1
|
Dollomaja B, Wang HE, Guye M, Makhalova J, Bartolomei F, Jirsa VK. Virtual epilepsy patient cohort: Generation and evaluation. PLoS Comput Biol 2025; 21:e1012911. [PMID: 40215461 PMCID: PMC12043236 DOI: 10.1371/journal.pcbi.1012911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/30/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
Epilepsy is a prevalent brain disorder, characterized by sudden, abnormal brain activity, making it difficult to live with. One-third of people with epilepsy do not respond to anti-epileptic drugs. Drug-resistant epilepsy is treated with brain surgery. Successful surgical treatment relies on identifying brain regions responsible for seizure onset, known as epileptogenic zones (EZ). Despite various methods for EZ estimation, evaluating their efficacy remains challenging due to a lack of ground truth for empirical data. To address this, we generated and evaluated a cohort of 30 virtual epilepsy patients, using patient-specific anatomical and functional data from 30 real drug-resistant epilepsy patients. This personalized modeling approach, based on each patient's brain data, is called a virtual brain twin. For each virtual patient, we provided data that included anatomically parcellated brain regions, structural connectivity, reconstructed intracranial electrodes, simulated brain activity at both the brain region and electrode levels, and key parameters of the virtual brain twin. These key parameters, which include the EZ hypothesis, serve as the ground truth for simulated brain activity. For each virtual brain twin, we generated synthetic spontaneous seizures, stimulation-induced seizures and interictal activity. We systematically evaluated these simulated brain signals by quantitatively comparing them against their corresponding empirical intracranial recordings. Simulated signals based on patient-specific EZ captured spatio-temporal seizure generation and propagation. Through in-silico exploration of stimulation parameters, we also demonstrated the role of patient-specific stimulation location and amplitude in reproducing empirically stimulated seizures. The virtual epileptic cohort is openly available, and can be used to systematically evaluate methods for the estimation of EZ or source localization using ground truth EZ parameters and source signals.
Collapse
Affiliation(s)
- Borana Dollomaja
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
| | - Huifang E. Wang
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
| | - Maxime Guye
- CRMBM, CNRS, Aix-Marseille Université, Marseille, France
- CEMEREM, Timone University Hospital, APHM, Marseille, France
| | - Julia Makhalova
- CRMBM, CNRS, Aix-Marseille Université, Marseille, France
- CEMEREM, Timone University Hospital, APHM, Marseille, France
- Epileptology and Clinical Neurophysiology Department, Timone Hospital, APHM, Marseille, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
- Epileptology and Clinical Neurophysiology Department, Timone Hospital, APHM, Marseille, France
| | - Viktor K. Jirsa
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
| |
Collapse
|
2
|
Ho 何鎮宇 ECY, Newton AJH, Urdapilleta E, Dura-Bernal S, Truccolo W. Downmodulation of Potassium Conductances Induces Epileptic Seizures in Cortical Network Models Via Multiple Synergistic Factors. J Neurosci 2025; 45:e1909232025. [PMID: 39880680 PMCID: PMC11949479 DOI: 10.1523/jneurosci.1909-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Voltage-gated potassium conductances g K play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing g K in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers. Here, we examined g K downmodulation in biophysical models of cortical networks that included different neuron types organized in layers, potassium diffusion in interstitial and larger extracellular spaces, and glial buffering. Our findings are fourfold. First, g K downmodulation in pyramidal and fast-spiking inhibitory interneurons led to differential effects, making the latter much more likely to enter depolarization block. Second, both neuron types showed an increase in the duration and amplitude of action potentials, with more pronounced effects in pyramidal neurons. Third, a sufficiently strong g K reduction dramatically increased network synchrony, resulting in seizure-like dynamics. Fourth, we hypothesized that broader action potentials were likely to not only improve their propagation, as in 4-AP therapeutic uses, but also to increase synaptic coupling. Notably, graded-synapses incorporating this effect further amplified network synchronization and seizure-like dynamics. Overall, our findings elucidate different effects that g K downmodulation may have in cortical networks, explaining its potential role in both pathological neural dynamics and therapeutic applications.
Collapse
Affiliation(s)
- Ernest C Y Ho 何鎮宇
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Adam J H Newton
- Department of Physiology and Pharmacology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York 11203
| | - Eugenio Urdapilleta
- Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, R8402AGP Bariloche, Río Negro, Argentina
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York 11203
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
3
|
Streng ML, Kottke BW, Wasserman EM, Zecker L, Luong L, Kodandaramaiah S, Ebner TJ, Krook-Magnuson E. Early and widespread cerebellar engagement during hippocampal seizures and interictal discharges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.593969. [PMID: 38798649 PMCID: PMC11118491 DOI: 10.1101/2024.05.14.593969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite research illustrating the cerebellum may be a critical circuit element in processes beyond motor control, and growing evidence for a role of the cerebellum in a range of neurological disorders, including the epilepsies, remarkably little is known about cerebellar engagement during seizures. We therefore implemented a novel method for repeated widefield calcium imaging of the cerebellum in awake, chronically epileptic mice. We found widespread changes in cerebellar Purkinje cell activity during temporal lobe seizures. Changes were noted in the anterior and posterior cerebellum (lobules IV-VII), along the midline (vermis), and both ipsilaterally and contralaterally (in the simplex and Crus I) to the seizure focus. This was true for both overtly behavioral seizures and for hippocampal seizures that remained electrographic only -- arguing against cerebellar modulation simply reflecting motor components. Moreover, even brief interictal spikes produced widespread alterations in cerebellar activity. Perhaps most remarkably, changes in the cerebellum also occurred prior to any noticeable change in the hippocampal electrographic recordings. Together these results underscore the relevance of the cerebellum with respect to seizure networks, warranting a more consistent consideration of the cerebellum in epilepsy.
Collapse
|
4
|
Goldberg AR, Dovas A, Torres D, Pereira B, Viswanathan A, Das Sharma S, Mela A, Merricks EM, Megino-Luque C, McInvale JJ, Olabarria M, Shokooh LA, Zhao HT, Chen C, Kotidis C, Calvaresi P, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Bushong EA, Boassa D, Ellisman MH, Hillman EMC, Hargus G, Bravo-Cordero JJ, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition. Neuron 2025; 113:858-875.e10. [PMID: 39837324 PMCID: PMC11925689 DOI: 10.1016/j.neuron.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/27/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed these tumor-induced changes. These findings reveal mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma and suggest new strategies for treating glioma-associated neurological symptoms.
Collapse
Affiliation(s)
- Alexander R Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cristina Megino-Luque
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Julie J McInvale
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Darcy S Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Brodovskaya A, Shiono S, Sun C, Perez‐Reyes E, Kapur J. Preferential superficial cortical layer activation during seizure propagation. Epilepsia 2025; 66:929-941. [PMID: 39718688 PMCID: PMC11908662 DOI: 10.1111/epi.18239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Focal cortical seizures travel long distances from the onset zone, but the long-distance propagation pathways are uncertain. In vitro and in vivo imaging techniques have investigated the local spread of seizures but did not elucidate long-distance spread. Furthermore, classical studies in slices suggested seizure spread locally along deep cortical layers, whereas more recent in vivo imaging studies posit a role for superficial cortical layers in local spread. METHODS We imaged seizure-activated neurons using activity reporter mice and measured local field potentials (LFPs) using microelectrode arrays to map cortical seizure propagation in awake mice. RESULTS Frontal lobe onset seizures activate more neurons in superficial layers 2-3 than deep layers 5-6 throughout the cortex. LFP recordings demonstrate that seizures spread faster through the superficial than deep layers over long cortical distances of 3.5 mm. We also show that monosynaptically connected long-distance neurons are in the seizure circuit. SIGNIFICANCE We propose that long-distance cortical seizure spread occurs preferentially via synaptically connected superficial cortical neurons.
Collapse
Affiliation(s)
| | - Shinnosuke Shiono
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Chengsan Sun
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Edward Perez‐Reyes
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Brain InstituteUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
6
|
Depannemaecker D, Tesler F, Desroches M, Jirsa V, Destexhe A. Modeling impairment of ionic regulation with extended Adaptive Exponential integrate-and-fire models. J Comput Neurosci 2025; 53:1-8. [PMID: 39847247 PMCID: PMC11868341 DOI: 10.1007/s10827-025-00893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
To model the dynamics of neuron membrane excitability many models can be considered, from the most biophysically detailed to the highest level of phenomenological description. Recent works at the single neuron level have shown the importance of taking into account the evolution of slow variables such as ionic concentration. A reduction of such a model to models of the integrate-and-fire family is interesting to then go to large network models. In this paper, we introduce a way to consider the impairment of ionic regulation by adding a third, slow, variable to the adaptive Exponential integrate-and-fire model (AdEx). We then implement and simulate a network including this model. We find that this network was able to generate normal and epileptic discharges. This model should be useful for the design of network simulations of normal and pathological states.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), 91198, Gif sur Yvette, France.
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - Federico Tesler
- Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), 91198, Gif sur Yvette, France
| | - Mathieu Desroches
- MathNeuro Team, Inria Branch of the University of Montpellier, 34095, Montpellier, France
- MCEN Team, Basque Center for Applied Mathematics (BCAM), 48009, Bilbao, Spain
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Alain Destexhe
- Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), 91198, Gif sur Yvette, France
| |
Collapse
|
7
|
Rossi KL, Budzinski RC, Medeiros ES, Boaretto BRR, Muller L, Feudel U. Dynamical properties and mechanisms of metastability: A perspective in neuroscience. Phys Rev E 2025; 111:021001. [PMID: 40103058 DOI: 10.1103/physreve.111.021001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 03/20/2025]
Abstract
Metastability, characterized by a variability of regimes in time, is a ubiquitous type of neural dynamics. It has been formulated in many different ways in the neuroscience literature, however, which may cause some confusion. In this Perspective, we discuss metastability from the point of view of dynamical systems theory. We extract from the literature a very simple but general definition through the concept of metastable regimes as long-lived but transient epochs of activity with unique dynamical properties. This definition serves as an umbrella term that encompasses formulations from other works, and readily connects to concepts from dynamical systems theory. This allows us to examine general dynamical properties of metastable regimes, propose in a didactic manner several dynamics-based mechanisms that generate them, and discuss a theoretical tool to characterize them quantitatively. This Perspective leads to insights that help to address issues debated in the literature and also suggests pathways for future research.
Collapse
Affiliation(s)
- Kalel L Rossi
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| | - Roberto C Budzinski
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Everton S Medeiros
- São Paulo State University (UNESP), Institute of Geosciences and Exact Sciences, Avenida 24A 1515, 13506-900 Rio Claro, São Paulo, Brazil
| | - Bruno R R Boaretto
- Universidade Federal de São Paulo, Institute of Science and Technology, 12247-014 São José dos Campos, São Paulo, Brazil
- Universitat Politecnica de Catalunya, Department of Physics, 08222 Terrassa, Barcelona, Spain
| | - Lyle Muller
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Ulrike Feudel
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| |
Collapse
|
8
|
Xu J, Kong Y, Wang N, Li H, Li Y, Liu Z, Yang Y, Yu X, Liu H, Ding J, Wang Y, Zhao R, Shao Z. Personalized Human Astrocyte-Derived Region-Specific Forebrain Organoids Recapitulate Endogenous Pathological Features of Focal Cortical Dysplasia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409774. [PMID: 39741123 PMCID: PMC11848560 DOI: 10.1002/advs.202409774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Indexed: 01/02/2025]
Abstract
Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs. It is noteworthy that cardiomyocyte-like cells correlated with dysmorphic neurons are generated through the high activation of BMP and WNT signaling in some of the FCD-organoids and patient cortical tissues. Moreover, functional assessments demonstrated the occurrence of epileptiform burst firing and propagative self-assembling neuronal hyperactivity in both FCD-DFOs and VFOs. Additionally, the heterotopic cardiomyocyte-organoids demonstrated the capacity for cardiomyocyte contraction and rhythmic firing. The presence of these cardiomyocytes contributes to the hyperactivity of neural networks in cardioids-DFOs assembly. In conclusion, the personalized region-specific forebrain organoids derived from FCD patient astrocytes effectively recapitulate heterogeneous pathological features, offering a valuable platform for the development of precise therapeutic strategies.
Collapse
Affiliation(s)
- Jinhong Xu
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Yufei Kong
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Nawen Wang
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Huijuan Li
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Yunteng Li
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Zhuo Liu
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Yuling Yang
- Department of NeurologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Xiao Yu
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Huihui Liu
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| | - Jing Ding
- Department of NeurologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yi Wang
- National Children's Medical CenterChildren's Hospital of Fudan UniversityShanghai201102China
| | - Rui Zhao
- Shanghai Children' HospitalSchool of medicineShanghai Jiao Tong UniversityShanghai200062China
- Department of NeurosurgeryChildren's Hospital of Fudan UniversityShanghai201102China
| | - Zhicheng Shao
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceInstitute of PediatricsNational Children's Medical CenterChildren's HospitalFudan UniversityShanghai200032China
| |
Collapse
|
9
|
Fei F, Wang X, Fan X, Gong Y, Yang L, Wang Y, Xu C, Wang S, Chen Z, Wang Y. Circuit Reorganization of Subicular Cell-Type-Specific Interneurons in Temporal Lobe Epilepsy. J Neurosci 2025; 45:e0760242024. [PMID: 39658255 PMCID: PMC11780357 DOI: 10.1523/jneurosci.0760-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
The subiculum represents a crucial brain pivot in regulating seizure generalization in temporal lobe epilepsy (TLE), primarily through a synergy of local GABAergic and long-projecting glutamatergic signaling. However, little is known about how subicular GABAergic interneurons are involved in a cell-type-specific way. Here, employing Ca2+ fiber photometry, retrograde monosynaptic viral tracing, and chemogenetics in epilepsy models of both male and female mice, we elucidate circuit reorganization patterns mediated by subicular cell-type-specific interneurons and delineate their functional disparities in seizure modulation in TLE. We reveal distinct functional dynamics of subicular parvalbumin+ and somatostatin+ interneurons during secondary generalized seizure. These interneuron subtypes have their biased circuit organizations in terms of both input and output patterns, which undergo distinct reorganization in chronic epileptic condition. Notably, somatostatin+ interneurons exert more effective feedforward inhibition onto pyramidal neurons compared with parvalbumin+ interneurons, which engenders consistent antiseizure effects in TLE. These findings provide an improved understanding of different subtypes of subicular interneurons in circuit reorganization in TLE and supplement compelling proofs for precise treatment of epilepsy by targeting subicular somatostatin+ interneurons.
Collapse
Affiliation(s)
- Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xukun Fan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Lefebvre AT, Rodriguez CL, Bar-Kochba E, Steiner NE, Mirski M, Blodgett DW. High-resolution transcranial optical imaging of in vivo neural activity. Sci Rep 2024; 14:24756. [PMID: 39433766 PMCID: PMC11493950 DOI: 10.1038/s41598-024-70876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
Rapid sub-nanometer neuronal deformations have been shown to occur as a consequence of action potentials in vitro, allowing for optical registration of discrete axonal and synaptic depolarizations. Such optically-measured deformations are a novel signature for recording neural activity. We demonstrate this signature can be extended to in vivo measurements through recording of rapid neuronal deformations on the population level with holographic, optical phase-based recordings. Our system demonstrates, for the first time, non-invasive recordings of in vivo tissue deformation associated with population level neuronal activity, including through-skull. We confirmed this technique across a range of neural activation models, including direct epidural focal electrical stimulation, anesthetic-induced cortical deactivation, activation of primary somatosensory cortex via whisker barrel stimulation, and pharmacologically-induced seizures. Collectively, we show holographic imaging provides a pathway for high-resolution, label-free, non-invasive recording of transcranial in vivo neural activity at depth, making it highly advantageous for studying neural function and signaling.
Collapse
Affiliation(s)
- Austen T Lefebvre
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | | | - Eyal Bar-Kochba
- John Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Nicole E Steiner
- John Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Marek Mirski
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - David W Blodgett
- John Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA.
| |
Collapse
|
11
|
Donaire A, Padilla N, Escrichs A, Khawja M, Setoain X, Rumia J, Roldan P, Bargallo N, Boget T, Pintor L, Centeno M, Conde E, Vernet O, Buendía J, Manzanares I, Ådén U, Carreño M, Kringelbach M, Deco G. Subject-based assessment of large-scale integration dynamics in epileptic brain networks: insights from the intrinsic ignition framework. Cereb Cortex 2024; 34:bhae419. [PMID: 39441026 DOI: 10.1093/cercor/bhae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
This study examined the dynamic properties of brain regions involved in the genesis and spread of seizures in 10 individuals diagnosed with pharmacoresistant focal epilepsy. The patients and 30 healthy controls underwent resting-state functional magnetic resonance imaging scans and the brain's functional network dynamics were analyzed using the intrinsic ignition framework. Comparative statistical analyses examined the differences in the integration and metastability measures in both groups in the whole brain and specific local brain regions. Invasive electroencephalography evaluations validated the findings of significant global and regional changes in the patient's brain network dynamics. There was a marked increase in global integration and metastability across the brain, reflecting substantial alterations in the overall connectivity and flexibility of the functional networks. Specific brain regions exhibited paradoxical dynamics within the seizure onset zone, with decreased intrinsic ignition and increased metastability. Increased intrinsic ignition was observed in remote brain regions, suggesting a reorganization of the brain network hubs and potential pathways for seizure propagation. Using the intrinsic ignition framework provided insights into dynamic alterations in the brain networks of patients with epilepsy. These have increased our understanding of the mechanisms underlying epileptic seizures and may guide the development of diagnostic biomarkers and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Donaire
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, Barcelona, Catalonia, CP 08036, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, Carrer de Casanova, 143, Barcelona, Catalonia, CP 08036, Spain
| | - Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Tomtebodavägen 18b, Stockholm, SE-171 77, Stockholm County, Sweden
| | - Anira Escrichs
- Computational Neuroscience Group Center for Brain and Cognition, Universitat Pompeu Fabra, C/ de Ramon Trias Fargas, 25, Barcelona, Catalonia, CP 08018, Spain
| | - Mariam Khawja
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Xavier Setoain
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, Carrer de Casanova, 143, Barcelona, Catalonia, CP 08036, Spain
| | - Jordi Rumia
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Pedro Roldan
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Nuria Bargallo
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Teresa Boget
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Luis Pintor
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - María Centeno
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Estefanía Conde
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Oriol Vernet
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Javier Buendía
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Isabel Manzanares
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Ulrika Ådén
- Department of Women's and Children's Health, Karolinska Institutet, Tomtebodavägen 18b, Stockholm, SE-171 77, Stockholm County, Sweden
- Department of Neonatology, Karolinska University Hospital, Norrbacka, S3:03 Karolinska vägen 8, 171 76 Stockholm, Stockholm County, Sweden
| | - Mar Carreño
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford, Oxfordshire, OX3 7JX, United Kingdom
- Center for Music in the Brain, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Central Denmark Region, 8000, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, C/ de Ramon Trias Fargas, 25, Barcelona, CP 08018, Spain
- School of Psychological Sciences, Monash University, Melbourne, Clayton, Victoria (VIC) 3800, Australia
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona, Catalonia, CP 08010, Spain
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Saxony, 04103, Germany
| |
Collapse
|
12
|
Liu Z, De Schutter E, Li Y. GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics. eNeuro 2024; 11:ENEURO.0308-24.2024. [PMID: 39443111 PMCID: PMC11524612 DOI: 10.1523/eneuro.0308-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.
Collapse
Affiliation(s)
- Zichao Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Yinyun Li
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
13
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. NEUROPHOTONICS 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
14
|
Daoud M, Durelle C, Fierain A, N EY, Wendling F, Ruffini G, Benquet P, Bartolomei F. Long-term Effect of Multichannel tDCS Protocol in Patients with Central Cortex Epilepsies Associated with Epilepsia Partialis Continua. Brain Topogr 2024; 37:897-906. [PMID: 38446345 DOI: 10.1007/s10548-024-01045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Epilepsia partialis continua (EPC) is a rare type of focal motor status epilepticus that causes continuous muscle jerking in a specific part of the body. Experiencing this type of seizure, along with other seizure types, such as focal motor seizures and focal to bilateral tonic-clonic seizures, can result in a disabling situation. Non-invasive brain stimulation methods like transcranial direct current stimulation (tDCS) show promise in reducing seizure frequency (SF) when medications are ineffective. However, research on tDCS for EPC and related seizures is limited. We evaluated personalized multichannel tDCS in drug-resistant EPC of diverse etiologies for long-term clinical efficacy We report three EPC patients undergoing a long-term protocol of multichannel tDCS. The patients received several cycles (11, 9, and 3) of five consecutive days of stimulation at 2 mA for 2 × 20 min, targeting the epileptogenic zone (EZ), including the central motor cortex with cathodal electrodes. The primary measurement was SF changes. In three cases, EPC was due to Rasmussen's Encephalitis (case 1), focal cortical dysplasia (case 2), or remained unknown (case 3). tDCS cycles were administered over 6 to 22 months. The outcomes comprised a reduction of at least 75% in seizure frequency for two patients, and in one case, a complete cessation of severe motor seizures. However, tDCS had no substantial impact on the continuous myoclonus characterizing EPC. No serious side effects were reported. Long-term application of tDCS cycles is well tolerated and can lead to a considerable reduction in disabling seizures in patients with various forms of epilepsy with EPC.
Collapse
Affiliation(s)
- M Daoud
- Aix-Marseille Univ, INSERM U1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - C Durelle
- Service d'Epileptologie et de Rythmologie cérébrale, APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, 264 Rue Saint-Pierre, Marseille, 13005, France
| | - A Fierain
- Service d'Epileptologie et de Rythmologie cérébrale, APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, 264 Rue Saint-Pierre, Marseille, 13005, France
| | - El Youssef N
- Service d'Epileptologie et de Rythmologie cérébrale, APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, 264 Rue Saint-Pierre, Marseille, 13005, France
| | - F Wendling
- Univ Rennes, INSERM, LTSI-U1099, Rennes, F-35000, France
| | - G Ruffini
- Neuroelectrics Barcelona, Av. Tibidabo 47 bis, Barcelona, 08035, Spain
| | - P Benquet
- Univ Rennes, INSERM, LTSI-U1099, Rennes, F-35000, France
| | - F Bartolomei
- Aix-Marseille Univ, INSERM U1106, Institut de Neurosciences des Systèmes, Marseille, France.
- Service d'Epileptologie et de Rythmologie cérébrale, APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, 264 Rue Saint-Pierre, Marseille, 13005, France.
| |
Collapse
|
15
|
Stern MA, Dingledine R, Gross RE, Berglund K. Epilepsy insights revealed by intravital functional optical imaging. Front Neurol 2024; 15:1465232. [PMID: 39268067 PMCID: PMC11390408 DOI: 10.3389/fneur.2024.1465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite an abundance of pharmacologic and surgical epilepsy treatments, there remain millions of patients suffering from poorly controlled seizures. One approach to closing this treatment gap may be found through a deeper mechanistic understanding of the network alterations that underly this aberrant activity. Functional optical imaging in vertebrate models provides powerful advantages to this end, enabling the spatiotemporal acquisition of individual neuron activity patterns across multiple seizures. This coupled with the advent of genetically encoded indicators, be them for specific ions, neurotransmitters or voltage, grants researchers unparalleled access to the intact nervous system. Here, we will review how in vivo functional optical imaging in various vertebrate seizure models has advanced our knowledge of seizure dynamics, principally seizure initiation, propagation and termination.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurological Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
16
|
Lieberman S, Rivera DA, Morton R, Hingorani A, Southard TL, Johnson L, Reukauf J, Radwanski RE, Zhao M, Nishimura N, Bracko O, Schwartz TH, Schaffer CB. Circumscribing Laser Cuts Attenuate Seizure Propagation in a Mouse Model of Focal Epilepsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300747. [PMID: 38810146 PMCID: PMC11304327 DOI: 10.1002/advs.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2024] [Indexed: 05/31/2024]
Abstract
In partial onset epilepsy, seizures arise focally in the brain and often propagate. Patients frequently become refractory to medical management, leaving neurosurgery, which can cause neurologic deficits, as a primary treatment. In the cortex, focal seizures spread through horizontal connections in layers II/III, suggesting that severing these connections can block seizures while preserving function. Focal neocortical epilepsy is induced in mice, sub-surface cuts are created surrounding the seizure focus using tightly-focused femtosecond laser pulses, and electrophysiological recordings are acquired at multiple locations for 3-12 months. Cuts reduced seizure frequency in most animals by 87%, and only 5% of remaining seizures propagated to the distant electrodes, compared to 80% in control animals. These cuts produced a modest decrease in cortical blood flow that recovered and left a ≈20-µm wide scar with minimal collateral damage. When placed over the motor cortex, cuts do not cause notable deficits in a skilled reaching task, suggesting they hold promise as a novel neurosurgical approach for intractable focal cortical epilepsy.
Collapse
Affiliation(s)
- Seth Lieberman
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
- College of Veterinary MedicineCornell UniversityIthacaNY14853USA
| | - Daniel A. Rivera
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Ryan Morton
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Amrit Hingorani
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | | | - Lynn Johnson
- Statistical Consulting UnitCornell UniversityIthacaNY14853USA
| | - Jennifer Reukauf
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
- College of Veterinary MedicineCornell UniversityIthacaNY14853USA
| | - Ryan E. Radwanski
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Mingrui Zhao
- Department of Neurological SurgeryWeill Cornell Medicine of Cornell UniversityNew YorkNY10065USA
- Brain and Mind Research InstituteWeill Cornell Medicine of Cornell UniversityNew YorkNY10021USA
| | - Nozomi Nishimura
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Oliver Bracko
- Department of BiologyThe University of MiamiCoral GablesFL33134USA
| | - Theodore H. Schwartz
- Department of Neurological SurgeryWeill Cornell Medicine of Cornell UniversityNew YorkNY10065USA
- Brain and Mind Research InstituteWeill Cornell Medicine of Cornell UniversityNew YorkNY10021USA
| | - Chris B. Schaffer
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
17
|
Tohgasaki T, Touyama A, Kousai S, Imai K. Machine Learning-Enhanced Estimation of Cellular Protein Levels from Bright-Field Images. Bioengineering (Basel) 2024; 11:774. [PMID: 39199734 PMCID: PMC11351856 DOI: 10.3390/bioengineering11080774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
In this study, we aimed to develop a novel method for non-invasively determining intracellular protein levels, which is essential for understanding cellular phenomena. This understanding hinges on insights into gene expression, cell morphology, dynamics, and intercellular interactions. Traditional cell analysis techniques, such as immunostaining, live imaging, next-generation sequencing, and single-cell analysis, despite rapid advancements, face challenges in comprehensively integrating gene and protein expression data with spatiotemporal information. Leveraging advances in machine learning for image analysis, we designed a new model to estimate cellular biomarker protein levels using a blend of phase-contrast and fluorescent immunostaining images of epidermal keratinocytes. By iterating this process across various proteins, our model can estimate multiple protein levels from a single phase-contrast image. Additionally, we developed a system for analyzing multiple protein expression levels alongside spatiotemporal data through live imaging and phase-contrast methods. Our study offers valuable tools for cell-based research and presents a new avenue for addressing molecular biological challenges.
Collapse
Affiliation(s)
- Takeshi Tohgasaki
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan;
| | - Arisa Touyama
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan;
| | - Shohei Kousai
- Cytoronix Inc., 7-7 Shinkawasaki, Saiwai-ku, Kawasaki 212-0032, Japan; (S.K.); (K.I.)
| | - Kaita Imai
- Cytoronix Inc., 7-7 Shinkawasaki, Saiwai-ku, Kawasaki 212-0032, Japan; (S.K.); (K.I.)
| |
Collapse
|
18
|
Masala N, Mittag M, Giovannetti EA, O'Neil DA, Distler FJ, Rupprecht P, Helmchen F, Yuste R, Fuhrmann M, Beck H, Wenzel M, Kelly T. Aberrant hippocampal Ca 2+ microwaves following synapsin-dependent adeno-associated viral expression of Ca 2+ indicators. eLife 2024; 13:RP93804. [PMID: 39042440 PMCID: PMC11265795 DOI: 10.7554/elife.93804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.
Collapse
Affiliation(s)
- Nicola Masala
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
- Department of Epileptology, University Hospital BonnBonnGermany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Darik A O'Neil
- NeuroTechnology Center, Columbia UniversityNew YorkUnited States
| | - Fabian J Distler
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
| | - Peter Rupprecht
- Brain Research Institute, University of ZurichZurichSwitzerland
- Neuroscience Center Zurich, University of ZurichZurichSwitzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of ZurichZurichSwitzerland
- Neuroscience Center Zurich, University of ZurichZurichSwitzerland
| | - Rafael Yuste
- NeuroTechnology Center, Columbia UniversityNew YorkUnited States
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Heinz Beck
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Michael Wenzel
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
- Department of Epileptology, University Hospital BonnBonnGermany
| | - Tony Kelly
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
| |
Collapse
|
19
|
Shah PT, Valiante TA, Packer AM. Highly local activation of inhibition at the seizure wavefront in vivo. Cell Rep 2024; 43:114189. [PMID: 38703365 PMCID: PMC11913739 DOI: 10.1016/j.celrep.2024.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
The propagation of a seizure wavefront in the cortex divides an intensely firing seizure core from a low-firing seizure penumbra. Seizure propagation is currently thought to generate strong activation of inhibition in the seizure penumbra that leads to its decreased neuronal firing. However, the direct measurement of neuronal excitability during seizures has been difficult to perform in vivo. We used simultaneous optogenetics and calcium imaging (all-optical interrogation) to characterize real-time neuronal excitability in an acute mouse model of seizure propagation. We find that single-neuron excitability is decreased in close proximity to the seizure wavefront but becomes increased distal to the seizure wavefront. This suggests that inhibitory neurons of the seizure wavefront create a proximal circumference of hypoexcitability but do not influence neuronal excitability in the penumbra.
Collapse
Affiliation(s)
- Prajay T Shah
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Stern MA, Cole ER, Gross RE, Berglund K. Seizure event detection using intravital two-photon calcium imaging data. NEUROPHOTONICS 2024; 11:024202. [PMID: 38274784 PMCID: PMC10809036 DOI: 10.1117/1.nph.11.2.024202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Significance Intravital cellular calcium imaging has emerged as a powerful tool to investigate how different types of neurons interact at the microcircuit level to produce seizure activity, with newfound potential to understand epilepsy. Although many methods exist to measure seizure-related activity in traditional electrophysiology, few yet exist for calcium imaging. Aim To demonstrate an automated algorithmic framework to detect seizure-related events using calcium imaging-including the detection of pre-ictal spike events, propagation of the seizure wavefront, and terminal spreading waves for both population-level activity and that of individual cells. Approach We developed an algorithm for precise recruitment detection of population and individual cells during seizure-associated events, which broadly leverages averaged population activity and high-magnitude slope features to detect single-cell pre-ictal spike and seizure recruitment. We applied this method to data recorded using awake in vivo two-photon calcium imaging during pentylenetetrazol-induced seizures in mice. Results We demonstrate that our detected recruitment times are concordant with visually identified labels provided by an expert reviewer and are sufficiently accurate to model the spatiotemporal progression of seizure-associated traveling waves. Conclusions Our algorithm enables accurate cell recruitment detection and will serve as a useful tool for researchers investigating seizure dynamics using calcium imaging.
Collapse
Affiliation(s)
- Matthew A. Stern
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, Georgia, United States
| | - Eric R. Cole
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, Georgia, United States
- Emory University, Georgia Institute of Technology, Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Robert E. Gross
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, Georgia, United States
- Emory University, Georgia Institute of Technology, Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Ken Berglund
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, Georgia, United States
| |
Collapse
|
21
|
Bekbolatova M, Mayer J, Jose R, Syed F, Kurgansky G, Singh P, Pao R, Zaw H, Devine T, Chan-Akeley R, Toma M. Biomechanical Effects of Seizures on Cerebral Dynamics and Brain Stress. Brain Sci 2024; 14:323. [PMID: 38671975 PMCID: PMC11048267 DOI: 10.3390/brainsci14040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Epilepsy is one of the most common neurological disorders globally, affecting about 50 million people, with nearly 80% of those affected residing in low- and middle-income countries. It is characterized by recurrent seizures that result from abnormal electrical brain activity, with seizures varying widely in manifestation. The exploration of the biomechanical effects that seizures have on brain dynamics and stress levels is relevant for the development of more effective treatments and protective strategies. This study uses a blend of experimental data and computational simulations to assess the brain's physical response during seizures, particularly focusing on the behavior of cerebrospinal fluid and the resulting mechanical stresses on different brain regions. Notable findings show increases in stress, predominantly in the posterior gyri and brainstem, during seizures and an evidence of brain displacement relative to the skull. These observations suggest a dynamic and complex interaction between the brain and skull, with maximum shear stress regions demonstrating the limited yet essential protective role of the CSF. By providing a deeper understanding of the mechanical changes occurring during seizures, this research supports the goal of advancing diagnostic tools, informing more targeted treatment interventions, and guiding the creation of customized therapeutic strategies to enhance neurological care and protect against the adverse effects of seizures.
Collapse
Affiliation(s)
- Molly Bekbolatova
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Jonathan Mayer
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Rejath Jose
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Faiz Syed
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Gregory Kurgansky
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Paramvir Singh
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Rachel Pao
- NewYork-Presbyterian Queens Hospital, New York City, NY 11355, USA;
| | - Honey Zaw
- Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, Atran Berg Building, 8th Floor, New York City, NY 10029, USA;
| | - Timothy Devine
- The Ferrara Center for Patient Safety and Clinical Simulation, Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | | | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| |
Collapse
|
22
|
Ichimura T, Kakizuka T, Sato Y, Fujioka Y, Ohba Y, Horikawa K, Nagai T. Strength in numbers: Unleashing the potential of trans-scale scope AMATERAS for massive cell quantification. Biophys Physicobiol 2024; 21:e211017. [PMID: 39175860 PMCID: PMC11338690 DOI: 10.2142/biophysico.bppb-v21.s017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024] Open
Abstract
Singularity biology is a scientific field that targets drastic state changes in multicellular systems, aiming to discover the key cells that induce the state change and investigate the mechanisms behind them. To achieve this goal, we developed a trans-scale optical imaging system (trans-scale scope), that is capable of capturing both macroscale changes across the entire system and the micro-scale behavior of individual cells, surpassing the cell observation capabilities of traditional microscopes. We developed two units of the trans-scale scope, named AMATERAS-1 and -2, which demonstrated the ability to observe multicellular systems consisting of over one million cells in a single field of view with sub-cellular resolution. This flagship instrument has been used to observe the dynamics of various cell species, with the advantage of being able to observe a large number of cells, allowing the detection and analysis of rare events and cells such as leader cells in multicellular pattern formation and cells that spontaneously initiate calcium waves. In this paper, we present the design concept of AMATERAS, the optical configuration, and several examples of observations, and demonstrate how the strength-in-numbers works in life sciences.
Collapse
Affiliation(s)
- Taro Ichimura
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taishi Kakizuka
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yuki Sato
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima 770-8503, Japan
| | - Takeharu Nagai
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
23
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
24
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
25
|
Shimoda Y, Leite M, Graham RT, Marvin JS, Hasseman J, Kolb I, Looger LL, Magloire V, Kullmann DM. Extracellular glutamate and GABA transients at the transition from interictal spiking to seizures. Brain 2024; 147:1011-1024. [PMID: 37787057 PMCID: PMC10907087 DOI: 10.1093/brain/awad336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
Focal epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood. We used fluorescent glutamate and GABA sensors in an awake rodent model of neocortical seizures to resolve the spatiotemporal evolution of both neurotransmitters in the extracellular space. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagated centrifugally. GABA transients lasted longer than glutamate transients and were maximal ∼1.5 mm from the focus where they propagated centripetally. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing seizures to escape from local inhibitory restraint.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Leite
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Robert T Graham
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jeremy Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vincent Magloire
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
26
|
Masala N, Mittag M, Giovannetti EA, O'Neil DA, Distler F, Rupprecht P, Helmchen F, Yuste R, Fuhrmann M, Beck H, Wenzel M, Kelly T. Aberrant hippocampal Ca 2+ micro-waves following synapsin-dependent adeno-associated viral expression of Ca 2+ indicators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566169. [PMID: 37986838 PMCID: PMC10659308 DOI: 10.1101/2023.11.08.566169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ micro-waves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7 or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer, in a titre-dependent fashion. Ca2+ micro-waves developed in hippocampal CA1 and CA3, but not dentate gyrus (DG) nor neocortex, were typically first observed at 4 weeks after viral transduction, and persisted up to at least 8 weeks. The phenomenon was robust, observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ micro-waves depend on the promoter and viral titre of the GECI, density of expression as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artifact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ micro-waves and we provide a potential solution.
Collapse
Affiliation(s)
- Nicola Masala
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Darik A O'Neil
- NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Fabian Distler
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
| | - Peter Rupprecht
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Heinz Beck
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wenzel
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tony Kelly
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
| |
Collapse
|
27
|
Goldberg AR, Dovas A, Torres D, Sharma SD, Mela A, Merricks EM, Olabarria M, Shokooh LA, Zhao HT, Kotidis C, Calvaresi P, Viswanathan A, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Chen C, Bushong EA, Boassa D, Ellisman MH, Hillman EM, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575092. [PMID: 38293120 PMCID: PMC10827113 DOI: 10.1101/2024.01.10.575092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.
Collapse
Affiliation(s)
- Alexander R. Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M. Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T. Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D. Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B. Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A. Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M.C. Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J. A. Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A. Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, 10032
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032
| | - Darcy S. Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
28
|
Stern MA, Dingledine R. One Ring to Bind Them: The Annulus of GABAergic Inhibitory Restraint Fades at Seizure Emergence. Epilepsy Curr 2024; 24:53-55. [PMID: 38327527 PMCID: PMC10846514 DOI: 10.1177/15357597231223586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Extracellular Glutamate and GABA Transients at the Transition From Interictal Spiking to Seizures Shimoda Y, Leite M, Graham RT, Marvin JS, Hasseman J, Kolb I, Looger LL, Magloire V, Kullmann DM. Brain . 2023: awad336. doi:10.1093/brain/awad336 Focal epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood. We used fluorescent glutamate and GABA sensors in an awake rodent model of neocortical seizures to resolve the spatiotemporal evolution of both neurotransmitters in the extracellular space. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagated centrifugally. GABA transients lasted longer than glutamate transients and were maximal ∼1.5 mm from the focus where they propagated centripetally. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing seizures to escape from local inhibitory restraint.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery Emory University School of Medicine
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology Emory University School of Medicine
| |
Collapse
|
29
|
Yuste R. Advocating for neurodata privacy and neurotechnology regulation. Nat Protoc 2023; 18:2869-2875. [PMID: 37697107 DOI: 10.1038/s41596-023-00873-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/27/2023] [Indexed: 09/13/2023]
Abstract
The ability to record and alter brain activity by using implantable and nonimplantable neural devices, while poised to have significant scientific and clinical benefits, also raises complex ethical concerns. In this Perspective, we raise awareness of the ability of artificial intelligence algorithms and data-aggregation tools to decode and analyze data containing highly sensitive information, jeopardizing personal neuroprivacy. Voids in existing regulatory frameworks, in fact, allow unrestricted decoding and commerce of neurodata. We advocate for the implementation of proposed ethical and human rights guidelines, alongside technical options such as data encryption, differential privacy and federated learning to ensure the protection of neurodata privacy. We further encourage regulatory bodies to consider taking a position of responsibility by categorizing all brain-derived data as sensitive health data and apply existing medical regulations to all data gathered via pre-registered neural devices. Lastly, we propose that a technocratic oath may instill a deontology for neurotechnology practitioners akin to what the Hippocratic oath represents in medicine. A conscientious societal position that thoroughly rejects the misuse of neurodata would provide the moral compass for the future development of the neurotechnology field.
Collapse
Affiliation(s)
- Rafael Yuste
- Neurotechnology Center, Columbia University, New York, NY, USA.
| |
Collapse
|
30
|
Stern MA, Cole ER, Gross RE, Berglund K. Seizure Event Detection Using Intravital Two-Photon Calcium Imaging Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.558338. [PMID: 37808822 PMCID: PMC10557641 DOI: 10.1101/2023.09.28.558338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Significance Genetic cellular calcium imaging has emerged as a powerful tool to investigate how different types of neurons interact at the microcircuit level to produce seizure activity, with newfound potential to understand epilepsy. Although many methods exist to measure seizure-related activity in traditional electrophysiology, few yet exist for calcium imaging. Aim To demonstrate an automated algorithmic framework to detect seizure-related events using calcium imaging - including the detection of pre-ictal spike events, propagation of the seizure wavefront, and terminal spreading waves for both population-level activity and that of individual cells. Approach We developed an algorithm for precise recruitment detection of population and individual cells during seizure-associated events, which broadly leverages averaged population activity and high-magnitude slope features to detect single-cell pre-ictal spike and seizure recruitment. We applied this method to data recorded using awake in vivo two-photon calcium imaging during pentylenetetrazol induced seizures in mice. Results We demonstrate that our detected recruitment times are concordant with visually identified labels provided by an expert reviewer and are sufficiently accurate to model the spatiotemporal progression of seizure-associated traveling waves. Conclusions Our algorithm enables accurate cell recruitment detection and will serve as a useful tool for researchers investigating seizure dynamics using calcium imaging.
Collapse
Affiliation(s)
- Matthew A. Stern
- Authors Contributed Equally
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
| | - Eric R. Cole
- Authors Contributed Equally
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
- Emory University and Georgia Institute of Technology, Coulter Department of Biomedical Engineering, Atlanta, GA, United States
| | - Robert E. Gross
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
- Emory University and Georgia Institute of Technology, Coulter Department of Biomedical Engineering, Atlanta, GA, United States
| | - Ken Berglund
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
| |
Collapse
|
31
|
Burrows DRW, Diana G, Pimpel B, Moeller F, Richardson MP, Bassett DS, Meyer MP, Rosch RE. Microscale Neuronal Activity Collectively Drives Chaotic and Inflexible Dynamics at the Macroscale in Seizures. J Neurosci 2023; 43:3259-3283. [PMID: 37019622 PMCID: PMC7614507 DOI: 10.1523/jneurosci.0171-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 04/07/2023] Open
Abstract
Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.
Collapse
Affiliation(s)
- Dominic R W Burrows
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Giovanni Diana
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Birgit Pimpel
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Great Ormond Street-University College London Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
| | - Mark P Richardson
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Neurology, and Psychiatry University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Santa Fe Institute, Santa Fe NM 87501, New Mexico
| | - Martin P Meyer
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Richard E Rosch
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
| |
Collapse
|
32
|
Xiong H, Tang F, Guo Y, Xu R, Lei P. Neural Circuit Changes in Neurological Disorders: Evidence from in vivo Two-photon Imaging. Ageing Res Rev 2023; 87:101933. [PMID: 37061201 DOI: 10.1016/j.arr.2023.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Neural circuits, such as synaptic plasticity and neural activity, are critical components of healthy brain function. The consequent dynamic remodeling of neural circuits is an ongoing procedure affecting neuronal activities. Disruption of this essential process results in diseases. Advanced microscopic applications such as two-photon laser scanning microscopy have recently been applied to understand neural circuit changes during disease since it can visualize fine structural and functional cellular activation in living animals. In this review, we have summarized the latest work assessing the dynamic rewiring of postsynaptic dendritic spines and modulation of calcium transients in neurons of the intact living brain, focusing on their potential roles in neurological disorders (e.g. Alzheimer's disease, stroke, and epilepsy). Understanding the fine changes that occurred in the brain during disease is crucial for future clinical intervention developments.
Collapse
Affiliation(s)
- Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Yujie Guo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
33
|
Forrest MP, Dos Santos M, Piguel NH, Wang YZ, Hawkins NA, Bagchi VA, Dionisio LE, Yoon S, Simkin D, Martin-de-Saavedra MD, Gao R, Horan KE, George AL, LeDoux MS, Kearney JA, Savas JN, Penzes P. Rescue of neuropsychiatric phenotypes in a mouse model of 16p11.2 duplication syndrome by genetic correction of an epilepsy network hub. Nat Commun 2023; 14:825. [PMID: 36808153 PMCID: PMC9938216 DOI: 10.1038/s41467-023-36087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Neuropsychiatric disorders (NPDs) are frequently co-morbid with epilepsy, but the biological basis of shared risk remains poorly understood. The 16p11.2 duplication is a copy number variant that confers risk for diverse NPDs including autism spectrum disorder, schizophrenia, intellectual disability and epilepsy. We used a mouse model of the 16p11.2 duplication (16p11.2dup/+) to uncover molecular and circuit properties associated with this broad phenotypic spectrum, and examined genes within the locus capable of phenotype reversal. Quantitative proteomics revealed alterations to synaptic networks and products of NPD risk genes. We identified an epilepsy-associated subnetwork that was dysregulated in 16p11.2dup/+ mice and altered in brain tissue from individuals with NPDs. Cortical circuits from 16p11.2dup/+ mice exhibited hypersynchronous activity and enhanced network glutamate release, which increased susceptibility to seizures. Using gene co-expression and interactome analysis, we show that PRRT2 is a major hub in the epilepsy subnetwork. Remarkably, correcting Prrt2 copy number rescued aberrant circuit properties, seizure susceptibility and social deficits in 16p11.2dup/+ mice. We show that proteomics and network biology can identify important disease hubs in multigenic disorders, and reveal mechanisms relevant to the complex symptomatology of 16p11.2 duplication carriers.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicolas H Piguel
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicole A Hawkins
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vikram A Bagchi
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Leonardo E Dionisio
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sehyoun Yoon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dina Simkin
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maria Dolores Martin-de-Saavedra
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ruoqi Gao
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Katherine E Horan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alfred L George
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark S LeDoux
- Department of Psychology, University of Memphis, Memphis, TN, 38152, USA
- Veracity Neuroscience LLC, Memphis, TN, 38157, USA
| | - Jennifer A Kearney
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
34
|
Lundstrom BN, Richner TJ. Neural adaptation and fractional dynamics as a window to underlying neural excitability. PLoS Comput Biol 2023; 19:e1010527. [PMID: 36809353 PMCID: PMC9983885 DOI: 10.1371/journal.pcbi.1010527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/03/2023] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
The relationship between macroscale electrophysiological recordings and the dynamics of underlying neural activity remains unclear. We have previously shown that low frequency EEG activity (<1 Hz) is decreased at the seizure onset zone (SOZ), while higher frequency activity (1-50 Hz) is increased. These changes result in power spectral densities (PSDs) with flattened slopes near the SOZ, which are assumed to be areas of increased excitability. We wanted to understand possible mechanisms underlying PSD changes in brain regions of increased excitability. We hypothesized that these observations are consistent with changes in adaptation within the neural circuit. We developed a theoretical framework and tested the effect of adaptation mechanisms, such as spike frequency adaptation and synaptic depression, on excitability and PSDs using filter-based neural mass models and conductance-based models. We compared the contribution of single timescale adaptation and multiple timescale adaptation. We found that adaptation with multiple timescales alters the PSDs. Multiple timescales of adaptation can approximate fractional dynamics, a form of calculus related to power laws, history dependence, and non-integer order derivatives. Coupled with input changes, these dynamics changed circuit responses in unexpected ways. Increased input without synaptic depression increases broadband power. However, increased input with synaptic depression may decrease power. The effects of adaptation were most pronounced for low frequency activity (< 1Hz). Increased input combined with a loss of adaptation yielded reduced low frequency activity and increased higher frequency activity, consistent with clinical EEG observations from SOZs. Spike frequency adaptation and synaptic depression, two forms of multiple timescale adaptation, affect low frequency EEG and the slope of PSDs. These neural mechanisms may underlie changes in EEG activity near the SOZ and relate to neural hyperexcitability. Neural adaptation may be evident in macroscale electrophysiological recordings and provide a window to understanding neural circuit excitability.
Collapse
Affiliation(s)
- Brian Nils Lundstrom
- Neurology Department, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| | - Thomas J. Richner
- Neurology Department, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
35
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
36
|
Bryson A, Petrou S. SCN1A channelopathies: Navigating from genotype to neural circuit dysfunction. Front Neurol 2023; 14:1173460. [PMID: 37139072 PMCID: PMC10149698 DOI: 10.3389/fneur.2023.1173460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The SCN1A gene is strongly associated with epilepsy and plays a central role for supporting cortical excitation-inhibition balance through the expression of NaV1.1 within inhibitory interneurons. The phenotype of SCN1A disorders has been conceptualized as driven primarily by impaired interneuron function that predisposes to disinhibition and cortical hyperexcitability. However, recent studies have identified SCN1A gain-of-function variants associated with epilepsy, and the presence of cellular and synaptic changes in mouse models that point toward homeostatic adaptations and complex network remodeling. These findings highlight the need to understand microcircuit-scale dysfunction in SCN1A disorders to contextualize genetic and cellular disease mechanisms. Targeting the restoration of microcircuit properties may be a fruitful strategy for the development of novel therapies.
Collapse
Affiliation(s)
- Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Alexander Bryson,
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Praxis Precision Medicines, Inc., Cambridge, MA, United States
| |
Collapse
|
37
|
Bae S, Lim HK, Jeong Y, Kim SG, Park SM, Shon YM, Suh M. Deep brain stimulation of the anterior nuclei of the thalamus can alleviate seizure severity and induce hippocampal GABAergic neuronal changes in a pilocarpine-induced epileptic mouse brain. Cereb Cortex 2022; 32:5530-5543. [PMID: 35258078 DOI: 10.1093/cercor/bhac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has been widely used as an effective treatment for refractory temporal lobe epilepsy. Despite its promising clinical outcome, the exact mechanism of how ANT-DBS alleviates seizure severity has not been fully understood, especially at the cellular level. To assess effects of DBS, the present study examined electroencephalography (EEG) signals and locomotor behavior changes and conducted immunohistochemical analyses to examine changes in neuronal activity, number of neurons, and neurogenesis of inhibitory neurons in different hippocampal subregions. ANT-DBS alleviated seizure activity, abnormal locomotor behaviors, reduced theta-band, increased gamma-band EEG power in the interictal state, and increased the number of neurons in the dentate gyrus (DG). The number of parvalbumin- and somatostatin-expressing inhibitory neurons was recovered to the level in DG and CA1 of naïve mice. Notably, BrdU-positive inhibitory neurons were increased. In conclusion, ANT-DBS not only could reduce the number of seizures, but also could induce neuronal changes in the hippocampus, which is a key region involved in chronic epileptogenesis. Importantly, our results suggest that ANT-DBS may lead to hippocampal subregion-specific cellular recovery of GABAergic inhibitory neurons.
Collapse
Affiliation(s)
- Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoonyi Jeong
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Min Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
38
|
Sumsky S, Greenfield LJ. Network analysis of preictal iEEG reveals changes in network structure preceding seizure onset. Sci Rep 2022; 12:12526. [PMID: 35869236 PMCID: PMC9307526 DOI: 10.1038/s41598-022-16877-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Seizures likely result from aberrant network activity and synchronization. Changes in brain network connectivity may underlie seizure onset. We used a novel method of rapid network model estimation from intracranial electroencephalography (iEEG) data to characterize pre-ictal changes in network structure prior to seizure onset. We analyzed iEEG data from 20 patients from the iEEG.org database. Using 10 s epochs sliding by 1 s intervals, a multiple input, single output (MISO) state space model was estimated for each output channel and time point with all other channels as inputs, generating sequential directed network graphs of channel connectivity. These networks were assessed using degree and betweenness centrality. Both degree and betweenness increased at seizure onset zone (SOZ) channels 37.0 ± 2.8 s before seizure onset. Degree rose in all channels 8.2 ± 2.2 s prior to seizure onset, with increasing connections between the SOZ and surrounding channels. Interictal networks showed low and stable connectivity. A novel MISO model-based network estimation method identified changes in brain network structure just prior to seizure onset. Increased connectivity was initially isolated within the SOZ and spread to non-SOZ channels before electrographic seizure onset. Such models could help confirm localization of SOZ regions.
Collapse
|
39
|
Abstract
The ability to develop effective new treatments for epilepsy may depend on improved understanding of seizure pathophysiology, about which many questions remain. Dynamic fluorescence imaging of activity at single-neuron resolution with fluorescent indicators in experimental model systems in vivo has revolutionized basic neuroscience and has the potential to do so for epilepsy research as well. Here, we review salient issues as they pertain to experimental imaging in basic epilepsy research, including commonly used imaging technologies, data processing and analysis, interpretation of results, and selected examples of how imaging-based approaches have revealed new insight into mechanisms of seizures and epilepsy.
Collapse
Affiliation(s)
- Patrick N. Lawlor
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M. Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
Buckmaster PS, Reyes B, Kahn T, Wyeth M. Ventral Hippocampal Formation Is the Primary Epileptogenic Zone in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2022; 42:7482-7495. [PMID: 35995562 PMCID: PMC9525166 DOI: 10.1523/jneurosci.0429-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/12/2023] Open
Abstract
Temporal lobe epilepsy is common, but mechanisms of seizure initiation are unclear. We evaluated seizure initiation in female and male rats that had been systemically treated with pilocarpine, a widely used model of temporal lobe epilepsy. Local field potential (LFP) recordings from many brain regions revealed variable sites of earliest recorded seizure activity, but mostly the ventral hippocampal formation. To test whether inactivation of the ventral hippocampal formation would reduce seizures, mini-osmotic pumps were used to continually and focally deliver TTX. High doses of TTX infused unilaterally into the ventral hippocampal formation blocked seizures reversibly but also reduced LFP amplitudes in remote brain regions, indicating distant effects. A lower dose did not reduce LFP amplitudes in remote brain regions but did not reduce seizures when infused unilaterally. Instead, seizures tended to initiate in the contralateral ventral hippocampal formation. Bilateral infusion of the lower dose into the ventral hippocampal formation reduced seizure frequency 85%. Similar bilateral treatment in the amygdala was not effective. Bilateral infusion of the dorsal hippocampus reduced seizure frequency, but only 17%. Together, these findings reveal that the ventral hippocampal formation is a primary bilaterally independent epileptogenic zone, and the dorsal hippocampus is a secondary epileptogenic zone in pilocarpine-treated rats. This is consistent with many human patients, and the results further validate the LFP method for identifying seizure onset zones. Finally, the findings are more consistent with a focal mechanism of ictogenesis rather than one involving a network of interdependent nodes.SIGNIFICANCE STATEMENT To better understand how seizures start, investigators need to know where seizures start in the animal models they study. In the widely used pilocarpine-treated rat model of temporal lobe epilepsy, earliest seizure activity was most frequently recorded in the ventral hippocampal formation. Confirming the primary role of the ventral hippocampal formation, seizure frequency was reduced most effectively when it was inactivated focally, bilaterally, and continually with infused TTX. These findings suggest that the ventral hippocampal formation is the primary site of seizure initiation in this animal model of temporal lobe epilepsy, consistent with findings in many human patients.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine
- Neurology & Neurological Sciences, Stanford University, Stanford, California 94305
| | - Bianca Reyes
- Departments of Comparative Medicine
- College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088
| | | | | |
Collapse
|
41
|
Schlafly ED, Marshall FA, Merricks EM, Eden UT, Cash SS, Schevon CA, Kramer MA. Multiple Sources of Fast Traveling Waves during Human Seizures: Resolving a Controversy. J Neurosci 2022; 42:6966-6982. [PMID: 35906069 PMCID: PMC9464018 DOI: 10.1523/jneurosci.0338-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022] Open
Abstract
During human seizures, organized waves of voltage activity rapidly sweep across the cortex. Two contradictory theories describe the source of these fast traveling waves: either a slowly advancing narrow region of multiunit activity (an ictal wavefront) or a fixed cortical location. Limited observations and different analyses prevent resolution of these incompatible theories. Here we address this disagreement by combining the methods and microelectrode array recordings (N = 11 patients, 2 females, N = 31 seizures) from previous human studies to analyze the traveling wave source. We find, inconsistent with both existing theories, a transient relationship between the ictal wavefront and traveling waves, and multiple stable directions of traveling waves in many seizures. Using a computational model that combines elements of both existing theories, we show that interactions between an ictal wavefront and fixed source reproduce the traveling wave dynamics observed in vivo We conclude that combining both existing theories can generate the diversity of ictal traveling waves.SIGNIFICANCE STATEMENT The source of voltage discharges that propagate across cortex during human seizures remains unknown. Two candidate theories exist, each proposing a different discharge source. Support for each theory consists of observations from a small number of human subject recordings, analyzed with separately developed methods. How the different, limited data and different analysis methods impact the evidence for each theory is unclear. To resolve these differences, we combine the unique, human microelectrode array recordings collected separately for each theory and analyze these combined data with a unified approach. We show that neither existing theory adequately describes the data. We then propose a new theory that unifies existing proposals and successfully reproduces the voltage discharge dynamics observed in vivo.
Collapse
Affiliation(s)
- Emily D Schlafly
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - François A Marshall
- Department of Mathematics and Statistics & Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Edward M Merricks
- Department of Neurology, Columbia University, New York, New York 10032
| | - Uri T Eden
- Department of Mathematics and Statistics & Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02114
| | | | - Mark A Kramer
- Department of Mathematics and Statistics & Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
42
|
Kovács Z, Skatchkov SN, Szabó Z, Qahtan S, Méndez-González MP, Malpica-Nieves CJ, Eaton MJ, Kardos J, Héja L. Putrescine Intensifies Glu/GABA Exchange Mechanism and Promotes Early Termination of Seizures. Int J Mol Sci 2022; 23:ijms23158191. [PMID: 35897767 PMCID: PMC9331600 DOI: 10.3390/ijms23158191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Endogenous anticonvulsant mechanisms represent a reliable and currently underdeveloped strategy against recurrent seizures and may recall novel original therapeutics. Here, we investigated whether the intensification of the astroglial Glu-GABA exchange mechanism by application of the GABA precursor putrescine (PUT) may be effective against convulsive and non-convulsive seizures. We explored the potential of PUT to inhibit spontaneous spike-and-wave discharges (SWDs) in WAG/Rij rats, a genetic model of absence epilepsy. Significant shortening of SWDs in response to intraperitoneally applied PUT has been observed, which could be antagonized by blocking GAT-2/3-mediated astrocytic GABA release with the specific inhibitor SNAP-5114. Direct application of exogenous GABA also reduced SWD duration, suggesting that PUT-triggered astroglial GABA release through GAT-2/3 may be a critical step in limiting seizure duration. PUT application also dose-dependently shortened seizure-like events (SLEs) in the low-[Mg2+] in vitro model of temporal lobe epilepsy. SNAP-5114 reversed the antiepileptic effect of PUT in the in vitro model as well, further confirming that PUT reduces seizure duration by triggering glial GABA release. In accordance, we observed that PUT specifically reduces the frequency of excitatory synaptic potentials, suggesting that it specifically acts at excitatory synapses. We also identified that PUT specifically eliminated the tonic depolarization-induced desynchronization of SLEs. Since PUT is an important source of glial GABA and we previously showed significant GABA release, it is suggested that the astroglial Glu-GABA exchange mechanism plays a key role in limiting ictal discharges, potentially opening up novel pathways to control seizure propagation and generalization.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamon, PR 00960, USA; (S.N.S.); (C.J.M.-N.)
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
| | - Saif Qahtan
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58001, Iraq
| | - Miguel P. Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
- Natural Sciences Department, University of Puerto Rico in Aguadilla, Aguadilla, PR 00604, USA
- Department of Science and Technology, Antilles Adventist University, Mayagüez, PR 00681, USA
| | - Christian J. Malpica-Nieves
- Department of Physiology, Universidad Central del Caribe, Bayamon, PR 00960, USA; (S.N.S.); (C.J.M.-N.)
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
- Correspondence:
| |
Collapse
|
43
|
Multimodal, Multiscale Insights into Hippocampal Seizures Enabled by Transparent, Graphene-Based Microelectrode Arrays. eNeuro 2022; 9:ENEURO.0386-21.2022. [PMID: 35470227 PMCID: PMC9087744 DOI: 10.1523/eneuro.0386-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Hippocampal seizures are a defining feature of mesial temporal lobe epilepsy (MTLE). Area CA1 of the hippocampus is commonly implicated in the generation of seizures, which may occur because of the activity of endogenous cell populations or of inputs from other regions within the hippocampal formation. Simultaneously observing activity at the cellular and network scales in vivo remains challenging. Here, we present a novel technology for simultaneous electrophysiology and multicellular calcium imaging of CA1 pyramidal cells (PCs) in mice enabled by a transparent graphene-based microelectrode array (Gr MEA). We examine PC firing at seizure onset, oscillatory coupling, and the dynamics of the seizure traveling wave as seizures evolve. Finally, we couple features derived from both modalities to predict the speed of the traveling wave using bootstrap aggregated regression trees. Analysis of the most important features in the regression trees suggests a transition among states in the evolution of hippocampal seizures.
Collapse
|
44
|
Yin L, Gao DS, Hu JM, Zhong C, Xi W. Long-term development of dynamic changes in neurovascular coupling after acute temporal lobe epilepsy. Brain Res 2022; 1784:147858. [PMID: 35245486 DOI: 10.1016/j.brainres.2022.147858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/25/2022]
Abstract
Epilepsy is an abnormal brain state that may be induced by synchronous neuronal activation and also abnormalities in energy metabolism or the oxygen supply vascular system. Neurovascular coupling (NVC), the relationship between neuron, capillary, and penetrating artery, remains unexplored on a fine-scale with respect to the pathology process after acute temporal lobe epilepsy (TLE). Here we use two-photon microscopy (TPM) to provide high temporal-spatial resolution imaging to identify changes in NVC during spontaneous and electro-stimulated (ES) states in awake mice. Implantation of a long-term craniotomy window allowed TPM recording of the pathological development after the acute Kainic Acid temporal lobe epilepsy model. Our results provide direct evidence that the capillary and penetrating artery are not correlated to rhythmic neuronal activity during acute epilepsy. During the CSD period, NVC shows a strong correlation. We demonstrate that NVC exhibits nonlinear dynamics after status epilepticus. Furthermore, the vascular correlation to neuronal signals in spontaneous and ES states shows dynamic changes which correlate to the evolution after acute TLE. Understanding NVC in all TLE stages, from the acute through the TLE pathological development, may provide new therapeutic pathways.
Collapse
Affiliation(s)
- Liu Yin
- Interdisciplinary Institute of Neuroscience and Technology, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Kaixuan Road 258th, Hangzhou, 310020, PR China
| | - Dave Schwinn Gao
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, PR China
| | - Jia Ming Hu
- Interdisciplinary Institute of Neuroscience and Technology, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Kaixuan Road 258th, Hangzhou, 310020, PR China
| | - Chen Zhong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China. Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Kaixuan Road 258th, Hangzhou, 310020, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and instrument Science, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
45
|
Niemeyer JE, Gadamsetty P, Chun C, Sylvester S, Lucas JP, Ma H, Schwartz TH, Aksay ERF. Seizures initiate in zones of relative hyperexcitation in a zebrafish epilepsy model. Brain 2022; 145:2347-2360. [PMID: 35196385 DOI: 10.1093/brain/awac073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/12/2022] Open
Abstract
Seizures are thought to arise from an imbalance of excitatory and inhibitory neuronal activity. While most classical studies suggest excessive excitatory neural activity plays a generative role, some recent findings challenge this view and instead argue that excessive activity in inhibitory neurons initiates seizures. We investigated this question of imbalance in a zebrafish seizure model with two-photon imaging of excitatory and inhibitory neuronal activity throughout the brain using a nuclear-localized calcium sensor. We found that seizures consistently initiated in circumscribed zones of the midbrain before propagating to other brain regions. Excitatory neurons were both more prevalent and more likely to be recruited than inhibitory neurons in initiation as compared with propagation zones. These findings support a mechanistic picture whereby seizures initiate in a region of hyper-excitation, then propagate more broadly once inhibitory restraint in the surround is overcome.
Collapse
Affiliation(s)
- James E Niemeyer
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Poornima Gadamsetty
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chanwoo Chun
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sherika Sylvester
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jacob P Lucas
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
46
|
Bando Y, Wenzel M, Yuste R. Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo. Nat Commun 2021; 12:7229. [PMID: 34893595 PMCID: PMC8664861 DOI: 10.1038/s41467-021-27444-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
To better understand the input-output computations of neuronal populations, we developed ArcLight-ST, a genetically-encoded voltage indicator, to specifically measure subthreshold membrane potentials. We combined two-photon imaging of voltage and calcium, and successfully discriminated subthreshold inputs and spikes with cellular resolution in vivo. We demonstrate the utility of the method by mapping epileptic seizures progression through cortical circuits, revealing divergent sub- and suprathreshold dynamics within compartmentalized epileptic micronetworks. Two-photon, two-color imaging of calcium and voltage enables mapping of inputs and outputs in neuronal populations in living animals.
Collapse
Affiliation(s)
- Yuki Bando
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA. .,Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.
| | - Michael Wenzel
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.,Department of Epileptology, University of Bonn, 53127, Bonn, Germany
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
47
|
Sadeh S, Clopath C. Excitatory-inhibitory balance modulates the formation and dynamics of neuronal assemblies in cortical networks. SCIENCE ADVANCES 2021; 7:eabg8411. [PMID: 34731002 PMCID: PMC8565910 DOI: 10.1126/sciadv.abg8411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/14/2021] [Indexed: 05/20/2023]
Abstract
Repetitive activation of subpopulations of neurons leads to the formation of neuronal assemblies, which can guide learning and behavior. Recent technological advances have made the artificial induction of these assemblies feasible, yet how various parameters of induction can be optimized is not clear. Here, we studied this question in large-scale cortical network models with excitatory-inhibitory balance. We found that the background network in which assemblies are embedded can strongly modulate their dynamics and formation. Networks with dominant excitatory interactions enabled a fast formation of assemblies, but this was accompanied by recruitment of other non-perturbed neurons, leading to some degree of nonspecific induction. On the other hand, networks with strong excitatory-inhibitory interactions ensured that the formation of assemblies remained constrained to the perturbed neurons, but slowed down the induction. Our results suggest that these two regimes can be suitable for computational and cognitive tasks with different trade-offs between speed and specificity.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
48
|
Data-driven computational modeling predicts "superhubs" play key role in epileptic dynamics. Neuron 2021; 109:2501-2503. [PMID: 34411535 DOI: 10.1016/j.neuron.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How individual neurons influence epileptic networks remains an open question. In this issue of Neuron, Hadjiabadi et al. (2021) use data-driven, computational models to predict the presence of "superhubs": highly connected neurons that drive network activity through feedforward motifs.
Collapse
|
49
|
Ichimura T, Kakizuka T, Horikawa K, Seiriki K, Kasai A, Hashimoto H, Fujita K, Watanabe TM, Nagai T. Exploring rare cellular activity in more than one million cells by a transscale scope. Sci Rep 2021; 11:16539. [PMID: 34400683 PMCID: PMC8368064 DOI: 10.1038/s41598-021-95930-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
In many phenomena of biological systems, not a majority, but a minority of cells act on the entire multicellular system causing drastic changes in the system properties. To understand the mechanisms underlying such phenomena, it is essential to observe the spatiotemporal dynamics of a huge population of cells at sub-cellular resolution, which is difficult with conventional tools such as microscopy and flow cytometry. Here, we describe an imaging system named AMATERAS that enables optical imaging with an over-one-centimeter field-of-view and a-few-micrometer spatial resolution. This trans-scale-scope has a simple configuration, composed of a low-power lens for machine vision and a hundred-megapixel image sensor. We demonstrated its high cell-throughput, capable of simultaneously observing more than one million cells. We applied it to dynamic imaging of calcium ions in HeLa cells and cyclic-adenosine-monophosphate in Dictyostelium discoideum, and successfully detected less than 0.01% of rare cells and observed multicellular events induced by these cells.
Collapse
Affiliation(s)
- T Ichimura
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
- PRESTO, Japan Science and Technology Agency, Tokyo, 113-0033, Japan.
| | - T Kakizuka
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - K Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
| | - K Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - A Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - H Hashimoto
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Yamadaoka 1-1, Suita, Osaka, 565-0871, Japan
| | - K Fujita
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - T M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Minatomachi-minami 2-2-3, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - T Nagai
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
50
|
Herzog R, Morales A, Mora S, Araya J, Escobar MJ, Palacios AG, Cofré R. Scalable and accurate method for neuronal ensemble detection in spiking neural networks. PLoS One 2021; 16:e0251647. [PMID: 34329314 PMCID: PMC8323916 DOI: 10.1371/journal.pone.0251647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. We found that our method outperforms current alternative methodologies. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity could be organized in distinguishable functional ensembles. We provide a Graphic User Interface, which facilitates the use of our method by the scientific community.
Collapse
Affiliation(s)
- Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo Morales
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Soraya Mora
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Laboratorio de Biología Computacional, Fundación Ciencia y Vida, Santiago, Chile
| | - Joaquín Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
| | - María-José Escobar
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|