1
|
Augusto-Oliveira M, Arrifano GDP, Leal-Nazaré CG, Chaves-Filho A, Santos-Sacramento L, Lopes-Araujo A, Tremblay MÈ, Crespo-Lopez ME. Morphological diversity of microglia: Implications for learning, environmental adaptation, ageing, sex differences and neuropathology. Neurosci Biobehav Rev 2025; 172:106091. [PMID: 40049541 DOI: 10.1016/j.neubiorev.2025.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Microglia are the brain resident macrophages that respond rapidly to any insult. These non-neuroectodermal cells are decorated with plenty of receptors allowing them to recognise and respond precisely to a multitude of stimuli. To do so, microglia undergo structural and functional changes aiming to actively keep the brain's homeostasis. However, some microglial responses, when sustained or exacerbated, can contribute to neuropathology and neurodegeneration. Many microglial molecular and cellular changes were identified that display a strong correlation with neuronal damage and neuroinflammation/disease status, as well as present key sex-related differences that modulate microglial outcomes. Nevertheless, the relationship between microglial structural and functional features is just beginning to be unravelled. Several reports show that microglia undergo soma and branch remodelling in response to environmental stimuli, ageing, neurodegenerative diseases, trauma, and systemic inflammation, suggesting a complex form and function link. Also, it is reasonable overall to suppose that microglia diminishing their process length and ramification also reduce their monitoring activity of synapses, which is critical for detecting any synaptic disturbance and performing synaptic remodelling. Elucidating the complex interactions between microglial morphological plasticity and its functional implications appears essential for the understanding of complex cognitive and behavioural processes in health and neuropathological conditions.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Amanda Lopes-Araujo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec, Qubec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada; College Member of the Royal Society of Canada, Canada.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| |
Collapse
|
2
|
Morrey WJ, Ceyzériat K, Amossé Q, Badina AM, Dickie B, Schiessl I, Tsartsalis S, Millet P, Boutin H, Tournier BB. Early metabolic changes in the brain of Alzheimer's disease rats are driven by GLAST+ cells. J Cereb Blood Flow Metab 2025:271678X251318923. [PMID: 39917849 PMCID: PMC11806453 DOI: 10.1177/0271678x251318923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/27/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
Glucose metabolic dysfunction is a hallmark of Alzheimer's disease (AD) pathology and is used to diagnose the disease or predict imminent cognitive decline. The main method to measure brain metabolism in vivo is positron emission tomography with 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG-PET). The cellular origin of changes in the [18F]FDG-PET signal in AD is controversial. We addressed this by combining [18F]FDG-PET with subsequent cell-sorting and γ-counting of [18F]FDG-accumulation in sorted cell populations. 7-month-old male TgF344-AD rats and wild-type controls (n = 24/group) received sham or ceftriaxone (200 mg/kg) injection prior to [18F]FDG-PET imaging to increase glutamate uptake and glucose utilisation. The same animals were injected again one week later, and radiolabelled brains were dissected, with hippocampi taken for magnetically-activated cell sorting of radioligand-treated tissues (MACS-RTT). Radioactivity in sorted cell populations was measured to quantify cell-specific [18F]FDG uptake. Transcriptional analyses of metabolic enzymes/transporters were also performed. Hypometabolism in the frontal association cortex of TgF344-AD rats was identified using [18F]FDG-PET, whereas hypermetabolism was identified in the hippocampus using MACS-RTT. Hypermetabolism was primarily driven by GLAST+ cells. This was supported by transcriptional analyses which showed alteration to metabolic apparatus, including upregulation of hexokinase 2 and altered expression of glucose/lactate transporters. See Figure 1 for summary.
Collapse
Affiliation(s)
- William J Morrey
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Kelly Ceyzériat
- CIBM Center for BioMedical Imaging, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Quentin Amossé
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Stergios Tsartsalis
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Hervé Boutin
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, Inserm, Tours, France
| | - Benjamin B Tournier
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Dawoody Nejad L, Pioro EP. Modeling ALS with Patient-Derived iPSCs: Recent Advances and Future Potentials. Brain Sci 2025; 15:134. [PMID: 40002468 PMCID: PMC11852857 DOI: 10.3390/brainsci15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal complex neurodegenerative disease, with 10-15% of cases being familial and the majority being sporadic with no known cause. There are no animal models for the 85-90% of sporadic ALS cases. More creative, sophisticated models of ALS disease are required to unravel the mysteries of this complicated disease. While ALS patients urgently require new medications and treatments, suitable preclinical in vitro models for drug screening are lacking. Therefore, human-derived induced pluripotent stem cell (hiPSC) technology offers the opportunity to model diverse and unreachable cell types in a culture dish. In this review, we focus on recent hiPSC-derived ALS neuronal and non-neuronal models to examine the research progress of current ALS 2D monocultures, co-cultures, and more complex 3D-model organoids. Despite the challenges inherent to hiPSC-based models, their application to preclinical drug studies is enormous.
Collapse
Affiliation(s)
| | - Erik P. Pioro
- Djavad Mowafaghian Centre for Brain Health, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
4
|
King DP, Abdalaziz M, Majewska AK, Cameron JL, Fudge JL. Microglia Morphology in the Developing Primate Amygdala and Effects of Early Life Stress. eNeuro 2025; 12:ENEURO.0466-24.2024. [PMID: 39753372 PMCID: PMC11735683 DOI: 10.1523/eneuro.0466-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons and likely supports local neuronal maturation and emerging synaptogenesis. Microglia may alter neuronal growth following environmental perturbations such as stress. Using multiple measures in rhesus macaques, we found that microglia in the infant primate PL had relatively large somas and a small arbor size. In contrast, microglia in the adolescent PL had a smaller soma and a larger dendritic arbor. We then examined microglial morphology in the PL after a novel maternal separation protocol, to examine the effects of early life stress. After maternal separation, the microglia had increased soma size, arbor size, and complexity. Surprisingly, strong effects were seen not only in the infant PL, but also in the adolescent PL from subjects who had experienced the separation many years earlier. We conclude that under normal maternal-rearing conditions, PL microglia morphology tracks PL neuronal growth, progressing to a more "mature" phenotype by adolescence. Maternal separation has long-lasting effects on microglia, altering their normal developmental trajectory, and resulting in a "hyper-ramified" phenotype that persists for years. We speculate that these changes have consequences for neuronal development in young primates.
Collapse
Affiliation(s)
- Dennisha P King
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
| | - Miral Abdalaziz
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
5
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2511-2537. [PMID: 37950146 PMCID: PMC11585519 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Rosete C, Ciernia AV. The Two Faces of HDAC3: Neuroinflammation in Disease and Neuroprotection in Recovery. Epigenomics 2024; 16:1373-1388. [PMID: 39513228 PMCID: PMC11728336 DOI: 10.1080/17501911.2024.2419357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a critical regulator of gene expression, influencing a variety of cellular processes in the central nervous system. As such, dysfunction of this enzyme may serve as a key driver in the pathophysiology of various neuropsychiatric disorders and neurodegenerative diseases. HDAC3 plays a crucial role in regulating neuroinflammation, and is now widely recognized as a major contributor to neurological conditions, as well as in promoting neuroprotective recovery following brain injury, hemorrhage and stroke. Emerging evidence suggests that pharmacological inhibition of HDAC3 can mitigate behavioral and neuroimmune deficits in various brain diseases and disorders, offering a promising therapeutic strategy. Understanding HDAC3 in the healthy brain lays the necessary foundation to define and resolve its dysfunction in a disease state. This review explores the mechanisms of HDAC3 in various cell types and its involvement in disease pathology, emphasizing the potential of HDAC3 inhibition to address neuroimmune, gene expression and behavioral deficits in a range of neurodegenerative and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| |
Collapse
|
8
|
Sapio MR, Staedtler ES, King DM, Maric D, Jahanipour J, Ghetti A, Jacobson KA, Mannes AJ, Iadarola MJ. Analgesic candidate adenosine A 3 receptors are expressed by perineuronal peripheral macrophages in human dorsal root ganglion and spinal cord microglia. Pain 2024; 165:2323-2343. [PMID: 38691673 PMCID: PMC11408117 DOI: 10.1097/j.pain.0000000000003242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 05/03/2024]
Abstract
ABSTRACT Adenosine receptors are a family of purinergic G protein-coupled receptors that are widely distributed in bodily organs and in the peripheral and central nervous systems. Recently, antihyperalgesic actions have been suggested for the adenosine A 3 receptor, and its agonists have been proposed as new neuropathic pain treatments. We hypothesized that these receptors may be expressed in nociceptive primary afferent neurons. However, RNA sequencing across species, eg, rat, mouse, dog, and human, suggests that dorsal root ganglion (DRG) expression of ADORA3 is inconsistent. In rat and mouse, Adora3 shows very weak to no expression in DRG, whereas it is well expressed in human DRG. However, the cell types in human DRG that express ADORA3 have not been delineated. An examination of DRG cell types using in situ hybridization clearly detected ADORA3 transcripts in peripheral macrophages that are in close apposition to the neuronal perikarya but not in peripheral sensory neurons. By contrast, ADORA1 was found primarily in neurons, where it is broadly expressed at low levels. These results suggest that a more complex or indirect mechanism involving modulation of macrophage and/or microglial cells may underlie the potential analgesic action of adenosine A 3 receptor agonism.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Ellen S Staedtler
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Diana M King
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD, United States
| | - Jahandar Jahanipour
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD, United States
| | - Andre Ghetti
- AnaBios Corporation, San Diego, CA, United States
| | - Kenneth A Jacobson
- National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Karl MT, Kim YD, Rajendran K, Manger PR, Sherwood CC. Invariance of Mitochondria and Synapses in the Primary Visual Cortex of Mammals Provides Insight Into Energetics and Function. J Comp Neurol 2024; 532:e25669. [PMID: 39291629 PMCID: PMC11412485 DOI: 10.1002/cne.25669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
The cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant. Our findings reveal remarkable uniformity in synapse density, postsynaptic density (PSD) length, and mitochondria density, indicating functional and metabolic constraints that maintain these fundamental features. Notably, we observed an average of 1.9 mitochondria per synapse across mammalian species. When considered together with the trend of decreasing neuron density with larger brain size, we find that brain enlargement in mammals is characterized by increasing proportions of synapses and mitochondria per cortical neuron. These results shed light on the adaptive mechanisms and metabolic dynamics that govern cortical ultrastructure across mammals.
Collapse
Affiliation(s)
- Molly T Karl
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Young Do Kim
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Kavita Rajendran
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Grabon W, Ruiz A, Gasmi N, Degletagne C, Georges B, Belmeguenai A, Bodennec J, Rheims S, Marcy G, Bezin L. CB2 expression in mouse brain: from mapping to regulation in microglia under inflammatory conditions. J Neuroinflammation 2024; 21:206. [PMID: 39160534 PMCID: PMC11334370 DOI: 10.1186/s12974-024-03202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Since its detection in the brain, the cannabinoid receptor type 2 (CB2) has been considered a promising therapeutic target for various neurological and psychiatric disorders. However, precise brain mapping of its expression is still lacking. Using magnetic cell sorting, calibrated RT-qPCR and single-nucleus RNAseq, we show that CB2 is expressed at a low level in all brain regions studied, mainly by few microglial cells, and by neurons in an even lower proportion. Upon lipopolysaccharide stimulation, modeling neuroinflammation in non-sterile conditions, we demonstrate that the inflammatory response is associated with a transient reduction in CB2 mRNA levels in brain tissue, particularly in microglial cells. This result, confirmed in the BV2 microglial cell line, contrasts with the positive correlation observed between CB2 mRNA levels and the inflammatory response upon stimulation by interferon-gamma, modeling neuroinflammation in sterile condition. Discrete brain CB2 expression might thus be up- or down-regulated depending on the inflammatory context.
Collapse
Affiliation(s)
- Wanda Grabon
- CNRS UMR5292, Inserm U1028, TIGER Team, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, 69500, Bron, France.
- Epilepsy Institute IDEE, 59 Boulevard Pinel, 69500, Bron, France.
| | - Anne Ruiz
- CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, GenCyTi Platform, 69500, Bron, France
| | - Nadia Gasmi
- CNRS UMR5292, Inserm U1028, TIGER Team, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, 69500, Bron, France
- Epilepsy Institute IDEE, 59 Boulevard Pinel, 69500, Bron, France
| | - Cyril Degletagne
- Cancer Genomic Platform, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Béatrice Georges
- CNRS UMR5292, Inserm U1028, TIGER Team, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, 69500, Bron, France
- Epilepsy Institute IDEE, 59 Boulevard Pinel, 69500, Bron, France
| | - Amor Belmeguenai
- CNRS UMR5292, Inserm U1028, TIGER Team, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, 69500, Bron, France
- Epilepsy Institute IDEE, 59 Boulevard Pinel, 69500, Bron, France
| | - Jacques Bodennec
- CNRS UMR5292, Inserm U1028, TIGER Team, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, 69500, Bron, France
- Epilepsy Institute IDEE, 59 Boulevard Pinel, 69500, Bron, France
| | - Sylvain Rheims
- CNRS UMR5292, Inserm U1028, TIGER Team, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, 69500, Bron, France
- Epilepsy Institute IDEE, 59 Boulevard Pinel, 69500, Bron, France
| | - Guillaume Marcy
- Université Claude Bernard Lyon 1, Bioinformatic Platform of the Labex Cortex, 69008, Lyon, France
| | - Laurent Bezin
- CNRS UMR5292, Inserm U1028, TIGER Team, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, 69500, Bron, France.
- Epilepsy Institute IDEE, 59 Boulevard Pinel, 69500, Bron, France.
| |
Collapse
|
11
|
King DP, Abdalaziz M, Majewska AK, Cameron JL, Fudge JL. Microglia morphology in the developing primate amygdala and effects of early life stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608133. [PMID: 39211183 PMCID: PMC11360906 DOI: 10.1101/2024.08.15.608133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis. Microglia may alter neuronal growth following environmental perturbations such as stress. Using multiple measures, we first found that microglia in the infant primate PL had relatively large somas, and a small arbor size. In contrast, microglia in the adolescent PL had a smaller soma, and a larger dendritic arbor. We then examined microglial morphology in the PL after a novel maternal separation protocol, to examine the effects of early life stress. After maternal separation, the microglia had increased soma size, arbor size and complexity. Surprisingly, strong effects were seen not only in the infant PL, but also in the adolescent PL from subjects who had experienced the separation many years earlier. We conclude that under maternal-rearing conditions, PL microglia morphology tracks PL neuronal growth, progressing to a more 'mature' phenotype by adolescence. Maternal separation has long-lasting effects on microglia, altering their normal developmental trajectory, and resulting in a 'hyper-ramified' phenotype that persists for years. We speculate that these changes have consequences for neuronal development in young primates. Significance Statement The paralaminar (PL) nucleus of the amygdala is an important source of plasticity, due to its unique repository of immature glutamatergic neurons. PL immature neurons mature between birth and adolescence. This process is likely supported by synaptogenesis, which requires microglia. Between infancy and adolescence in macaques, PL microglia became more dense, and shifted to a 'ramified' phenotype, consistent with increased synaptic pruning functions. Early life stress in the form of maternal separation, however, blunted this normal trajectory, leading to persistent 'parainflammatory' microglial morphologies. We speculate that early life stress may alter PL neuronal maturation and synapse formation through microglia.
Collapse
|
12
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
13
|
Diaz-Salazar C, Krzisch M, Yoo J, Nano PR, Bhaduri A, Jaenisch R, Polleux F. Human-specific paralogs of SRGAP2 induce neotenic features of microglia structural and functional maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601266. [PMID: 38979266 PMCID: PMC11230448 DOI: 10.1101/2024.06.28.601266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Microglia play key roles in shaping synaptic connectivity during neural circuits development. Whether microglia display human-specific features of structural and functional maturation is currently unknown. We show that the ancestral gene SRGAP2A and its human-specific (HS) paralogs SRGAP2B/C are not only expressed in cortical neurons but are the only HS gene duplications expressed in human microglia. Here, using combination of xenotransplantation of human induced pluripotent stem cell (hiPSC)-derived microglia and mouse genetic models, we demonstrate that (1) HS SRGAP2B/C are necessary and sufficient to induce neotenic features of microglia structural and functional maturation in a cell-autonomous manner, and (2) induction of SRGAP2-dependent neotenic features of microglia maturation non-cell autonomously impacts synaptic development in cortical pyramidal neurons. Our results reveal that, during human brain evolution, human-specific genes SRGAP2B/C coordinated the emergence of neotenic features of synaptic development by acting as genetic modifiers of both neurons and microglia.
Collapse
Affiliation(s)
- Carlos Diaz-Salazar
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Marine Krzisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Juyoun Yoo
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Patricia R. Nano
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| |
Collapse
|
14
|
Diniz DG, de Oliveira JHP, Guerreiro LCF, de Menezes GC, de Assis ACL, Duarte TQ, dos Santos IBD, Maciel FD, Soares GLDS, Araújo SC, Franco FTDC, do Carmo EL, Morais RDAB, de Lima CM, Brites D, Anthony DC, Diniz JAP, Diniz CWP. Contrasting Disease Progression, Microglia Reactivity, Tolerance, and Resistance to Toxoplasma gondii Infection in Two Mouse Strains. Biomedicines 2024; 12:1420. [PMID: 39061995 PMCID: PMC11274029 DOI: 10.3390/biomedicines12071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
Our study investigated the innate immune response to Toxoplasma gondii infection by assessing microglial phenotypic changes and sickness behavior as inflammatory response markers post-ocular tachyzoite instillation. Disease progression in Swiss albino mice was compared with the previously documented outcomes in BALB/c mice using an identical ocular route and parasite burden (2 × 105 tachyzoites), with saline as the control. Contrary to expectations, the Swiss albino mice displayed rapid, lethal disease progression, marked by pronounced sickness behaviors and mortality within 11-12 days post-infection, while the survivors exhibited no apparent signs of infection. Comparative analysis revealed the T. gondii-infected BALB/c mice exhibited reduced avoidance of feline odors, while the infected Swiss albino mice showed enhanced avoidance responses. There was an important increase in microglial cells in the dentate gyrus molecular layer of the infected Swiss albino mice compared to the BALB/c mice and their respective controls. Hierarchical cluster and discriminant analyses identified three microglial morphological clusters, differentially affected by T. gondii infection across strains. The BALB/c mice exhibited increased microglial branching and complexity, while the Swiss albino mice showed reduced shrunken microglial arbors, diminishing their morphological complexity. These findings highlight strain-specific differences in disease progression and inflammatory regulation, indicating lineage-specific mechanisms in inflammatory responses, tolerance, and resistance. Understanding these elements is critical in devising control measures for toxoplasmosis.
Collapse
Affiliation(s)
- Daniel G. Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém 66077-830, Pará, Brazil; (S.C.A.); (F.T.d.C.F.); (J.A.P.D.)
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Jhonnathan H. P. de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| | - Luma C. F. Guerreiro
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal do Pará, Campus Bragança, Bragança 68600-000, Pará, Brazil
| | - Gabriel C. de Menezes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| | - Alexa C. L. de Assis
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| | - Tainá Q. Duarte
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| | - Izabelly B. D. dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| | - Flávia D. Maciel
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| | - Gabrielly L. da S. Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| | - Sanderson C. Araújo
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém 66077-830, Pará, Brazil; (S.C.A.); (F.T.d.C.F.); (J.A.P.D.)
| | - Felipe T. de C. Franco
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém 66077-830, Pará, Brazil; (S.C.A.); (F.T.d.C.F.); (J.A.P.D.)
| | - Ediclei L. do Carmo
- Seção de Parasitologia, Instituto Evandro Chagas, Belém 67030-000, Pará, Brazil; (E.L.d.C.); (R.d.A.B.M.)
| | - Rafaela dos A. B. Morais
- Seção de Parasitologia, Instituto Evandro Chagas, Belém 67030-000, Pará, Brazil; (E.L.d.C.); (R.d.A.B.M.)
| | - Camila M. de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém 66077-830, Pará, Brazil; (S.C.A.); (F.T.d.C.F.); (J.A.P.D.)
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Daniel C. Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - José A. P. Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém 66077-830, Pará, Brazil; (S.C.A.); (F.T.d.C.F.); (J.A.P.D.)
| | - Cristovam W. P. Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil; (D.G.D.); (J.H.P.d.O.); (L.C.F.G.); (G.C.d.M.); (A.C.L.d.A.); (T.Q.D.); (I.B.D.d.S.); (F.D.M.); (G.L.d.S.S.); (C.M.d.L.)
| |
Collapse
|
15
|
Bedolla A, Wegman E, Weed M, Stevens MK, Ware K, Paranjpe A, Alkhimovitch A, Ifergan I, Taranov A, Peter JD, Gonzalez RMS, Robinson JE, McClain L, Roskin KM, Greig NH, Luo Y. Adult microglial TGFβ1 is required for microglia homeostasis via an autocrine mechanism to maintain cognitive function in mice. Nat Commun 2024; 15:5306. [PMID: 38906887 PMCID: PMC11192737 DOI: 10.1038/s41467-024-49596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
While TGF-β signaling is essential for microglial function, the cellular source of TGF-β1 ligand and its spatial regulation remains unclear in the adult CNS. Our data supports that microglia but not astrocytes or neurons are the primary producers of TGF-β1 ligands needed for microglial homeostasis. Microglia-Tgfb1 KO leads to the activation of microglia featuring a dyshomeostatic transcriptome that resembles disease-associated, injury-associated, and aged microglia, suggesting microglial self-produced TGF-β1 ligands are important in the adult CNS. Astrocytes in MG-Tgfb1 inducible (i)KO mice show a transcriptome profile that is closely aligned with an LPS-associated astrocyte profile. Additionally, using sparse mosaic single-cell microglia KO of TGF-β1 ligand we established an autocrine mechanism for signaling. Here we show that MG-Tgfb1 iKO mice present cognitive deficits, supporting that precise spatial regulation of TGF-β1 ligand derived from microglia is required for the maintenance of brain homeostasis and normal cognitive function in the adult brain.
Collapse
Affiliation(s)
- Alicia Bedolla
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Max Weed
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Kierra Ware
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Information Services for Research, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Anastasia Alkhimovitch
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Igal Ifergan
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua D Peter
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rosa Maria Salazar Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
| | - J Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
| | - Lucas McClain
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Krishna M Roskin
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA.
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
16
|
García-González J, Garcia-Gonzalez S, Liou L, O'Reilly PF. The Gene Expression Landscape of Disease Genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.20.24309121. [PMID: 38947033 PMCID: PMC11213058 DOI: 10.1101/2024.06.20.24309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Fine-mapping and gene-prioritisation techniques applied to the latest Genome-Wide Association Study (GWAS) results have prioritised hundreds of genes as causally associated with disease. Here we leverage these recently compiled lists of high-confidence causal genes to interrogate where in the body disease genes operate. Specifically, we combine GWAS summary statistics, gene prioritisation results and gene expression RNA-seq data from 46 tissues and 204 cell types in relation to 16 major diseases (including 8 cancers). In tissues and cell types with well-established relevance to the disease, the prioritised genes typically have higher absolute and relative (i.e. tissue/cell specific) expression compared to non-prioritised 'control' genes. Examples include brain tissues in psychiatric disorders (P-value < 1×10-7), microglia cells in Alzheimer's Disease (P-value = 9.8×10-3) and colon mucosa in colorectal cancer (P-value < 1×10-3). We also observe significantly higher expression for disease genes in multiple tissues and cell types with no established links to the corresponding disease. While some of these results may be explained by cell types that span multiple tissues, such as macrophages in brain, blood, lung and spleen in relation to Alzheimer's disease (P-values < 1×10-3), the cause for others is unclear and motivates further investigation that may provide novel insights into disease etiology. For example, mammary tissue in Type 2 Diabetes (P-value < 1×10-7); reproductive tissues such as breast, uterus, vagina, and prostate in Coronary Artery Disease (P-value < 1×10-4); and motor neurons in psychiatric disorders (P-value < 3×10-4). In the GTEx dataset, tissue type is the major predictor of gene expression but the contribution of each predictor (tissue, sample, subject, batch) varies widely among disease-associated genes. Finally, we highlight genes with the highest levels of gene expression in relevant tissues to guide functional follow-up studies. Our results could offer novel insights into the tissues and cells involved in disease initiation, inform drug target and delivery strategies, highlighting potential off-target effects, and exemplify the relative performance of different statistical tests for linking disease genes with tissue and cell type gene expression.
Collapse
Affiliation(s)
- Judit García-González
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| | - Saul Garcia-Gonzalez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
- Center for Excellence in Youth Education, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| | - Lathan Liou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| |
Collapse
|
17
|
Lee C, Friedman A. Generating PET scan patterns in Alzheimer's by a mathematical model. PLoS One 2024; 19:e0299637. [PMID: 38625863 PMCID: PMC11020767 DOI: 10.1371/journal.pone.0299637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 04/18/2024] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia. The cause of the disease is unknown, and it has no cure. Symptoms include cognitive decline, memory loss, and impairment of daily functioning. The pathological hallmarks of the disease are aggregation of plaques of amyloid-β (Aβ) and neurofibrillary tangles of tau proteins (τ), which can be detected in PET scans of the brain. The disease can remain asymptomatic for decades, while the densities of Aβ and τ continue to grow. Inflammation is considered an early event that drives the disease. In this paper, we develop a mathematical model that can produce simulated patterns of (Aβ,τ) seen in PET scans of AD patients. The model is based on the assumption that early inflammations, R and [Formula: see text], drive the growth of Aβ and τ, respectively. Recently approved drugs can slow the progression of AD in patients, provided treatment begins early, before significant damage to the brain has occurred. In line with current longitudinal studies, we used the model to demonstrate how to assess the efficacy of such drugs when given years before the disease becomes symptomatic.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Mathematics, Kyonggi University, Suwon, Republic of Korea
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
18
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
19
|
Wang X, Wang S, Holland MA. Axonal tension contributes to consistent fold placement. SOFT MATTER 2024; 20:3053-3065. [PMID: 38506323 DOI: 10.1039/d4sm00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cortical folding is a critical process during brain development, resulting in morphologies that are both consistent and distinct between individuals and species. While earlier studies have highlighted important aspects of cortical folding, most existing computational models, based on the differential growth theory, fall short of explaining why folds tend to appear in particular locations. The axon tension hypothesis may provide insight into this conundrum; however, there has been significant controversy about a potential role of axonal tension during the gyrification. The common opinion in the field is that axonal tension is inadequate to drive gyrification, but we currently run the risk of discarding this hypothesis without comprehensively studying the role of axonal tension. Here we propose a novel bi-layered finite element model incorporating the two theories, including characteristic axonal tension in the subcortex and differential cortical growth. We show that axon tension can serve as a perturbation sufficient to trigger buckling in simulations; similarly to other types of perturbations, the natural stability behavior of the system tends to determine some characteristics of the folding morphology (e.g. the wavelength) while the perturbation determines the location of folds. Certain geometries, however, can interact or compete with the natural stability of the system to change the wavelength. When multiple perturbations are present, they similarly compete with each other. We found that an axon bundle of reasonable size will overpower up to a 5% thickness perturbation (typical in the literature) and determine fold placement. Finally, when multiple axon tracts are present, even a slight difference in axon stiffness, representing the heterogeneity of axonal connections, is enough to significantly change the folding pattern. While the simulations presented here are a very simple representation of white matter connectivity, our findings point to urgent future research on the role of axon connectivity in cortical folding.
Collapse
Affiliation(s)
- Xincheng Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
20
|
Green TR, Nguyen T, Dunker V, Ashton D, Ortiz JB, Murphy SM, Rowe RK. Blood-Brain Barrier Dysfunction Predicts Microglial Activation After Traumatic Brain Injury in Juvenile Rats. Neurotrauma Rep 2024; 5:95-116. [PMID: 38404523 PMCID: PMC10890961 DOI: 10.1089/neur.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB), which may exacerbate neuroinflammation post-injury. Few translational studies have examined BBB dysfunction and subsequent neuroinflammation post-TBI in juveniles. We hypothesized that BBB dysfunction positively predicts microglial activation and that vulnerability to BBB dysfunction and associated neuroinflammation are dependent on age at injury. Post-natal day (PND)17 and PND35 rats (n = 56) received midline fluid percussion injury or sham surgery, and immunoglobulin-G (IgG) stain was quantified as a marker of extravasated blood in the brain and BBB dysfunction. We investigated BBB dysfunction and the microglial response in the hippocampus, hypothalamus, and motor cortex relative to age at injury and days post-injury (DPI; 1, 7, and 25). We measured the morphologies of ionized calcium-binding adaptor molecule 1-labeled microglia using cell body area and perimeter, microglial branch number and length, end-points/microglial cell, and number of microglia. Data were analyzed using generalized hierarchical models. In PND17 rats, TBI increased levels of IgG compared to shams. Independent of age at injury, IgG in TBI rats was higher at 1 and 7 DPI, but resolved by 25 DPI. TBI activated microglia (more cells and fewer end-points) in PND35 rats compared to respective shams. Independent of age at injury, TBI induced morphological changes indicative of microglial activation, which resolved by 25 DPI. TBI rats had fewer cells and end-points per cell at 1 and 7 DPI than 25 DPI. Independent of TBI, PND17 rats had larger, more activated microglia than PND35 rats; PND17 TBI rats had larger cell body areas and perimeters than PND35 TBI rats. Importantly, we found support in both ages that IgG quantification predicted microglial activation after TBI. The number of microglia increased with increasing IgG, whereas branch length decreased with increasing IgG, which together indicate microglial activation. Our results suggest that stabilization of the BBB after pediatric TBI may be an important therapeutic strategy to limit neuroinflammation and promote recovery.
Collapse
Affiliation(s)
- Tabitha R.F. Green
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - Tina Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - Veronika Dunker
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - Danielle Ashton
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - J. Bryce Ortiz
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Arizona, USA
| | - Sean M. Murphy
- Cumberland Biological and Ecological Researchers, Longmont, Colorado, USA
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| |
Collapse
|
21
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
22
|
Roussos P, Kosoy R, Fullard J, Bendl J, Kleopoulos S, Shao Z, Argyriou S, Mathur D, Vicari J, Ma Y, Humphrey J, Brophy E, Raj T, Katsel P, Voloudakis G, Lee D, Bennett D, Haroutunian V, Hoffman G. Alzheimer's disease transcriptional landscape in ex-vivo human microglia. RESEARCH SQUARE 2024:rs.3.rs-3851590. [PMID: 38343831 PMCID: PMC10854306 DOI: 10.21203/rs.3.rs-3851590/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Microglia are resident immune cells of the brain and are implicated in the etiology of Alzheimer's Disease (AD) and other diseases. Yet the cellular and molecular processes regulating their function throughout the course of the disease are poorly understood. Here, we present the transcriptional landscape of primary microglia from 189 human postmortem brains, including 58 healthy aging individuals and 131 with a range of disease phenotypes, including 63 patients representing the full spectrum of clinical and pathological severity of AD. We identified transcriptional changes associated with multiple AD phenotypes, capturing the severity of dementia and neuropathological lesions. Transcript-level analyses identified additional genes with heterogeneous isoform usage and AD phenotypes. We identified changes in gene-gene coordination in AD, dysregulation of co-expression modules, and disease subtypes with distinct gene expression. Taken together, these data further our understanding of the key role of microglia in AD biology and nominate candidates for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yixuan Ma
- Icahn School of Medicine at Mount Sinai
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rickelton K, Zintel TM, Pizzollo J, Miller E, Ely JJ, Raghanti MA, Hopkins WD, Hof PR, Sherwood CC, Bauernfeind AL, Babbitt CC. Tempo and mode of gene expression evolution in the brain across primates. eLife 2024; 13:e70276. [PMID: 38275218 PMCID: PMC10876213 DOI: 10.7554/elife.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.
Collapse
Affiliation(s)
- Katherine Rickelton
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Trisha M Zintel
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Emily Miller
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
- MAEBIOS Epidemiology UnitAlamogordoUnited States
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State UniversityKentUnited States
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine,The University of Texas M D Anderson Cancer CentreBastropUnited States
| | - Patrick R Hof
- New York Consortium in Evolutionary PrimatologyNew YorkUnited States
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Anthropology, Washington University in St. LouisSt. LouisUnited States
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
24
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Plaza-Jennings A, Akbarian S. Genomic Exploration of the Brain in People Infected with HIV-Recent Progress and the Road Ahead. Curr HIV/AIDS Rep 2023; 20:357-367. [PMID: 37947981 PMCID: PMC10719125 DOI: 10.1007/s11904-023-00675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE OF REVIEW The adult human brain harbors billions of microglia and other myeloid and lymphoid cells highly susceptible to HIV infection and retroviral insertion into the nuclear DNA. HIV infection of the brain is important because the brain is a potentially large reservoir site that may be a barrier to HIV cure strategies and because infection can lead to the development of HIV-associated neurocognitive disorder. To better understand both the central nervous system (CNS) reservoir and how it can cause neurologic dysfunction, novel genomic, epigenomic, transcriptomic, and proteomic approaches need to be employed. Several characteristics of the reservoir are important to learn, including where the virus integrates, whether integrated proviruses are intact or defective, whether integrated proviruses can be reactivated from a latent state to seed ongoing infection, and how this all impacts brain function. RECENT FINDINGS Here, we discuss similarities and differences of viral integration sites between brain and blood and discuss evidence for and against the hypothesis that in the absence of susceptible T-lymphocytes in the periphery, the virus housing in the infected brain is not able to sustain a systemic infection. Moreover, microglia from HIV + brains across a wide range of disease severity appear to share one type of common alteration, which is defined by downregulated expression, and repressive chromosomal compartmentalization, for microglial genes regulating synaptic connectivity. Therefore, viral infection of the brain, including in immunocompetent cases with near-normal levels of CD4 blood lymphocytes, could be associated with an early disruption in microglia-dependent neuronal support functions, contributing to cognitive and neurological deficits in people living with HIV.
Collapse
Affiliation(s)
- Amara Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
26
|
Zhang F, Yang D, Li J, Du C, Sun X, Li W, Liu F, Yang Y, Li Y, Fu L, Li R, Zhang CX. Synaptotagmin-11 regulates immune functions of microglia in vivo. J Neurochem 2023; 167:680-695. [PMID: 37924268 DOI: 10.1111/jnc.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1β, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
Collapse
Affiliation(s)
- Feifan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dong Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jingchen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinran Sun
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiwei Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
27
|
Bartos LM, Kirchleitner SV, Kolabas ZI, Quach S, Beck A, Lorenz J, Blobner J, Mueller SA, Ulukaya S, Hoeher L, Horvath I, Wind-Mark K, Holzgreve A, Ruf VC, Gold L, Kunze LH, Kunte ST, Beumers P, Park HE, Antons M, Zatcepin A, Briel N, Hoermann L, Schaefer R, Messerer D, Bartenstein P, Riemenschneider MJ, Lindner S, Ziegler S, Herms J, Lichtenthaler SF, Ertürk A, Tonn JC, von Baumgarten L, Albert NL, Brendel M. Deciphering sources of PET signals in the tumor microenvironment of glioblastoma at cellular resolution. SCIENCE ADVANCES 2023; 9:eadi8986. [PMID: 37889970 PMCID: PMC10610915 DOI: 10.1126/sciadv.adi8986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Various cellular sources hamper interpretation of positron emission tomography (PET) biomarkers in the tumor microenvironment (TME). We developed an approach of immunomagnetic cell sorting after in vivo radiotracer injection (scRadiotracing) with three-dimensional (3D) histology to dissect the cellular allocation of PET signals in the TME. In mice with implanted glioblastoma, translocator protein (TSPO) radiotracer uptake per tumor cell was higher compared to tumor-associated microglia/macrophages (TAMs), validated by protein levels. Translation of in vitro scRadiotracing to patients with glioma immediately after tumor resection confirmed higher single-cell TSPO tracer uptake of tumor cells compared to immune cells. Across species, cellular radiotracer uptake explained the heterogeneity of individual TSPO-PET signals. In consideration of cellular tracer uptake and cell type abundance, tumor cells were the main contributor to TSPO enrichment in glioblastoma; however, proteomics identified potential PET targets highly specific for TAMs. Combining cellular tracer uptake measures with 3D histology facilitates precise allocation of PET signals and serves to validate emerging novel TAM-specific radioligands.
Collapse
Affiliation(s)
- Laura M. Bartos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital of Munich, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Alexander Beck
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Jens Blobner
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stephan A. Mueller
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- Faculty of Biology, Master of Science Program in Molecular and Cellular Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Luciano Hoeher
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- School of Computation, Information and Technology (CIT), TUM, Boltzmannstr. 3, 85748 Garching, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lea H. Kunze
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sebastian T. Kunte
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Philipp Beumers
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ha Eun Park
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
| | - Nils Briel
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
| | - Leonie Hoermann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Rebecca Schaefer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Denise Messerer
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan F. Lichtenthaler
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital of Munich, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joerg C. Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
28
|
Pimentel‐Coelho PM. Monocytes in neonatal stroke and hypoxic‐ischemic encephalopathy: Pathophysiological mechanisms and therapeutic possibilities. NEUROPROTECTION 2023; 1:66-79. [DOI: 10.1002/nep3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractNeonatal arterial ischemic stroke (NAIS) and neonatal hypoxic‐ischemic encephalopathy (HIE) are common causes of neurological impairments in infants, for which treatment options are very limited. NAIS and HIE induce an innate immune response that involves the recruitment of peripheral immune cells, including monocytes, into the brain. Monocytes and monocyte‐derived cells have the potential to contribute to both harmful and beneficial pathophysiological processes, such as neuroinflammation and brain repair, but their roles in NAIS and HIE remain poorly understood. Furthermore, recent evidence indicates that monocyte‐derived macrophages can persist in the brain for several months following NAIS and HIE in mice, with possible long‐lasting consequences that are still unknown. This review provides a comprehensive overview of the mechanisms of monocyte infiltration and their potential functions in the ischemic brain, focusing on HIE and NAIS. Therapeutic strategies targeting monocytes and the possibility of using monocytes for cell‐based therapies are also discussed.
Collapse
Affiliation(s)
- Pedro M. Pimentel‐Coelho
- Carlos Chagas Filho Biophysics Institute Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
29
|
Angst G, Tang X, Wang C. Functional Analysis of a Novel Immortalized Murine Microglia Cell Line in 3D Spheroid Model. Neurochem Res 2023; 48:2857-2869. [PMID: 37195378 PMCID: PMC10694847 DOI: 10.1007/s11064-023-03952-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Microglia are the residential immune cells of central nervous system and they are crucial for brain development and homeostasis, as well as the progression of inflammatory brain diseases. To study microglia's physiological and pathological functions, one of the most widely used models is primary microglia culture from neonatal rodents. However, primary microglia culture is time consuming and needs a great number of animals. In our microglia culture, we found a strain of spontaneously immortalized microglia that continued to divide without any known genetic intervention. We confirmed the immortalization of these cells for uninterrupted thirty passages and we named them as immortalized microglia like-1 cells (iMG-1). The iMG-1 cells kept their microglia morphology, and they expressed macrophage/microglia-specific proteins of CD11b, CD68, P2RY12, and IBA1 in vitro. iMG-1 cells were responsive to inflammatory stimulations with lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (pIpC), triggering increased mRNA/protein levels of IL1-β, IL-6, TNF-α, and interferons. LPS and pIpC treated iMG-1 cells also significantly increased their accumulation of lipid droplets (LDs). We also generated a 3D spheroid model using immortalized neural progenitor cells and iMG-1 cells with defined percentages to study neuroinflammation. The iMG-1 cells distributed evenly in spheroids, and they regulated the basal mRNA levels of cytokines of neural progenitors in 3D spheroid. iMG-1 cells were responsive to LPS by increased expression of IL-6 and IL1-β in spheroids. Together, this study indicated the reliability of iMG-1 which could be readily available to study the physiological and pathological functions of microglia.
Collapse
Affiliation(s)
- Gabrielle Angst
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, 45267, USA
| | - Xin Tang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, 45267, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
30
|
Garland EF, Dennett O, Lau LC, Chatelet DS, Bottlaender M, Nicoll JAR, Boche D. The mitochondrial protein TSPO in Alzheimer's disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation 2023; 20:186. [PMID: 37580767 PMCID: PMC10424356 DOI: 10.1186/s12974-023-02869-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
The 18kD translocator protein (TSPO) is used as a positron emission tomography (PET) target to quantify neuroinflammation in patients. In Alzheimer's disease (AD), the cerebellum is the pseudo-reference region for comparison with the cerebral cortex due to the absence of AD pathology and lower levels of TSPO. However, using the cerebellum as a pseudo-reference region is debated, with other brain regions suggested as more suitable. This paper aimed to establish the neuroinflammatory differences between the temporal cortex and cerebellar cortex, including TSPO expression. Using 60 human post-mortem samples encompassing the spectrum of Braak stages (I-VI), immunostaining for pan-Aβ, hyperphosphorylated (p)Tau, TSPO and microglial proteins Iba1, HLA-DR and MSR-A was performed in the temporal cortex and cerebellum. In the cerebellum, Aβ but not pTau, increased over the course of the disease, in contrast to the temporal cortex, where both proteins were significantly increased. TSPO increased in the temporal cortex, more than twofold in the later stages of AD compared to the early stages, but not in the cerebellum. Conversely, Iba1 increased in the cerebellum, but not in the temporal cortex. TSPO was associated with pTau in the temporal cortex, suggesting that TSPO positive microglia may be reacting to pTau itself and/or neurodegeneration at later stages of AD. Furthermore, the neuroinflammatory microenvironment was examined, using MesoScale Discovery assays, and IL15 only was significantly increased in the temporal cortex. Together this data suggests that the cerebellum maintains a more homeostatic environment compared to the temporal cortex, with a consistent TSPO expression, supporting its use as a pseudo-reference region for quantification in TSPO PET scans.
Collapse
Affiliation(s)
- Emma F Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Oliver Dennett
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Laurie C Lau
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Michel Bottlaender
- CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frederic Joliot, Paris-Sacaly University, 91400, Orsay, France
- UNIACT Neurospin, CEA, Gif-Sur-Yvette, 91191, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton, SO16 6YD, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
31
|
Ishijima T, Nakajima K. Mechanisms of Microglia Proliferation in a Rat Model of Facial Nerve Anatomy. BIOLOGY 2023; 12:1121. [PMID: 37627005 PMCID: PMC10452325 DOI: 10.3390/biology12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers. We analyzed microglial mitosis using a facial nerve transection model in which the blood-brain barrier is left unimpaired when the nerves are axotomized. Our results showed that the levels of macrophage colony-stimulating factor (M-CSF), cFms (the receptor for M-CSF), cyclin A/D, and proliferating cell nuclear antigen (PCNA) were increased in microglia in the axotomized facial nucleus (axotFN). In vitro experiments revealed that M-CSF induced cFms, cyclin A/D, and PCNA in microglia, suggesting that microglia proliferate in response to M-CSF in vivo. In addition, M-CSF caused the activation of c-Jun N-terminal kinase (JNK) and p38, and the specific inhibitors of JNK and p38 arrested the microglial mitosis. JNK and p38 were shown to play roles in the induction of cyclins/PCNA and cFms, respectively. cFms was suggested to be induced through a signaling cascade of p38-mitogen- and stress-activated kinase-1 (MSK1)-cAMP-responsive element binding protein (CREB) and/or p38-activating transcription factor 2 (ATF2). Microglia proliferating in the axotFN are anticipated to serve as neuroprotective cells by supplying neurotrophic factors and/or scavenging excite toxins and reactive oxygen radicals.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
- Glycan & Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| |
Collapse
|
32
|
Van Zandt AR, MacLean AG. Advances in HIV therapeutics and cure strategies: findings obtained through non-human primate studies. J Neurovirol 2023; 29:389-399. [PMID: 37635184 PMCID: PMC11636591 DOI: 10.1007/s13365-023-01162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Human immunodeficiency virus (HIV), the main contributor of the ongoing AIDS epidemic, remains one of the most challenging and complex viruses to target and eradicate due to frequent genome mutation and immune evasion. Despite the development of potent antiretroviral therapies, HIV remains an incurable infection as the virus persists in latent reservoirs throughout the body. To innovate a safe and effective cure strategy for HIV in humans, animal models are needed to better understand viral proliferation, disease progression, and therapeutic response. Nonhuman primates infected with simian immunodeficiency virus (SIV) provide an ideal model to study HIV infection and pathogenesis as they are closely related to humans genetically and express phenotypically similar immune systems. Examining the clinical outcomes of novel treatment strategies within nonhuman primates facilitates our understanding of HIV latency and advances the development of a true cure to HIV.
Collapse
Affiliation(s)
- Alison R Van Zandt
- Tulane National Primate Research Center, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, USA.
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
- Tulane Center for Aging, New Orleans, LA, USA.
| |
Collapse
|
33
|
Bedolla A, Wegman E, Weed M, Paranjpe A, Alkhimovitch A, Ifergan I, McClain L, Luo Y. Microglia-derived TGF-β1 ligand maintains microglia homeostasis via autocrine mechanism and is critical for normal cognitive function in adult mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547814. [PMID: 37461569 PMCID: PMC10349967 DOI: 10.1101/2023.07.05.547814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
While TGF-β signaling is essential for microglial function, the cellular source of TGF-β ligand and its spatial regulation remains unclear in the adult CNS. Our data support that microglia, not astrocytes or neurons, are the primary producers of TGF-β1 ligands needed for microglial homeostasis. Microglia (MG)-Tgfb1 inducible knockout (iKO) leads to the activation of microglia featuring a dyshomeostatic transcriptomic profile that resembles disease-associated microglia (DAMs), injury-associated microglia, and aged microglia, suggesting that microglial self-produced TGF-β1 ligands are important in the adult CNS. Interestingly, astrocytes in MG-Tgfb1 iKO mice show a transcriptome profile that closely aligns with A1-like astrocytes. Additionally, using sparse mosaic single-cell microglia iKO of TGF-β1 ligand, we established an autocrine mechanism for TGF-β signaling. Importantly MG-Tgfb1 iKO mice show cognitive deficits, supporting that precise spatial regulation of TGF-β1 ligand derived from microglia is critical for the maintenance of brain homeostasis and normal cognitive function in the adult brain.
Collapse
Affiliation(s)
- Alicia Bedolla
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Max Weed
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Aditi Paranjpe
- Information Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anastasia Alkhimovitch
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Igal Ifergan
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lucas McClain
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
34
|
Hobson BD, Stanley AT, De Los Santos MB, Culbertson B, Mosharov EV, Sims PA, Sulzer D. Conserved and cell type-specific transcriptional responses to IFN-γ in the ventral midbrain. Brain Behav Immun 2023; 111:277-291. [PMID: 37100211 PMCID: PMC10460506 DOI: 10.1016/j.bbi.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
Dysregulated inflammation within the central nervous system (CNS) contributes to neuropathology in infectious, autoimmune, and neurodegenerative disease. With the exception of microglia, major histocompatibility complex (MHC) proteins are virtually undetectable in the mature, healthy central nervous system (CNS). Neurons have generally been considered incapable of antigen presentation, and although interferon gamma (IFN-γ) can elicit neuronal MHC class I (MHC-I) expression and antigen presentation in vitro, it has been unclear whether similar responses occur in vivo. Here we directly injected IFN-γ into the ventral midbrain of mature mice and analyzed gene expression profiles of specific CNS cell types. We found that IFN-γ upregulated MHC-I and associated mRNAs in ventral midbrain microglia, astrocytes, oligodendrocytes, and GABAergic, glutamatergic, and dopaminergic neurons. The core set of IFN-γ-induced genes and their response kinetics were similar in neurons and glia, but with a lower amplitude of expression in neurons. A diverse repertoire of genes was upregulated in glia, particularly microglia, which were the only cells to undergo cellular proliferation and express MHC classII (MHC-II) and associated genes. To determine if neurons respond directly via cell-autonomous IFN-γ receptor (IFNGR) signaling, we produced mutant mice with a deletion of the IFN-γ-binding domain of IFNGR1 in dopaminergic neurons, which resulted in a complete loss of dopaminergic neuronal responses to IFN-γ. Our results demonstrate that IFN-γ induces neuronal IFNGR signaling and upregulation of MHC-I and related genes in vivo, although the expression level is low compared to oligodendrocytes, astrocytes, and microglia.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Adrien T Stanley
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Mark B De Los Santos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Bruce Culbertson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, United States; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| |
Collapse
|
35
|
Vu TM, Hervé V, Ulfat AK, Lamontagne-Kam D, Brouillette J. Impact of non-neuronal cells in Alzheimer's disease from a single-nucleus profiling perspective. Front Cell Neurosci 2023; 17:1208122. [PMID: 37388411 PMCID: PMC10300346 DOI: 10.3389/fncel.2023.1208122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
The role of non-neuronal cells has been relatively overlooked in Alzheimer's disease (AD) neuropathogenesis compared to neuronal cells since the first characterization of the disease. Genome wide-association studies (GWAS) performed in the last few decades have greatly contributed to highlighting the critical impact of non-neuronal cells in AD by uncovering major genetic risk factors that are found largely in these cell types. The recent development of single cell or single nucleus technologies has revolutionized the way we interrogate the transcriptomic and epigenetic profiles of neurons, microglia, astrocytes, oligodendrocytes, pericytes, and endothelial cells simultaneously in the same sample and in an individual manner. Here, we review the latest advances in single-cell/nucleus RNA sequencing and Assay for Transposase-Accessible Chromatin (ATAC) sequencing to more accurately understand the function of non-neuronal cells in AD. We conclude by giving an overview of what still needs to be achieved to better appreciate the interconnected roles of each cell type in the context of AD.
Collapse
|
36
|
Janušonis S, Haiman JH, Metzler R, Vojta T. Predicting the distribution of serotonergic axons: a supercomputing simulation of reflected fractional Brownian motion in a 3D-mouse brain model. Front Comput Neurosci 2023; 17:1189853. [PMID: 37265780 PMCID: PMC10231035 DOI: 10.3389/fncom.2023.1189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
The self-organization of the brain matrix of serotonergic axons (fibers) remains an unsolved problem in neuroscience. The regional densities of this matrix have major implications for neuroplasticity, tissue regeneration, and the understanding of mental disorders, but the trajectories of its fibers are strongly stochastic and require novel conceptual and analytical approaches. In a major extension to our previous studies, we used a supercomputing simulation to model around one thousand serotonergic fibers as paths of superdiffusive fractional Brownian motion (FBM), a continuous-time stochastic process. The fibers produced long walks in a complex, three-dimensional shape based on the mouse brain and reflected at the outer (pial) and inner (ventricular) boundaries. The resultant regional densities were compared to the actual fiber densities in the corresponding neuroanatomically-defined regions. The relative densities showed strong qualitative similarities in the forebrain and midbrain, demonstrating the predictive potential of stochastic modeling in this system. The current simulation does not respect tissue heterogeneities but can be further improved with novel models of multifractional FBM. The study demonstrates that serotonergic fiber densities can be strongly influenced by the geometry of the brain, with implications for brain development, plasticity, and evolution.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Justin H. Haiman
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
- Asia Pacific Center for Theoretical Physics, Pohang, South Korea
| | - Thomas Vojta
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
37
|
Fujikawa R, Tsuda M. The Functions and Phenotypes of Microglia in Alzheimer's Disease. Cells 2023; 12:cells12081207. [PMID: 37190116 DOI: 10.3390/cells12081207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, but therapeutic strategies to slow down AD pathology and symptoms have not yet been successful. While attention has been focused on neurodegeneration in AD pathogenesis, recent decades have provided evidence of the importance of microglia, and resident immune cells in the central nervous system. In addition, new technologies, including single-cell RNA sequencing, have revealed heterogeneous cell states of microglia in AD. In this review, we systematically summarize the microglial response to amyloid-β and tau tangles, and the risk factor genes expressed in microglia. Furthermore, we discuss the characteristics of protective microglia that appear during AD pathology and the relationship between AD and microglia-induced inflammation during chronic pain. Understanding the diverse roles of microglia will help identify new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Kyushu University Institute for Advanced Study, Fukuoka 819-0395, Japan
| |
Collapse
|
38
|
Dermitzakis I, Manthou ME, Meditskou S, Tremblay MÈ, Petratos S, Zoupi L, Boziki M, Kesidou E, Simeonidou C, Theotokis P. Origin and Emergence of Microglia in the CNS-An Interesting (Hi)story of an Eccentric Cell. Curr Issues Mol Biol 2023; 45:2609-2628. [PMID: 36975541 PMCID: PMC10047736 DOI: 10.3390/cimb45030171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia belong to tissue-resident macrophages of the central nervous system (CNS), representing the primary innate immune cells. This cell type constitutes ~7% of non-neuronal cells in the mammalian brain and has a variety of biological roles integral to homeostasis and pathophysiology from the late embryonic to adult brain. Its unique identity that distinguishes its "glial" features from tissue-resident macrophages resides in the fact that once entering the CNS, it is perennially exposed to a unique environment following the formation of the blood-brain barrier. Additionally, tissue-resident macrophage progenies derive from various peripheral sites that exhibit hematopoietic potential, and this has resulted in interpretation issues surrounding their origin. Intensive research endeavors have intended to track microglial progenitors during development and disease. The current review provides a corpus of recent evidence in an attempt to disentangle the birthplace of microglia from the progenitor state and underlies the molecular elements that drive microgliogenesis. Furthermore, it caters towards tracking the lineage spatiotemporally during embryonic development and outlining microglial repopulation in the mature CNS. This collection of data can potentially shed light on the therapeutic potential of microglia for CNS perturbations across various levels of severity.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Lida Zoupi
- Centre for Discovery Brain Sciences & Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
39
|
Haslea ostrearia Pigment Marennine Affects Key Actors of Neuroinflammation and Decreases Cell Migration in Murine Neuroglial Cell Model. Int J Mol Sci 2023; 24:ijms24065388. [PMID: 36982463 PMCID: PMC10049552 DOI: 10.3390/ijms24065388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Haslea ostrearia, a cosmopolitan marine pennate diatom, produces a characteristic blue pigment called marennine that causes the greening of filter-feeding organisms, such as oysters. Previous studies evidenced various biological activities of purified marennine extract, such as antibacterial, antioxidant and antiproliferative effects. These effects could be beneficial to human health. However, the specific biological activity of marennine remains to be characterized, especially regarding primary cultures of mammals. In the present study, we aimed to determine in vitro the effects of a purified extract of marennine on neuroinflammatory and cell migratory processes. These effects were assessed at non-cytotoxic concentrations of 10 and 50μg/mL on primary cultures of neuroglial cells. Marennine strongly interacts with neuroinflammatory processes in the immunocompetent cells of the central nervous system, represented by astrocytes and microglial cells. An anti-migratory activity based on a neurospheres migration assay has also been observed. These results encourage further study of Haslea blue pigment effects, particularly the identification of molecular and cellular targets affected by marennine, and strengthen previous studies suggesting that marennine has bioactivities which could be beneficial for human health applications.
Collapse
|
40
|
The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. Int J Mol Sci 2023; 24:ijms24054739. [PMID: 36902168 PMCID: PMC10003784 DOI: 10.3390/ijms24054739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Microglia are the primary immunocompetent cells of the central nervous system (CNS). Their ability to survey, assess and respond to perturbations in their local environment is critical in their role of maintaining CNS homeostasis in health and disease. Microglia also have the capability of functioning in a heterogeneous manner depending on the nature of their local cues, as they can become activated on a spectrum from pro-inflammatory neurotoxic responses to anti-inflammatory protective responses. This review seeks to define the developmental and environmental cues that support microglial polarization towards these phenotypes, as well as discuss sexually dimorphic factors that can influence this process. Further, we describe a variety of CNS disorders including autoimmune disease, infection, and cancer that demonstrate disparities in disease severity or diagnosis rates between males and females, and posit that microglial sexual dimorphism underlies these differences. Understanding the mechanism behind differential CNS disease outcomes between men and women is crucial in the development of more effective targeted therapies.
Collapse
|
41
|
Ridley B, Morsillo F, Zaaraoui W, Nonino F. Variability by region and method in human brain sodium concentrations estimated by 23Na magnetic resonance imaging: a meta-analysis. Sci Rep 2023; 13:3222. [PMID: 36828873 PMCID: PMC9957999 DOI: 10.1038/s41598-023-30363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Sodium imaging (23Na-MRI) is of interest in neurological conditions given potential sensitivity to the physiological and metabolic status of tissues. Benchmarks have so far been restricted to parenchyma or grey/white matter (GM/WM). We investigate (1) the availability of evidence, (2) regional pooled estimates and (3) variability attributable to region/methodology. MEDLINE literature search for tissue sodium concentration (TSC) measured in specified 'healthy' brain regions returned 127 reports, plus 278 retrieved from bibliographies. 28 studies met inclusion criteria, including 400 individuals. Reporting variability led to nested data structure, so we used multilevel meta-analysis and a random effects model to pool effect sizes. The pooled mean from 141 TSC estimates was 40.51 mM (95% CI 37.59-43.44; p < 0.001, I2Total=99.4%). Tissue as a moderator was significant (F214 = 65.34, p-val < .01). Six sub-regional pooled means with requisite statistical power were derived. We were unable to consider most methodological and demographic factors sought because of non-reporting, but each factor included beyond tissue improved model fit. Significant residual heterogeneity remained. The current estimates provide an empirical point of departure for better understanding in 23Na-MRI. Improving on current estimates supports: (1) larger, more representative data collection/sharing, including (2) regional data, and (3) agreement on full reporting standards.
Collapse
Affiliation(s)
- Ben Ridley
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Ben Ridley, Epidemiologia e Statistica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Padiglione G, Via Altura, 3, 40139, Bologna, Italy.
| | - Filomena Morsillo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital de La Timone, CEMEREM, Marseille, France
| | - Francesco Nonino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
42
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
43
|
Mado H, Adamczyk-Sowa M, Sowa P. Role of Microglial Cells in the Pathophysiology of MS: Synergistic or Antagonistic? Int J Mol Sci 2023; 24:ijms24031861. [PMID: 36768183 PMCID: PMC9916250 DOI: 10.3390/ijms24031861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Many studies indicate an important role of microglia and their cytokines in the pathophysiology of multiple sclerosis (MS). Microglia are the macrophages of the central nervous system (CNS). They have many functions, such as being "controllers" of the CNS homeostasis in pathological and healthy conditions, playing a key role in the active immune defense of the CNS. Macroglia exhibit a dual role, depending on the phenotype they adopt. First, they can exhibit neurotoxic effects, which are harmful in the case of MS. However, they also show neuroprotective and regenerative effects in this disease. Many of the effects of microglia are mediated through the cytokines they secrete, which have either positive or negative properties. Neurotoxic and pro-inflammatory effects can be mediated by microglia via lipopolysaccharide and gamma interferon. On the other hand, the mediators of anti-inflammatory and protective effects secreted by microglia can be, for example, interleukin-4 and -13. Further investigation into the role of microglia in MS pathophysiology may perhaps lead to the discovery of new therapies for MS, as recent research in this area has been very promising.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-695948463; Fax: +48-323704597
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
44
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
45
|
Hase Y, Ameen‐Ali KE, Waller R, Simpson JE, Stafford C, Mahesh A, Ryan L, Pickering L, Bodman C, Hase M, Boche D, Horsburgh K, Wharton SB, Kalaria RN. Differential perivascular microglial activation in the deep white matter in vascular dementia developed post-stroke. Brain Pathol 2022; 32:e13101. [PMID: 35748290 PMCID: PMC9616090 DOI: 10.1111/bpa.13101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
With the hypothesis that perivascular microglia are involved as neuroinflammatory components of the gliovascular unit contributing to white matter hyperintensities on MRI and pathophysiology, we assessed their status in stroke survivors who develop dementia. Immunohistochemical and immunofluorescent methods were used to assess the distribution and quantification of total and perivascular microglial cell densities in 68 brains focusing on the frontal lobe WM and overlying neocortex in post-stroke dementia (PSD), post-stroke non-dementia (PSND) and similar age control subjects. We primarily used CD68 as a marker of phagocytic microglia, as well as other markers of microglia including Iba-1 and TMEM119, and the myeloid cell marker TREM2 to assess dementia-specific changes. We first noted greater total densities of CD68+ and TREM2+ cells per mm2 in the frontal WM compared to the overlying cortex across the stroke cases and controls (p = 0.001). PSD subjects showed increased percentage of activated perivascular CD68+ cells distinct from ramified or primed microglia in the WM (p < 0.05). However, there was no apparent change in perivascular TREM2+ cells. Total densities of TREM2+ cells were only ~10% of CD68+ cells but there was high degree of overlap (>70%) between them in both the WM and the cortex. CD68 and Iba-1 or CD68 and TMEM119 markers were colocalised by ~55%. Within the deep WM, ~30% of CD68+ cells were co-localised with fragments of degraded myelin basic protein. Among fragmented CD68+ cells in adjacent WM of PSD subjects, >80% of the cells expressed cleaved caspase-3. Our observations suggest although the overall repertoire of perivascular microglial cells is not changed in the parenchyma, PSD subjects accrue more perivascular-activated CD68+ microglia rather than TREM2+ cells. This implies there is a subset of CD68+ cells, which are responsible for the differential response in perivascular inflammation within the gliovascular unit of the deep WM.
Collapse
Affiliation(s)
- Yoshiki Hase
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Kamar E. Ameen‐Ali
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Institute of Neuroscience and PsychologyUniversity of Glasgow, Queen Elizabeth University HospitalGlasgowUK
| | - Rachel Waller
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Charlotte Stafford
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Ayushi Mahesh
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lucy Ryan
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lucy Pickering
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Caroline Bodman
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Mai Hase
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of MedicineUniversity of Southampton, Southampton General HospitalSouthamptonUK
| | - Karen Horsburgh
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Raj N. Kalaria
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
46
|
Xiang X, Tahirovic S, Ziegler S, Haass C, Brendel M. Response to Comment on "Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases". Sci Transl Med 2022; 14:eabn5104. [PMID: 36001676 DOI: 10.1126/scitranslmed.abn5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microglial FDG uptake alterations are the source of FDG-PET changes in models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianyuan Xiang
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
47
|
Zimmer ER, Pascoal TA, Rosa-Neto P, Nordberg A, Pellerin L. Comment on "Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases". Sci Transl Med 2022; 14:eabm8302. [PMID: 36001681 DOI: 10.1126/scitranslmed.abm8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Astrocytes might be the major contributor to the radioactive signal captured by PET in the microglia-dependent modulation of FDG-PET.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul (RS) 90035-003, Brazil
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, RS 90035-003, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, RS 90035-003, Brazil
- Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS 90610-000, Brazil
- McGill Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Tharick A Pascoal
- McGill Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm 141 52, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm 141 52, Sweden
| | - Luc Pellerin
- IRMETIST, Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers 86021, France
| |
Collapse
|
48
|
Hikosaka M, Kawano T, Wada Y, Maeda T, Sakurai T, Ohtsuki G. Immune-Triggered Forms of Plasticity Across Brain Regions. Front Cell Neurosci 2022; 16:925493. [PMID: 35978857 PMCID: PMC9376917 DOI: 10.3389/fncel.2022.925493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells play numerous roles in the host defense against the invasion of microorganisms and pathogens, which induces the release of inflammatory mediators (e.g., cytokines and chemokines). In the CNS, microglia is the major resident immune cell. Recent efforts have revealed the diversity of the cell types and the heterogeneity of their functions. The refinement of the synapse structure was a hallmark feature of the microglia, while they are also involved in the myelination and capillary dynamics. Another promising feature is the modulation of the synaptic transmission as synaptic plasticity and the intrinsic excitability of neurons as non-synaptic plasticity. Those modulations of physiological properties of neurons are considered induced by both transient and chronic exposures to inflammatory mediators, which cause behavioral disorders seen in mental illness. It is plausible for astrocytes and pericytes other than microglia and macrophage to induce the immune-triggered plasticity of neurons. However, current understanding has yet achieved to unveil what inflammatory mediators from what immune cells or glia induce a form of plasticity modulating pre-, post-synaptic functions and intrinsic excitability of neurons. It is still unclear what ion channels and intracellular signaling of what types of neurons in which brain regions of the CNS are involved. In this review, we introduce the ubiquitous modulation of the synaptic efficacy and the intrinsic excitability across the brain by immune cells and related inflammatory cytokines with the mechanism for induction. Specifically, we compare neuro-modulation mechanisms by microglia of the intrinsic excitability of cerebellar Purkinje neurons with cerebral pyramidal neurons, stressing the inverted directionality of the plasticity. We also discuss the suppression and augmentation of the extent of plasticity by inflammatory mediators, as the meta-plasticity by immunity. Lastly, we sum up forms of immune-triggered plasticity in the different brain regions with disease relevance. Together, brain immunity influences our cognition, sense, memory, and behavior via immune-triggered plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
50
|
Xu YJ, Au NPB, Ma CHE. Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer’s Disease. Front Aging Neurosci 2022; 14:896852. [PMID: 35693341 PMCID: PMC9178186 DOI: 10.3389/fnagi.2022.896852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is closely associated with the accumulation of β-amyloid (Aβ) and neurofibrillary tangles (NFTs). Apart from Aβ and NFT pathologies, AD patients also exhibit a widespread microglial activation in various brain regions with elevated production of pro-inflammatory cytokines, a phenomenon known as neuroinflammation. In healthy central nervous system, microglia adopt ramified, “surveying” phenotype with compact cell bodies and elongated processes. In AD, the presence of pathogenic proteins such as extracellular Aβ plaques and hyperphosphorylated tau, induce the transformation of ramified microglia into amoeboid microglia. Ameboid microglia are highly phagocytic immune cells and actively secrete a cascade of pro-inflammatory cytokines and chemokines. However, the phagocytic ability of microglia gradually declines with age, and thus the clearance of pathogenic proteins becomes highly ineffective, leading to the accumulation of Aβ plaques and hyperphosphorylated tau in the aging brain. The accumulation of pathogenic proteins further augments the neuroinflammatory responses and sustains the activation of microglia. The excessive production of pro-inflammatory cytokines induces a massive loss of functional synapses and neurons, further worsening the disease condition of AD. More recently, the identification of a subset of microglia by transcriptomic studies, namely disease-associated microglia (DAM), the progressive transition from homeostatic microglia to DAM is TREM2-dependent and the homeostatic microglia gradually acquire the state of DAM during the disease progression of AD. Recent in-depth transcriptomic analysis identifies ApoE and Trem2 from microglia as the major risk factors for AD pathogenesis. In this review, we summarize current understandings of the functional roles of age-dependent microglial activation and neuroinflammation in the pathogenesis of AD. To this end, the exponential growth in transcriptomic data provides a solid foundation for in silico drug screening and gains further insight into the development of microglia-based therapeutic interventions for AD.
Collapse
Affiliation(s)
- Yi-Jun Xu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|