1
|
Negrey JD, Frye BM, Craft S, Register TC, Baxter MG, Jorgensen MJ, Shively CA. Executive function mediates age-related variation in social integration in female vervet monkeys (Chlorocebus sabaeus). GeroScience 2024; 46:841-852. [PMID: 37217631 PMCID: PMC10828467 DOI: 10.1007/s11357-023-00820-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
In humans, social participation and integration wane with advanced age, a pattern hypothesized to stem from cognitive or physical decrements. Similar age-related decreases in social participation have been observed in several nonhuman primate species. Here, we investigated cross-sectional age-related associations between social interactions, activity patterns, and cognitive function in 25 group-living female vervets (a.k.a. African green monkeys, Chlorocebus sabaeus) aged 8-29 years. Time spent in affiliative behavior decreased with age, and time spent alone correspondingly increased. Furthermore, time spent grooming others decreased with age, but the amount of grooming received did not. The number of social partners to whom individuals directed grooming also decreased with age. Grooming patterns mirrored physical activity levels, which also decreased with age. The relationship between age and grooming time was mediated, in part, by cognitive performance. Specifically, executive function significantly mediated age's effect on time spent in grooming interactions. In contrast, we did not find evidence that physical performance mediated age-related variation in social participation. Taken together, our results suggest that aging female vervets were not socially excluded but decreasingly engaged in social behavior, and that cognitive deficits may underlie this relationship.
Collapse
Affiliation(s)
- Jacob D Negrey
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157-1040, USA
| | - Brett M Frye
- Department of Biology, Emory and Henry College, Emory, VA, USA
- Wake Forest Alzheimer's Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Internal Medicine/Gerontology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Wake Forest Alzheimer's Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Internal Medicine/Gerontology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thomas C Register
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157-1040, USA
- Wake Forest Alzheimer's Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark G Baxter
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157-1040, USA
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Jorgensen
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157-1040, USA
| | - Carol A Shively
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157-1040, USA.
- Wake Forest Alzheimer's Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Frye BM, Craft S, Register TC, Kim J, Whitlow CT, Barcus RA, Lockhart SN, Sai KKS, Shively CA. Early Alzheimer's disease-like reductions in gray matter and cognitive function with aging in nonhuman primates. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12284. [PMID: 35310523 PMCID: PMC8918111 DOI: 10.1002/trc2.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Introduction Age-related neuropathology associated with sporadic Alzheimer's disease (AD) often develops well before the onset of symptoms. Given AD's long preclinical period, translational models are needed to identify early signatures of pathological decline. Methods Using structural magnetic resonance imaging and cognitive assessments, we examined the relationships among age, cognitive performance, and neuroanatomy in 48 vervet monkeys (Chlorocebus aethiops sabaeus) ranging from young adults to very old. Results We found negative associations of age with cortical gray matter volume (P = .003) and the temporal-parietal cortical thickness meta-region of interest (P = .001). Additionally, cortical gray matter volumes predicted working memory at approximately 1-year follow-up (correct trials at the 20s delay [P = .008]; correct responses after longer delays [P = .004]). Discussion Cortical gray matter diminishes with age in vervets in regions relevant to AD, which may increase risk of cognitive impairment. This study lays the groundwork for future investigations to test therapeutics to delay or slow pathological decline.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Jeongchul Kim
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Richard A. Barcus
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Kiran Kumar Solingapuram Sai
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Carol A. Shively
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
3
|
Frye BM, Craft S, Latimer CS, Keene CD, Montine TJ, Register TC, Orr ME, Kavanagh K, Macauley SL, Shively CA. Aging-related Alzheimer's disease-like neuropathology and functional decline in captive vervet monkeys (Chlorocebus aethiops sabaeus). Am J Primatol 2021; 83:e23260. [PMID: 33818801 PMCID: PMC8626867 DOI: 10.1002/ajp.23260] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Age-related neurodegeneration characteristic of late-onset Alzheimer's disease (LOAD) begins in middle age, well before symptoms. Translational models to identify modifiable risk factors are needed to understand etiology and identify therapeutic targets. Here, we outline the evidence supporting the vervet monkey (Chlorocebus aethiops sabaeus) as a model of aging-related AD-like neuropathology and associated phenotypes including cognitive function, physical function, glucose handling, intestinal physiology, and CSF, blood, and neuroimaging biomarkers. This review provides the most comprehensive multisystem description of aging in vervets to date. This review synthesizes a large body of evidence that suggests that aging vervets exhibit a coordinated suite of traits consistent with early AD and provide a powerful, naturally occurring model for LOAD. Notably, relationships are identified between AD-like neuropathology and modifiable risk factors. Gaps in knowledge and key limitations are provided to shape future studies to illuminate mechanisms underlying divergent neurocognitive aging trajectories and to develop interventions that increase resilience to aging-associated chronic disease, particularly, LOAD.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | | | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Kylie Kavanagh
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
| | - Shannon L. Macauley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| |
Collapse
|
4
|
Frye BM, Valure PM, Craft S, Baxter MG, Scott C, Wise-Walden S, Bissinger DW, Register HM, Copeland C, Jorgensen MJ, Justice JN, Kritchevsky SB, Register TC, Shively CA. Temporal emergence of age-associated changes in cognitive and physical function in vervets (Chlorocebus aethiops sabaeus). GeroScience 2021; 43:1303-1315. [PMID: 33611720 PMCID: PMC8190425 DOI: 10.1007/s11357-021-00338-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Dual declines in gait speed and cognitive performance are associated with increased risk of developing dementia. Characterizing the patterns of such impairments therefore is paramount to distinguishing healthy from pathological aging. Nonhuman primates such as vervet/African green monkeys (Chlorocebus aethiops sabaeus) are important models of human neurocognitive aging, yet the trajectory of dual decline has not been characterized. We therefore (1) assessed whether cognitive and physical performance (i.e., gait speed) are lower in older aged animals; (2) explored the relationship between performance in a novel task of executive function (Wake Forest Maze Task-WFMT) and a well-established assessment of working memory (delayed response task-DR task); and (3) examined the association between baseline gait speed with executive function and working memory at 1-year follow-up. We found (1) physical and cognitive declines with age; (2) strong agreement between performance in the novel WFMT and DR task; and (3) that slow gait is associated with poor cognitive performance in both domains. Our results suggest that older aged vervets exhibit a coordinated suite of traits consistent with human aging and that slow gait may be a biomarker of cognitive decline. This integrative approach provides evidence that gait speed and cognitive function differ across the lifespan in female vervet monkeys, which advances them as a model that could be used to dissect relationships between trajectories of dual decline over time.
Collapse
Affiliation(s)
- Brett M Frye
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Payton M Valure
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, IW, New York, USA
| | - Christie Scott
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Shanna Wise-Walden
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - David W Bissinger
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Hannah M Register
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Carson Copeland
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Matthew J Jorgensen
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Thomas C Register
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, USA
| | - Carol A Shively
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA.
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, USA.
| |
Collapse
|
5
|
Cunha AM, Esteves M, Pereira-Mendes J, Guimarães MR, Almeida A, Leite-Almeida H. High trait impulsivity potentiates the effects of chronic pain on impulsive behavior. NEUROBIOLOGY OF PAIN 2019; 7:100042. [PMID: 31890992 PMCID: PMC6928455 DOI: 10.1016/j.ynpai.2019.100042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 02/03/2023]
Abstract
We explored a potential relation between trait and chronic pain-induced impulsivity. Low trait impulsivity rats with neuropathic pain perform similarly to controls. High trait impulsivity rats are delay intolerant in chronic pain conditions. Trait characteristics influence chronic pain comorbid manifestations.
Preclinical studies on impulsive decision-making in chronic pain conditions are sparse and often contradictory. Outbred rat populations are heterogeneous regarding trait impulsivity manifestations and therefore we hypothesized that chronic pain-related alterations depend on individual traits. To test this hypothesis, we used male Wistar-Han rats in two independent experiments. Firstly, we tested the impact of spared nerve injury (SNI) in impulsive behavior evaluated by the variable delay-to-signal test (VDS). In the second experiment, SNI impact on impulsivity was again tested, but in groups previously categorized as high (HI) and low (LI) trait impulsivity in the VDS. Results showed that in an heterogenous population SNI-related impact on motor impulsivity and delay intolerance cannot be detected. However, when baseline impulsivity was considered, HI showed a significantly higher delay intolerance than the respective controls more prevalent in left-lesioned animals and appearing to result from a response correction on prematurity from VDS I to VDS II, which was present in Sham and right-lesioned animals. In conclusion, baseline differences should be more often considered when analyzing chronic pain impact. While this study pertained to impulsive behavior, other reports indicate that this can be generalized to other behavioral dimensions and that trait differences can influence not only the manifestation of comorbid behaviors but also pain itself in a complex and not totally understood manner.
Collapse
Affiliation(s)
- Ana Margarida Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Joana Pereira-Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Marco Rafael Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| |
Collapse
|
6
|
Gardini L, Dal Forno A, Merlone U. Memory effects on binary choices with impulsive agents: Bistability and a new BCB structure. CHAOS (WOODBURY, N.Y.) 2019; 29:123133. [PMID: 31893658 DOI: 10.1063/1.5120472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
After the seminal works by Schelling, several authors have considered models representing binary choices by different kinds of agents or groups of people. The role of the memory in these models is still an open research argument, on which scholars are investigating. The dynamics of binary choices with impulsive agents has been represented, in the recent literature, by a one-dimensional piecewise smooth map. Following a similar way of modeling, we assume a memory effect which leads the next output to depend on the present and the last state. This results in a two-dimensional piecewise smooth map with a limiting case given by a piecewise linear discontinuous map, whose dynamics and bifurcations are investigated. The map has a particular structure, leading to trajectories belonging only to a pair of straight lines. The system can have, in general, only attracting cycles, but the related periods and periodicity regions are organized in a complex structure of the parameter space. We show that the period adding structure, characteristic for the one-dimensional case, also persists in the two-dimensional one. The considered cycles have a symbolic sequence which is obtained by the concatenation of the symbolic sequences of cycles, which play the role of basic cycles in the bifurcation structure. Moreover, differently from the one-dimensional case, the coexistence of two attracting cycles is now possible. The bistability regions in the parameter space are investigated, evidencing the role of different kinds of codimension-two bifurcation points, as well as in the phase space and the related basins of attraction are described.
Collapse
Affiliation(s)
- L Gardini
- Department of Economics, Society and Politics, University of Urbino, Via A. Saffi n. 42, 61029 Urbino, Italy
| | - A Dal Forno
- Department of Economics, University of Molise, via F. De Sanctis 1, 86100 Campobasso, Italy
| | - U Merlone
- Department of Psychology, and Center for Logic, Language and Cognition, University of Torino, via G. Verdi 10, 10124 Torino, Italy
| |
Collapse
|
7
|
ArunSundar M, Shanmugarajan TS, Ravichandiran V. 3,4-Dihydroxyphenylethanol Assuages Cognitive Impulsivity in Alzheimer's Disease by Attuning HPA-Axis via Differential Crosstalk of α7 nAChR with MicroRNA-124 and HDAC6. ACS Chem Neurosci 2018; 9:2904-2916. [PMID: 29901389 DOI: 10.1021/acschemneuro.7b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cognitive impulsivity, a form of suboptimal cost-benefit decision making, is an illustrious attribute of an array of neurodegenerative diseases including Alzheimer's disease (AD). In this study, a delay discounting paradigm was used to assess the effect of 3,4-dihydroxyphenylethanol (DOPET) on cognitive impulsivity, in an oA42i (oligomeric amyloid β1-42 plus ibotenic acid) induced AD mouse model, using a nonspatial T-maze task. The results depicted that oA42i administration elevated cognitive impulsivity, whereas DOPET treatment attenuated the impulsive behavior and matched the choice of the sham-operated controls. In addition, DOPET treatment has ameliorated the anxiety-like behavior in the oA42i-challenged mice. Probing the molecular signaling cascades underpinning these functional ramifications in the oA42i-challenged mice revealed reduced cholinergic (α7 nAChR; alpha 7 nicotinic acetylcholine receptor) function, dysregulated hypothalamic-pituitary-adrenal (HPA) axis (manifested by amplified glucocorticoid receptor expression and plasma corticosterone levels), and also aberrations in the neuroepigenetic (microRNA-124, HDAC6 (histone deacetylase 6), and HSP90 (heat-shock protein 90) expressions) as well as nucleocytoplasmic (importin-α1 expression and nuclear ultra-architecture) continuum. Nonetheless, DOPET administration ameliorated these perturbations and the observations were in line with that of the sham-operated mice. Further validation of the results with organotypic hippocampal slice cultures (OHSCs) confirmed the in vivo findings. We opine that HPA-axis attunement by DOPET might be orchestrated through the α7 nAChR-mediated pathway. Based on these outcomes, we posit that 3,4-dihydroxyphenylethanol might be a potential multimodal agent for the management of cognitive impulsivity and neuromolecular quagmire in AD.
Collapse
Affiliation(s)
- Mohanasundaram ArunSundar
- Department of Pharmacology, School of Pharmaceutical Sciences, Vels University (VISTAS), Pallavaram, Chennai-600117, India
| | | | | |
Collapse
|
8
|
Povroznik JM, Ozga JE, Haar CV, Engler-Chiurazzi EB. Executive (dys)function after stroke: special considerations for behavioral pharmacology. Behav Pharmacol 2018; 29:638-653. [PMID: 30215622 PMCID: PMC6152929 DOI: 10.1097/fbp.0000000000000432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stroke is a worldwide leading cause of death and long-term disability with concurrent secondary consequences that are largely comprised of mood dysfunction, as well as sensory, motor, and cognitive deficits. This review focuses on the cognitive deficits associated with stroke specific to executive dysfunction (including decision making, working memory, and cognitive flexibility) in humans, nonhuman primates, and additional animal models. Further, we review some of the cellular and molecular underpinnings of the individual components of executive dysfunction and their neuroanatomical substrates after stroke, with an emphasis on the changes that occur during biogenic monoamine neurotransmission. We concentrate primarily on changes in the catecholaminergic (dopaminergic and noradrenergic) and serotonergic systems at the levels of neurotransmitter synthesis, distribution, reuptake, and degradation. We also discuss potential secondary stroke-related behavioral deficits (specifically, poststroke depression as well as drug-abuse potential and addiction) and their relationship with stroke-induced deficits in executive function, an especially important consideration given that the average age of the human stroke population is decreasing. In the final sections, we address pharmacological considerations for the treatment of ischemia and the subsequent functional impairment, as well as current limitations in the field of stroke and executive function research.
Collapse
Affiliation(s)
- Jessica M. Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA
- Rodent Behavior Core, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Jenny E. Ozga
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Elizabeth B. Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA
- Rodent Behavior Core, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
9
|
Cronin KA, Jacobson SL, Bonnie KE, Hopper LM. Studying primate cognition in a social setting to improve validity and welfare: a literature review highlighting successful approaches. PeerJ 2017; 5:e3649. [PMID: 28791199 PMCID: PMC5545107 DOI: 10.7717/peerj.3649] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Studying animal cognition in a social setting is associated with practical and statistical challenges. However, conducting cognitive research without disturbing species-typical social groups can increase ecological validity, minimize distress, and improve animal welfare. Here, we review the existing literature on cognitive research run with primates in a social setting in order to determine how widespread such testing is and highlight approaches that may guide future research planning. SURVEY METHODOLOGY Using Google Scholar to search the terms "primate" "cognition" "experiment" and "social group," we conducted a systematic literature search covering 16 years (2000-2015 inclusive). We then conducted two supplemental searches within each journal that contained a publication meeting our criteria in the original search, using the terms "primate" and "playback" in one search and the terms "primate" "cognition" and "social group" in the second. The results were used to assess how frequently nonhuman primate cognition has been studied in a social setting (>3 individuals), to gain perspective on the species and topics that have been studied, and to extract successful approaches for social testing. RESULTS Our search revealed 248 unique publications in 43 journals encompassing 71 species. The absolute number of publications has increased over years, suggesting viable strategies for studying cognition in social settings. While a wide range of species were studied they were not equally represented, with 19% of the publications reporting data for chimpanzees. Field sites were the most common environment for experiments run in social groups of primates, accounting for more than half of the results. Approaches to mitigating the practical and statistical challenges were identified. DISCUSSION This analysis has revealed that the study of primate cognition in a social setting is increasing and taking place across a range of environments. This literature review calls attention to examples that may provide valuable models for researchers wishing to overcome potential practical and statistical challenges to studying cognition in a social setting, ultimately increasing validity and improving the welfare of the primates we study.
Collapse
Affiliation(s)
- Katherine A. Cronin
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, United States of America
| | - Sarah L. Jacobson
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, United States of America
| | - Kristin E. Bonnie
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, United States of America
- Department of Psychology, Beloit College, Beloit, WI, United States of America
| | - Lydia M. Hopper
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, United States of America
| |
Collapse
|
10
|
Jorgensen MJ, Lambert KR, Breaux SD, Baker KC, Snively BM, Weed JL. Pair housing of Vervets/African Green Monkeys for biomedical research. Am J Primatol 2017; 79:1-10. [PMID: 26539878 PMCID: PMC4860176 DOI: 10.1002/ajp.22501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/15/2022]
Abstract
Vervets, also known as African green monkeys, are a nonhuman primate species widely used in biomedical research. However, there are currently few references available describing techniques and rates of success for pair-housing this species. We present data from four cohorts of vervets from three different facilities: (i) the Wake Forest Vervet Research Colony (VRC; n = 72 female pairs, n= 52 male pairs), (ii) the University of Louisiana at Lafayette-New Iberia Research Center (UL-NIRC; n = 57 female pairs, n = 54 male pairs), (iii) the Tulane National Primate Research Center (TNRPC; n = 18 male pairs), and (iv) a cohort of imported males (n = 18 pairs) at Wake Forest. Compatibility was measured at 14, 30, and 60 days following introduction. Success rates for pair-housing at 14 days ranged from 96% to 98% for females and 96% to 100% for males at the VRC and UL-NIRC but were lower in the smaller imported male cohorts (TNPRC: 50%; WF: 28%). Among the UL-NIRC cohort and VRC male cohort, most of the pair separations after 14 days were due to reasons unrelated to social incompatibility. In contrast, a large proportion of TNPRC and imported male pairs successful at 14 days required separation within 60 days due to incompatibility. Multiple logistic regressions were performed using cohort, mean age of pair and weight difference between pair-mates as potential predictors of compatibility at 14 days. All three predicted the 14-day outcome in males but not females. A separate analysis in the VRC cohort found no evidence that prior familiarity in a group setting influenced outcomes. Variations in success rates across cohorts may have been influenced by introduction methodology. Behavioral differences between vervets and macaques, coupled with our findings, lead us to theorize that the gradual introduction techniques commonly implemented to pair house macaques may not be beneficial or suitable for this species. Am. J. Primatol. 79:e22501, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew J. Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kelsey R. Lambert
- Animal Resources Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah D. Breaux
- Department of Veterinary Resources, University of Louisiana at Lafayette – New Iberia Research Center, Lafayette, Louisiana
| | - Kate C. Baker
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, Louisiana
| | - Beverly M. Snively
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James L. Weed
- Animal Resources Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
11
|
Leshem R. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation. Dev Neuropsychol 2016; 41:125-43. [DOI: 10.1080/87565641.2016.1178266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rotem Leshem
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Nyongesa A, Oduma J, al'Absi M, Chirwa S. Immunohistochemical localization of anterior pituitary cell types of vervet monkey (Chlorocebus aethiops) following sub-chronic cathinone exposure. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:168-177. [PMID: 26277490 DOI: 10.1016/j.jep.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Khat (Catha edulis) contains cathinone, an active principal that is customarily used as a psychostimulant that wards off fatigue and to some extent used as an aphrodisiac. AIM OF STUDY To investigate effects of escalating doses of cathinone on hormone expression by different anterior pituitary cell types using specific antibodies. MATERIAL AND METHODS Eleven vervet monkeys (6 males and 5 females) divided into tests (n=9) and controls (n=2) were used. Animals were allocated as group I (saline controls), group II (0.8 mg/kg), group III (3.2 mg/kg) and group IV (6.4 mg/kg) of cathinone. All treatments were via oral route at alternate days of each week. At the end of 4-month treatment phase, GnRH agonist (ZOLADEX) was administered to group II (low dose) and group IV (high dose) alongside cathinone for 2 additional weeks. RESULTS High cathinone dose at long-term exposure caused proliferation of gonadotrophs but decrease in lactotrophs and corticotrophs in anterior pituitary sections of animals while effect of low dose on these cells was insignificant. Subsequent GnRH agonist co-treatment with low and high cathinone doses enhanced gonadotroph proliferation but no change on decline of lactotrophs and corticotrophs. CONCLUSION We believe that there was a possible potentiation of cathinone on pituitary hormone synthesis thereby influencing reproductive function. Suppression of corticotrophic and lactotrophic functions suggest lowering of stress levels and modulation of reproductive function based on dose level and chronicity of exposure. The findings are consistent with the hypothesis that cathinone interferes with pituitary cell integrity and consequently target organs, but further studies are required to address the precise mechanism underlying this phenomenon.
Collapse
Affiliation(s)
- Albert Nyongesa
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya.
| | - Jemimah Oduma
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Mustafa al'Absi
- Duluth Medical Research Institute, University of Minnesota, Duluth, MN 55812, USA
| | - Sanika Chirwa
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, USA
| |
Collapse
|
13
|
Elsworth JD, Jentsch JD, Groman SM, Roth RH, Redmond ED, Leranth C. Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. J Comp Neurol 2015; 523:1248-57. [PMID: 25557059 PMCID: PMC4390445 DOI: 10.1002/cne.23735] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/25/2023]
Abstract
Bisphenol-A (BPA) is widely used in the manufacture of plastics, epoxy resins, and certain paper products. A majority of the population in the developed world is routinely exposed to BPA from multiple sources and has significant circulating levels of BPA. Although BPA is categorized as an endocrine disruptor with a growing literature on adverse effects, it is uncertain whether cognitive dysfunction is induced in humans by exposure to BPA. The present study examined the impact of BPA in primate brain by exposing adult male vervet monkeys for 4 weeks continuously to circulating levels of BPA that were in the range measured in studies of humans environmentally exposed to BPA. This regimen of exposure to BPA decreased both working memory accuracy and the number of excitatory synaptic inputs on dendritic spines of pyramidal neurons in two brain regions that are necessary for working memory (prefrontal cortex and hippocampus). These observed behavioral and synaptic effects were ameliorated following withdrawal from BPA. As Old World monkeys (e.g., vervets) and humans share some uniquely primate morphological, endocrine, and cognitive traits, this study indicates the potential for significant cognitive disruption following exposure of humans to BPA.
Collapse
Affiliation(s)
- John D Elsworth
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | | | | | | | | | | |
Collapse
|
14
|
Bridgett DJ, Burt NM, Edwards ES, Deater-Deckard K. Intergenerational transmission of self-regulation: A multidisciplinary review and integrative conceptual framework. Psychol Bull 2015; 141:602-654. [PMID: 25938878 PMCID: PMC4422221 DOI: 10.1037/a0038662] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review examines mechanisms contributing to the intergenerational transmission of self-regulation. To provide an integrated account of how self-regulation is transmitted across generations, we draw from over 75 years of accumulated evidence, spanning case studies to experimental approaches, in literatures covering developmental, social, and clinical psychology, and criminology, physiology, genetics, and human and animal neuroscience (among others). First, we present a taxonomy of what self-regulation is and then examine how it develops--overviews that guide the main foci of the review. Next, studies supporting an association between parent and child self-regulation are reviewed. Subsequently, literature that considers potential social mechanisms of transmission, specifically parenting behavior, interparental (i.e., marital) relationship behaviors, and broader rearing influences (e.g., household chaos) is considered. Finally, evidence that prenatal programming may be the starting point of the intergenerational transmission of self-regulation is covered, along with key findings from the behavioral and molecular genetics literatures. To integrate these literatures, we introduce the self-regulation intergenerational transmission model, a framework that brings together prenatal, social/contextual, and neurobiological mechanisms (spanning endocrine, neural, and genetic levels, including gene-environment interplay and epigenetic processes) to explain the intergenerational transmission of self-regulation. This model also incorporates potential transactional processes between generations (e.g., children's self-regulation and parent-child interaction dynamics that may affect parents' self-regulation) that further influence intergenerational processes. In pointing the way forward, we note key future directions and ways to address limitations in existing work throughout the review and in closing. We also conclude by noting several implications for intervention work.
Collapse
Affiliation(s)
| | - Nicole M Burt
- Department of Psychology, Northern Illinois University
| | | | | |
Collapse
|
15
|
Elsworth JD, Groman SM, Jentsch JD, Leranth C, Redmond DE, Kim JD, Diano S, Roth RH. Primate phencyclidine model of schizophrenia: sex-specific effects on cognition, brain derived neurotrophic factor, spine synapses, and dopamine turnover in prefrontal cortex. Int J Neuropsychopharmacol 2015; 18:pyu048. [PMID: 25522392 PMCID: PMC4438537 DOI: 10.1093/ijnp/pyu048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. METHODS The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. RESULTS One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. CONCLUSIONS As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- John D Elsworth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano).
| | - Stephanie M Groman
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - James D Jentsch
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Csaba Leranth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - D Eugene Redmond
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Jung D Kim
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Sabrina Diano
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Robert H Roth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| |
Collapse
|
16
|
|
17
|
Jasinska AJ, Schmitt CA, Service SK, Cantor RM, Dewar K, Jentsch JD, Kaplan JR, Turner TR, Warren WC, Weinstock GM, Woods RP, Freimer NB. Systems biology of the vervet monkey. ILAR J 2014; 54:122-43. [PMID: 24174437 DOI: 10.1093/ilar/ilt049] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations.
Collapse
|
18
|
Nyongesa AW, Oduma JA, Nakajima M, Odongo HO, Adoyo PA, al'Absi M. Acute and sub-chronic effects of purified cathinone from khat (Catha edulis) on behavioural profiles in vervet monkeys (Chlorocebus aethiops). Metab Brain Dis 2014; 29:441-9. [PMID: 24154685 DOI: 10.1007/s11011-013-9441-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
We investigated the cumulative effects of cathinone on behavioural alterations in single-caged vervet monkeys. Fourteen adult vervets were divided into tests (12 animals) and controls (2 animals), and exposed to escalating doses of cathinone at alternate days of each week for 4 months in presence and absence of cage enrichment. One month of pre-treatment phase served to establish baseline values. Composite behavioural scores of aggression, anxiety, abnormal responses, withdrawal and appetite loss were done. A series of repeated measures analysis of variances were conducted to examine the extent to which cathinone administration was associated with patterns of changes in behavioural data. Results indicate a dose-dependent effect of cathinone on increases of aggression, anxiety, abnormal responses, withdrawal, and appetite loss. The findings demonstrate that at high doses and long-term exposure, cathinone causes behavioural alterations probably via changes in presynaptic striatal dopamine system.
Collapse
Affiliation(s)
- Albert W Nyongesa
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya,
| | | | | | | | | | | |
Collapse
|
19
|
Jentsch JD, Ashenhurst JR, Cervantes MC, Groman SM, James AS, Pennington ZT. Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci 2014; 1327:1-26. [PMID: 24654857 DOI: 10.1111/nyas.12388] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Addictions are often characterized as forms of impulsive behavior. That said, it is often noted that impulsivity is a multidimensional construct, spanning several psychological domains. This review describes the relationship between varieties of impulsivity and addiction-related behaviors, the nature of the causal relationship between the two, and the underlying neurobiological mechanisms that promote impulsive behaviors. We conclude that the available data strongly support the notion that impulsivity is both a risk factor for, and a consequence of, drug and alcohol consumption. While the evidence indicating that subtypes of impulsive behavior are uniquely informative--either biologically or with respect to their relationships to addictions--is convincing, multiple lines of study link distinct subtypes of impulsivity to low dopamine D2 receptor function and perturbed serotonergic transmission, revealing shared mechanisms between the subtypes. Therefore, a common biological framework involving monoaminergic transmitters in key frontostriatal circuits may link multiple forms of impulsivity to drug self-administration and addiction-related behaviors. Further dissection of these relationships is needed before the next phase of genetic and genomic discovery will be able to reveal the biological sources of the vulnerability for addiction indexed by impulsivity.
Collapse
Affiliation(s)
- J David Jentsch
- Department of Psychology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
20
|
Elsworth JD, Jentsch JD, Vandevoort CA, Roth RH, Redmond DE, Leranth C. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology 2013; 35:113-20. [PMID: 23337607 DOI: 10.1016/j.neuro.2013.01.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 11/29/2022]
Abstract
Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14-18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA.
Collapse
Affiliation(s)
- John D Elsworth
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Navarrete F, Pérez-Ortiz JM, Manzanares J. Pregabalin- and topiramate-mediated regulation of cognitive and motor impulsivity in DBA/2 mice. Br J Pharmacol 2013; 167:183-95. [PMID: 22489711 DOI: 10.1111/j.1476-5381.2012.01981.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Impulsivity is a core symptom in many neuropsychiatric disorders. The main objective of this study was to evaluate the effects of topiramate and pregabalin on the modulation of different impulsivity dimensions in DBA/2 mice. EXPERIMENTAL APPROACH The effects of acute and chronic administration of pregabalin (10, 20 and 40 mg·kg(-1) ) and topiramate (12.5, 25 and 50 mg·kg(-1) ) were evaluated in the light-dark box (LDB), hole board test (HBT) and delayed reinforcement task (DRT). α(2A) -Adrenoceptor, D(2) -receptor and TH gene expression were evaluated by real-time PCR in the prefrontal cortex (PFC), accumbens (ACC) and ventral tegmental area (VTA), respectively. KEY RESULTS Acute pregabalin administration showed a clear anxiolytic-like effect (LDB) but did not modify novelty-seeking behaviour (HBT). In contrast, topiramate produced an anxiolytic effect only at the highest dose, whereas it reduced novelty seeking at all doses tested. In the DRT, acute pregabalin had no effect, whereas topiramate only reduced motor impulsivity. Chronically, pregabalin significantly increased motor impulsivity and topiramate diminished cognitive impulsivity. Pregabalin decreased α(2A) -adrenoceptor and D(2) -receptor gene expression in the PFC and ACC, respectively, and increased TH in the VTA. In contrast, chronic administration of topiramate increased α(2A) -adrenoceptor and D(2) -receptor gene expression in the PFC and ACC, respectively, and also increased TH in the VTA. CONCLUSIONS AND IMPLICATIONS These results suggest that the usefulness of pregabalin in impulsivity-related disorders is related to its anxiolytic properties, whereas topiramate modulates impulsivity. These differences could be linked to their opposite effects on α(2A) -adrenoceptor and D(2) -receptor gene expression in the PFC and ACC, respectively.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | | | | |
Collapse
|
22
|
GILLINGHAM MARKAF, BECHET ARNAUD, GERACI JULIA, WATTIER REMI, DUBREUIL CHRISTINE, CEZILLY FRANK. Genetic polymorphism in dopamine receptor D4 is associated with early body condition in a large population of greater flamingos,Phoenicopterus roseus. Mol Ecol 2012; 21:4024-37. [DOI: 10.1111/j.1365-294x.2012.05669.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Groman SM, Jentsch JD. Cognitive control and the dopamine D₂-like receptor: a dimensional understanding of addiction. Depress Anxiety 2012; 29:295-306. [PMID: 22147558 DOI: 10.1002/da.20897] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 11/09/2022] Open
Abstract
The phenotypic complexity of psychiatric conditions is revealed by the dimensional nature of these disorders, which consist of multiple behavioral, affective, and cognitive dysfunctions that can result in substantial psychosocial impairment. The high degree of heterogeneity in symptomatology and comorbidity suggests that simple categorical diagnoses of "affected" or "unaffected" may fail to capture the true characteristics of the disorder in a manner relevant to individualized treatment. A particular dimension of interest is cognitive control ability because impairments in the capacity to control thoughts, feelings, and actions are key to several psychiatric disorders. Here, we describe evidence suggesting that cognitive control over behavior is a crucial dimension of function relevant to addictions. Moreover, dopamine (DA) D(2)-receptor transmission is increasingly being identified as a point of convergence for these behavioral and cognitive processes. Consequently, we argue that measures of cognitive control and D(2) DA receptor function may be particularly informative markers of individual function and treatment response in addictions.
Collapse
Affiliation(s)
- Stephanie M Groman
- Department of Psychology, University of California, Los Angeles, California 90095-1563, USA
| | | |
Collapse
|
24
|
Glogowski S, Ward KW, Lawrence MS, Goody RJ, Proksch JW. The use of the African green monkey as a preclinical model for ocular pharmacokinetic studies. J Ocul Pharmacol Ther 2012; 28:290-8. [PMID: 22235843 DOI: 10.1089/jop.2011.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This investigation evaluated the ocular and systemic pharmacokinetics of besifloxacin in African green monkeys compared with cynomolgus monkeys following topical ocular dosing. METHODS A suspension formulation containing 0.6% besifloxacin was administered to African green and cynomolgus monkeys. Animals were euthanized at predetermined time intervals, and ocular tissue and systemic blood samples were collected and analyzed by LC/MS/MS. RESULTS In both African green and cynomolgus monkeys, high concentrations of besifloxacin were detected in anterior segment tissues, while levels in posterior segment tissues and plasma were low. Mean concentration versus time profiles of besifloxacin were generally similar between species, with rapid absorption into ocular tissues after a single dose. In anterior segment tissues, concentrations of besifloxacin were measurable throughout the 24-h sampling period in both species. Quantitatively, concentrations were consistently higher in the conjunctiva of African green monkeys compared with cynomolgus monkeys. Besifloxacin levels were also higher during the first 3 h following dosing in the tear fluid of African green monkeys, but lower in the iris/ciliary body during this timeframe. However after the 3-h time point, concentrations in the tear fluid and iris/ciliary body were similar between species. Exposure in cornea tended to be higher in African green monkeys, but the difference was less pronounced than for conjunctiva. Exposure in aqueous humor was comparable between species. In posterior segment tissues, exposure to besifloxacin tended to be higher in cynomolgus monkeys. Systemic exposure also tended to be higher in cynomolgus monkeys, but measurable levels were present in the plasma of both species throughout the 24-h sampling period. With the exception of iris/ciliary body and vitreous humor, mean ocular tissue weights were generally similar between species although a small, but statistically significant, difference was also observed in the choroid. CONCLUSIONS African green monkeys may be a suitable model for preclinical ocular pharmacokinetic studies. Additional studies using a variety of compounds would be useful in determining whether the quantitative differences in ocular exposures and ocular tissue weights observed in the present investigation reflect slight variations in the procedures used in these separate experiments, or true physiological and anatomical differences between species.
Collapse
Affiliation(s)
- Shellise Glogowski
- Global Pharmaceutical Research & Development, Bausch & Lomb, Rochester, New York 14609, USA.
| | | | | | | | | |
Collapse
|
25
|
Grégoire S, Rivalan M, Le Moine C, Dellu-Hagedorn F. The synergy of working memory and inhibitory control: behavioral, pharmacological and neural functional evidences. Neurobiol Learn Mem 2011; 97:202-12. [PMID: 22197651 DOI: 10.1016/j.nlm.2011.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023]
Abstract
Concomitant deficits in working memory and behavioral inhibition in several psychiatric disorders like attention-deficit/hyperactivity disorder, addiction or mania, suggest that common brain mechanisms may underlie their etiologies. Based on the theoretical assumption that a continuum exists between health and mental disorders, we explored the relationship between working memory and inhibition in healthy individuals, through spontaneous inter individual differences in behavior, and tested the hypothesis of a functional link through the fronto-striatal dopaminergic system. Rats were classified into three groups, showing good, intermediate and poor working memory and were compared for their inhibitory abilities. These two functions were simultaneously modulated by a dose-effect of d-amphetamine and in situ hybridization was used to quantify dopaminergic receptor (RD1) mRNAs in prefrontal cortex and striatal areas. A functional relationship between working memory and inhibition abilities was revealed. Both functions were similarly modulated by d-amphetamine according to an inverted-U shaped relationship and depending on initial individual performances. D-amphetamine selectively improved working memory and inhibition of poor and intermediate performers at low doses whereas it impaired both processes in good performers at a higher dose. D1 receptors were less expressed in prelimbic, infralimbic and anterior cingulate cortices of good compared to intermediate and poor performers, whereas no difference was observed between groups in striatal areas. The synergy of working memory and inhibitory abilities, observed in both healthy and psychiatric populations, may originate from endogenous variability in dopaminergic prefrontal cortex activity. Such findings confirm the validity of a dimensional approach, based on the concept of continuity between health and mental disorders for identifying endophenotypes of mental disorders.
Collapse
Affiliation(s)
- Stéphanie Grégoire
- CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France.
| | | | | | | |
Collapse
|
26
|
Dorsal striatal D2-like receptor availability covaries with sensitivity to positive reinforcement during discrimination learning. J Neurosci 2011; 31:7291-9. [PMID: 21593313 DOI: 10.1523/jneurosci.0363-11.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deviations in reward sensitivity and behavioral flexibility, particularly in the ability to change or stop behaviors in response to changing environmental contingencies, are important phenotypic dimensions of several neuropsychiatric disorders. Neuroimaging evidence suggests that variation in dopamine signaling through dopamine D(2)-like receptors may influence these phenotypes, as well as associated psychiatric conditions, but the specific neurocognitive mechanisms through which this influence is exerted are unknown. To address this question, we examined the relationship between behavioral sensitivity to reinforcement during discrimination learning and D(2)-like receptor availability in vervet monkeys. Monkeys were assessed for their ability to acquire, retain, and reverse three-choice, visual-discrimination problems, and once behavioral performance had stabilized, they received positron emission tomography (PET) scans. D(2)-like receptor availability in dorsal aspects of the striatum was not related to individual differences in the ability to acquire or retain visual discriminations but did relate to the number of trials required to reach criterion in the reversal phase of the task. D(2)-like receptor availability was also strongly correlated with behavioral sensitivity to positive, but not negative, feedback during learning. These results go beyond electrophysiological findings by demonstrating the involvement of a striatal dopaminergic marker in individual differences in feedback sensitivity and behavioral flexibility, providing insight into the neural mechanisms that are affected in neuropsychiatric disorders that feature these deficits.
Collapse
|
27
|
Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 2011; 69:1109-16. [PMID: 21392734 PMCID: PMC3090526 DOI: 10.1016/j.biopsych.2011.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 12/30/2010] [Accepted: 01/06/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Behavioral inflexibility is a feature of schizophrenia, attention-deficit/hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. METHODS We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2-5 mice/strain, n = 176) for which we have matched data on sequence, gene expression in key central nervous system regions, and neuroreceptor levels. RESULTS Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (∼.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak likelihood ratio statistic at 86.2 megabase (p < .05 genome-wide). Variance in messenger RNA levels of select transcripts expressed in neocortex, hippocampus, and striatum correlated with the reversal learning phenotype, including Syn3, Nt5dc3, and Hcfc2. CONCLUSIONS This work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology.
Collapse
|
28
|
Woods RP, Fears SC, Jorgensen MJ, Fairbanks LA, Toga AW, Freimer NB. A web-based brain atlas of the vervet monkey, Chlorocebus aethiops. Neuroimage 2011; 54:1872-80. [PMID: 20923706 PMCID: PMC3008312 DOI: 10.1016/j.neuroimage.2010.09.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/26/2010] [Indexed: 01/30/2023] Open
Abstract
Vervet monkeys are a frequently studied animal model in neuroscience research. Although equally distantly related to humans, the ancestors of vervets diverged from those of macaques and baboons more than 11 million years ago, antedating the divergence of the ancestors of humans, chimpanzees and gorillas. To facilitate anatomic localization in the vervet brain, two linked on-line electronic atlases are described, one based on registered MRI scans from hundreds of vervets (http://www.loni.ucla.edu/Research/Atlases/Data/vervet/vervetmratlas/vervetmratlas.html) and the other based on a high-resolution cryomacrotome study of a single vervet (http://www.loni.ucla.edu/Research/Atlases/Data/vervet/vervetatlas/vervetatlas.html). The averaged MRI atlas is also available as a volume in Neuroimaging Informatics Technology Initiative format. In the cryomacrotome atlas, various sulcal and subcortical structures have been anatomically labeled and surface rendered views are provided along the primary planes of section. Both atlases simultaneously provide views in all three primary planes of section, rapid navigation by clicking on the displayed images, and stereotaxic coordinates in the averaged MRI atlas space. Despite the extended time period since their divergence, the major sulcal and subcortical landmarks in vervets are highly conserved relative to those described in macaques.
Collapse
Affiliation(s)
- Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7085, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Congdon E, Poldrack RA, Freimer NB. Neurocognitive phenotypes and genetic dissection of disorders of brain and behavior. Neuron 2010; 68:218-30. [PMID: 20955930 DOI: 10.1016/j.neuron.2010.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2010] [Indexed: 01/10/2023]
Abstract
Elucidating the molecular mechanisms underlying quantitative neurocognitive phenotypes will further our understanding of the brain's structural and functional architecture and advance the diagnosis and treatment of the psychiatric disorders that these traits underlie. Although many neurocognitive traits are highly heritable, little progress has been made in identifying genetic variants unequivocally associated with these phenotypes. A major obstacle to such progress is the difficulty in identifying heritable neurocognitive measures that are precisely defined and systematically assessed and represent unambiguous mental constructs, yet are also amenable to the high-throughput phenotyping necessary to obtain adequate power for genetic association studies. In this perspective we compare the current status of genetic investigations of neurocognitive phenotypes to that of other categories of biomedically relevant traits and suggest strategies for genetically dissecting traits that may underlie disorders of brain and behavior.
Collapse
Affiliation(s)
- Eliza Congdon
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
30
|
Jentsch JD, Woods JA, Groman SM, Seu E. Behavioral characteristics and neural mechanisms mediating performance in a rodent version of the Balloon Analog Risk Task. Neuropsychopharmacology 2010; 35:1797-806. [PMID: 20375994 PMCID: PMC3055471 DOI: 10.1038/npp.2010.47] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tendency for some individuals to partake in high-risk behaviors (eg, substance abuse, gambling, risky sexual activities) is a matter of great public health concern, yet the characteristics and neural bases of this vulnerability are largely unknown. Recent work shows that this susceptibility can be partially predicted by laboratory measures of reward seeking under risk, including the Balloon Analog Risk Task. Rats were trained to respond on two levers: one of which (the 'add lever') increased the size of a potential food reward and a second (the 'cash-out lever') that led to delivery of accrued reward. Crucially, each add-lever response was also associated with a risk that the trial would fail and no reward would be delivered. The relative probabilities that each add-lever press would lead to an addition food pellet or to trial failure (risk) were orthogonally varied. Rats exhibited a pattern of responding characteristic of incentive motivation and risk aversion, with a subset of rats showing traits of high-risk taking and/or suboptimal responding. Neural inactivation studies suggest that the orbitofrontal cortex supports greater reward seeking in the presence or absence of risk, whereas the medial prefrontal cortex is required for optimization of patterns of responding. These findings provide new information about the neural circuitry of decision making under risk and reveal new insights into the biological determinants of risk-taking behaviors that may be useful in developing biomarkers of vulnerability.
Collapse
Affiliation(s)
- James David Jentsch
- Department of Psychology, University of California, Los Angeles, CA 90095-1563, USA.
| | - Jason A Woods
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Stephanie M Groman
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Emanuele Seu
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Winstanley CA, Olausson P, Taylor JR, Jentsch JD. Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 2010; 34:1306-18. [PMID: 20491734 DOI: 10.1111/j.1530-0277.2010.01215.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug use disorders are often accompanied by deficits in the capacity to efficiently process reward-related information and to monitor, suppress, or override reward-controlled behavior when goals are in conflict with aversive or immediate outcomes. This emerging deficit in behavioral flexibility and impulse control may be a central component of the progression to addiction, as behavior becomes increasingly driven by drugs and drug-associated cues at the expense of more advantageous activities. Understanding how neural mechanisms implicated in impulse control are affected by addictive drugs may therefore prove a useful strategy in the search for new treatment options. Animal models of impulsivity and addiction could make a significant contribution to this endeavor. Here, some of the more common behavioral paradigms used to measure different aspects of impulsivity across species are outlined, and the importance of the response to reward-paired cues in such paradigms is discussed. Naturally occurring differences in forms of impulsivity have been found to be predictive of future drug self-administration, but drug exposure can also increase impulsive responding. Such data are in keeping with the suggestion that impulsivity may contribute to multiple stages within the spiral of addiction. From a neurobiological perspective, converging evidence from rat, monkey, and human studies suggest that compromised functioning within the orbitofrontal cortex may critically contribute to the cognitive sequelae of drug abuse. Changes in gene transcription and protein expression within this region may provide insight into the mechanism underlying drug-induced cortical hypofunction, reflecting new molecular targets for the treatment of uncontrolled drug-seeking and drug-taking behavior.
Collapse
Affiliation(s)
- Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
32
|
Korsten P, Mueller JC, Hermannstädter C, Bouwman KM, Dingemanse NJ, Drent PJ, Liedvogel M, Matthysen E, van Oers K, van Overveld T, Patrick SC, Quinn JL, Sheldon BC, Tinbergen JM, Kempenaers B. Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations. Mol Ecol 2010; 19:832-43. [PMID: 20070517 DOI: 10.1111/j.1365-294x.2009.04518.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polymorphisms in the dopamine receptor D4 gene (DRD4) have been related to individual variation in novelty-seeking or exploratory behaviour in a variety of animals, including humans. Recently, the human DRD4 orthologue was sequenced in a wild bird, the great tit (Parus major) and a single nucleotide polymorphism in exon 3 of this gene (SNP830) was shown to be associated with variation in exploratory behaviour of lab-raised individuals originating from a single wild population. Here we test the generality of this finding in a large sample of free-living individuals from four European great tit populations, including the originally sampled population. We demonstrate that the association between SNP830 genotype and exploratory behaviour also exists in free-living birds from the original population. However, in the other three populations we found only limited evidence for an association: in two populations the association appeared absent; while in one there was a nonsignificant tendency. We could not confirm a previously demonstrated interaction with another DRD4 polymorphism, a 15 bp indel in the promoter region (ID15). As yet unknown differences in genetic or environmental background could explain why the same genetic polymorphism (SNP830) has a substantial effect on exploratory behaviour in one population, explaining 4.5-5.8% of the total variance-a large effect for a single gene influencing a complex behavioural trait-but not in three others. The confirmation of an association between SNP830 genotype and personality-related behaviour in a wild bird population warrants further research into potential fitness effects of the polymorphism, while also the population differences in the strength of the association deserve further investigation. Another important future challenge is the identification of additional loci influencing avian personality traits in the wild.
Collapse
Affiliation(s)
- Peter Korsten
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jasinska AJ, Service S, Choi OW, DeYoung J, Grujic O, Kong SY, Jorgensen MJ, Bailey J, Breidenthal S, Fairbanks LA, Woods RP, Jentsch JD, Freimer NB. Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits. Hum Mol Genet 2009; 18:4415-27. [PMID: 19692348 PMCID: PMC2766297 DOI: 10.1093/hmg/ddp397] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genome-wide gene expression studies may provide substantial insight into gene activities and biological pathways differing between tissues and individuals. We investigated such gene expression variation by analyzing expression profiles in brain tissues derived from eight different brain regions and from blood in 12 monkeys from a biomedically important non-human primate model, the vervet (Chlorocebus aethiops sabaeus). We characterized brain regional differences in gene expression, focusing on transcripts for which inter-individual variation of expression in brain correlates well with variation in blood from the same individuals. Using stringent criteria, we identified 29 transcripts whose expression is measurable, stable, replicable, variable between individuals, relevant to brain function and heritable. Polymorphisms identified in probe regions could, in a minority of transcripts, confound the interpretation of the observed inter-individual variation. The high heritability of levels of these transcripts in a large vervet pedigree validated our approach of focusing on transcripts that showed higher inter-individual compared with intra-individual variation. These selected transcripts are candidate expression Quantitative Trait Loci, differentially regulating transcript levels in the brain among individuals. Given the high degree of conservation of tissue expression profiles between vervets and humans, our findings may facilitate the understanding of regional and individual transcriptional variation and its genetic mechanisms in humans. The approach employed here—utilizing higher quality tissue and more precise dissection of brain regions than is usually possible in humans—may therefore provide a powerful means to investigate variation in gene expression relevant to complex brain related traits, including human neuropsychiatric diseases.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fears SC, Melega WP, Service SK, Lee C, Chen K, Tu Z, Jorgensen MJ, Fairbanks LA, Cantor RM, Freimer NB, Woods RP. Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J Neurosci 2009; 29:2867-75. [PMID: 19261882 PMCID: PMC2716293 DOI: 10.1523/jneurosci.5153-08.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/26/2009] [Accepted: 01/28/2009] [Indexed: 11/21/2022] Open
Abstract
The area and volume of brain structural features, as assessed by high-resolution three-dimensional magnetic resonance imaging (MRI), are among the most heritable measures relating to the human CNS. We have conducted MRI scanning of all available monkeys >2 years of age (n = 357) from the extended multigenerational pedigree of the Vervet Research Colony (VRC). Using a combination of automated and manual segmentation we have quantified several correlated but distinct brain structural phenotypes. The estimated heritabilities (h(2)) for these measures in the VRC are higher than those reported previously for such features in humans or in other nonhuman primates: total brain volume (h(2) = 0.99, SE = 0.06), cerebral volume (h(2) = 0.98, SE = 0.06), cerebellar volume (h(2) = 0.86, SE = 0.09), hippocampal volume (h(2) = 0.95, SE = 0.07) and corpus callosum cross-sectional areas (h(2) = 0.87, SE = 0.07). These findings indicate that, in the controlled environment and with the inbreeding structure of the VRC, additive genetic factors account for almost all of the observed variance in brain structure, and suggest the potential of the VRC for genetic mapping of quantitative trait loci underlying such variance.
Collapse
Affiliation(s)
- Scott C Fears
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Groman SM, James AS, Jentsch JD. Poor response inhibition: at the nexus between substance abuse and attention deficit/hyperactivity disorder. Neurosci Biobehav Rev 2008; 33:690-8. [PMID: 18789354 DOI: 10.1016/j.neubiorev.2008.08.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/19/2008] [Accepted: 08/17/2008] [Indexed: 10/21/2022]
Abstract
The co-morbidity between attention deficit hyperactivity disorder (ADHD) and substance abuse and dependence disorders may have multiple causes and consequences. In this review, we will describe neurobehavioral, genetic and animal model studies that support the notion that a common, genetically determined failure of response inhibition function is an endophenotype for both disorders. Through an impairment in the ability to cognitively control pre-potent behaviors, subjects can exhibit a collection of ADHD-like traits (impulsivity and hyperactivity), as well as susceptibility for the initiation of drug taking and its ultimate progression to an inflexible, uncontrollable form. At the neural level, dysfunction within circuitry that includes the ventrolateral frontal and cingulate cortices, as well as in associated basal ganglia zones, contributes to a common pattern of behavioral impairment, explaining aspects of co-morbidity. Animal models of substance abuse/dependence and ADHD that exhibit deficits in response inhibition have substantiated the role of this endophenotype in both disorders and their co-morbidity and should provide a testing ground for interventions targeting it. New directions for research that will further explore this hypothesis and begin to reveal the underlying biological mechanisms will be proposed.
Collapse
Affiliation(s)
- Stephanie M Groman
- Department of Psychology, University of California at Los Angeles, CA 90095-1563, USA
| | | | | |
Collapse
|
36
|
Abstract
Brain dopamine has often been implicated in impulsive and/or inflexible behaviors, which may reflect failures of motivational and/or cognitive control. However, the precise role of dopamine in such failures of behavioral control is not well understood, not least because they implicate paradoxical changes in distinct dopamine systems that innervate dissociable neural circuits. In addition, there are large individual differences in the response to dopaminergic drugs with some individuals benefiting from and others being impaired by the same drug. This complicates progress in the understanding of dopamine's role in behavioral control processes, but also provides a major problem for neuropsychiatry, where some individuals are disproportionately vulnerable to the adverse effects of dopamine-enhancing drugs on motivation and cognition. Recent progress is reviewed from cognitive and behavioral neuroscience research on motivation and cognitive control, which begins to elucidate the factors that mediate the complex roles of mesolimbic, mesocortical, and nigrostriatal dopamine in behavioral control. NEUROSCIENTIST 14(4):381–395, 2008. DOI: 10.1177/1073858408317009
Collapse
Affiliation(s)
- Roshan Cools
- F. C. Donders Centre for Cognitive Neuroimaging, Radboud
University Nijmegen, The Netherlands
| |
Collapse
|