of membrane delivery and trafficking of kainate receptors implicating C-terminal domains of the different isoforms and focuses on the identification and characterization of the function of interacting partners.
Collapse
Affiliation(s)
- F Coussen
- CNRS UMR 5091, Laboratoire "Physiologie Cellulaire de la Synapse," Bordeaux Neuroscience Institute, University of Bordeaux 2, Bordeaux, France.
| |
Collapse
|
28
|
Greger IH, Ziff EB, Penn AC. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 2007; 30:407-16. [PMID: 17629578 DOI: 10.1016/j.tins.2007.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/10/2007] [Accepted: 06/22/2007] [Indexed: 11/24/2022]
Abstract
AMPA-type (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) glutamate receptors (AMPARs) mediate post-synaptic depolarization and fast excitatory transmission in the central nervous system. AMPARs are tetrameric ion channels that assemble in the endoplasmic reticulum (ER) in a poorly understood process. The subunit composition determines channel conductance properties and gating kinetics, and also regulates vesicular traffic to and from synaptic sites, and is thus critical for synaptic function and plasticity. The distribution of functionally different AMPARs varies within and between neuronal circuits, and even within individual neurons. In addition, synapses employ channels with specific subunit stoichiometries, depending on the type of input and the frequency of stimulation. Taken together, it appears that assembly is not simply a stochastic process. Recently, progress has been made in understanding the molecular mechanisms underlying subunit assembly and receptor biogenesis in the ER. These processes ultimately determine the size and shape of the postsynaptic response, and are the subject of this review.
Collapse
Affiliation(s)
- Ingo H Greger
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
29
|
Hald H, Naur P, Pickering DS, Sprogøe D, Madsen U, Timmermann DB, Ahring PK, Liljefors T, Schousboe A, Egebjerg J, Gajhede M, Kastrup JS. Partial Agonism and Antagonism of the Ionotropic Glutamate Receptor iGLuR5. J Biol Chem 2007; 282:25726-36. [PMID: 17581823 DOI: 10.1074/jbc.m700137200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
More than 50 structures have been reported on the ligand-binding core of the ionotropic glutamate receptor iGluR2 that belongs to the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid-type of receptors. In contrast, the ligand-binding core of the kainic acid-type receptor iGluR5 has only been crystallized with three different ligands. Hence, additional structures of iGluR5 are needed to broaden the understanding of the ligand-binding properties of iGluR5, and the conformational changes leading to channel opening and closing. Here, we present two structures of the ligand-binding core of iGluR5; one as a complex with the partial agonist (2S,3S,4S)-3-carboxymethyl-4-[(1Z,3E,5R)-5-carboxy-1-methyl-hexa-1,3-dienyl]-pyrrolidine-2-carboxylic acid (domoic acid) and one as a complex with the antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid ((S)-ATPO). In agreement with the partial agonist activity of domoic acid, the ligand-binding core of the iGluR5 complex is stabilized by domoic acid in a conformation that is 11 degrees more open than the conformation observed in the full agonist (S)-glutamic acid complex. This is primarily caused by the 5-carboxy-1-methyl-hexa-1,3-dienyl moiety of domoic acid and residues Val685-Thr690 of iGluR5. An even larger domain opening of 28 degrees is introduced upon binding of the antagonist (S)-ATPO. It appears that the span of domain opening is much larger in the ligand-binding core of iGluR5 (30 degrees) compared with what has been observed in iGluR2 (19 degrees ). Similarly, much larger variation in the distances between transmembrane linker residues in the two protomers comprising the dimer is observed in iGluR5 as compared with iGluR2.
Collapse
Affiliation(s)
- Helle Hald
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martin S, Nishimune A, Mellor JR, Henley JM. SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 2007; 447:321-5. [PMID: 17486098 PMCID: PMC3310901 DOI: 10.1038/nature05736] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 03/07/2007] [Indexed: 01/27/2023]
Abstract
The small ubiquitin-like modifier protein (SUMO) regulates transcriptional activity and the translocation of proteins across the nuclear membrane. The identification of SUMO substrates outside the nucleus is progressing but little is yet known about the wider cellular role of protein SUMOylation. Here we report that in rat hippocampal neurons multiple SUMOylation targets are present at synapses and we show that the kainate receptor subunit GluR6 is a SUMO substrate. SUMOylation of GluR6 regulates endocytosis of the kainate receptor and modifies synaptic transmission. GluR6 exhibits low levels of SUMOylation under resting conditions and is rapidly SUMOylated in response to a kainate but not an N-methyl-D-aspartate (NMDA) treatment. Reducing GluR6 SUMOylation using the SUMO-specific isopeptidase SENP-1 prevents kainate-evoked endocytosis of the kainate receptor. Furthermore, a mutated non-SUMOylatable form of GluR6 is not endocytosed in response to kainate in COS-7 cells. Consistent with this, electrophysiological recordings in hippocampal slices demonstrate that kainate-receptor-mediated excitatory postsynaptic currents are decreased by SUMOylation and enhanced by deSUMOylation. These data reveal a previously unsuspected role for SUMO in the regulation of synaptic function.
Collapse
Affiliation(s)
- Stéphane Martin
- MRC Centre for Synaptic Plasticity, Anatomy Department, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
31
|
Plested AJR, Mayer ML. Structure and Mechanism of Kainate Receptor Modulation by Anions. Neuron 2007; 53:829-41. [PMID: 17359918 DOI: 10.1016/j.neuron.2007.02.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 11/30/2022]
Abstract
L-glutamate, the major excitatory neurotransmitter in the human brain, activates a family of ligand-gated ion channels, the major subtypes of which are named AMPA, kainate, and NMDA receptors. In common with many signal transduction proteins, glutamate receptors are modulated by ions and small molecules, including Ca(2+), Mg(2+), Zn(2+), protons, polyamines, and steroids. Strikingly, the activation of kainate receptors by glutamate requires the presence of both Na(+) and Cl(-) in the extracellular solution, and in the absence of these ions, receptor activity is abolished. Here, we identify the site and mechanism of action of anions. Surprisingly, we find that Cl(-) ions are essential structural components of kainate receptors. Cl(-) ions bind in a cavity formed at the interface between subunits in a dimer pair. In the absence of Cl(-), dimer stability is reduced, the rate of desensitization increases, and the fraction of receptors competent for activation by glutamate drops precipitously.
Collapse
Affiliation(s)
- Andrew J R Plested
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Mitchell NA, Fleck MW. Targeting AMPA receptor gating processes with allosteric modulators and mutations. Biophys J 2007; 92:2392-402. [PMID: 17208968 PMCID: PMC1864835 DOI: 10.1529/biophysj.106.095091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric modulators and mutations that slow AMPAR desensitization have additional effects on deactivation and agonist potency. We investigated whether these are independent actions or the natural consequence of slowing desensitization. Effects of cyclothiazide (CTZ), trichlormethiazide (TCM), and CX614 were compared at wild-type GluR1 and "nondesensitizing" GluR1-L497Y mutant receptors by patch-clamp recording with ultrafast perfusion. CTZ, TCM, or L/Y mutation all essentially blocked GluR1 desensitization; however, the effects of L/Y mutation on deactivation and glutamate EC50 were three to five times greater than for modulators. CTZ and TCM further slowed desensitization of L/Y mutant receptors but paradoxically accelerated deactivation and increased agonist EC50. Results indicate that CTZ and TCM target deactivation and agonist potency independently of desensitization, most likely by modifying agonist dissociation (koff). Conversely, CX614 slowed desensitization and deactivation without affecting EC50 in both wild-type and L/Y receptors. The S750Q or combined L497Y-S750Q mutations abolished all CTZ and TCM actions without disrupting CX614 activity. Notably, the S/Q mutation also restored L/Y deactivation and EC50 to wild-type levels without restoring desensitization, further demonstrating that desensitization can be modulated independently of deactivation and EC50 by mutagenesis and possibly by allosteric modulators.
Collapse
Affiliation(s)
- Nicholas A Mitchell
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
33
|
Ma ZL, Werner M, Körber C, Joshi I, Hamad M, Wahle P, Hollmann M. Quantitative analysis of cotransfection efficiencies in studies of ionotropic glutamate receptor complexes. J Neurosci Res 2007; 85:99-115. [PMID: 17075894 DOI: 10.1002/jnr.21096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient transfection of cultured mammalian cells is widely employed in the study of ionotropic glutamate receptors. Heteromeric expression is usually achieved by simultaneous transfection of various combinations of glutamate receptor subunit-encoding cDNAs. This approach is based on an "all-or-none" assumption, rarely verified experimentally, that any given cell expresses all subunits present during transfection. A similar assumption implicitly is made when cotransfection of a cDNA encoding a fluorescent marker protein is applied to distinguish transfected from untransfected cells. A further frequent assumption alleges that the ratio between cDNAs used in cotransfection experiments directs the assembly of receptor complexes in heterologous expression systems. To check the validity of these assumptions for ionotropic glutamate receptors as model transmembrane receptors, we generated fluorescently labeled receptor subunits and introduced them into HEK-293 cells by the calcium phosphate method. Analyzing the expression of multiple fusion proteins by confocal microscopy, we evaluated the coexpression efficiencies for various glutamate receptor cDNA combinations, cDNA amounts, and cDNA ratios. Several factors were found to influence the individual, cumulative, and cotransfection efficiencies, including the cDNA ratio, the nature of the expressed protein, and the specific combination of cotransfected cDNAs. After simultaneous transfection with equal amounts of several cDNAs, we demonstrate the consistent generation of several distinct populations of cells that express different receptor subunit combinations. The evidence we present suggests that cotransfected cells should always be independently tested for the expression of all target subunits before picking cells for the analysis of specific heteromeric receptor assemblies.
Collapse
Affiliation(s)
- Zhan-Lu Ma
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Priel A, Selak S, Lerma J, Stern-Bach Y. Block of kainate receptor desensitization uncovers a key trafficking checkpoint. Neuron 2006; 52:1037-46. [PMID: 17178406 DOI: 10.1016/j.neuron.2006.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/12/2006] [Accepted: 12/04/2006] [Indexed: 11/18/2022]
Abstract
A prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate-a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6. This result establishes a common desensitization mechanism in both AMPA and kainate receptors. Surprisingly, however, surface expression of these nondesensitizing mutants was drastically reduced and did not depend on channel activity. Therefore, in addition to its role at the synapse, we now propose an intracellular role for desensitization in controlling maturation and trafficking of glutamate receptors.
Collapse
Affiliation(s)
- Avi Priel
- The Institute of Basic Dental Sciences, The Hebrew University-Hadassah Dental School, 91120 Jerusalem, Israel
| | | | | | | |
Collapse
|
35
|
Weston MC, Schuck P, Ghosal A, Rosenmund C, Mayer ML. Conformational restriction blocks glutamate receptor desensitization. Nat Struct Mol Biol 2006; 13:1120-7. [PMID: 17115050 DOI: 10.1038/nsmb1178] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/31/2006] [Indexed: 11/09/2022]
Abstract
Desensitization is a universal feature of ligand-gated ion channels. Using the crystal structure of the GluR2 L483Y mutant channel as a guide, we attempted to build non-desensitizing kainate-subtype glutamate receptors. Success was achieved for GluR5, GluR6 and GluR7 with intermolecular disulfide cross-links but not by engineering the dimer interface. Crystallographic analysis of the GluR6 Y490C L752C dimer revealed relaxation from the active conformation, which functional studies reveal is not sufficient to trigger desensitization. The equivalent non-desensitizing cross-linked GluR2 mutant retained weak sensitivity to a positive allosteric modulator, which had no effect on GluR2 L483Y. These results establish that the active conformation of AMPA and kainate receptors is conserved and further show that their desensitization requires dimer rearrangements, that subtle structural differences account for their diverse functional properties and that the ligand-binding core dimer is a powerful regulator of ion-channel activity.
Collapse
Affiliation(s)
- Matthew C Weston
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
36
|
Levin ED, Pang WG, Harrison J, Williams P, Petro A, Ramsdell JS. Persistent neurobehavioral effects of early postnatal domoic acid exposure in rats. Neurotoxicol Teratol 2006; 28:673-80. [PMID: 17046199 DOI: 10.1016/j.ntt.2006.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 08/16/2006] [Accepted: 08/16/2006] [Indexed: 11/26/2022]
Abstract
Domoic acid (DA) is a marine biotoxin, produced by the diatom Pseudo-nitzchia spp., which has been shown to cause cognitive impairment in adults who are exposed via contaminated seafood. The neurobehavioral consequences of developmental exposure are much less well understood. In a previous study, we showed that a single prenatal exposure to DA in rats at mid-gestation caused neurobehavioral changes that persist into adulthood including increased susceptibility to the benchmark amnestic drug scopolamine. In the current study, we examined the lasting neurobehavioral consequences of DA exposure on the first day of postnatal life, a time in rats marking the completion of the major phase of neuroproliferation and corresponding to week 24 of human gestation. The effects of DA exposure at doses from 0.025-0.1 mg/kg (s.c.) twice per day on each of postnatal days 1 and 2 were compared with vehicle-treated controls and rats treated by the same protocol with 1 mg/kg of kainic acid. Following kainic acid exposure, a sex-selective effect was seen with females but not males showing a significant slowing of response latency in the radial-arm maze. The high DA dose of 0.1 mg/kg was quite toxic causing lethality in all of the offspring exposed and this group was excluded from further analysis. When the offspring in the 0.05 mg/kg DA dose group were tested, significant hypoactivity in the Figure-8 maze was observed during adolescence. No significant DA effects were seen in response latency or choice accuracy on the radial-arm maze during either acquisition or with challenge of the amnestic drug scopolamine. Early postnatal DA exposure in the rat can be lethal and sublethal exposure can cause neurobehavioral effects manifest in modest hypoactivity during the adolescent period. However, the sublethal persistent neurobehavioral toxicity appears to be less pervasive than reported effects following DA administered mid-gestation.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Kainate receptors are composed of several subunits and splice variants, but the relevance of this diversity is still not well understood. The subunits and splice variants show great divergence in their C-terminal cytoplasmic tail region, which has been identified as a region of interaction with a number of protein partners. Differential trafficking of kainate receptors to neuronal compartments is likely to rely on interactions with distinct subsets of protein partners. This review summarizes our knowledge of the regulation of trafficking of kainate receptors and focuses on the identification and characterization of functions of interacting partners.
Collapse
Affiliation(s)
- F Coussen
- CNRS UMR 5091, Laboratoire Physiologie Cellulaire de la Synapse, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
38
|
Fleck MW. Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface. Neuroscientist 2006; 12:232-44. [PMID: 16684968 DOI: 10.1177/1073858405283828] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system. The cellular regulation of glutamate receptor (GluR) ion channel function and expression is important for maintaining or adjusting target cell excitability to meet ever-changing demands, for example, in relation to developmental or use-dependent synaptic plasticity. Dysregulation of GluR function or expression may be a contributing factor in certain forms of epilepsy, stroke/ischemia, head trauma, cognitive impairments, and neurodegenerative disease. Recent years have seen substantial progress in understanding how GluRs operate in terms of their structural and functional properties, their synaptic targeting and membrane anchoring by PDZ-domain proteins, and their activity-dependent cycling at the plasma membrane. Yet precious little is known about the earliest events in GluR biogenesis or the mechanisms in place to ensure the GluRs that reach the cell surface are processed, folded, and oligomerized in an appropriate manner. Indeed, only a minor fraction of the GluR content of cells is expressed at any given time on the cell surface, whereas most of the remaining receptors exist in the endoplasmic reticulum (ER). The functional competence and significance of the ER fraction of receptors are presently unknown, but they are generally thought to represent immature, unassembled, or improperly assembled subunits. Some are ultimately destined for insertion in the plasma membrane. Others may be targeted for proteosomal degradation. Still others might provide a latent pool of fully functional receptors that can be recruited to enhance cell excitability in response to specific signals or under pathological conditions. This review will explore the structural and functional elements that regulate GluR assembly and export from the ER.
Collapse
Affiliation(s)
- Mark W Fleck
- Center for Neuropharmacology & Neuroscience, Albany Medical College, NY 12208, USA.
| |
Collapse
|
39
|
Abstract
Kainate receptors form a family of ionotropic glutamate receptors that appear to play a special role in the regulation of the activity of synaptic networks. This review first describes briefly the molecular and pharmacological properties of native and recombinant kainate receptors. It then attempts to outline the general principles that appear to govern the function of kainate receptors in the activity of synaptic networks under physiological conditions. It subsequently describes the way that kainate receptors are involved in synaptic integration, synaptic plasticity, the regulation of neurotransmitter release and the control of neuronal excitability, and the manner in which they might play an important role in synaptogenesis and synaptic maturation. These functions require the proper subcellular localization of kainate receptors in specific functional domains of the neuron, necessitating complex cellular and molecular trafficking events. We show that our comprehension of these mechanisms is just starting to emerge. Finally, this review presents evidence that implicates kainate receptors in pathophysiological conditions such as epilepsy, excitotoxicity and pain, and that shows that these receptors represent promising therapeutic targets.
Collapse
Affiliation(s)
- Paulo Pinheiro
- CNRS UMR 5091, Laboratoire "Physiologie Cellulaire de la Synapse", Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
40
|
Greger IH, Akamine P, Khatri L, Ziff EB. Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis. Neuron 2006; 51:85-97. [PMID: 16815334 DOI: 10.1016/j.neuron.2006.05.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/21/2005] [Accepted: 05/25/2006] [Indexed: 11/30/2022]
Abstract
The subunit composition determines AMPA receptor (AMPA-R) function and trafficking. Mechanisms underlying channel assembly are thus central to the efficacy and plasticity of glutamatergic synapses. We previously showed that RNA editing at the Q/R site of the GluR2 subunit contributes to the assembly of AMPA-R heteromers by attenuating formation of GluR2 homotetramers. Here we report that this function of the Q/R site depends on subunit contacts between adjacent ligand binding domains (LBDs). Changes of LBD interface contacts alter GluR2 assembly properties, forward traffic, and expression at synapses. Interestingly, developmentally regulated RNA editing within the LBD (at the R/G site) produces analogous effects. Our data reveal that editing to glycine reduces the self-assembly competence of this critical subunit and slows GluR2 maturation in the endoplasmic reticulum (ER). Therefore, RNA editing sites, located at strategic subunit interfaces, shape AMPA-R assembly and trafficking in a developmentally regulated manner.
Collapse
Affiliation(s)
- Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| | | | | | | |
Collapse
|
41
|
Abstract
Glutamate receptor ion channels mediate excitatory responses at the majority of CNS synapses. They are the only ligand-gated ion channels for which multiple high-resolution crystal structures have been solved. Highlights of information gained from mechanistic studies based on the crystal structures of their ligand-binding domains include explanations for strikingly diverse phenomena. These include the basis for subtype-specific agonist selectivity; mechanisms for desensitization and allosteric modulation; and mechanisms for partial agonist activity. In addition, multiple lines of evidence, including low-resolution electron microscopic studies, suggest that native AMPA receptors combine with an auxiliary subunit which regulates activity and trafficking. Functional studies suggest that glutamate receptor gating is distinct from that of structurally related voltage-gated ion channels.
Collapse
Affiliation(s)
- Mark L Mayer
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, Building 35 Room 3B 1002 MSC 3712, 35 Lincoln Drive, Bethesda, MD 20892-3712, USA.
| |
Collapse
|
42
|
Huang Z, Li G, Pei W, Sosa LA, Niu L. Enhancing protein expression in single HEK 293 cells. J Neurosci Methods 2005; 142:159-66. [PMID: 15652630 DOI: 10.1016/j.jneumeth.2004.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 09/07/2004] [Accepted: 09/17/2004] [Indexed: 11/29/2022]
Abstract
Recombinant proteins are routinely expressed in heterologous expression systems such as human embryonic kidney 293 (HEK 293) cells. The efficiency of the expression is critical when the expressed protein must be characterized at the single-cell level. Here we describe a simple method by which the protein expression efficiency in single HEK 293 cells is enhanced by coexpressing simian virus 40 large T antigen (TAg), a powerful oncoprotein. Using the GluR2 ionotropic glutamate receptor as an example, we found that the receptor expression in single HEK 293S cells increased approximately seven-fold. The ratio of the plasmid amount of TAg to that of the receptor was optimized at 1:10, while the receptor function was unaffected in the presence of TAg. We further used fluorescence imaging from a population of cells as an independent detection method and found a similar increase in expression of green fluorescent protein (GFP) by TAg coexpression. This method is thus applicable for enhancing the expression of both membrane and soluble proteins at the single-cell level. More importantly, the function of a protein can be studied directly in intact cells, a feature particularly useful for studying membrane proteins.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Chemistry, Center for Neuroscience Research, University at Albany, SUNY, Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
43
|
Mayer ML. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 2005; 45:539-52. [PMID: 15721240 DOI: 10.1016/j.neuron.2005.01.031] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 12/29/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Little is known about the molecular mechanisms underlying differences in the ligand binding properties of AMPA, kainate, and NMDA subtype glutamate receptors. Crystal structures of the GluR5 and GluR6 kainate receptor ligand binding cores in complexes with glutamate, 2S,4R-4-methylglutamate, kainate, and quisqualate have now been solved. The structures reveal that the ligand binding cavities are 40% (GluR5) and 16% (GluR6) larger than for GluR2. The binding of AMPA- and GluR5-selective agonists to GluR6 is prevented by steric occlusion, which also interferes with the high-affinity binding of 2S,4R-4-methylglutamate to AMPA receptors. Strikingly, the extent of domain closure produced by the GluR6 partial agonist kainate is only 3 degrees less than for glutamate and 11 degrees greater than for the GluR2 kainate complex. This, together with extensive interdomain contacts between domains 1 and 2 of GluR5 and GluR6, absent from AMPA receptors, likely contributes to the high stability of GluR5 and GluR6 kainate complexes.
Collapse
Affiliation(s)
- Mark L Mayer
- Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| |
Collapse
|
44
|
Nanao MH, Green T, Stern-Bach Y, Heinemann SF, Choe S. Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc Natl Acad Sci U S A 2005; 102:1708-13. [PMID: 15677325 PMCID: PMC547884 DOI: 10.1073/pnas.0409573102] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the crystal structure of the glycosylated ligand-binding (S1S2) domain of the kainate receptor subunit GluR6, in complex with the agonist domoate. The structure shows the expected overall homology with AMPA and NMDA receptor subunit structures but reveals an unexpected binding mode for the side chain of domoate, in which contact is made to the larger lobe only (lobe I). In common with the AMPA receptor subunit GluR2, the GluR6 S1S2 domain associates as a dimer, with many of the interdimer contacts being conserved. Subtle differences in these contacts provide a structural explanation for why GluR2 L483Y and GluR3 L507Y are nondesensitizing, but GluR6, which has a tyrosine at that site, is not. The structure incorporates native glycosylation, which has not previously been described for ionotropic glutamate receptors. The position of the sugars near the subunit interface rules out their direct involvement in subunit association but leaves open the possibility of indirect modulation. Finally, we observed several tetrameric assemblies that satisfy topological constraints with respect to connection to the receptor pore, and which are therefore candidates for the native quaternary structure.
Collapse
Affiliation(s)
- Max H Nanao
- Structural Biology Laboratory and Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
45
|
Valluru L, Xu J, Zhu Y, Yan S, Contractor A, Swanson GT. Ligand Binding Is a Critical Requirement for Plasma Membrane Expression of Heteromeric Kainate Receptors. J Biol Chem 2005; 280:6085-93. [PMID: 15583001 DOI: 10.1074/jbc.m411549200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular trafficking of ionotropic glutamate receptors is controlled by multiple discrete determinants in receptor subunits. Most such determinants have been localized to the cytoplasmic carboxyl-terminal domain, but other domains in the subunit proteins can play roles in modulating receptor surface expression. Here we demonstrate that formation of an intact glutamate binding site also acts as an additional quality-control check for surface expression of homomeric and heteromeric kainate receptors. A key ligand-binding residue in the KA2 subunit, threonine 675, was mutated to either alanine or glutamate, which eliminated affinity for the receptor ligands kainate and glutamate. We found that plasma membrane expression of heteromeric GluR6/KA2(T675A) or GluR6/KA2(T675E) kainate receptors was markedly reduced compared with wild-type GluR6/KA2 receptors in transfected HEK 293 and COS-7 cells and in cultured neurons. Surface expression of homomeric KA2 receptors lacking a retention/retrieval determinant (KA2-R/A) was also reduced upon mutation of Thr-675 and elimination of the ligand binding site. KA2 Thr-675 mutant subunits were able to co-assemble with GluR5 and GluR6 subunits and were degraded at the same rate as wild-type KA2 subunit protein. These results suggest that glutamate binding and associated conformational changes are prerequisites for forward trafficking of intracellular kainate receptors following multimeric assembly.
Collapse
Affiliation(s)
- Lokanatha Valluru
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031, USA
| | | | | | | | | | | |
Collapse
|
46
|
Jaskolski F, Coussen F, Mulle C. Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 2005; 26:20-6. [PMID: 15629201 DOI: 10.1016/j.tips.2004.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glutamate receptors of the kainate type have been identified recently as key players in the modulation of neuronal-network activity. The role of kainate receptors depends on their precise subcellular localization in presynaptic, postsynaptic and extrasynaptic domains. Subcellular localization of kainate receptors has been inferred mainly from electrophysiological studies with the help of selective pharmacological tools and kainate receptor mutant mice. These studies, combined with recent ultrastructural data, highlight the diversity of subcellular localizations of kainate receptors. It is important to understand the molecular mechanisms that underlie the polarized trafficking of kainate receptors in distinct neuronal domains. In this article, we review recent data that shed light on the trafficking and membrane delivery of kainate receptor isoforms, and on the identification of proteins that interact with kainate receptors and might regulate this trafficking.
Collapse
Affiliation(s)
- Frédéric Jaskolski
- Laboratoire 'Physiologie Cellulaire de la Synapse', CNRS UMR 5091, Institut François Magendie, Université Bordeaux 2, rue C. Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | |
Collapse
|
47
|
Martin S, Henley JM. Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways. EMBO J 2004; 23:4749-59. [PMID: 15549132 PMCID: PMC535095 DOI: 10.1038/sj.emboj.7600483] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/22/2004] [Indexed: 11/08/2022] Open
Abstract
Kainate receptors (KARs) play important roles in the modulation of neurotransmission and plasticity, but the mechanisms that regulate their surface expression and endocytic sorting remain largely unknown. Here, we show that in cultured hippocampal neurons the surface expression of GluR6-containing KARs is dynamically regulated. Furthermore, internalized KARs are sorted into recycling or degradative pathways depending on the endocytotic stimulus. Kainate activation causes a Ca2+- and PKA-independent but PKC-dependent internalization of KARs that are targeted to lysosomes for degradation. In contrast, NMDAR activation evokes a Ca2+-, PKA- and PKC-dependent endocytosis of KARs to early endosomes with subsequent reinsertion back into the plasma membrane. These results demonstrate that GluR6-containing KARs are subject to activity-dependent endocytic sorting, a process that provides a mechanism for both rapid and chronic changes in the number of functional receptors.
Collapse
Affiliation(s)
- Stéphane Martin
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University Walk, University of Bristol, Bristol, UK
| | - Jeremy M Henley
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
48
|
Horning MS, Mayer ML. Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 2004; 41:379-88. [PMID: 14766177 DOI: 10.1016/s0896-6273(04)00018-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 12/04/2003] [Accepted: 01/12/2004] [Indexed: 11/19/2022]
Abstract
Ionotropic glutamate receptors are tetramers, the isolated ligand binding cores of which assemble as dimers. Previous work on nondesensitizing AMPA receptor mutants, which combined crystallography, ultracentrifugation, and patch-clamp recording, showed that dimer formation by the ligand binding cores is required for activation of ion channel gating by agonists. To define the mechanisms responsible for stabilization of dimer assembly in native AMPA receptors, contacts between the adjacent ligand binding cores were individually targeted by amino acid substitutions, using the GluR2 crystal structure as a guide to design mutants. We show that disruption of a salt bridge, hydrogen bond network, and intermolecular van der Waals contacts between helices D and J in adjacent ligand binding cores greatly accelerates desensitization. Conservation of these contacts in AMPA and kainate receptors indicates that they are important determinants of dimer stability and that the dimer interface is a key structural element in the gating mechanism of these glutamate receptor families.
Collapse
Affiliation(s)
- Michelle S Horning
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
49
|
Pentikäinen OT, Settimo L, Keinänen K, Johnson MS. Selective agonist binding of (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) and 2S-(2alpha,3beta,4beta)-2-carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid (kainate) receptors: a molecular modeling study. Biochem Pharmacol 2003; 66:2413-25. [PMID: 14637199 DOI: 10.1016/j.bcp.2003.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular models were constructed, using the published X-ray structure of rat glutamate receptor 2 (GluR2), for the ligand-binding domains of the human (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA)- and kainate-selective ionotropic glutamate receptors (iGluRs): GluR1-7 and KA1-2. Based on the analysis of the known X-ray structures of GluR2 in complex with glutamate, kainate, and AMPA, we have constructed binding motifs (relative positioning of a ligand in the binding site and the physico-chemical interactions that take place) for selected agonist ligands and found explanations for ligand-binding selectivity to homomeric receptors among the different iGluRs. Even a single sequence difference can explain significant differences in ligand-binding affinities between two receptors. In total, there are seven residues surrounding the binding cavity that affect agonist selectivity: in GluR2, these residues are Pro478, Thr480, Leu650, Ser654, Thr686, Tyr702, and Met708. Each of these seven positions has been shown, or is predicted, to influence the presence of one or more water molecules that, when present, may form bridging hydrogen bonds between particular ligands and receptors. By using this knowledge it should be possible to design new selective agonist ligands with high affinity for any AMPA/kainate receptor.
Collapse
Affiliation(s)
- Olli T Pentikäinen
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6A, FIN-20520 Turku, Finland
| | | | | | | |
Collapse
|
50
|
Gallyas F, Ball SM, Molnar E. Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. J Neurochem 2003; 86:1414-27. [PMID: 12950450 DOI: 10.1046/j.1471-4159.2003.01945.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kainate receptors (KARs) modulate synaptic transmission at both pre-synaptic and post-synaptic sites. The overlap in the distribution of KA-2 and GluR6/7 subunits in several brain regions suggests the co-assembly of these subunits in native KARs. The molecular mechanisms that control the assembly and surface expression of KARs are unknown. Unlike GluR5-7, the KA-2 subunit is unable to form functional homomeric KAR channels. We expressed the KA-2 subunit alone or in combination with other KAR subunits in HEK-293 cells. The cell surface expression of the KAR subunit homo- and heteromers were analysed using biotinylation and agonist-stimulated cobalt uptake. While GluR6 or GluR7 homomers were expressed on the cell surface, KA-2 alone was retained within the endoplasmic reticulum. We found that the cell surface expression of KA-2 was dramatically increased by co-expression with either of the low-affinity KAR subunits GluR5-7. However, co-expression with other related ionotropic glutamate receptor subunits (GluR1 and NR1) does not facilitate the cell surface expression of KA-2. The analysis of subcellular fractions of neocortex revealed that synaptic KARs have a relatively high KA-2 content compared to microsomal ones. Thus, KA-2 is likely to contain an endoplasmic reticulum retention signal that is shielded on assembly with other KAR subunits.
Collapse
Affiliation(s)
- Ferenc Gallyas
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|