1
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Ren L, Thai PN, Gopireddy RR, Timofeyev V, Ledford HA, Woltz RL, Park S, Puglisi JL, Moreno CM, Santana LF, Conti AC, Kotlikoff MI, Xiang YK, Yarov-Yarovoy V, Zaccolo M, Zhang XD, Yamoah EN, Navedo MF, Chiamvimonvat N. Adenylyl cyclase isoform 1 contributes to sinoatrial node automaticity via functional microdomains. JCI Insight 2022; 7:e162602. [PMID: 36509290 PMCID: PMC9746826 DOI: 10.1172/jci.insight.162602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Sinoatrial node (SAN) cells are the heart's primary pacemaker. Their activity is tightly regulated by β-adrenergic receptor (β-AR) signaling. Adenylyl cyclase (AC) is a key enzyme in the β-AR pathway that catalyzes the production of cAMP. There are current gaps in our knowledge regarding the dominant AC isoforms and the specific roles of Ca2+-activated ACs in the SAN. The current study tests the hypothesis that distinct AC isoforms are preferentially expressed in the SAN and compartmentalize within microdomains to orchestrate heart rate regulation during β-AR signaling. In contrast to atrial and ventricular myocytes, SAN cells express a diverse repertoire of ACs, with ACI as the predominant Ca2+-activated isoform. Although ACI-KO (ACI-/-) mice exhibit normal cardiac systolic or diastolic function, they experience SAN dysfunction. Similarly, SAN-specific CRISPR/Cas9-mediated gene silencing of ACI results in sinus node dysfunction. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channels form functional microdomains almost exclusively with ACI, while ryanodine receptor and L-type Ca2+ channels likely compartmentalize with ACI and other AC isoforms. In contrast, there were no significant differences in T-type Ca2+ and Na+ currents at baseline or after β-AR stimulation between WT and ACI-/- SAN cells. Due to its central characteristic feature as a Ca2+-activated isoform, ACI plays a unique role in sustaining the rise of local cAMP and heart rates during β-AR stimulation. The findings provide insights into the critical roles of the Ca2+-activated isoform of AC in sustaining SAN automaticity that is distinct from contractile cardiomyocytes.
Collapse
Affiliation(s)
- Lu Ren
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Phung N. Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | | | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Hannah A. Ledford
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Ryan L. Woltz
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
- Prestige Biopharma Korea, Myongjigukje 7-ro, Gangseo-gu, Busan, South Korea
| | - Jose L. Puglisi
- College of Medicine. California North State University, Sacramento, California, USA
| | - Claudia M. Moreno
- Department of Physiology and Membrane Biology, UCD, Davis, California, USA
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Alana C. Conti
- Research & Development Service, John D. Dingell VA Medical Center, and
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Yang Kevin Xiang
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
- Department of Pharmacology, UCD, Davis, California, USA
| | | | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| | | | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
- Department of Pharmacology, UCD, Davis, California, USA
| |
Collapse
|
3
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
4
|
Recurrent rewiring of the adult hippocampal mossy fiber system by a single transcriptional regulator, Id2. Proc Natl Acad Sci U S A 2021; 118:2108239118. [PMID: 34599103 PMCID: PMC8501755 DOI: 10.1073/pnas.2108239118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Neurons have an exceptional capacity to grow axons and form synaptic circuits during development but not later life. In adults, the lack of circuit formation may support retention of skilled actions and memories but also limits regeneration and repair after injuries and in disorders. Research on developing and damaged neurons has revealed many molecules that help circuit formation and regeneration, and yet factors that could induce axon growth and synapse formation in adult brain neurons remain elusive. Here, we searched for such key molecules and find one that alone can induce complete circuit formation. After engineering a new circuit in adult mice, we also looked into its function and relevance for memories. Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.
Collapse
|
5
|
cAMP-Dependent Co-stabilization of Axonal Arbors from Adjacent Developing Neurons. Cell Rep 2021; 33:108220. [PMID: 33027659 DOI: 10.1016/j.celrep.2020.108220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Axonal arbors in many neuronal networks are exuberant early during development and become refined by activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions between co-active axons to co-stabilize their connections, but the demonstration of such interactions is lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a cAMP-dependent interaction that promotes axon stabilization.
Collapse
|
6
|
Fassier C, Nicol X. Retinal Axon Interplay for Binocular Mapping. Front Neural Circuits 2021; 15:679440. [PMID: 34149367 PMCID: PMC8213063 DOI: 10.3389/fncir.2021.679440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
In most mammals, retinal ganglion cell axons from each retina project to both sides of the brain. The segregation of ipsi and contralateral projections into eye-specific territories in their main brain targets-the dorsolateral geniculate nucleus and the superior colliculus-is critical for the processing of visual information. The investigation of the developmental mechanisms contributing to the wiring of this binocular map in mammals identified competitive mechanisms between axons from each retina while interactions between axons from the same eye were challenging to explore. Studies in vertebrates lacking ipsilateral retinal projections demonstrated that competitive mechanisms also exist between axons from the same eye. The development of a genetic approach enabling the differential manipulation and labeling of neighboring retinal ganglion cells in a single mouse retina revealed that binocular map development does not only rely on axon competition but also involves a cooperative interplay between axons to stabilize their terminal branches. These recent insights into the developmental mechanisms shaping retinal axon connectivity in the brain will be discussed here.
Collapse
Affiliation(s)
- Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
7
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
8
|
Narushima M. Comparison of the role of metabotropic glutamate receptor subtype 1 in developmental refinement of neuronal connectivity between the cerebellum and the sensory thalamus. Neurosci Res 2017; 129:24-31. [PMID: 28711710 DOI: 10.1016/j.neures.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 11/30/2022]
Abstract
Developmental refinement of neuronal connectivity is crucial for proper brain function. In the early phase of development, input fibers arrive at their target areas guided by specific molecular cues and form abundant immature synapses. Then, functionally important synapses are preserved and strengthened by neural activity while unnecessary synapses are eliminated. Afferent synapses in the sensory thalamus, such as from retina to lateral geniculate nucleus, and climbing fiber (CF)-Purkinje cell (PC) synapses in the cerebellum are valuable models for studying this developmental refinement of synaptic connectivity because only a limited number of input fibers innervate a given postsynaptic thalamocortical (TC) neuron or PC. The metabotropic glutamate receptor subtype 1 (mGluR1) is required for the refinement of both afferent-TC neuron and CF-PC synapses. However, mGluR1 functions differently at these synapses. While mGluR1 is critical for elimination of surplus CF-PC synapses in the cerebellum, retinogeniculate synapses require mGluR1 for maintenance of mature connectivity.
Collapse
Affiliation(s)
- Madoka Narushima
- Department of Physiology (I), School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
9
|
Halls ML, Cooper DMF. Adenylyl cyclase signalling complexes - Pharmacological challenges and opportunities. Pharmacol Ther 2017; 172:171-180. [PMID: 28132906 DOI: 10.1016/j.pharmthera.2017.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signalling pathways involving the vital second messanger, cAMP, impact on most significant physiological processes. Unsurprisingly therefore, the activation and regulation of cAMP signalling is tightly controlled within the cell by processes including phosphorylation, the scaffolding of protein signalling complexes and sub-cellular compartmentalisation. This inherent complexity, along with the highly conserved structure of the catalytic sites among the nine membrane-bound adenylyl cyclases, presents significant challenges for efficient inhibition of cAMP signalling. Here, we will describe the biochemistry and cell biology of the family of membrane-bound adenylyl cyclases, their organisation within the cell, and the nature of the cAMP signals that they produce, as a prelude to considering how cAMP signalling might be perturbed. We describe the limitations associated with direct inhibition of adenylyl cyclase activity, and evaluate alternative strategies for more specific targeting of adenylyl cyclase signalling. The inherent complexity in the activation and organisation of adenylyl cyclase activity may actually provide unique opportunities for selectively targeting discrete adenylyl cyclase functions in disease.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
10
|
Averaimo S, Assali A, Ros O, Couvet S, Zagar Y, Genescu I, Rebsam A, Nicol X. A plasma membrane microdomain compartmentalizes ephrin-generated cAMP signals to prune developing retinal axon arbors. Nat Commun 2016; 7:12896. [PMID: 27694812 PMCID: PMC5059439 DOI: 10.1038/ncomms12896] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/11/2016] [Indexed: 01/11/2023] Open
Abstract
The development of neuronal circuits is controlled by guidance molecules that are hypothesized to interact with the cholesterol-enriched domains of the plasma membrane termed lipid rafts. Whether such domains enable local intracellular signalling at the submicrometre scale in developing neurons and are required for shaping the nervous system connectivity in vivo remains controversial. Here, we report a role for lipid rafts in generating domains of local cAMP signalling in axonal growth cones downstream of ephrin-A repulsive guidance cues. Ephrin-A-dependent retraction of retinal ganglion cell axons involves cAMP signalling restricted to the vicinity of lipid rafts and is independent of cAMP modulation outside of this microdomain. cAMP modulation near lipid rafts controls the pruning of ectopic axonal branches of retinal ganglion cells in vivo, a process requiring intact ephrin-A signalling. Together, our findings indicate that lipid rafts structure the subcellular organization of intracellular cAMP signalling shaping axonal arbors during the nervous system development.
Collapse
Affiliation(s)
- Stefania Averaimo
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ahlem Assali
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Oriol Ros
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Sandrine Couvet
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Yvrick Zagar
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ioana Genescu
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Alexandra Rebsam
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Xavier Nicol
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| |
Collapse
|
11
|
Suzuki A, Lee LJ, Hayashi Y, Muglia L, Itohara S, Erzurumlu RS, Iwasato T. Thalamic adenylyl cyclase 1 is required for barrel formation in the somatosensory cortex. Neuroscience 2015; 290:518-29. [PMID: 25644422 DOI: 10.1016/j.neuroscience.2015.01.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/21/2014] [Accepted: 01/06/2015] [Indexed: 12/22/2022]
Abstract
Cyclic AMP signaling is critical for activity-dependent refinement of neuronal circuits. Global disruption of adenylyl cyclase 1 (AC1), the major calcium/calmodulin-stimulated adenylyl cyclase in the brain, impairs formation of whisker-related discrete neural modules (the barrels) in cortical layer 4 in mice. Since AC1 is expressed both in the thalamus and the neocortex, the question of whether pre- or postsynaptic (or both) AC1 plays a role in barrel formation has emerged. Previously, we generated cortex-specific AC1 knockout (Cx-AC1KO) mice and found that these animals develop histologically normal barrels, suggesting a potentially more prominent role for thalamic AC1 in barrel formation. To determine this, we generated three new lines of mice: one in which AC1 is disrupted in nearly half of the thalamic ventrobasal nucleus cells in addition to the cortical excitatory neurons (Cx/pTh-AC1KO mouse), and another in which AC1 is disrupted in the thalamus but not in the cortex or brainstem nuclei of the somatosensory system (Th-AC1KO mouse). Cx/pTh-AC1KO mice show severe deficits in barrel formation. Th-AC1KO mice show even more severe disruption in barrel patterning. In these two lines, single thalamocortical (TC) axon labeling revealed a larger lateral extent of TC axons in layer 4 compared to controls. In the third line, all calcium-stimulated adenylyl cyclases (both AC1 and AC8) are deleted in cortical excitatory neurons. These mice have normal barrels. Taken together, these results indicate that thalamic AC1 plays a major role in patterning and refinement of the mouse TC circuitry.
Collapse
Affiliation(s)
- A Suzuki
- Division of Neurogenetics, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - L-J Lee
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Y Hayashi
- Laboratory for Behavioral Genetics, RIKEN Brain Science (BSI) Institute, Wako, Saitama 351-0198, Japan
| | - L Muglia
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - S Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science (BSI) Institute, Wako, Saitama 351-0198, Japan
| | - R S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD 21201-1075, USA
| | - T Iwasato
- Division of Neurogenetics, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
12
|
Arakawa H, Akkentli F, Erzurumlu RS. Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice. eNeuro 2014; 1:http://dx.doi.org/10.1523/ENEURO.0007-14.2014. [PMID: 26023682 PMCID: PMC4443438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/ calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the "barrelless"/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning of the cortical somatosensory body map play a role in sensorimotor behaviors? In this study, we tested mice with global, cortical, or thalamic loss of AC1 function in a battery of sensorimotor and social behavior tests and compared them to mice with all of the whiskers clipped. Contrary to intuitive expectations that any region-specific or global disruption of the AC1 function would lead to similar behavioral phenotypes, we found significant differences in the degree of impairment between these strains.
Collapse
|
13
|
Averaimo S, Nicol X. Intermingled cAMP, cGMP and calcium spatiotemporal dynamics in developing neuronal circuits. Front Cell Neurosci 2014; 8:376. [PMID: 25431549 PMCID: PMC4230202 DOI: 10.3389/fncel.2014.00376] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/21/2014] [Indexed: 01/27/2023] Open
Abstract
cAMP critically modulates the development of neuronal connectivity. It is involved in a wide range of cellular processes that require independent regulation. However, our understanding of how this single second messenger achieves specific modulation of the signaling pathways involved remains incomplete. The subcellular compartmentalization and temporal regulation of cAMP signals have recently been identified as important coding strategies leading to specificity. Dynamic interactions of this cyclic nucleotide with other second messenger including calcium and cGMP are critically involved in the regulation of spatiotemporal control of cAMP. Recent technical improvements of fluorescent sensors facilitate cAMP monitoring, whereas optogenetic tools permit spatial and temporal control of cAMP manipulations, all of which enabled the direct investigation of spatiotemporal characteristics of cAMP modulation in developing neurons. Focusing on neuronal polarization, neurotransmitter specification, axon guidance, and refinement of neuronal connectivity, we summarize herein the recent advances in understanding the features of cAMP signals and their dynamic interactions with calcium and cGMP involved in shaping the nervous system.
Collapse
Affiliation(s)
- Stefania Averaimo
- UMR_7210, Centre National de la Recherche Scientifique Paris, France ; UMR_S 968, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06 Paris, France ; U968, Institut National de la Santé et de la Recherche Médicale Paris, France
| | - Xavier Nicol
- UMR_7210, Centre National de la Recherche Scientifique Paris, France ; UMR_S 968, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06 Paris, France ; U968, Institut National de la Santé et de la Recherche Médicale Paris, France
| |
Collapse
|
14
|
Assali A, Gaspar P, Rebsam A. Activity dependent mechanisms of visual map formation--from retinal waves to molecular regulators. Semin Cell Dev Biol 2014; 35:136-46. [PMID: 25152335 DOI: 10.1016/j.semcdb.2014.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 01/31/2023]
Abstract
The refinement of neural connections requires activity-dependent mechanisms in addition to the genetic program initially establishing wiring diagrams. The well-understood organization of the visual system makes it an accessible model for analyzing the contribution of activity in the formation of connectivity. Prior to visual experience, patterned spontaneous activity in the form of retinal waves has an important role for the establishment of eye-specific and retinotopic maps by acting on the refinement of axon arborization. In the present review, which focuses on experimental data obtained in mice and ferrets, we highlight the features of retinal activity that are important for visual map formation and question whether synaptic release and Hebbian based competition rules apply to this system. Recent evidence using genetic tools that allowed the manipulation of different features of neural activity have clarified the controversy on whether activity is instructive or permissive for visual map formation. Furthermore, current evidence strongly suggests that different mechanisms are at play for different types of axons (ipsilateral vs. contralateral), maps (eye-specific vs. retinotopic) or targets. Many molecules that either modulate activity or are modulated by activity are important in the formation of the visual map, such as adenylate cyclase 1, serotonin, or molecules from the immune system. Finally, new players in the game include retrograde messengers signaling from the target cell to the retinal axons as well as microglia that could help to eliminate inappropriate synapses.
Collapse
Affiliation(s)
- Ahlem Assali
- Inserm UMR-S839, Paris, 75005, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, Paris, France; Institut du Fer à Moulin, Paris, 75005, France.
| | - Patricia Gaspar
- Inserm UMR-S839, Paris, 75005, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, Paris, France; Institut du Fer à Moulin, Paris, 75005, France.
| | - Alexandra Rebsam
- Inserm UMR-S839, Paris, 75005, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, Paris, France; Institut du Fer à Moulin, Paris, 75005, France.
| |
Collapse
|
15
|
Abstract
In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages.
Collapse
Affiliation(s)
- Chris Law
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Michel Paquet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
- Departments of Anatomy and Cell Biology, and Biology, Division of Experimental Medicine, McGill University Montréal, Montréal, Canada, and Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
16
|
Nicol X, Gaspar P. Routes to cAMP: shaping neuronal connectivity with distinct adenylate cyclases. Eur J Neurosci 2014; 39:1742-51. [PMID: 24628976 DOI: 10.1111/ejn.12543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 01/22/2023]
Abstract
cAMP signaling affects a large number of the developmental processes needed for the construction of the CNS, including cell differentiation, axon outgrowth, response to guidance molecules or modulation of synaptic connections. This points to a key role of adenylate cyclases (ACs), the synthetic enzymes of cAMP, for neural development. ACs exist as 10 different isoforms, which are activated by distinct signaling pathways. The implication of specific AC isoforms in neural wiring was only recently demonstrated in mouse mutants, knockout (KO) for different AC isoforms, AC1, AC3, AC5, AC8 and soluble (s)AC/AC10. These studies stressed the importance of three of these isoforms, as sensors of neural activity that could modify the survival of neurons (sAC), axon outgrowth (sAC), or the response of axons to guidance molecules such as ephrins (AC1) or semaphorins (AC3). We summarize here the current knowledge on the role of these ACs for the development of sensory maps, in the somatosensory, visual and olfactory systems, which have been the most extensively studied. In these systems, AC1/AC3 KO revealed targeting mistakes due to the defective pruning and lack of discrimination of incoming axons to signals present in target structures. In contrast, no changes in cell differentiation, survival or axon outgrowth were noted in these mutants, suggesting a specificity of cAMP production routes for individual cellular processes within a given neuron. Further studies indicate that the subcellular localization of ACs could be key to their specific role in axon targeting and may explain their selective roles in neuronal wiring.
Collapse
Affiliation(s)
- Xavier Nicol
- Inserm UMR-S 968, Institut de la Vision, 75012, Paris, France; CNRS UMR 7210, 75012, Paris, France; Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
17
|
Lack of adenylate cyclase 1 (AC1): Consequences on corticospinal tract development and on locomotor recovery after spinal cord injury. Brain Res 2014; 1549:1-10. [DOI: 10.1016/j.brainres.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 01/14/2023]
|
18
|
Santos-Cortez RLP, Lee K, Giese AP, Ansar M, Amin-Ud-Din M, Rehn K, Wang X, Aziz A, Chiu I, Hussain Ali R, Smith JD, Shendure J, Bamshad M, Nickerson DA, Ahmed ZM, Ahmad W, Riazuddin S, Leal SM. Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and defects in hair cell function and hearing in zebrafish. Hum Mol Genet 2014; 23:3289-98. [PMID: 24482543 DOI: 10.1093/hmg/ddu042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclic AMP (cAMP) production, which is important for mechanotransduction within the inner ear, is catalyzed by adenylate cyclases (AC). However, knowledge of the role of ACs in hearing is limited. Previously, a novel autosomal recessive non-syndromic hearing impairment locus DFNB44 was mapped to chromosome 7p14.1-q11.22 in a consanguineous family from Pakistan. Through whole-exome sequencing of DNA samples from hearing-impaired family members, a nonsense mutation c.3112C>T (p.Arg1038*) within adenylate cyclase 1 (ADCY1) was identified. This stop-gained mutation segregated with hearing impairment within the family and was not identified in ethnically matched controls or within variant databases. This mutation is predicted to cause the loss of 82 amino acids from the carboxyl tail, including highly conserved residues within the catalytic domain, plus a calmodulin-stimulation defect, both of which are expected to decrease enzymatic efficiency. Individuals who are homozygous for this mutation had symmetric, mild-to-moderate mixed hearing impairment. Zebrafish adcy1b morphants had no FM1-43 dye uptake and lacked startle response, indicating hair cell dysfunction and gross hearing impairment. In the mouse, Adcy1 expression was observed throughout inner ear development and maturation. ADCY1 was localized to the cytoplasm of supporting cells and hair cells of the cochlea and vestibule and also to cochlear hair cell nuclei and stereocilia. Ex vivo studies in COS-7 cells suggest that the carboxyl tail of ADCY1 is essential for localization to actin-based microvilli. These results demonstrate that ADCY1 has an evolutionarily conserved role in hearing and that cAMP signaling is important to hair cell function within the inner ear.
Collapse
Affiliation(s)
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Center for Statistical Genetics and
| | - Arnaud P Giese
- Division of Pediatric Ophthalmology and Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Muhammad Ansar
- Department of Molecular and Human Genetics, Center for Statistical Genetics and Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Kira Rehn
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xin Wang
- Department of Molecular and Human Genetics, Center for Statistical Genetics and
| | - Abdul Aziz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ilene Chiu
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raja Hussain Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saima Riazuddin
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics and
| |
Collapse
|
19
|
Salcedo E, Cruz NM, Ly X, Welander BA, Hanson K, Kronberg E, Restrepo D. A TAP1 null mutation leads to an enlarged olfactory bulb and supernumerary, ectopic olfactory glomeruli. Open Biol 2013; 3:130044. [PMID: 23697805 PMCID: PMC3866874 DOI: 10.1098/rsob.130044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major histocompatibility class I (MHCI) molecules are well known for their immunological role in mediating tissue graft rejection. Recently, these molecules were discovered to be expressed in distinct neuronal subclasses, dispelling the long-held tenet that the uninjured brain is immune-privileged. Here, we show that MHCI molecules are expressed in the main olfactory bulb (MOB) of adult animals. Furthermore, we find that mice with diminished levels of MHCI expression have enlarged MOBs containing an increased number of small, morphologically abnormal and ectopically located P2 glomeruli. These findings suggest that MHCI molecules may play an important role in the proper formation of glomeruli in the bulb.
Collapse
Affiliation(s)
- Ernesto Salcedo
- Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Cyclic AMP-dependent regulation of tyrosine hydroxylase mRNA and immunofluorescence levels in rat retinal precursor cells. Cell Tissue Res 2013; 352:207-16. [PMID: 23355011 DOI: 10.1007/s00441-013-1555-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Stimulation of tyrosine hydroxylase (TH) gene transcription by cyclic AMP (cAMP) has been clearly established in adrenal medula cells and neural-crest-derived cell lines but information on this mechanism is still lacking in dopaminergic neurons. Because they are easily amenable to in vitro experiments, dopaminergic amacrine cells of the retina might constitute a valuable model system to study this mechanism. We have used real-time reverse transcription with the polymerase chain reaction to quantify TH mRNA levels in the rat retina during post-natal development and in retinal precursor cells obtained from neonatal rats and cultured for 3 days in serum-free medium. Whereas the TH mRNA concentration remains consistantly low in control cultures, treatment with cAMP-increasing agents (forskolin, membrane depolarization, phosphodiesterase inhibitors) is sufficient to raise it to the level observed in adult retina (15-fold increase). Treatment of the cultured cells can be delayed by up to 2 days with identical results at the TH mRNA level, thus ruling out a survival-promoting effect of cAMP. TH immunofluorescence has confirmed cAMP-dependent regulation of TH expression at the protein level and indicates that the frequency of TH-positive cells in the cultures is similar to that observed in the adult retina. Selective phosphodiesterase inhibitors suggest that PDE4 is the major subtype involved in the dopaminergic amacrine cell response. Our data clearly establish the cAMP-dependent regulation of TH mRNA and immunofluorescence levels in retinal precursor cells. The possible role of this regulation mechanism in the developmental activation of TH gene expression is discussed.
Collapse
|
21
|
Graziano A, Foffani G, Knudsen EB, Shumsky J, Moxon KA. Passive exercise of the hind limbs after complete thoracic transection of the spinal cord promotes cortical reorganization. PLoS One 2013; 8:e54350. [PMID: 23349859 PMCID: PMC3551921 DOI: 10.1371/journal.pone.0054350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023] Open
Abstract
Physical exercise promotes neural plasticity in the brain of healthy subjects and modulates pathophysiological neural plasticity after sensorimotor loss, but the mechanisms of this action are not fully understood. After spinal cord injury, cortical reorganization can be maximized by exercising the non-affected body or the residual functions of the affected body. However, exercise per se also produces systemic changes – such as increased cardiovascular fitness, improved circulation and neuroendocrine changes – that have a great impact on brain function and plasticity. It is therefore possible that passive exercise therapies typically applied below the level of the lesion in patients with spinal cord injury could put the brain in a more plastic state and promote cortical reorganization. To directly test this hypothesis, we applied passive hindlimb bike exercise after complete thoracic transection of the spinal cord in adult rats. Using western blot analysis, we found that the level of proteins associated with plasticity – specifically ADCY1 and BDNF – increased in the somatosensory cortex of transected animals that received passive bike exercise compared to transected animals that received sham exercise. Using electrophysiological techniques, we then verified that neurons in the deafferented hindlimb cortex increased their responsiveness to tactile stimuli delivered to the forelimb in transected animals that received passive bike exercise compared to transected animals that received sham exercise. Passive exercise below the level of the lesion, therefore, promotes cortical reorganization after spinal cord injury, uncovering a brain-body interaction that does not rely on intact sensorimotor pathways connecting the exercised body parts and the brain.
Collapse
Affiliation(s)
- Alessandro Graziano
- Department of Physiology and Pharmacology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
22
|
Vierci G, Oliveira CSD, Perera LR, Bornia N, Leal RB, Rossi FM. Creb is modulated in the mouse superior colliculus in developmental and experimentally-induced models of plasticity. Int J Dev Neurosci 2012; 31:46-52. [PMID: 23085336 DOI: 10.1016/j.ijdevneu.2012.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/28/2012] [Accepted: 10/07/2012] [Indexed: 12/20/2022] Open
Abstract
In the central nervous system long-term plastic processes need the activation of specific gene expression programs and the synthesis of new protein in order to occur. A transcription factor fundamental for several plasticity mechanisms in various CNS areas is the cAMP response element-binding protein, CREB. This factor is activated through phosphorylation at its Serine 133 residue by multiple signaling pathways. Little is known about CREB role in the superior colliculus, a midbrain area considered an experimentally useful model for the study of neuronal plasticity processes. In the present work we studied by Western blot analysis the modulation of CREB expression and activation in the mouse superior colliculus in three models of neuronal plasticity: (1) developmental plasticity; (2) lesion-induced plasticity; (3) and fluoxetine-induced restored plasticity. We used an antibody that detects endogenous level of the total CREB protein (anti-TCREB) to identify possible modulations at CREB expression level, and a second antibody (anti-PCREB) that detects endogenous level of CREB only when it is phosphorylated at Ser133, to identify modifications of CREB activation state. The results showed that: (1) the expression and activation of CREB increase during the development of the superior colliculus in temporal correlation with the plastic process of refinement of retino-collicular projections; (2) the activation of CREB is induced by a monocular lesion performed during the critical period for plasticity in young animals but not when performed in less plastic juvenile mice; (3) the expression and activation of CREB increase in adult animals treated with fluoxetine, known to restore high levels of plasticity in adult animals. These results suggest that CREB transcription factor plays a fundamental role in plasticity processes also at the level of the mouse superior colliculus.
Collapse
Affiliation(s)
- Gabriela Vierci
- Laboratorio de Neurociencias Neuroplasticity Unit, Facultad de Ciencias, UdelaR, Iguá 4225, esq. Mataojo, 11400 Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
23
|
Dhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu HP, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development. J Comp Neurol 2012; 520:1562-83. [PMID: 22102330 DOI: 10.1002/cne.23000] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of topographic maps of the sensory periphery is sensitive to the disruption of adenylate cyclase 1 (AC1) signaling. AC1 catalyzes the production of cAMP in a Ca2+/calmodulin-dependent manner, and AC1 mutant mice (AC1−/−) have disordered visual and somatotopic maps. However, the broad expression of AC1 in the brain and the promiscuous nature of cAMP signaling have frustrated attempts to determine the underlying mechanism of AC1-dependent map development. In the mammalian visual system, the initial coarse targeting of retinal ganglion cell (RGC) projections to the superior colliculus (SC) and lateral geniculate nucleus (LGN) is guided by molecular cues, and the subsequent refinement of these crude projections occurs via an activity-dependent process that depends on spontaneous retinal waves. Here, we show that AC1−/− mice have normal retinal waves but disrupted map refinement. We demonstrate that AC1 is required for the emergence of dense and focused termination zones and elimination of inaccurately targeted collaterals at the level of individual retinofugal arbors. Conditional deletion of AC1 in the retina recapitulates map defects, indicating that the locus of map disruptions in the SC and dorsal LGN of AC1−/− mice is presynaptic. Finally, map defects in mice without AC1 and disrupted retinal waves (AC1−/−;β2−/− double KO mice) are no worse than those in mice lacking only β2−/−, but loss of AC1 occludes map recovery in β2−/− mice during the second postnatal week. These results suggest that AC1 in RGC axons mediates the development of retinotopy and eye-specific segregation in the SC and dorsal LGN.
Collapse
Affiliation(s)
- Onkar S Dhande
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74:691-705. [PMID: 22632727 PMCID: PMC3528177 DOI: 10.1016/j.neuron.2012.03.026] [Citation(s) in RCA: 2890] [Impact Index Per Article: 222.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2012] [Indexed: 02/06/2023]
Abstract
Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Molnár Z, Garel S, López-Bendito G, Maness P, Price DJ. Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur J Neurosci 2012; 35:1573-85. [PMID: 22607003 PMCID: PMC4370206 DOI: 10.1111/j.1460-9568.2012.08119.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms.
Collapse
Affiliation(s)
- Zoltán Molnár
- University of Oxford, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | - Sonia Garel
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, 46 rue d’Ulm, 75230 PARIS cedex 05, France
- INSERM, U1024, Avenir Team
- CNRS, UMR 8197
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d’Alacant, 03550, Spain
| | - Patricia Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David J Price
- Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
26
|
Nakao T, Tsujikawa M, Notomi S, Ikeda Y, Nishida K. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 2012; 7:e32472. [PMID: 22485131 PMCID: PMC3317642 DOI: 10.1371/journal.pone.0032472] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/31/2012] [Indexed: 01/09/2023] Open
Abstract
Most of inherited retinal diseases such as retinitis pigmentosa (RP) cause photoreceptor cell death resulting in blindness. RP is a large family of diseases in which the photoreceptor cell death can be caused by a number of pathways. Among them, light exposure has been reported to induce photoreceptor cell death. However, the detailed mechanism by which photoreceptor cell death is caused by light exposure is unclear. In this study, we have shown that even a mild light exposure can induce ectopic phototransduction and result in the acceleration of rod photoreceptor cell death in some vertebrate models. In ovl, a zebrafish model of outer segment deficiency, photoreceptor cell death is associated with light exposure. The ovl larvae show ectopic accumulation of rhodopsin and knockdown of ectopic rhodopsin and transducin rescue rod photoreceptor cell death. However, knockdown of phosphodiesterase, the enzyme that mediates the next step of phototransduction, does not. So, ectopic phototransduction activated by light exposure, which leads to rod photoreceptor cell death, is through the action of transducin. Furthermore, we have demonstrated that forced activation of adenylyl cyclase in the inner segment leads to rod photoreceptor cell death. For further confirmation, we have also generated a transgenic fish which possesses a human rhodopsin mutation, Q344X. This fish and rd10 model mice show photoreceptor cell death caused by adenylyl cyclase. In short, our study indicates that in some RP, adenylyl cyclase is involved in photoreceptor cell death pathway; its inhibition is potentially a logical approach for a novel RP therapy.
Collapse
Affiliation(s)
- Takeshi Nakao
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
27
|
Wang H, Liu H, Storm DR, Zhang ZW. Adenylate cyclase 1 promotes strengthening and experience-dependent plasticity of whisker relay synapses in the thalamus. J Physiol 2011; 589:5649-62. [PMID: 21930601 DOI: 10.1113/jphysiol.2011.213702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic refinement, a process that involves elimination and strengthening of immature synapses, is critical for the development of neural circuits and behaviour. The present study investigates the role of adenylate cyclase 1 (AC1) in developmental refinement of excitatory synapses in the thalamus at the single-cell level. In the mouse, thalamic relay synapses of the lemniscal pathway undergo extensive remodelling during the second week after birth, and AC1 is highly expressed in both pre- and postsynaptic neurons during this period. Synaptic connectivity was analysed by patch-clamp recording in acute slices obtained from mice carrying a targeted null mutation of the adenylate cyclase 1 gene (AC1-KO) and wild-type littermates. We found that deletion of AC1 had no effect on the number of relay inputs received by thalamic neurons during development. In contrast, there was a selective reduction of AMPA-receptor-mediated synaptic responses in mutant thalamic neurons, and the effect increased with age. Furthermore, experience-dependent plasticity was impaired in thalamic neurons of AC1-KO mice. Whisker deprivation during early life altered the number and properties of relay inputs received by thalamic neurons in wild-type mice, but had no effects in AC1-KO mice. Our findings underline a role for AC1 in experience-dependent plasticity of excitatory synapses.
Collapse
Affiliation(s)
- Hao Wang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | |
Collapse
|
28
|
Haupt C, Langhoff J, Huber AB. Adenylate Cyclase 1 modulates peripheral nerve branching patterns. Mol Cell Neurosci 2010; 45:439-48. [DOI: 10.1016/j.mcn.2010.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/09/2010] [Accepted: 08/02/2010] [Indexed: 11/24/2022] Open
|
29
|
García-Frigola C, Herrera E. Zic2 regulates the expression of Sert to modulate eye-specific refinement at the visual targets. EMBO J 2010; 29:3170-83. [PMID: 20676059 PMCID: PMC2944059 DOI: 10.1038/emboj.2010.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/01/2010] [Indexed: 11/14/2022] Open
Abstract
This neurodevelopmental paper reports on the transcription factor Zic2 as critical regulator of visual target refinement. Establishing that Zic2 acts through the serotonin transporter SERT provides insight into a critical element of visual circuitry. The development of the nervous system is a time-ordered and multi-stepped process that requires neural specification, axonal navigation and arbor refinement at the target tissues. Previous studies have demonstrated that the transcription factor Zic2 is necessary and sufficient for the specification of retinal ganglion cells (RGCs) that project ipsilaterally at the optic chiasm midline. Here, we report that, in addition, Zic2 controls the refinement of eye-specific inputs in the visual targets by regulating directly the expression of the serotonin transporter (Sert), which is involved in the modulation of activity-dependent mechanisms during the wiring of sensory circuits. In agreement with these findings, RGCs that express Zic2 ectopically show defects in axonal refinement at the visual targets and respond to pharmacological blockage of Sert, whereas Zic2-negative contralateral RGCs do not. These results link, at the molecular level, early events in neural differentiation with late activity-dependent processes and propose a mechanism for the establishment of eye-specific domains at the visual targets.
Collapse
Affiliation(s)
- Cristina García-Frigola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernandez, Alicante, Spain
| | | |
Collapse
|
30
|
Tavares Gomes AL, Maia FB, Oliveira-Silva P, Marques Ventura AL, Paes-De-Carvalho R, Serfaty CA, Campello-Costa P. Purinergic modulation in the development of the rat uncrossed retinotectal pathway. Neuroscience 2009; 163:1061-8. [PMID: 19619617 DOI: 10.1016/j.neuroscience.2009.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 11/16/2022]
Abstract
Adenosine is a neuromodulator implicated in nervous system development and plasticity and its effects are mediated by inhibitory (A(1), A(3)) and excitatory (A(2a), A(2b)) receptors. The role of adenosine in the synaptic activity depends mainly on a balanced activation of A(1) and A(2a) receptors which are activated by various ranges of adenosine concentrations. Herein, we investigated the expression of A(1) and A(2a) receptors and also the accumulation of cAMP in the superior colliculus at different stages of development. Furthermore, we examined the effects of an acute in vivo blockade of adenosine deaminase during the critical period when the elimination of misplaced axons/terminals takes place with a simultaneous fine tuning of terminal arbors into appropriate terminal zones. Lister Hooded rats ranging from postnatal days (PND) 0-70 were used for ontogeny studies. Our results indicate that A(1) expression in the visual layers of the superior colliculus is higher until PND 28, while A(2a) expression increases after PND 28 in a complementary developmental pattern. Accordingly, the incubation of collicular slices with 5'-N-ethylcarboxamido-adenosine, a non-specific adenosine receptor agonist, showed a significant reduction in cAMP accumulation at PND 14 and an increase in adults. For the anatomical studies, the uncrossed retinotectal projections were traced after the intraocular injection of horseradish peroxidase. One group received daily injections of an adenosine deaminase inhibitor (erythro-9(2-hydroxy-3-nonyl adenine), 10 mg/kg i.p.) between PND 10 and 13, while control groups were treated with vehicle injections (NaCl 0.9%, i.p.). We found that a short-term blockade of adenosine deaminase during the second postnatal week induced an expansion of retinotectal terminal fields in the rostrocaudal axis of the tectum. Taken together, the results suggest that a balance of purinergic A(1) and A(2a) receptors through cAMP signaling plays a pivotal role during the development of topographic order in the retinotectal pathway.
Collapse
Affiliation(s)
- A L Tavares Gomes
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Voisin P, Bernard M. Cyclic AMP-dependent activation of rhodopsin gene transcription in cultured retinal precursor cells of chicken embryo. J Neurochem 2009; 110:318-27. [PMID: 19457115 DOI: 10.1111/j.1471-4159.2009.06136.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study describes a robust 50-fold increase in rhodopsin gene transcription by cAMP in cultured retinal precursor cells of chicken embryo. Retinal cells isolated at embryonic day 8 (E8) and cultured for 3 days in serum-supplemented medium differentiated mostly into red-sensitive cones and to a lesser degree into green-sensitive cones, as indicated by real-time RT-PCR quantification of each specific opsin mRNA. In contrast, both rhodopsin mRNA concentration and rhodopsin gene promoter activity required the presence of cAMP-increasing agents [forskolin and 3-isobutyl-1-methylxanthine (IBMX)] to reach significant levels. This response was rod-specific and was sufficient to activate rhodopsin gene transcription in serum-free medium. The increase in rhodopsin mRNA levels evoked by a series of cAMP analogs suggested the response was mediated by protein kinase A, not by EPAC. Membrane depolarization by high KCl concentration also increased rhodopsin mRNA levels and this response was strongly potentiated by IBMX. The rhodopsin gene response to cAMP-increasing agents was developmentally gated between E6 and E7. Rod-specific transducin alpha subunit mRNA levels also increased up to 50-fold in response to forskolin and IBMX, while rod-specific phosphodiesterase-VI and rod arrestin transcripts increased 3- to 10-fold. These results suggest a cAMP-mediated signaling pathway may play a role in rod differentiation.
Collapse
Affiliation(s)
- Pierre Voisin
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | |
Collapse
|
32
|
Rodger J, Frost DO. Effects of trkB knockout on topography and ocular segregation of uncrossed retinal projections. Exp Brain Res 2009; 195:35-44. [PMID: 19283373 DOI: 10.1007/s00221-009-1746-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 02/16/2009] [Indexed: 11/28/2022]
Abstract
TrkB is an important receptor for brain-derived neurotrophic factor and NT4, members of the neurotrophin family. TrkB signaling is crucial in many activity-dependent and activity-independent processes of neural development. Here, we investigate the role of trkB signaling in the development of two distinct, organizational features of retinal projections--the segregation of crossed and uncrossed retinal inputs along the "lines of projection" that represent a single point in the visual field and the "retinotopic" mapping of retinofugal axons within their cerebral targets. Using anterograde tracing, we obtained quantitative measures of the distribution of retinal projections in the dorsal nucleus of the lateral geniculate body (LGd) and superior colliculus (SC) of wild-type mice and mice homozygous for constitutive null mutation (knockout) of the full-length trkB receptor (trkB(FL)(-/-)). In trkB(FL)(-/-) mice, uncrossed retinal projections cluster normally but there is a topographic expansion in the distribution of these clusters across the SC. By contrast, the absence of trkB signaling has no significant effect on the segregation of crossed and uncrossed retinal projections along the lines of projection in LGd or SC. We conclude that the normal topographic organization of uncrossed retinal projections depends upon trkB signaling, whereas the segregation of crossed and uncrossed retinal projections is trkB-independent. We also found that in trkB(FL)(-/-) mice, neuronal number was reduced in the LGd and SC and in the caudate-putamen. Previous studies by ourselves and others have shown that the number of retinal ganglion cells (RGCs) is unchanged in trkB(FL)(-/-) mice. Together, these results demonstrate that there is no matching of the numbers of RGCs with neuronal numbers in the LGd or SC.
Collapse
Affiliation(s)
- Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology M317, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | |
Collapse
|
33
|
Iwai L, Kawasaki H. Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation. Neuroscience 2009; 159:1326-37. [PMID: 19409202 DOI: 10.1016/j.neuroscience.2009.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/05/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
Abstract
When retinal waves are inhibited binocularly, eye-specific segregation of retinal axons is disrupted, and retinal axons from the two eyes remain intermingled in the lateral geniculate nucleus (LGN). This effect of binocular retinal wave inhibition is mediated by the lack of activity-dependent competition between retinal axons from the two eyes, but it is unknown whether this effect is also mediated by the developmental arrest of the LGN in an immature state. Here we find developmental markers of the LGN during eye-specific segregation. The expression levels of Purkinje cell protein 4 (PCP4/PEP19), transcription factor 7-like 2 (TCF7L2/TCF4) and LIM homeobox protein 9 (Lhx9) in the LGN change significantly during eye-specific segregation. Using PCP4, TCF7L2 and Lhx9 as developmental markers of the LGN, we examine whether LGN development is affected by binocular disruption of retinal waves during eye-specific segregation. Binocular injection of epibatidine strongly inhibits eye-specific segregation, whereas it does not affect the expression of PCP4, TCF7L2 and Lhx9. Furthermore, the expression of PCP4, TCF7L2 and Lhx9 is normal in binocularly enucleated animals and in mice treated with the monoamine oxidase A (MAOA) inhibitor, clorgyline. In addition, our experiments using LGN slice cultures show that the expression of PCP4 and TCF7L2 in LGN slices changes as in vivo. Our results suggest that LGN development proceeds, at least in part, even in the absence of retinal inputs. PCP4, TCF7L2 and Lhx9 should be useful to examine LGN development during eye-specific segregation in mice and in ferrets.
Collapse
Affiliation(s)
- L Iwai
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
34
|
Masada N, Ciruela A, Macdougall DA, Cooper DMF. Distinct mechanisms of regulation by Ca2+/calmodulin of type 1 and 8 adenylyl cyclases support their different physiological roles. J Biol Chem 2008; 284:4451-63. [PMID: 19029295 DOI: 10.1074/jbc.m807359200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nine membrane-bound mammalian adenylyl cyclases (ACs) have been identified. Type 1 and 8 ACs (AC1 and AC8), which are both expressed in the brain and are stimulated by Ca(2+)/calmodulin (CaM), have discrete neuronal functions. Although the Ca(2+) sensitivity of AC1 is higher than that of AC8, precisely how these two ACs are regulated by Ca(2+)/CaM remains elusive, and the basis for their diverse physiological roles is quite unknown. Distinct localization of the CaM binding domains within the two enzymes may be essential to differential regulation of the ACs by Ca(2+)/CaM. In this study we compare in detail the regulation of AC1 and AC8 by Ca(2+)/CaM both in vivo and in vitro and explore the different role of each Ca(2+)-binding lobe of CaM in regulating the two enzymes. We also assess the relative dependence of AC1 and AC8 on capacitative Ca(2+) entry. Finally, in real-time fluorescence resonance energy transfer-based imaging experiments, we examine the effects of dynamic Ca(2+) events on the production of cAMP in cells expressing AC1 and AC8. Our data demonstrate distinct patterns of regulation and Ca(2+) dependence of AC1 and AC8, which seems to emanate from their mode of regulation by CaM. Such distinctive properties may contribute significantly to the divergent physiological roles in which these ACs have been implicated.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
35
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Nicol X, Gaspar P. [Interaction between neuronal activity and ephrin signalling during the refinement of neuronal connections]. Med Sci (Paris) 2008; 24:144-6. [PMID: 18272074 DOI: 10.1051/medsci/2008242144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Abstract
A characteristic feature of developing neural circuits is that they are spontaneously active. There are several examples, including the retina, spinal cord, and hippocampus, where spontaneous activity is highly correlated among neighboring cells, with large depolarizing events occurring with a periodicity on the order of minutes. One likely mechanism by which neurons can "decode" these slow oscillations is through activation of second messenger cascades that either influence transcriptional activity or drive posttranslational modifications. Here, we describe recent experiments where imaging has been used to characterize slow oscillations in the cAMP/PKA second messenger cascade in retinal neurons. We review the latest techniques in imaging this specific second messenger cascade, its intimate relationship with changes in intracellular calcium concentration, and several hypotheses regarding its role in neurodevelopment.
Collapse
Affiliation(s)
- Timothy A Dunn
- Division of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| | | |
Collapse
|
38
|
Argaw A, Duff G, Boire D, Ptito M, Bouchard JF. Protein kinase A modulates retinal ganglion cell growth during development. Exp Neurol 2008; 211:494-502. [PMID: 18423622 DOI: 10.1016/j.expneurol.2008.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/06/2008] [Accepted: 02/22/2008] [Indexed: 11/17/2022]
Abstract
During development, retinal ganglion cells (RGCs) extend their axons toward their thalamic and mesencephalic targets. Their navigation is largely directed by guidance cues present in their environment. Since cAMP is an important second messenger that mediates the neural response to guidance molecules and its intracellular levels seem to decrease significantly following birth, we tested whether modulation of the cAMP/protein kinase A (PKA) pathway would affect the normal development of RGC axons. At postnatal day 1, hamsters received a unilateral intraocular injection of either 0.9% saline solution, 12 mM of the membrane-permeable cAMP analogue (dibutyryl cAMP; db-cAMP), or 10 microM of the PKA inhibitor KT5720. Intraocular elevation of cAMP significantly accelerated RGC axonal growth while inhibition of PKA activity decreased it. Moreover, when highly purified RGC cultures were treated with forskolin (an activator of adenylate cyclase) or cAMP analogues (db-cAMP and Sp-cAMP), neurite length, growth cone (GC) surface area and GC filopodia number were significantly increased. This indicates that intraocular elevation of cAMP acts directly on RGCs. Since these effects were prevented by PKA inhibitors, it demonstrates that cAMP also exerts its action via the PKA pathway. Taken together, these results suggest that the cAMP/PKA cascade is essential for the normal development of retinothalamic projections.
Collapse
Affiliation(s)
- Anteneh Argaw
- Department of Biomedical Science, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada H3T 1J4
| | | | | | | | | |
Collapse
|
39
|
Olavarria JF, van Brederode JFM, Spain WJ. Retinal influences induce bidirectional changes in the kinetics of N-methyl-D-aspartate receptor-mediated responses in striate cortex cells during postnatal development. Neuroscience 2007; 148:683-99. [PMID: 17706364 DOI: 10.1016/j.neuroscience.2007.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 07/08/2007] [Accepted: 07/11/2007] [Indexed: 11/19/2022]
Abstract
Development of the visual callosal projection in rodents goes through an early critical period, from postnatal day (P) 4 to P6, during which retinal input specifies the blueprint for normal topographic connections, and a subsequent period of progressive pathway maturation that is largely complete by the time the eyes open, around P13. This study tests the hypothesis that these developmental stages correlate with age-related changes in the kinetics of synaptic responses mediated by the N-methyl-D-aspartate subclass of glutamate receptors (NMDARs). We used an in vitro slice preparation to perform whole-cell recordings from retrogradely-labeled visual callosal cells, as well from cortical cells with unknown projections. We analyzed age-related changes in the decay time constant of evoked as well as spontaneous excitatory postsynaptic currents mediated by N-methyl-D-aspartate subclass of glutamate receptors (NMDAR-EPSCs) in slices from normal pups and pups enucleated at different postnatal ages. In normal pups we found that the decay time constant of NMDAR-EPSCs increases starting at about P6 and decreases by about P13. In contrast, these changes were not observed in rats enucleated at birth. However, by delaying the age at which enucleation was performed we found that the presence of the eyes until P6, but not until P4, is sufficient for inducing slow NMDAR-EPSC kinetics during the second postnatal week, as observed in normal pups. These results provide evidence that the eyes exert a bidirectional effect on the kinetics of NMDARs: during a P4-P6 critical period, retinal influences induce processes that slow down the kinetics of NMDAR-EPSCs, while, near the age of eye opening, retinal input induces a sudden acceleration of NMDAR-EPSC kinetics. These findings suggest that the retinally-driven processes that specify normal callosal topography during the P4-P6 time window also induce an increase in the decay time constant of NMDAR-EPSCs. This increase in response kinetics may play an important role in the maturation of cortical topographic maps after P6. Using ifenprodil, a noncompetitive NR2B-selective blocker, we obtained evidence that although NR1/NR2B diheteromeric receptors contribute to evoked synaptic responses in both normal and enucleated animals, they are not primarily responsible for either the age-related changes in the kinetics of NMDAR-mediated responses, or the effects that bilateral enucleation has on the kinetics of NMDAR-EPSCs.
Collapse
Affiliation(s)
- J F Olavarria
- Department of Psychology, University of Washington, Box 351525, Seattle, WA 98195-1525, USA.
| | | | | |
Collapse
|
40
|
Nicol X, Voyatzis S, Muzerelle A, Narboux-Nême N, Südhof TC, Miles R, Gaspar P. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 2007; 10:340-7. [PMID: 17259982 DOI: 10.1038/nn1842] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/02/2007] [Indexed: 11/08/2022]
Abstract
Spontaneous activity generated in the retina is necessary to establish a precise retinotopic map, but the underlying mechanisms are poorly understood. We demonstrate here that neural activity controls ephrin-A-mediated responses. In the mouse retinotectal system, we show that spontaneous activity of the retinal ganglion cells (RGCs) is needed, independently of synaptic transmission, for the ordering of the retinotopic map and the elimination of exuberant retinal axons. Activity blockade suppressed the repellent action of ephrin-A on RGC growth cones by cyclic AMP (cAMP)-dependent pathways. Unexpectedly, the ephrin-A5-induced retraction required cAMP oscillations rather than sustained increases in intracellular cAMP concentrations. Periodic photo-induced release of caged cAMP in growth cones rescued the response to ephrin-A5 when activity was blocked. These results provide a direct molecular link between spontaneous neural activity and axon guidance mechanisms during the refinement of neural maps.
Collapse
Affiliation(s)
- Xavier Nicol
- INSERM, U616, Hôpital Salpêtrière, 47 Blvd. de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Nicol X, Bennis M, Ishikawa Y, Chan GCK, Repérant J, Storm DR, Gaspar P. Role of the calcium modulated cyclases in the development of the retinal projections. Eur J Neurosci 2006; 24:3401-14. [PMID: 17229090 DOI: 10.1111/j.1460-9568.2006.05227.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transmembrane isoforms of adenylate cyclases (AC) integrate a wide variety of extracellular signals from neurotransmitters to morphogens and can also regulate cAMP production in response to calcium entry. Based on observations in the barrelless mouse strain, the Adcy1 gene (AC1) was involved in the segregation of binocular retinal inputs. To determine the potential role of other AC isoforms we localized the Adcy genes in the visual centres during development, using in situ hybridization. Six different AC subtypes were found in the developing retinal ganglion cell layer (RGC; AC1, AC2, AC3, AC5, AC8, and AC9), and three AC subtypes were expressed in the central brain targets, the dorsal lateral geniculate nucleus (AC1 and AC8), the ventral lateral geniculate nucleus (AC2 and AC8) and the superior colliculus (AC1, AC2, AC8). Using a genetic approach we tested the role of the calcium modulated cyclases AC1, AC5 and AC8 for the segregation retinal fibres. Ipsilateral retinal axons remained exuberant in the AC1(-/-) mice, with overlapping retinal projections from both eyes in the superior colliculus and the visual thalamus. These abnormalities were similar to those of barrelless mouse mutants. No abnormalities were detectable in the AC5(-/-) or the AC8(-/-) mice. Similar abnormalities were noted in the single AC1(-/-) and the AC1/AC8 double-knockout mice (DKO). Thus, only AC1 is required for the maturation of the retinal axon terminals whereas AC5 and AC8 are not needed. The specificity of AC1's action is linked to its cellular localization in the RGCs and to its distinctive functional profile, compared with the other cyclases expressed in the same cells.
Collapse
Affiliation(s)
- Xavier Nicol
- INSERM, U616, IFR Neurosciences, Hôpital Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Visel A, Alvarez-Bolado G, Thaller C, Eichele G. Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. J Comp Neurol 2006; 496:684-97. [PMID: 16615126 DOI: 10.1002/cne.20953] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adenylate cyclases (Adcys) are components of several developmentally, neurophysiologically, and pharmacologically relevant signaling pathways. A prominent feature of Adcys is their ability to integrate multiple signaling pathways into a single second messenger pathway, the production of cAMP. Nine isoforms of membrane-bound Adcys are known, each encoded by a distinct gene. These isoforms differ in their response to regulatory upstream pathways as well as in their distribution in the brain and elsewhere. Use of various detection methods and animal species has, however, hampered a direct comparison of expression patterns, so the potential contribution of single isoforms to Adcy activity in different brain regions remains unclear. We have determined the expression patterns of all nine Adcy genes in the embryonic, postnatal day 7, and adult mouse brain by nonradioactive robotic in situ hybridization (ISH). Here we describe the salient features of these patterns. Regional colocalization of Adcy transcripts encoding isoforms with different regulatory properties was detected in the cortex, subregions of the hippocampus, olfactory bulb, thalamus, and striatum. Hence, our expression data support models for modulation of cAMP signaling by combinatorial action of multiple Adcy isoforms. However, in several instances, the expression domains of genes encoding isoforms with similar regulatory properties spatially exclude each other, which is most evident in not previously described expression domains of the embryonic midbrain roof. This is suggestive of functional specialization.
Collapse
Affiliation(s)
- Axel Visel
- Max Planck Institute of Experimental Endocrinology, Hannover, Germany
| | | | | | | |
Collapse
|
43
|
Torborg CL, Feller MB. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 2005; 76:213-35. [PMID: 16280194 DOI: 10.1016/j.pneurobio.2005.09.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/30/2005] [Accepted: 09/22/2005] [Indexed: 11/22/2022]
Abstract
A characteristic feature of sensory circuits is the existence of orderly connections that represent maps of sensory space. A major research focus in developmental neurobiology is to elucidate the relative contributions of neural activity and guidance molecules in sensory map formation. Two model systems for addressing map formation are the retinotopic map formed by retinal projections to the superior colliculus (SC) (or its non-mammalian homolog, the optic tectum (OT)), and the eye-specific map formed by retinal projections to the lateral geniculate nucleus of the thalamus. In mammals, a substantial portion of retinotopic and eye-specific refinement of retinal axons occurs before vision is possible, but at a time when there is a robust, patterned spontaneous retinal activity called retinal waves. Though complete blockade of retinal activity disrupts normal map refinement, attempts at more refined perturbations, such as pharmacological and genetic manipulations that alter features of retinal waves critical for map refinement, remain controversial. Here we review: (1) the mechanisms that underlie the generation of retinal waves; (2) recent experiments that have investigated a role for guidance molecules and retinal activity in map refinement; and (3) experiments that have implicated various signaling cascades, both in retinal ganglion cells (RGCs) and their post-synaptic targets, in map refinement. It is likely that an understanding of retinal activity, guidance molecules, downstream signaling cascades, and the interactions between these biological systems will be critical to elucidating the mechanisms of sensory map formation.
Collapse
Affiliation(s)
- Christine L Torborg
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | |
Collapse
|
44
|
Lyckman AW, Fan G, Rios M, Jaenisch R, Sur M. Normal eye-specific patterning of retinal inputs to murine subcortical visual nuclei in the absence of brain-derived neurotrophic factor. Vis Neurosci 2005; 22:27-36. [PMID: 15842738 DOI: 10.1017/s095252380522103x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Indexed: 11/05/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a preferred ligand for a member of the tropomyosin-related receptor family, trkB. Activation of trkB is implicated in various activity-independent as well as activity-dependent growth processes in many developing and mature neural systems. In the subcortical visual system, where electrical activity has been implicated in normal development, both differential survival, as well as remodeling of axonal arbors, have been suggested to contribute to eye-specific segregation of retinal ganglion cell inputs. Here, we tested whether BDNF is required for eye-specific segregation of visual inputs to the lateral geniculate nucleus and the superior colliculus, and two other major subcortical target fields in mice. We report that eye-specific patterning is normal in two mutants that lack BDNF expression during the segregation period: a germ-line knockout for BDNF, and a conditional mutant in which BDNF expression is absent or greatly reduced in the central nervous system. We conclude that the availability of BDNF is not necessary for eye-specific segregation in subcortical visual nuclei.
Collapse
Affiliation(s)
- Alvin W Lyckman
- The Picower Center for Learning and Memory and the Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| | | | | | | | | |
Collapse
|
45
|
O'Leary DDM, McLaughlin T. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. PROGRESS IN BRAIN RESEARCH 2005; 147:43-65. [PMID: 15581697 DOI: 10.1016/s0079-6123(04)47005-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes mechanisms that control the development of retinotopic maps in the brain, focusing on work from our laboratory using as models the projection of retinal ganglion cells (RGCs) to the chick optic tectum (OT) or rodent superior colliculus (SC). The formation of a retinotopic map involves the establishment of an initial, very coarse map that subsequently undergoes large-scale remodeling to generate a refined map. All arbors are formed by interstitial branches that form in a topographically biased manner along RGC axons that overshoot their correct termination zone (TZ) along the anterior-posterior (A-P) axis of the OT/SC. The interstitial branches exhibit directed growth along the lateral-medial (L-M) axis of the OT/SC to position the branch at the topographically correct location, where it arborizes to form the TZ. EphA receptors and ephrin-A ligands control in part RGC axon mapping along the A-P axis by inhibiting branching and arborization posterior to the correct TZ. Ephrin-B1 acts bifunctionally through EphB forward signaling to direct branches along the L-M axis of the OT/SC to their topographically correct site. Computational modeling indicates that multiple graded activities are required along each axis to generate a retinotopic map, and makes several predictions, including: the progressive addition of ephrin-As within the OT/SC, due to its expression on RGC axon branches and arbors, is required to increase topographic specificity in branching and arborization as well as eliminate the initial axon overshoot, and that interactions amongst RGC axons that resemble correlated neural activity are required to drive retinotopic refinement. Analyses of mutant mice that lack early spontaneous retinal waves that correlate activity amongst neighboring RGCs, confirm this modeling prediction and show that correlated activity during an early brief critical period is required to drive the large-scale remodeling of the initially topographically coarse projection into a refined one. In summary, multiple graded guidance molecules, retinal waves and correlated spontaneous RGC activity cooperate to generate retinotopic maps.
Collapse
Affiliation(s)
- Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
46
|
Nicol X, Muzerelle A, Bachy I, Ravary A, Gaspar P. Spatiotemporal localization of the calcium-stimulated adenylate cyclases, AC1 and AC8, during mouse brain development. J Comp Neurol 2005; 486:281-94. [PMID: 15844169 DOI: 10.1002/cne.20528] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Type 1 and type 8 adenylate cyclases, AC1 and AC8, are membrane bound enzymes that produce cAMP in response to calcium entry and could thus control a large number of developmental processes. We provide a detailed spatiotemporal localization of these genes in the mouse brain during embryonic and postnatal life using in situ hybridization. AC1 gene expression begins early in embryonic life (before E13), and its expression is much more widespread than in adults. Transient expression of AC1 is found in the striatum, the dorsal thalamus, the trigeminal nerve nuclei, the Purkinje cells of the cerebellum, the interneurons of the hippocampus, and the retinal ganglion cells. In all these structures, the peak of AC1 gene expression occurs during early postnatal life, decreasing by P10. After P15, AC1 expression is confined to the hippocampus, the cerebral cortex, and to the granule cells of the cerebellum. AC8 gene expression also begins early in embryonic life (E12)--but in a more limited number of regions than in adults. AC8 expression is initially restricted to the epithalamus, the hypothalamus, the superior colliculus, the cerebellar anlage the proliferative zone of the rhombic lip, and the spinal cord. The expression increases and broadens during postnatal life, particularly in the thalamus and the cerebral cortex. A transient peak of AC8 expression is found in layer IV of the somatosensory cortex. Thus, AC1 and AC8 have an early developmental onset with complementary spatiotemporal distribution patterns: AC1 is most broadly distributed in embryonic life, whereas AC8 is most broadly expressed in adulthood. Transient expression of these genes designate areas that may be particularly sensitive to neural activity/calcium-modulated cAMP responses during development.
Collapse
Affiliation(s)
- Xavier Nicol
- Institut National de la Santé et de la Recherche Médicale U616, Université Pierre et Marie Curie Paris VI, Hôpital Salpêtrière, 75651 Paris, France
| | | | | | | | | |
Collapse
|
47
|
Plas DT, Visel A, Gonzalez E, She WC, Crair MC. Adenylate Cyclase 1 dependent refinement of retinotopic maps in the mouse. Vision Res 2004; 44:3357-64. [PMID: 15536003 DOI: 10.1016/j.visres.2004.09.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/08/2004] [Indexed: 10/26/2022]
Abstract
Development of the retino-collicular pathway has served as an important model system for examining the cellular mechanisms responsible for the establishment of neuronal maps of the sensory periphery. A consensus has emerged that molecular or chemical cues are responsible for the initial establishment of gross topography in this map, and that activity dependent factors sharpen this initial rough topography into precision. However, there is little evidence available concerning the biochemical signaling mechanisms that are responsible for topographic map refinement in the retino-collicular system. Using a combination of anatomical and biochemical techniques in normal and mutant mice, we provide evidence that Ca2+/Calmodulin regulated Adenylate Cyclase 1 (AC1), which is strongly expressed in the superficial layers of the colliculus, is an important downstream signaling agent for activity dependent map refinement in the superior colliculus.
Collapse
Affiliation(s)
- Daniel T Plas
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza S-603, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The Ca2+/calmodulin-stimulated adenylyl cyclases, AC1 and AC8, play a critical role in several forms of neuroplasticity, including long-lasting long-term potentiation (L-LTP) and long-term memory (LTM). By coupling neuronal activity and Ca2+increases to the production of cAMP, AC1 and AC8 activate cAMP-dependent signal transduction and transcriptional pathways critical for L-LTP and LTM.
Collapse
Affiliation(s)
- Gregory D Ferguson
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | |
Collapse
|
49
|
Naska S, Cenni MC, Menna E, Maffei L. ERK signaling is required for eye-specific retino-geniculate segregation. Development 2004; 131:3559-70. [PMID: 15215205 DOI: 10.1242/dev.01212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian visual system, retinal ganglion cell (RGC) projections from each eye, initially intermixed within the dorsal-lateral geniculate nucleus (dLGN), become segregated during the early stages of development, occupying distinct eye-specific layers. Electrical activity has been suggested to play a role in this process; however, the cellular mechanisms underlying eye-specific segregation are not yet defined. It is known that electrical activity is among the strongest activators of the extracellular signal-regulated kinase (ERK) pathway. Moreover, the ERK pathway is involved in the plasticity of neural connections during development. We examine the role of ERK in the segregation of retinal afferents into eye-specific layers in the dLGN. The activation of this signaling cascade was selectively blocked along the retino-thalamic circuitry by specific inhibitors, and the distribution of RGC fibers in the dLGN was studied. Our results demonstrate that the blockade of ERK signaling prevents eye-specific segregation in the dLGN, providing evidence that ERK pathway is required for the proper development of retino-geniculate connections. Of particular interest is the finding that ERK mediates this process both at the retinal and geniculate level.
Collapse
Affiliation(s)
- Sibel Naska
- Scuola Normale Superiore, piazza dei Cavalieri 7, 56100 Pisa, Italy.
| | | | | | | |
Collapse
|
50
|
Torborg CL, Feller MB. Unbiased analysis of bulk axonal segregation patterns. J Neurosci Methods 2004; 135:17-26. [PMID: 15020085 DOI: 10.1016/j.jneumeth.2003.11.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 11/25/2003] [Accepted: 11/25/2003] [Indexed: 11/28/2022]
Abstract
The projection of retinal ganglion cell axons to the dorsal lateral geniculate nucleus of the thalamus (dLGN) is organized into eye-specific layers, which are macroscopic structures that reflect the bulk organization of thousands of axons. The processes that underlie the formation of these layers is the focus of research in several laboratories. The recent advent of fluorescently tagged tracers allows for the simultaneous visualization of axons from both eyes in the same dLGN section and therefore the analysis of axonal segregation patterns. However, the techniques traditionally used to quantify eye-specific segregation are far from standardized. Here we present an analysis method that objectively quantifies the extent of segregation. We apply this analyses to dLGN images from mice with normal retinogeniculate projection patterns and genetically altered mice with dramatically altered projection patterns. In addition, we compare dLGN images acquired at different optical resolutions to measure the spatial scale over which we can determine segregation unambiguously.
Collapse
Affiliation(s)
- Christine L Torborg
- Neurobiology Section 0357, Division of Biological Sciences, UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0357, USA
| | | |
Collapse
|