1
|
Tsuda MC, Akoh-Arrey T, Mercurio JC, Rucker A, Airey ML, Jacobs H, Lukasz D, Wang L, Cameron HA. Adult Neurogenesis and the Initiation of Social Aggression in Male Mice. Hippocampus 2024; 34:711-728. [PMID: 39376052 DOI: 10.1002/hipo.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The hippocampus is important for social behavior and exhibits unusual structural plasticity in the form of continued production of new granule neurons throughout adulthood, but it is unclear how adult neurogenesis contributes to social interactions. In the present study, we suppressed neurogenesis using a pharmacogenetic mouse model and examined social investigation and aggression in adult male mice to investigate the role of hippocampal adult-born neurons in the expression of aggressive behavior. In simultaneous choice tests with stimulus mice placed in corrals, mice with complete suppression of adult neurogenesis in adulthood (TK mice) exhibited normal social investigation behaviors, indicating that new neurons are not required for social interest, social memory, or detection of and response to social olfactory signals. However, mice with suppressed neurogenesis displayed decreased offensive and defensive aggression in a resident-intruder paradigm, and less resistance in a social dominance test, relative to neurogenesis-intact controls, when paired with weight and strain-matched (CD-1) mice. During aggression tests, TK mice were frequently attacked by the CD-1 intruder mice, which never occurred with WTs, and normal CD-1 male mice investigated TK mice less than controls when corralled in the social investigation test. Importantly, TK mice showed normal aggression toward prey (crickets) and smaller, nonaggressive (olfactory bulbectomized) C57BL/6J intruders, suggesting that mice lacking adult neurogenesis do not avoid aggressive social interactions if they are much larger than their opponent and will clearly win. Taken together, our findings show that adult hippocampal neurogenesis plays an important role in the instigation of intermale aggression, possibly by weighting a cost-benefit analysis against confrontation in cases where the outcome of the fight is not clear.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Talia Akoh-Arrey
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Mercurio
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Ariana Rucker
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan L Airey
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Hannah Jacobs
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Daria Lukasz
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Lijing Wang
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
3
|
Gribaudo S, Saraulli D, Nato G, Bonzano S, Gambarotta G, Luzzati F, Costanzi M, Peretto P, Bovetti S, De Marchis S. Neurogranin Regulates Adult-Born Olfactory Granule Cell Spine Density and Odor-Reward Associative Memory in Mice. Int J Mol Sci 2021; 22:ijms22084269. [PMID: 33924098 PMCID: PMC8074334 DOI: 10.3390/ijms22084269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Neurogranin (Ng) is a brain-specific postsynaptic protein, whose role in modulating Ca2+/calmodulin signaling in glutamatergic neurons has been linked to enhancement in synaptic plasticity and cognitive functions. Accordingly, Ng knock-out (Ng-ko) mice display hippocampal-dependent learning and memory impairments associated with a deficit in long-term potentiation induction. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic granule cells (GCs) that are continuously generated during adult life, undergo high synaptic remodeling in response to the sensory context, and play a key role in odor processing. However, the possible implication of Ng in OB plasticity and function is yet to be investigated. Here, we show that Ng expression in the OB is associated with the mature state of adult-born GCs, where its active-phosphorylated form is concentrated at post-synaptic sites. Constitutive loss of Ng in Ng-ko mice resulted in defective spine density in adult-born GCs, while their survival remained unaltered. Moreover, Ng-ko mice show an impaired odor-reward associative memory coupled with reduced expression of the activity-dependent transcription factor Zif268 in olfactory GCs. Overall, our data support a role for Ng in the molecular mechanisms underlying GC plasticity and the formation of olfactory associative memory.
Collapse
Affiliation(s)
- Simona Gribaudo
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council, 00143 Rome, Italy;
| | - Giulia Nato
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Giovanna Gambarotta
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Department of Clinical and Biological Sciences (DSCB), University of Torino, 10043 Turin, Italy
| | - Federico Luzzati
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, 00193 Rome, Italy;
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Correspondence: (S.B.); (S.D.M.)
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Correspondence: (S.B.); (S.D.M.)
| |
Collapse
|
4
|
Galliano E, Hahn C, Browne LP, R Villamayor P, Tufo C, Crespo A, Grubb MS. Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons. J Neurosci 2021; 41:2135-2151. [PMID: 33483429 PMCID: PMC8018761 DOI: 10.1523/jneurosci.1606-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/03/2023] Open
Abstract
Can alterations in experience trigger different plastic modifications in neuronal structure and function, and if so, how do they integrate at the cellular level? To address this question, we interrogated circuitry in the mouse olfactory bulb responsible for the earliest steps in odor processing. We induced experience-dependent plasticity in mice of either sex by blocking one nostril for one day, a minimally invasive manipulation that leaves the sensory organ undamaged and is akin to the natural transient blockage suffered during common mild rhinal infections. We found that such brief sensory deprivation produced structural and functional plasticity in one highly specialized bulbar cell type: axon-bearing dopaminergic neurons in the glomerular layer. After 24 h naris occlusion, the axon initial segment (AIS) in bulbar dopaminergic neurons became significantly shorter, a structural modification that was also associated with a decrease in intrinsic excitability. These effects were specific to the AIS-positive dopaminergic subpopulation because no experience-dependent alterations in intrinsic excitability were observed in AIS-negative dopaminergic cells. Moreover, 24 h naris occlusion produced no structural changes at the AIS of bulbar excitatory neurons, mitral/tufted and external tufted cells, nor did it alter their intrinsic excitability. By targeting excitability in one specialized dopaminergic subpopulation, experience-dependent plasticity in early olfactory networks might act to fine-tune sensory processing in the face of continually fluctuating inputs.SIGNIFICANCE STATEMENT Sensory networks need to be plastic so they can adapt to changes in incoming stimuli. To see how cells in mouse olfactory circuits can change in response to sensory challenges, we blocked a nostril for just one day, a naturally relevant manipulation akin to the deprivation that occurs with a mild cold. We found that this brief deprivation induces forms of axonal and intrinsic functional plasticity in one specific olfactory bulb cell subtype: axon-bearing dopaminergic interneurons. In contrast, intrinsic properties of axon-lacking bulbar dopaminergic neurons and neighboring excitatory neurons remained unchanged. Within the same sensory circuits, specific cell types can therefore make distinct plastic changes in response to an ever-changing external landscape.
Collapse
Affiliation(s)
- Elisa Galliano
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Christiane Hahn
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Paula R Villamayor
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
5
|
Schoenfeld TJ, Smith JA, Sonti AN, Cameron HA. Adult neurogenesis alters response to an aversive distractor in a labyrinth maze without affecting spatial learning or memory. Hippocampus 2020; 31:102-114. [PMID: 33038042 DOI: 10.1002/hipo.23267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/02/2020] [Accepted: 09/06/2020] [Indexed: 11/11/2022]
Abstract
Adult neurogenesis has been implicated in learning and memory of complex spatial environments. However, new neurons also play a role in nonmnemonic behavior, including the stress response and attention shifting. Many commonly used spatial tasks are very simple, and unsuitable for detecting neurogenesis effects, or are aversively motivated, making it difficult to dissociate effects on spatial learning and memory from effects on stress. We have therefore created a novel complex spatial environment, the flex maze, to enable reward-mediated testing of spatial learning in a flexibly configurable labyrinth. Using a pharmacogenetic method to completely inhibit neurogenesis in adulthood, we found that rats lacking new neurons (TK rats) and wild type controls completed and remembered most mazes equally well. However, control rats were slower to complete peppermint-scented mazes than other mazes, while neurogenesis-deficient rats showed no effect of mint on maze behavior, completing these mazes significantly faster than control rats. Additional testing found that wild type and TK rats showed similar detection of, avoidance of, and glucocorticoid response to the mint odor. These results suggest that spatial learning and memory in a labyrinth task is unaffected by the loss of new neurons, but that these cells affect the ability of an aversive stimulus to distract rats from completing the maze.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jesse A Smith
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Anup N Sonti
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
7
|
Gera R, Chehade HELH, Wazir U, Tayeh S, Kasem A, Mokbel K. Locoregional therapy of the primary tumour in de novo stage IV breast cancer in 216 066 patients: A meta-analysis. Sci Rep 2020; 10:2952. [PMID: 32076063 PMCID: PMC7031518 DOI: 10.1038/s41598-020-59908-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Patients presenting with de novo stage IV metastatic breast cancer have a complex disease which is normally treated with palliative intent and systemic therapy. However, there is mounting evidence that resection of the primary tumour and/or localised radiotherapy (locoregional therapy; LRT) could be associated with overall survival improvements. We aimed to conduct a meta-analysis to inform decision making. Using the PubMed, Cochrane and Ovid SP databases, a literature review and meta-analysis were conducted to assess the effect of LRT on overall survival. Studies were analysed for the impact of LRT on survival. All forms of LRT resulted in a significant 31.8% reduction in mortality (N = 42; HR = 0.6823 (95% CI 0.6365; 0.7314)). Surgical resection resulted in a significant 36.2% reduction in mortality (N = 37; HR = 0.6379 (95% CI 0.5974; 0.6811)). The prospective trials reported a 19.23% reduction in mortality which was not statistically significant (N = 3, HR = 0.8077 (95% CI 0.5704; 1.1438). 216 066 patients were included. This is the largest meta-analysis regarding this question to date. Our meta-analysis shows that LRT of the primary tumour seems to improve overall survival in de novo stage IV disease. Therefore, this therapeutic option should be considered in selected patients after a careful multidisciplinary discussion.
Collapse
Affiliation(s)
- Ritika Gera
- The London Breast Institute, Princess Grace Hospital, London, UK
| | | | - Umar Wazir
- The London Breast Institute, Princess Grace Hospital, London, UK
| | - Salim Tayeh
- The London Breast Institute, Princess Grace Hospital, London, UK
| | - Abdul Kasem
- The London Breast Institute, Princess Grace Hospital, London, UK
| | - Kefah Mokbel
- The London Breast Institute, Princess Grace Hospital, London, UK.
| |
Collapse
|
8
|
Gambrill AC, Faulkner RL, McKeown CR, Cline HT. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner. J Neurophysiol 2018; 121:306-320. [PMID: 30517041 DOI: 10.1152/jn.00664.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injuries introduce functional and structural circuit deficits that must be repaired for an organism to regain function. We developed an injury model in which Xenopus laevis tadpoles are given a penetrating stab wound that damages the optic tectal circuit and impairs visuomotor behavior. In tadpoles, as in other systems, injury induces neurogenesis. The newly generated neurons are thought to integrate into the existing circuit; however, whether they integrate via the same mechanisms that govern normal neuronal maturation during development is not understood. Development of the functional visuomotor circuit in Xenopus is driven by sensory activity. We hypothesized that enhanced visual experience would improve recovery from injury by facilitating integration of newly generated neurons into the tectal circuit. We labeled newly generated neurons in the injured tectum by green fluorescent protein expression and examined their circuit integration using electrophysiology and in vivo imaging. Providing animals with brief bouts of enhanced visual experience starting 24 h after injury increased synaptogenesis and circuit integration of new neurons and facilitated behavioral recovery. To investigate mechanisms of neuronal integration and behavioral recovery after injury, we interfered with N-methyl-d-aspartate (NMDA) receptor function. Ifenprodil, which blocks GluN2B-containing NMDA receptors, impaired dendritic arbor elaboration. GluN2B blockade inhibited functional integration of neurons generated in response to injury and prevented behavioral recovery. Furthermore, tectal GluN2B knockdown blocked the beneficial effects of enhanced visual experience on functional plasticity and behavioral recovery. We conclude that visual experience-mediated rehabilitation of the injured tectal circuit occurs by GluN2B-containing NMDA receptor-dependent integration of newly generated neurons. NEW & NOTEWORTHY Recovery from brain injury is difficult in most systems. The study of regenerative animal models that are capable of injury repair can provide insight into cellular and circuit mechanisms underlying repair. Using Xenopus tadpoles, we show enhanced sensory experience rehabilitates the injured visual circuit and that this experience-dependent recovery depends on N-methyl-d-aspartate receptor function. Understanding the mechanisms of rehabilitation in this system may facilitate recovery in brain regions and systems where repair is currently impossible.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Caroline R McKeown
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
9
|
Li WL, Chu MW, Wu A, Suzuki Y, Imayoshi I, Komiyama T. Adult-born neurons facilitate olfactory bulb pattern separation during task engagement. eLife 2018; 7:e33006. [PMID: 29533179 PMCID: PMC5912906 DOI: 10.7554/elife.33006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals. This increased ambiguity was primarily due to a decrease in MC suppressive responses. Intriguingly, these deficits in MC encoding were only observed during task engagement but not passive exposure. Our results indicate that young olfactory ABNs are essential for the enhancement of MC pattern separation in a task engagement-dependent manner, potentially functioning as a gateway for top-down modulation.
Collapse
Affiliation(s)
- Wankun L Li
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Monica W Chu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - An Wu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Yusuke Suzuki
- Medical Innovation Center/SK Project, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| |
Collapse
|
10
|
Waschek JA, Cohen JR, Chi GC, Proszynski TJ, Niewiadomski P. PACAP Promotes Matrix-Driven Adhesion of Cultured Adult Murine Neural Progenitors. ASN Neuro 2017; 9:1759091417708720. [PMID: 28523979 PMCID: PMC5439654 DOI: 10.1177/1759091417708720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
New neurons are born throughout the life of mammals in germinal zones of the brain known as neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus. These niches contain a subpopulation of cells known as adult neural progenitor cells (aNPCs), which self-renew and give rise to new neurons and glia. aNPCs are regulated by many factors present in the niche, including the extracellular matrix (ECM). We show that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) affects subventricular zone-derived aNPCs by increasing their surface adhesion. Gene array and reconstitution assays indicate that this effect can be attributed to the regulation of ECM components and ECM-modifying enzymes in aNPCs by PACAP. Our work suggests that PACAP regulates a bidirectional interaction between the aNPCs and their niche: PACAP modifies ECM production and remodeling, in turn the ECM regulates progenitor cell adherence. We speculate that PACAP may in this manner help restrict adult neural progenitors to the stem cell niche in vivo, with potential significance for aNPC function in physiological and pathological states.
Collapse
Affiliation(s)
- James A Waschek
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Joseph R Cohen
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gloria C Chi
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tomasz J Proszynski
- 2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Niewiadomski
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,3 Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Hawkins SJ, Weiss L, Offner T, Dittrich K, Hassenklöver T, Manzini I. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit. Front Cell Neurosci 2017; 11:380. [PMID: 29234276 PMCID: PMC5712363 DOI: 10.3389/fncel.2017.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Weiss
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
12
|
O'Léime CS, Cryan JF, Nolan YM. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 2017; 66:394-412. [PMID: 28751020 DOI: 10.1016/j.bbi.2017.07.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function.
Collapse
Affiliation(s)
- Ciarán S O'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
13
|
Pothayee N, Cummings DM, Schoenfeld TJ, Dodd S, Cameron HA, Belluscio L, Koretsky AP. Magnetic resonance imaging of odorant activity-dependent migration of neural precursor cells and olfactory bulb growth. Neuroimage 2017; 158:232-241. [PMID: 28669915 DOI: 10.1016/j.neuroimage.2017.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/03/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Neural progenitors or neuroblasts are produced by precursor cells in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) to the olfactory bulbs (OB) throughout life. In the OB, these adult born neurons either die or replace existing olfactory interneurons, playing a critical role in the stabilization of OB circuitry. Although several aspects of the addition of new neurons into the OB have been studied, it is unclear whether long-distance activity from the OB can regulate the influx of migrating neuroblasts along the RMS. In this study, iron oxide-assisted MRI was used to track the migration of neuroblasts in combination with reversible naris occlusion to manipulate odorant-induced activity. It was found that decreasing olfactory activity led to a decrease in the rate of neuroblast migration along the RMS. Removal of the naris occlusion led to an increase in migratory rate back to control levels, indicating that olfactory activity has regulatory function on neuroblast migration in the RMS. Blocking odorant activity also led to an arrest in OB growth and re-opening the block led to a rapid re-growth returning the bulb size to control levels. Furthermore, pharmacogenetic elimination of the neuroblasts demonstrated that they were required for re-growth of the bulb following sensory deprivation. Together, these results show that sensory activity, neural migration and OB growth are tightly coupled in an interdependent manner.
Collapse
Affiliation(s)
- Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana M Cummings
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Hardy D, Saghatelyan A. Different forms of structural plasticity in the adult olfactory bulb. NEUROGENESIS 2017; 4:e1301850. [PMID: 28596977 DOI: 10.1080/23262133.2017.1301850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/26/2022]
Abstract
The adult olfactory bulb (OB) continuously receives new interneurons that integrate into the functional neuronal network and that play an important role in odor information processing and olfactory behavior. Adult neuronal progenitors are derived from neural stem cells in the subventricular zone (SVZ) bordering the lateral ventricle. They migrate long distances along the rostral migratory stream (RMS) toward the OB where they differentiate into interneurons, mature, and establish synapses with tufted or mitral cells (MC), the principal neurons in the OB. The plasticity provided by both adult-born and pre-existing early-born neurons depends on the formation and pruning of new synaptic contacts that adapt the functioning of the bulbar network to changing environmental conditions. However, the formation of new synapses occurs over a long time scale (hours-days), whereas some changes in environmental conditions can occur more rapidly, requiring a much faster adjustment of neuronal networks. A new form of structural remodeling of adult-born, but not early-born, neurons was recently brought to light. This plasticity, which is based on the activity-dependent relocation of mature spines of GCs toward the dendrites of active principal cells, may allow a more rapid adjustment of the neuronal network in response to quick and persistent changes in sensory inputs. In this mini-review we discuss the different forms of structural plasticity displayed by adult-born and early-born neurons and the possibility that these different forms of structural remodeling may fulfill distinct roles in odor information processing.
Collapse
Affiliation(s)
- Delphine Hardy
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Armen Saghatelyan
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
15
|
Snyder JS, Cahill SP, Frankland PW. Running promotes spatial bias independently of adult neurogenesis. Hippocampus 2017; 27:871-882. [DOI: 10.1002/hipo.22737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Jason S. Snyder
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - Shaina P. Cahill
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - Paul W. Frankland
- Hospital for Sick Children; Program in Neurosciences & Mental Health, Peter Gilgan Centre for Research and Learning; Toronto Ontario Canada
- Department of Psychology; University of Toronto; Ontario Canada
- Department of Physiology; University of Toronto; Ontario Canada
- Institute of Medical Sciences; University of Toronto; Ontario Canada
- Child & Brain Development Program; Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
16
|
Capdevila C, Rodríguez Vázquez L, Martí J. Glioblastoma Multiforme and Adult Neurogenesis in the Ventricular-Subventricular Zone: A Review. J Cell Physiol 2017; 232:1596-1601. [DOI: 10.1002/jcp.25502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Claudia Capdevila
- Unidad de Citología e Histología, Departament de Biologia Cel.lular; de Fisiologia i d'Immunologia, Facultad de Biociencias, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| | - Lucía Rodríguez Vázquez
- Unidad de Citología e Histología, Departament de Biologia Cel.lular; de Fisiologia i d'Immunologia, Facultad de Biociencias, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| | - Joaquín Martí
- Unidad de Citología e Histología, Departament de Biologia Cel.lular; de Fisiologia i d'Immunologia, Facultad de Biociencias, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| |
Collapse
|
17
|
Kalakh S, Mouihate A. Demyelination-Induced Inflammation Attracts Newly Born Neurons to the White Matter. Mol Neurobiol 2016; 54:5905-5918. [PMID: 27660277 DOI: 10.1007/s12035-016-0127-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
There is compelling evidence that microglial activation negatively impacts neurogenesis. However, microglia have also been shown to promote recruitment of newly born neurons to injured areas of the gray matter. In the present study, we explored whether demyelination-triggered inflammation alters the process of neurogenesis in the white matter. A 2-μl solution of 0.04 % ethidium bromide was stereotaxically injected into the corpus callosum of adult male rats. Brain inflammation was dampened by daily injections of progesterone (5 mg/kg, s.c.) for 14 days. Control rats received oil (s.c.). Newly born neurons (DCX and Tbr2), microglia (Iba-1), astrocytes (vimentin or GFAP), oligodendrocyte progenitor cells (OPCs; NG2), and mature oligodendrocytes (CC-1) were monitored in the vicinity of demyelination site using immunofluorescent staining. Western blot was used to explore microglial polarization using M1 (iNOS) and M2 (arginase-1) markers. Focal demyelination elicited strong microglial and astroglial activation and reduced the number of OPCs at the site of demyelination. This inflammatory response was associated with enhanced number of newly born neurons in the white matter and the subventricular zone (SVZ). A proportion of newly born neurons within the white matter showed features of OPCs. Interestingly, blunting brain inflammation led to reduced neurogenesis around the demyelination area and in the SVZ. These data suggest that the white matter inflammation creates a conducive environment for the recruitment of newly born neurons. The fact that a sizable fraction of these newly born neurons adopt OPC features suggests that they could contribute to the remyelination process.
Collapse
Affiliation(s)
- Samah Kalakh
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
18
|
Snyder JS, Grigereit L, Russo A, Seib DR, Brewer M, Pickel J, Cameron HA. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis. eNeuro 2016; 3:ENEURO.0064-16.2016. [PMID: 27257630 PMCID: PMC4886221 DOI: 10.1523/eneuro.0064-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/16/2016] [Accepted: 05/05/2016] [Indexed: 12/25/2022] Open
Abstract
The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis.
Collapse
Affiliation(s)
- Jason S. Snyder
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Laura Grigereit
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Alexandra Russo
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Désirée R. Seib
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michelle Brewer
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - James Pickel
- Transgenic Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
19
|
Understanding Neurogenesis in the Subventricular Zone and the Capacity for Transcriptional Modulation in Ischemic Brain Injury. World Neurosurg 2016; 87:477-80. [PMID: 26828460 DOI: 10.1016/j.wneu.2016.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Yun S, Donovan MH, Ross MN, Richardson DR, Reister R, Farnbauch LA, Fischer SJ, Riethmacher D, Gershenfeld HK, Lagace DC, Eisch AJ. Stress-Induced Anxiety- and Depressive-Like Phenotype Associated with Transient Reduction in Neurogenesis in Adult Nestin-CreERT2/Diphtheria Toxin Fragment A Transgenic Mice. PLoS One 2016; 11:e0147256. [PMID: 26795203 PMCID: PMC4721672 DOI: 10.1371/journal.pone.0147256] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/02/2016] [Indexed: 01/01/2023] Open
Abstract
Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient–rather than permanent–inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety and a depressive phenotype, and recovery of DCX+ cell number corresponds to normalization of these behaviors.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Michael H. Donovan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Michele N. Ross
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Devon R. Richardson
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Robin Reister
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Laure A. Farnbauch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Stephanie J. Fischer
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Dieter Riethmacher
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
- Human Development and Health, School of Medicine, Southampton General Hospital, Southampton University, Southampton, United Kingdom
| | - Howard K. Gershenfeld
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Diane C. Lagace
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (AJE); (DCL)
| | - Amelia J. Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (AJE); (DCL)
| |
Collapse
|
21
|
The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network. Neural Plast 2015; 2016:1614329. [PMID: 26839709 PMCID: PMC4709761 DOI: 10.1155/2016/1614329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/06/2015] [Indexed: 11/17/2022] Open
Abstract
The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour.
Collapse
|
22
|
Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. NEUROIMAGE-CLINICAL 2015; 9:401-10. [PMID: 26594622 PMCID: PMC4590718 DOI: 10.1016/j.nicl.2015.09.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/25/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
Recently, olfactory training has been introduced as a promising treatment for patients with olfactory dysfunction. However, less is known about the neuronal basis and the influence on functional networks of this training. Thus, we aimed to investigate the neuroplasticity of chemosensory perception through an olfactory training program in patients with smell loss. The experimental setup included functional MRI (fMRI) experiments with three different types of chemosensory stimuli. Ten anosmic patients (7f, 3m) and 14 healthy controls (7f, 7m) underwent the same testing sessions. After a 12-week olfactory training period, seven patients (4f, 3m) were invited for follow-up testing using the same fMRI protocol. Functional networks were identified using independent component analysis and were further examined in detail using functional connectivity analysis. We found that anosmic patients and healthy controls initially use the same three networks to process chemosensory input: the olfactory; the somatosensory; and the integrative network. Those networks did not differ between the two groups in their spatial extent, but in their functional connectivity. After the olfactory training, the sensitivity to detect odors significantly increased in the anosmic group, which was also manifested in modifications of functional connections in all three investigated networks. The results of this study indicate that an olfactory training program can reorganize functional networks, although, initially, no differences in the spatial distribution of neural activation were observed.
Collapse
|
23
|
Vetreno RP, Crews FT. Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Front Neurosci 2015; 9:35. [PMID: 25729346 PMCID: PMC4325907 DOI: 10.3389/fnins.2015.00035] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/23/2015] [Indexed: 12/23/2022] Open
Abstract
Adolescence is a developmental period that coincides with the maturation of adult cognitive faculties. Binge drinking is common during adolescence and can impact brain maturation. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 20% EtOH w/v; 2 days on/2 days off from postnatal day [P]25 to P55), we discovered that AIE treatment reduced neurogenesis (i.e., doublecortin-immunoreactive [DCX + IR] cells) in both the dorsal and ventral hippocampal dentate gyrus of late adolescent (P56) male Wistar rats that persisted during abstinence into adulthood (P220). This reduction in neurogenesis was accompanied by a concomitant reduction in proliferating cells (Ki-67) and an increase in cell death (cleaved caspase-3). In the hippocampus, AIE treatment induced a long-term upregulation of neuroimmune genes, including Toll-like receptor 4 (TLR4) and its endogenous agonist high-mobility group box 1 as well as several proinflammatory signaling molecules. Administration of lipopolysaccharide, a gram-negative endotoxin agonist at TLR4, to young adult rats (P70) produced a similar reduction of DCX + IR cells that was observed in AIE-treated animals. Behaviorally, AIE treatment impaired object recognition on the novel object recognition task when assessed from P163 to P165. Interestingly, object recognition memory was positively correlated with DCX + IR in both the dorsal and ventral hippocampal dentate gyrus while latency to enter the center of the apparatus was negatively correlated with DCX + IR in the ventral dentate gyrus. Together, these data reveal that adolescent binge ethanol exposure persistently inhibits neurogenesis throughout the hippocampus, possibly through neuroimmune mechanisms, which might contribute to altered adult cognitive and emotive function.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Fulton T Crews
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|