1
|
Rohrbeck M, Hoerr V, Piccini I, Greber B, Schulte JS, Hübner SS, Jeworutzki E, Theiss C, Matschke V, Stypmann J, Unger A, Ho HT, Disse P, Strutz-Seebohm N, Faber C, Müller FU, Ludwig S, Rescher U, Linke WA, Klingel K, Busch K, Peischard S, Seebohm G. Pathophysiological Mechanisms of Cardiac Dysfunction in Transgenic Mice with Viral Myocarditis. Cells 2023; 12:cells12040550. [PMID: 36831217 PMCID: PMC9954433 DOI: 10.3390/cells12040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice. A marked alteration of mitochondrial structure and gene expression indicates mitochondrial impairment potentially contributing to cardiac contractile dysfunction. An extended picture on viral myocarditis emerges that may help to develop new treatment strategies and to counter cardiac failure.
Collapse
Affiliation(s)
- Matthias Rohrbeck
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Clinic of Radiology, University Hospital Münster, D-48149 Münster, Germany
| | - Ilaria Piccini
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | - Jan Sebastian Schulte
- Institute of Pharmacology and Toxicology, University Hospital Münster, D-48149 Münster, Germany
| | - Sara-Sophie Hübner
- Translational Research Imaging Center, Clinic of Radiology, University Hospital Münster, D-48149 Münster, Germany
| | - Elena Jeworutzki
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Jörg Stypmann
- Department of Cardiovascular Medicine, Division of Cardiology, University Clinic Münster, 48149 Münster, Germany
| | - Andreas Unger
- Institute of Physiology II, Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Huyen Tran Ho
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Clinic of Radiology, University Hospital Münster, D-48149 Münster, Germany
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University Hospital Münster, D-48149 Münster, Germany
| | - Stephan Ludwig
- Institute of Virology Münster (IVM), Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, D-48149 Münster, Germany
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Wolfgang A. Linke
- Institute of Physiology II, Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tübingen, D-72076 Tübingen, Germany
| | - Karin Busch
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology, University of Muenster, Schlossplatz 5, 48149 Muenster, Germany
| | - Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
- Correspondence: (S.P.); (G.S.); Tel.: +49-(0)-251/83-58255 (S.P.); +49-(0)-251/83-58251 (G.S.); Fax: +49-(0)-251/83-58257 (S.P. & G.S.)
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany
- Correspondence: (S.P.); (G.S.); Tel.: +49-(0)-251/83-58255 (S.P.); +49-(0)-251/83-58251 (G.S.); Fax: +49-(0)-251/83-58257 (S.P. & G.S.)
| |
Collapse
|
2
|
Wells AI, Coyne CB. An In Vivo Model of Echovirus-Induced Meningitis Defines the Differential Roles of Type I and Type III Interferon Signaling in Central Nervous System Infection. J Virol 2022; 96:e0033022. [PMID: 35699446 PMCID: PMC9278148 DOI: 10.1128/jvi.00330-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Echoviruses are among the most common worldwide causes of aseptic meningitis, which can cause long-term sequelae and death, particularly in neonates. However, the mechanisms by which these viruses induce meningeal inflammation are poorly understood, owing at least in part to the lack of in vivo models that recapitulate this aspect of echovirus pathogenesis. Here, we developed an in vivo neonatal mouse model that recapitulates key aspects of echovirus-induced meningitis. We show that expression of the human homologue of the primary echovirus receptor, the neonatal Fc receptor (FcRn), is not sufficient for infection of the brains of neonatal mice. However, ablation of type I, but not III, interferon (IFN) signaling in mice expressing human FcRn permitted high levels of echovirus replication in the brain, with corresponding clinical symptoms, including delayed motor skills and hind-limb weakness. Using this model, we defined the immunological response of the brain to echovirus infection and identified key cytokines, such as granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6), that were induced by this infection. Lastly, we showed that echoviruses specifically replicate in the leptomeninges, where they induce profound inflammation and cell death. Together, this work establishes an in vivo model of aseptic meningitis associated with echovirus infections that delineates the differential roles of type I and type III IFNs in echovirus-associated neuronal disease and defines the specificity of echoviral infections within the meninges. IMPORTANCE Echoviruses are among the most common worldwide causes of aseptic meningitis, which can cause long-term sequelae or even death. The mechanisms by which echoviruses infect the brain are poorly understood, largely owing to the lack of robust in vivo models that recapitulate this aspect of echovirus pathogenesis. Here, we establish a neonatal mouse model of echovirus-induced aseptic meningitis and show that expression of the human homologue of the FcRn, the primary receptor for echoviruses, and ablation of type I IFN signaling are required to recapitulate echovirus-induced meningitis and clinical disease. These findings provide key insights into the host factors that control echovirus-induced meningitis and a model that could be used to test anti-echovirus therapeutics.
Collapse
Affiliation(s)
- Alexandra I. Wells
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carolyn B. Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Lee HN, Manangeeswaran M, Lewkowicz AP, Engel K, Chowdhury M, Garige M, Eckhaus MA, Sourbier C, Ireland DD, Verthelyi D. NK cells require immune checkpoint receptor LILRB4/gp49B to control neurotropic Zika virus infections in mice. JCI Insight 2022; 7:151420. [PMID: 35132958 PMCID: PMC8855830 DOI: 10.1172/jci.insight.151420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Immune cells express an array of inhibitory checkpoint receptors that are upregulated upon activation and limit tissue damage associated with excessive response to pathogens or allergens. Mouse leukocyte immunoglobulin like receptor B4 (LILRB4), also known as glycoprotein 49B (gp49B), is an inhibitory checkpoint receptor constitutively expressed in myeloid cells and upregulated in B cells, T cells, and NK cells upon activation. Here, we report that expression of LILRB4, which binds Zika virus (ZIKV), was increased in microglia and myeloid cells infiltrating the brains of neonatal mice with ZIKV-associated meningoencephalitis. Importantly, while C57BL/6 mice developed transient neurological symptoms but survived infection, mice lacking LILRB4/gp49B (LILRB4 KO) exhibited more severe signs of neurological disease and succumbed to disease. Their brains showed increased cellular infiltration but reduced control of viral burden. The reduced viral clearance was associated with altered NK cell function in the absence of LILRB4/gp49B. In naive animals, this manifested as reduced granzyme B responses to stimulation, but in ZIKV-infected animals, NK cells showed phenotypic changes that suggested altered maturation, diminished glucose consumption, reduced IFN-γ and granzyme B production, and impaired cytotoxicity. Together, our data reveal LILRB4/gp49B as an important regulator of NK cell function during viral infections.
Collapse
Affiliation(s)
- Ha-Na Lee
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Mohanraj Manangeeswaran
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Aaron P Lewkowicz
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Kaliroi Engel
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Monica Chowdhury
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Mamatha Garige
- Laboratory of Molecular Oncology, Division of Biotechnology Review and Research-I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Michael A Eckhaus
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carole Sourbier
- Laboratory of Molecular Oncology, Division of Biotechnology Review and Research-I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Derek Dc Ireland
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Daniela Verthelyi
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| |
Collapse
|
4
|
Lee HN, McWilliams IL, Lewkowicz AP, Engel K, Ireland DDC, Kelley-Baker L, Thacker S, Piccardo P, Manangeeswaran M, Verthelyi D. Characterization of the therapeutic effect of antibodies targeting the Ebola glycoprotein using a novel BSL2-compliant rVSVΔG-EBOV-GP infection model. Emerg Microbes Infect 2021; 10:2076-2089. [PMID: 34674613 PMCID: PMC8583756 DOI: 10.1080/22221751.2021.1997075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022]
Abstract
Ebola virus (EBOV) infections cause haemorrhagic fever, multi-organ failure and death, and survivors can experience neurological sequelae. Licensing of monoclonal antibodies targeting EBOV glycoprotein (EBOV-GP) improved its prognosis, however, this treatment is primarily effective during early stages of disease and its effectiveness in reducing neurological sequela remains unknown. Currently, the need for BSL4 containment hinders research and therapeutic development; development of an accessible BSL-2 in vivo mouse model would facilitate preclinical studies to screen and select therapeutics. Previously, we have shown that a subcutaneous inoculation with replicating EBOV-GP pseudotyped vesicular stomatitis virus (rVSVΔG-EBOV-GP or VSV-EBOV) in neonatal mice causes transient viremia and infection of the mid and posterior brain resulting in overt neurological symptoms and death. Here, we demonstrate that the model can be used to test therapeutics that target the EBOV-GP, by using an anti-EBOV-GP therapeutic (SAB-139) previously shown to block EBOV infection in mice and primates. We show that SAB-139 treatment decreases the severity of neurological symptoms and improves survival when administered before (1 day prior to infection) or up to 3 dpi, by which time animals have high virus titres in their brains. Improved survival was associated with reduced viral titres, microglia loss, cellular infiltration/activation, and inflammatory responses in the brain. Interestingly, SAB-139 treatment significantly reduced the severe VSV-EBOV-induced long-term neurological sequalae although convalescent mice showed modest evidence of abnormal fear responses. Together, these data suggest that the neonatal VSV-EBOV infection system can be used to facilitate assessment of therapeutics targeting EBOV-GP in the preclinical setting.
Collapse
Affiliation(s)
- Ha-Na Lee
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ian L. McWilliams
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Aaron P. Lewkowicz
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kaliroi Engel
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Derek D. C. Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Logan Kelley-Baker
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Seth Thacker
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Pedro Piccardo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Mohanraj Manangeeswaran
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
5
|
Stephens C, Reynolds C, Cremin M, Barry R, Morley U, Gibson L, De Gascun CF, Felsenstein S. Parent-administered Neurodevelopmental Follow up in Children After Picornavirus CNS Infections. Pediatr Infect Dis J 2021; 40:867-872. [PMID: 34260497 DOI: 10.1097/inf.0000000000003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Data on the neurodevelopment of children who experienced central nervous system (CNS) infections with enteroviruses (EV) or parechoviruses (hPeV) is scarce and mostly limited to follow up of short-term outcomes. METHODS Parents of children who presented between 2014 and 2019, underwent a lumbar puncture and whose cerebrospinal fluid was polymerase chain reaction positive for EV or hPeV, were asked to complete a care-giver-administered neurodevelopmental assessment tool (The Ages and Stages Instrument [ASQ3]). Clinical data of the infective episode were collected from patient notes. RESULTS Of 101 children, 43 (10 hPeV+, 33 EV+) submitted ASQ3 results. Median age at assessment was 38.9 months (interquartile range, 15.4-54.8), the follow-up interval 3 years (median 37 months; interquartile range, 13.9-53.1). Age, inflammatory markers, and cerebrospinal fluid pleocytosis during the infective event were not associated with ASQ3 scores. In 23 children (17 EV+, 6 hPeV+), no neurodevelopmental concerns were reported. Two more had preexisting developmental delay and were excluded. Of the remaining, 18/41 (43.9%) reported ASQ3 scores indicating need for monitoring or professional review in at least 1 category, not differing by pathogen (EV 14/31, 45.2%; hPeV 4/10, 40%; P = 0.71). Seven children will require formal review, scoring ≥2 SD below the mean in at least 1 category (6/31 EV+, 1/10 hPeV+, P = 0.7), 3 scored ≥2 SD below the mean in more than 1 area. CONCLUSIONS Parent-administered developmental assessment of children with a history of early picornavirus infection of the CNS identified a subgroup that requires formal neurodevelopmental review. Wider application of community-based developmental screening will complement our understanding of the impact of CNS infections in early childhood.
Collapse
Affiliation(s)
- Carol Stephens
- From the Department of Pediatrics, Cork University Hospital, Wilton, Cork, Republic of Ireland
| | - Clare Reynolds
- From the Department of Pediatrics, Cork University Hospital, Wilton, Cork, Republic of Ireland
| | - Molly Cremin
- From the Department of Pediatrics, Cork University Hospital, Wilton, Cork, Republic of Ireland
| | - Rachel Barry
- Department of Microbiology, Cork University Hospital, Wilton, Cork, Republic of Ireland
| | - Ursula Morley
- National Virus Reference Laboratory, University College Dublin, Dublin, Republic of Ireland
| | - Louise Gibson
- From the Department of Pediatrics, Cork University Hospital, Wilton, Cork, Republic of Ireland
| | - Cillian F De Gascun
- National Virus Reference Laboratory, University College Dublin, Dublin, Republic of Ireland
| | - Susana Felsenstein
- Department of Infectious Diseases, Alder Hey Children's Hospital NHS Trust, East Prescot Road, Liverpool, Great Britain
| |
Collapse
|
6
|
Kamte YS, Chandwani MN, Michaels AC, O’Donnell LA. Neural Stem Cells: What Happens When They Go Viral? Viruses 2021; 13:v13081468. [PMID: 34452333 PMCID: PMC8402908 DOI: 10.3390/v13081468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes. Viral infections often alter the function of NSCs, with profound impacts on the growth and repair of the brain. There are a wide spectrum of effects on NSCs, which differ by the type of virus, the model system, the cell types studied, and the age of the host. Thus, it is a challenge to predict and define the consequences of interactions between viruses and NSCs. The purpose of this review is to dissect the mechanisms by which viruses can affect survival, proliferation, and differentiation of NSCs. This review also sheds light on the contribution of key antiviral cytokines in the impairment of NSC activity during a viral infection, revealing a complex interplay between NSCs, viruses, and the immune system.
Collapse
|
7
|
Oh SJ, Lim BK, Yun J, Shin OS. CVB3-Mediated Mitophagy Plays an Important Role in Viral Replication via Abrogation of Interferon Pathways. Front Cell Infect Microbiol 2021; 11:704494. [PMID: 34295842 PMCID: PMC8292102 DOI: 10.3389/fcimb.2021.704494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a common enterovirus that causes systemic inflammatory diseases, such as myocarditis, meningitis, and encephalitis. CVB3 has been demonstrated to subvert host cellular responses via autophagy to support viral replication in neural stem cells. Mitophagy, a specialized form of autophagy, contributes to mitochondrial quality control via degrading damaged mitochondria. Here, we show that CVB3 infection induces mitophagy in human neural progenitor cells, HeLa and H9C2 cardiomyocytes. In particular, CVB3 infection triggers mitochondrial fragmentation, loss of mitochondrial membrane potential, and Parkin/LC3 translocation to the mitochondria. Rapamycin or carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to increased CVB3 RNA copy number in a dose-dependent manner, suggesting enhanced viral replication via autophagy/mitophagy activation, whereas knockdown of PTEN-induced putative kinase protein 1(PINK1) led to impaired mitophagy and subsequent reduction in viral replication. Furthermore, CCCP treatment inhibits the interaction between mitochondrial antiviral signaling protein (MAVS) and TANK-binding kinase 1(TBK1), thus contributing to the abrogation of type I and III interferon (IFN) production, suggesting that mitophagy is essential for the inhibition of interferon signaling. Our findings suggest that CVB3-mediated mitophagy suppresses IFN pathways by promoting fragmentation and subsequent sequestration of mitochondria by autophagosomes.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, South Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, South Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
8
|
Alirezaei M, Flynn CT, Garcia SD, Kimura T, Whitton JL. A food-responsive switch modulates TFEB and autophagy, and determines susceptibility to coxsackievirus infection and pancreatitis. Autophagy 2021; 17:402-419. [PMID: 32019403 PMCID: PMC8007148 DOI: 10.1080/15548627.2020.1720425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022] Open
Abstract
Almost a billion people worldwide are chronically undernourished. Herein, using a mouse model of coxsackievirus B3 (CVB3) infection, we report that a single day of food restriction (FR) markedly increases susceptibility to attenuated enterovirus infection, replication, and disease. These "pro-viral" effects, which are rapidly-reversed by the restoration of food, are mediated by several genes whose expression is altered by FR, and which support CVB3 replication. Central to this is TFEB, a protein whose expression and activation status are rapidly increased by FR. TFEB, which regulates the transcription of >100 genes involved in macroautophagy/autophagy and lysosomal biogenesis, responds similarly to both FR and CVB3 infection and plays a pivotal role in determining host susceptibility to CVB3. We propose that, by upregulating TFEB, FR generates an intracellular environment that is more hospitable to the incoming virus, facilitating its replication. This interplay between nutritional status and enterovirus replication has implications for human health and, perhaps, for the evolution of these viruses.Abbreviations: Atg/ATG: autophagy-related; CAR: Coxsackievirus and adenovirus receptor; Cas9: CRISPR associated protein 9; Cre: recombinase that causes recombination; CRISPR: clustered regularly interspaced short palindromic repeats; Ctsb/CTSB: cathepsin B; CVB3: coxsackievirus B3; DsRedCVB3: a recombinant CVB3 that encodes the Discosoma red fluorescent protein; EL: elastase; FR: food restriction; GFP: green fluorescent protein; gRNA: guide RNA; HBSS: Hanks Buffered Salt Solution; LYNUS: lysosomal nutrient sensing machinery; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; Nluc: nanoluciferase; NlucCVB3: a recombinant CVB3 encoding nanoluciferase; pfu: plaque-forming unit(s); p.i.: post infection; rCVB: recombinant coxsackievirus B3; RPS6KB/p70S6K: ribosomal protein S6 kinase; RT: room temperature; siRNA: small interfering RNA; TFEB: transcription factor EB; tg: transgenic; TUBB: β-tubulin; UNINF: uninfected; wrt: with respect to; WT: wild type.
Collapse
Affiliation(s)
- Mehrdad Alirezaei
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudia T. Flynn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Selma D. Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Taishi Kimura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - J. Lindsay Whitton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
9
|
Suzuki Y, Aizawa Y, Izumita R, Habuka R, Watanabe K, Saitoh A. PCR detection rates for serum and cerebrospinal fluid from neonates and young infants infected with human parechovirus 3 and enteroviruses. J Clin Virol 2021; 135:104736. [PMID: 33493987 DOI: 10.1016/j.jcv.2021.104736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Human parechovirus 3 (HPeV-3) and enteroviruses (EV) are commonly detected viruses in febrile neonates and young infants and are usually diagnosed by PCR. However, in this population, data on detection rates for samples from different anatomical sites are limited. OBJECTIVES To determine PCR detection rates for HPeV-3 and EVs in serum and cerebrospinal fluid (CSF) samples from febrile neonates and young infants. STUDY DESIGN This prospective study identified viruses in serum and CSF samples collected from febrile neonates and young infants (age <4 months) in Niigata, Japan, during 2014-2018. HPeV-3 or EV infection was defined as a positive quantitative real-time PCR result for the virus in serum or CSF. Genotypes were identified by sequence analyses of the viral protein 1 region. RESULTS Among 216 patients, we identified 56 HPeV-3-infected (26 %) and 48 EV-infected patients (22 %). All (56/56; 100 %) HPeV-3-infected patients had a positive PCR result for serum, and 49/56 (88 %) had a positive result for CSF. In EV-infected patients, 40/48 (83 %) were positive for serum, and 34/48 (71 %) were positive for CSF, and 22/48 (46 %) were positive for serum (n = 14) or CSF (n = 8). If only a CSF sample had been obtained, 7 (12 %) HPeV-3 infections and 14 (29 %) EV infections would have been undiagnosed. Detection rates in serum and CSF differed by genotype in EV-infected patients. CONCLUSIONS Viral RNA detection rates differed between serum and CSF in HPeV-3- and EV-infected neonates/infants. Combined evaluation of serum and CSF samples is important for accurate viral diagnosis in this population.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuta Aizawa
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryohei Izumita
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rie Habuka
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kanako Watanabe
- Department of Laboratory Science, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
10
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
11
|
McWilliams IL, Kielczewski JL, Ireland DDC, Sykes JS, Lewkowicz AP, Konduru K, Xu BC, Chan CC, Caspi RR, Manangeeswaran M, Verthelyi D. Pseudovirus rVSVΔG-ZEBOV-GP Infects Neurons in Retina and CNS, Causing Apoptosis and Neurodegeneration in Neonatal Mice. Cell Rep 2020; 26:1718-1726.e4. [PMID: 30759384 DOI: 10.1016/j.celrep.2019.01.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/15/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Zaire Ebola virus (ZEBOV) survivors experience visual and CNS sequelae that suggests the ZEBOV glycoprotein can mediate neurotropism. Replication-competent rVSVΔG-ZEBOV-GP vaccine candidate is generally well tolerated; however, its potential neurotropism requires careful study. Here, we show that a single inoculation of rVSVΔG-ZEBOV-GP virus in neonatal C57BL/6 mice results in transient viremia, neurological symptoms, high viral titers in eyes and brains, and death. rVSVΔG-ZEBOV-GP infects the inner layers of the retina, causing severe retinitis. In the cerebellum, rVSVΔG-ZEBOV-GP infects neurons in the granular and Purkinje layers, resulting in progressive foci of apoptosis and neurodegeneration. The susceptibility to infection is not due to impaired type I IFN responses, although MDA5-/-, IFNβ-/-, and IFNAR1-/- mice have accelerated mortality. However, boosting interferon levels by co-administering poly(I:C) reduces viral titers in CNS and improves survival. Although these data should not be directly extrapolated to humans, they challenge the hypothesis that VSV-based vaccines are non-neurotropic.
Collapse
Affiliation(s)
- Ian L McWilliams
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Derek D C Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jacob S Sykes
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Aaron P Lewkowicz
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Krishnamurthy Konduru
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Biying C Xu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mohanraj Manangeeswaran
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
12
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Oh SJ, Gim JA, Lee JK, Park H, Shin OS. Coxsackievirus B3 Infection of Human Neural Progenitor Cells Results in Distinct Expression Patterns of Innate Immune Genes. Viruses 2020; 12:v12030325. [PMID: 32192194 PMCID: PMC7150933 DOI: 10.3390/v12030325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coxsackievirus B3 (CVB3), a member of Picornaviridae family, is an important human pathogen that causes a wide range of diseases, including myocarditis, pancreatitis, and meningitis. Although CVB3 has been well demonstrated to target murine neural progenitor cells (NPCs), gene expression profiles of CVB3-infected human NPCs (hNPCs) has not been fully explored. To characterize the molecular signatures and complexity of CVB3-mediated host cellular responses in hNPCs, we performed QuantSeq 3′ mRNA sequencing. Increased expression levels of viral RNA sensors (RIG-I, MDA5) and interferon-stimulated genes, such as IFN-β, IP-10, ISG15, OAS1, OAS2, Mx2, were detected in response to CVB3 infection, while IFN-γ expression level was significantly downregulated in hNPCs. Consistent with the gene expression profile, CVB3 infection led to enhanced secretion of inflammatory cytokines and chemokines, such as interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). Furthermore, we show that type I interferon (IFN) treatment in hNPCs leads to significant attenuation of CVB3 RNA copy numbers, whereas, type II IFN (IFN-γ) treatment enhances CVB3 replication and upregulates suppressor of cytokine signaling 1/3 (SOCS) expression levels. Taken together, our results demonstrate the distinct molecular patterns of cellular responses to CVB3 infection in hNPCs and the pro-viral function of IFN-γ via the modulation of SOCS expression.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Biomedical Sciences, BK21 PLUS program, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (S.-J.O.); (J.K.L.)
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Jae Kyung Lee
- Department of Biomedical Sciences, BK21 PLUS program, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (S.-J.O.); (J.K.L.)
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
- Correspondence: (H.P.); (O.S.S.); Tel.: +82-53-640-6943 (H.P.); +82-2-2626-3280 (O.S.S.)
| | - Ok Sarah Shin
- Department of Biomedical Sciences, BK21 PLUS program, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (S.-J.O.); (J.K.L.)
- Correspondence: (H.P.); (O.S.S.); Tel.: +82-53-640-6943 (H.P.); +82-2-2626-3280 (O.S.S.)
| |
Collapse
|
14
|
Chen BS, Lee HC, Lee KM, Gong YN, Shih SR. Enterovirus and Encephalitis. Front Microbiol 2020; 11:261. [PMID: 32153545 PMCID: PMC7044131 DOI: 10.3389/fmicb.2020.00261] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Enterovirus-induced infection of the central nervous system (CNS) results in acute inflammation of the brain (encephalitis) and constitutes a significant global burden to human health. These viruses are thought to be highly cytolytic, therefore normal brain function could be greatly compromised following enteroviral infection of the CNS. A further layer of complexity is added by evidence showing that some enteroviruses may establish a persistent infection within the CNS and eventually lead to pathogenesis of certain neurodegenerative disorders. Interestingly, enterovirus encephalitis is particularly common among young children, suggesting a potential causal link between the development of the neuroimmune system and enteroviral neuroinvasion. Although the CNS involvement in enterovirus infections is a relatively rare complication, it represents a serious underlying cause of mortality. Here we review a selection of enteroviruses that infect the CNS and discuss recent advances in the characterization of these enteroviruses with regard to their routes of CNS infection, tropism, virulence, and immune responses.
Collapse
Affiliation(s)
- Bo-Shiun Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hou-Chen Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
15
|
Lin JY, Kuo RL, Huang HI. Activation of type I interferon antiviral response in human neural stem cells. Stem Cell Res Ther 2019; 10:387. [PMID: 31843025 PMCID: PMC6916114 DOI: 10.1186/s13287-019-1521-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) residing in the central nervous system play an important role in neurogenesis. Several viruses can infect these neural progenitors and cause severe neurological diseases. The innate immune responses against the neurotropic viruses in these tissue-specific stem cells remain unclear. METHODS Human NSCs were transfected with viral RNA mimics or infected with neurotropic virus for detecting the expression of antiviral interferons (IFNs) and downstream IFN-stimulated antiviral genes. RESULTS NSCs are able to produce interferon-β (IFN-β) (type I) and λ1 (type III) after transfection with poly(I:C) and that downstream IFN-stimulated antiviral genes, such as ISG56 and MxA, and the viral RNA sensors RIG-I, MDA5, and TLR3, can be expressed in NSCs under poly(I:C) or IFN-β stimulation. In addition, our results show that the pattern recognition receptors RIG-I and MDA5, as well as the endosomal pathogen recognition receptor TLR3, but not TLR7 and TLR8, are involved in the activation of IFN-β transcription in NSCs. Furthermore, NSCs infected with the neurotropic viruses, Zika and Japanese encephalitis viruses, are able to induce RIG-I-mediated IFN-β expression. CONCLUSION Human NSCs have the ability to activate IFN signals against neurotropic viral pathogens.
Collapse
Affiliation(s)
- Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
16
|
Li Puma DD, Piacentini R, Leone L, Gironi K, Marcocci ME, De Chiara G, Palamara AT, Grassi C. Herpes Simplex Virus Type-1 Infection Impairs Adult Hippocampal Neurogenesis via Amyloid-β Protein Accumulation. Stem Cells 2019; 37:1467-1480. [PMID: 31381841 DOI: 10.1002/stem.3072] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/21/2019] [Indexed: 12/14/2022]
Abstract
We previously reported that Herpes simplex virus type-1 (HSV-1) infection of cultured neurons triggered intracellular accumulation of amyloid-β protein (Aβ) markedly impinging on neuronal functions. Here, we demonstrated that HSV-1 affects in vitro and in vivo adult hippocampal neurogenesis by reducing neural stem/progenitor cell (NSC) proliferation and their neuronal differentiation via intracellular Aβ accumulation. Specifically, cultured NSCs were more permissive for HSV-1 replication than mature neurons and, once infected, they exhibited reduced proliferation (assessed by 5'-bromo-deoxyuridine incorporation, Ki67 immunoreactivity, and Sox2 mRNA expression) and impaired neuronal differentiation in favor of glial phenotype (evaluated by immunoreactivity for the neuronal marker MAP2, the glial marker glial fibrillary astrocyte protein, and the expression of the proneuronal genes Mash1 and NeuroD1). Similarly, impaired adult neurogenesis was observed in the subgranular zone of hippocampal dentate gyrus of an in vivo model of recurrent HSV-1 infections, that we recently set up and characterized, with respect to mock-infected mice. The effects of HSV-1 on neurogenesis did not depend on cell death and were due to Aβ accumulation in infected NSCs. Indeed, they were: (a) reverted, in vitro, by the presence of either β/γ-secretase inhibitors preventing Aβ production or the specific 4G8 antibody counteracting the action of intracellular Aβ; (b) not detectable, in vivo, in HSV-1-infected amyloid precursor protein knockout mice, unable to produce and accumulate Aβ. Given the critical role played by adult neurogenesis in hippocampal-dependent memory and learning, our results suggest that multiple virus reactivations in the brain may contribute to Alzheimer's disease phenotype by also targeting NSCs. Stem Cells 2019;37:1467-1480.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Leone
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Katia Gironi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.,San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
17
|
Xue YC, Ruller CM, Fung G, Mohamud Y, Deng H, Liu H, Zhang J, Feuer R, Luo H. Enteroviral Infection Leads to Transactive Response DNA-Binding Protein 43 Pathology in Vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2853-2862. [DOI: 10.1016/j.ajpath.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
|
18
|
Soung A, Klein RS. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol Med 2018; 24:950-962. [PMID: 30314877 DOI: 10.1016/j.molmed.2018.09.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Neurotropic RNA virus infections cause a major neurological disease burden. Due to the morbidity and mortality rates of viral encephalitides worldwide, there is a need to develop clinical treatments. Features of the central nervous system (CNS), including interconnected cell types and limited regeneration, provide unique challenges. Viral encephalitis and antiviral immunity can disrupt the CNS environment, leaving patients with poor neurological outcomes despite virologic control. The cellular mechanism(s) underlying neurological recovery are not fully understood, but involve neuroimmune interactions that, until recently, primarily focused on microglia. With increasing evidence that astrocytes also have significant roles in inflammatory responses to viruses, here we summarize recent astrocyte contributions to acute virologic control and neurological impairments during recovery from viral infection.
Collapse
Affiliation(s)
- Allison Soung
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
19
|
Xue YC, Feuer R, Cashman N, Luo H. Enteroviral Infection: The Forgotten Link to Amyotrophic Lateral Sclerosis? Front Mol Neurosci 2018; 11:63. [PMID: 29593492 PMCID: PMC5857577 DOI: 10.3389/fnmol.2018.00063] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily attacks motor neurons in the brain and spinal cord, leading to progressive paralysis and ultimately death. Currently there is no effective therapy. The majority of ALS cases are sporadic, with no known family history; unfortunately the etiology remains largely unknown. Contribution of Enteroviruses (EVs), a family of positive-stranded RNA viruses including poliovirus, coxsackievirus, echovirus, enterovirus-A71 and enterovirus-D68, to the development of ALS has been suspected as they can target motor neurons, and patients with prior poliomyelitis show a higher risk of motor neuron disease. Multiple efforts have been made to detect enteroviral genome in ALS patient tissues over the past two decades; however the clinical data are controversial and a causal relationship has not yet been established. Recent evidence from in vitro and animal studies suggests that enterovirus-induced pathology remarkably resembles the cellular and molecular phenotype of ALS, indicating a possible link between enteroviral infection and ALS pathogenesis. In this review, we summarize the nature of enteroviral infection, including route of infection, cells targeted, and viral persistence within the central nervous system (CNS). We review the molecular mechanisms underlying viral infection and highlight the similarity between viral pathogenesis and the molecular and pathological features of ALS, and finally, discuss the potential role of enteroviral infection in frontotemporal dementia (FTD), a disease that shares common clinical, genetic, and pathological features with ALS, and the significance of anti-viral therapy as an option for the treatment of ALS.
Collapse
Affiliation(s)
- Yuan Chao Xue
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ralph Feuer
- The Integrated Regenerative Research Institute at San Diego State University, San Diego, CA, United States
| | - Neil Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Affiliation(s)
- Diane E Griffin
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress. Cell Death Dis 2017; 8:e2556. [PMID: 28102850 PMCID: PMC5386351 DOI: 10.1038/cddis.2016.394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022]
Abstract
Japanese encephalitis virus (JEV), which is a causative agent of sporadic encephalitis, harbours itself inside the neural stem/progenitor cells. It is a well-known fact that JEV infects neural stem/progenitor cells and decreases their proliferation capacity. With mass spectrometry-based quantitative proteomic study, it is possible to reveal the impact of virus on the stem cells at protein level. Our aim was to perceive the stem cell proteomic response upon viral challenge. We performed a two-dimensional gel electrophoresis-based proteomic study of the human neural stem cells (hNS1 cell line) post JEV infection and found that 13 proteins were differentially expressed. The altered proteome profile of hNS1 cell line revealed sustained endoplasmic reticulum stress, which deteriorated normal cellular activities leading to cell apoptosis. The proteomic changes found in hNS1 cell line were validated in vivo in the subventricular zone of JE infected BALB/c mice. Congruent alterations were also witnessed in multipotent neural precursor cells isolated from human foetus and in autopsy samples of human brain clinically diagnosed as cases of JE patients. Endoplasmic reticulum resident chaperone GRP78, mitochondrial protein Prohibitin and heterogeneous nuclear ribonucleoprotein hnRNPC (C1/C2) have been shown to interact with viral RNA. Hence it is proposed that these are the principle candidates governing endoplasmic reticulum stress-induced apoptosis in JEV infection.
Collapse
|
22
|
Yap MS, Tang YQ, Yeo Y, Lim WL, Lim LW, Tan KO, Richards M, Othman I, Poh CL, Heng BC. Pluripotent Human embryonic stem cell derived neural lineages for in vitro modelling of enterovirus 71 infection and therapy. Virol J 2016; 13:5. [PMID: 26738773 PMCID: PMC4704260 DOI: 10.1186/s12985-015-0454-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. METHODS This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. RESULTS Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SH-SY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. CONCLUSIONS Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics.
Collapse
Affiliation(s)
- May Shin Yap
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Yin Quan Tang
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Yin Yeo
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Wei Ling Lim
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Lee Wei Lim
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia. .,The University of Hong Kong, Pokfulam, Hong Kong.
| | - Kuan Onn Tan
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Mark Richards
- School of Chemical & Life Sciences, Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore, 569830, Singapore.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chit Laa Poh
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Boon Chin Heng
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia. .,The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
23
|
Mantri S, Shah BB. Enterovirus causes rapidly progressive dementia in a 28-year-old immunosuppressed woman. J Neurovirol 2016; 22:538-40. [DOI: 10.1007/s13365-015-0418-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
24
|
Neurotropic Enterovirus Infections in the Central Nervous System. Viruses 2015; 7:6051-66. [PMID: 26610549 PMCID: PMC4664993 DOI: 10.3390/v7112920] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023] Open
Abstract
Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.
Collapse
|
25
|
Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice. Sci Rep 2015; 5:15471. [PMID: 26494538 PMCID: PMC4616029 DOI: 10.1038/srep15471] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 01/14/2023] Open
Abstract
COPII (coat protein complex-II) vesicles transport proteins from the endoplasmic reticulum (ER) to the Golgi. Higher eukaryotes have two or more paralogs of most COPII components. Here we characterize mice deficient for SEC23A and studied interactions of Sec23a null allele with the previously reported Sec23b null allele. SEC23A deficiency leads to mid-embryonic lethality associated with defective development of extraembryonic membranes and neural tube opening in midbrain. Secretion defects of multiple collagen types are observed in different connective tissues, suggesting that collagens are primarily transported in SEC23A-containing vesicles in these cells. Other extracellular matrix proteins, such as fibronectin, are not affected by SEC23A deficiency. Intracellular accumulation of unsecreted proteins leads to strong induction of the unfolded protein response in collagen-producing cells. No collagen secretion defects are observed in SEC23B deficient embryos. We report that E-cadherin is a cargo that accumulates in acini of SEC23B deficient pancreas and salivary glands. Compensatory increase of one paralog is observed in the absence of the second paralog. Haploinsufficiency of the remaining Sec23 paralog on top of homozygous inactivation of the first paralog leads to earlier lethality of embryos. Our results suggest that mammalian SEC23A and SEC23B transport overlapping yet distinct spectra of cargo in vivo.
Collapse
|
26
|
In vitro interaction between coxsackievirus B3 VP1 protein and human pleckstrin homology domain retinal protein (PHR1). Virus Genes 2015; 51:182-9. [PMID: 26318175 DOI: 10.1007/s11262-015-1241-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
Abstract
Coxsackievirus B3 (CVB3) infection causes central nervous system diseases including aseptic meningitis and encephalitis. To understand the mechanism of this virus, a yeast two-hybrid system was used to screen cellular proteins from a human heart cDNA library. The results revealed that the human Pleckstrin Homology Domain Retinal protein (PHR1), a PH domain-containing protein with low expression in the heart and high expression in the brain, interacts with CVB3 VP1, a major structural protein of CVB3. Yeast mating assays and in vitro coimmunoprecipitation verified the interaction between CVB3 VP1 and PHR1. An α-galactosidase assay indicated that of α-galactosidase activity was higher in positive clones than in controls suggesting a strong interaction. Furthermore, assay of deletion mutants defined the minimal region of PHR1 required for its interaction with VP1 as amino acids 95-172 and two regions of VP1 required for its interaction with PHR1 as amino acids 729-767 and 811-859. The results revealed multiple binding sites between PHR1 and CVB3 VP1 and suggested that the strong interaction between these two proteins might play an important role in central nervous system disease in the human brain.
Collapse
|
27
|
Sin J, Mangale V, Thienphrapa W, Gottlieb RA, Feuer R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 2015; 484:288-304. [PMID: 26142496 DOI: 10.1016/j.virol.2015.06.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/23/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses - although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis.
Collapse
Affiliation(s)
- Jon Sin
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Vrushali Mangale
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Wdee Thienphrapa
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Roberta A Gottlieb
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
28
|
Weinger JG, Plaisted WC, Maciejewski SM, Lanier LL, Walsh CM, Lane TE. Activating receptor NKG2D targets RAE-1-expressing allogeneic neural precursor cells in a viral model of multiple sclerosis. Stem Cells 2015; 32:2690-701. [PMID: 24898518 DOI: 10.1002/stem.1760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 12/11/2022]
Abstract
Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry; Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | | | | | | | | | | |
Collapse
|
29
|
Swanson PA, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022]
Abstract
Virus-induced diseases of the central nervous system (CNS) represent a significant burden to human health worldwide. The complexity of these diseases is influenced by the sheer number of different neurotropic viruses, the diverse routes of CNS entry, viral tropism, and the immune system. Using a combination of human pathological data and experimental animal models, we have begun to uncover many of the mechanisms that viruses use to enter the CNS and cause disease. This review highlights a selection of neurotropic viruses that infect the CNS and explores the means by which they induce neurological diseases such as meningitis, encephalitis, and myelitis.
Collapse
Affiliation(s)
- Phillip A Swanson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
30
|
Shen SC, Shen CI, Lin H, Chen CJ, Chang CY, Chen SM, Lee HC, Lai PS, Su HL. Susceptibility of human embryonic stem cell-derived neural cells to Japanese encephalitis virus infection. PLoS One 2014; 9:e114990. [PMID: 25517725 PMCID: PMC4269419 DOI: 10.1371/journal.pone.0114990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/17/2014] [Indexed: 12/15/2022] Open
Abstract
Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection.
Collapse
Affiliation(s)
- Shih-Cheng Shen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-I Shen
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Center for General Education, Tunghai University, Taichung, Taiwan
- Graduate School of Nursing, Hung-Kuang University, Taichung, Taiwan
| | - Chia-Yu Chang
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Mei Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsiu-Chin Lee
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
31
|
Xu J, Nash RJ, Frey TK. Cellular responses to Sindbis virus infection of neural progenitors derived from human embryonic stem cells. BMC Res Notes 2014; 7:757. [PMID: 25343994 PMCID: PMC4307679 DOI: 10.1186/1756-0500-7-757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/10/2014] [Indexed: 11/12/2022] Open
Abstract
Background Sindbis virus (SINV) causes age-dependent encephalitis in mice, and therefore serves as a model to study viral encephalitis. SINV is used as a vector for the delivery of genes into selected neural stem cell lines; however, the toxicity and side effects of this vector have rarely been discussed. In this context, we investigated the cellular responses of human embryonic stem cell (hESCs) derived neural progenitors (hNPCs) to SINV infection by assessing susceptibility of the cells to SINV infection, analyzing the effect of infection on cell proliferation and cell death, and examining the impact of SINV infection on hNPCs markers of stemness. Findings We found that hNPCs are highly susceptible to SINV infection. Upon infection, the viruses induced apoptosis to hNPCs while not affecting the expression of cell proliferation markers. Lastly, SINV infections result in significant changes in the expression of key regulators of hNPCs’ plasticity and homeostasis. Conclusion The robust and versatile signaling, proliferation, and other cell responses of hESCs-derived hNPCs to virus infection demonstrated that it is a good model to study the pathogenesis of viral-induced neurodevelopmental and degenerative diseases. On the other hand, the toxicity of SINV to hNPCs cells cannot be ignored, and therefore extra care should be taken when using SINV as a vector to deliver genes into human stem cell lines.
Collapse
Affiliation(s)
| | | | - Teryl K Frey
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
32
|
The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development. PLoS Pathog 2014; 10:e1004249. [PMID: 25079373 PMCID: PMC4117602 DOI: 10.1371/journal.ppat.1004249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart's ability to increase capillary density to adapt to increased load. Coxsackievirus B (CVB) is a significant human pathogen, causing myocarditis, aseptic meningitis and encephalitis. The lasting consequences of juvenile CVB infection on the developing host have yet to be adequately inspected. Here, we show that CVB efficiently infected juvenile cardiac progenitor cells both in culture and the young heart. Furthermore, we describe a mouse model of juvenile infection with a subclinical dose of CVB which showed no symptoms of disease into adulthood. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. These results suggest that mild CVB infection in the young host may impair the ability of the heart to adapt to increased load leading to pathological remodeling later in adult life.
Collapse
|
33
|
Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 2014; 10:e1004045. [PMID: 24722773 PMCID: PMC3983045 DOI: 10.1371/journal.ppat.1004045] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/17/2014] [Indexed: 01/08/2023] Open
Abstract
Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, “fluorescent timer” protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. “Fluorescent timer” protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of “fluorescent timer” protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. “Fluorescent timer” protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured “fluorescent timer” protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic iodixanol gradient fractions consistent with membrane association. The preferential detection of the lipidated form of LC3 protein (LC3 II) in released EMVs harboring infectious virus suggests that the autophagy pathway plays a crucial role in microvesicle shedding and virus release, similar to a process previously described as autophagosome-mediated exit without lysis (AWOL) observed during poliovirus replication. Through the use of this novel recombinant virus which provides more dynamic information from static fluorescent images, we hope to gain a better understanding of CVB3 tropism, intracellular membrane reorganization, and virus-associated microvesicle dissemination within the host. Enteroviruses are significant human pathogens, causing myocarditis, aseptic meningitis and encephalitis. The mechanisms of enterovirus dissemination in the host and cell-to-cell spread may be critical factors influencing viral pathogenesis. Here, we have generated a recombinant coxsackievirus expressing “fluorescence timer” protein (Timer-CVB3) which assists in following the progression of infection within the host. Unexpectedly, we observed the shedding of microvesicles containing virus in partially-differentiated progenitor cells infected with Timer-CVB3. These extracellular microvesicles (EMVs) were released in high levels following cellular differentiation, and may play a role in virus dissemination. Timer-CVB3 will be a valuable tool in monitoring virus spread in the infected host.
Collapse
|
34
|
Puccini JM, Ruller CM, Robinson SM, Knopp KA, Buchmeier MJ, Doran KS, Feuer R. Distinct neural stem cell tropism, early immune activation, and choroid plexus pathology following coxsackievirus infection in the neonatal central nervous system. J Transl Med 2014; 94:161-81. [PMID: 24378643 DOI: 10.1038/labinvest.2013.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) and lymphocytic choriomeningitis virus (LCMV) are both neurotropic RNA viruses, which can establish a persistent infection and cause meningitis and encephalitis in the neonatal host. Utilizing our neonatal mouse model of infection, we evaluated the consequences of early viral infection upon the host central nervous system (CNS) by comparing CVB3 and LCMV infection. Both viruses expressed high levels of viral protein in the choroid plexus and subventricular zone (SVZ), a region of neurogenesis. LCMV infected a greater number of cells in the SVZ and targeted both nestin(+) (neural progenitor cell marker) and olig2(+) (glial progenitor marker) cells at a relatively equal proportion. In contrast, CVB3 preferentially infected nestin(+) cells within the SVZ. Microarray analysis revealed differential kinetics and unique host gene expression changes for each infection. MHC class I gene expression, several developmental-related Hox genes, and transthyretin (TTR), a protein secreted in the cerebrospinal fluid by the choroid plexus, were specifically downregulated following CVB3 infection. Also, we identified severe pathology in the choroid plexus of CVB3-infected animals at 48 h post infection accompanied by a decrease in the level of TTR and carbonic anhydrase II. These results demonstrate broader neural progenitor and stem cell (NPSC) tropism for LCMV in the neonatal CNS, whereas CVB3 targeted a more specific subset of NPSCs, stimulated a distinct early immune response, and induced significant acute damage in the choroid plexus.
Collapse
Affiliation(s)
- Jenna M Puccini
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Chelsea M Ruller
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Scott M Robinson
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Kristeene A Knopp
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, USA
| | - Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
35
|
Henke A, Jarasch N, Wutzler P. Coxsackievirus B3 vaccines: use as an expression vector for prevention of myocarditis. Expert Rev Vaccines 2014; 7:1557-67. [DOI: 10.1586/14760584.7.10.1557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Schreiber J, Langhorst H, Jüttner R, Rathjen FG. The IgCAMs CAR, BT-IgSF, and CLMP: Structure, Function, and Diseases. ADVANCES IN NEUROBIOLOGY 2014; 8:21-45. [DOI: 10.1007/978-1-4614-8090-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Kant Upadhyay R. Biomarkers in Japanese encephalitis: a review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:591290. [PMID: 24455705 PMCID: PMC3878288 DOI: 10.1155/2013/591290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| |
Collapse
|
38
|
Kant Upadhyay R. Japanese Encephalitis Virus Generated Neurovirulence, Antigenicity, and Host Immune Responses. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/830396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In response to a JE virus attack, infected body cells start secretion of different cytokines and activate innate immune response. Virus starts neuronal invasion by entering into nerve cells and inflecting the central nervous system. It avoids exposure of body’s natural immunity and generates neurotrophic effects. Virus causes acute susceptibility to CNS and establishes encephalitis syndrome that results in very high fatality in children. In survivors, JEV inhibits the growth and proliferation of NCPs and imposes permanent neuronal disorders like cognitive, motor, and behavioral impairments. However, body cells start TCR mediated interactions, to recognize viral antigens with class I MHC complex on specific target cells, and operate mass killing of virus infected cells by increased CTL activity. Thus, both cell mediated and antibody interactions plays a central role in protection against JEV. In the present review article virus generated neurovirulence, antigenicity, and host immune responses are described in detail. More emphasis is given on diagnosis, clinical care, and active immunization with well-designed potential antiflavivirus vaccines. Further, for achieving an elite success against JEV, global eradication strategies are to be needed for making vaccination program more responsible and effective in endemic areas.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D D U Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
39
|
Steinke K, Sachse F, Ettischer N, Strutz‐Seebohm N, Henrion U, Rohrbeck M, Klosowski R, Wolters D, Brunner S, Franz W, Pott L, Munoz C, Kandolf R, Schulze‐Bahr E, Lang F, Klingel K, Seebohm G. Coxsackievirus B3 modulates cardiac ion channels. FASEB J 2013; 27:4108-21. [DOI: 10.1096/fj.13-230193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Katja Steinke
- Institute for Genetics of Heart Diseases (IfGH)Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany
- Department of Biochemistry ICation Channel GroupRuhr University BochumBochumGermany
| | - Frank Sachse
- Nora Eccles Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUtahUSA
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Nicole Ettischer
- Department of Molecular PathologyUniversity Hospital of TuebingenTuebingenGermany
| | - Nathalie Strutz‐Seebohm
- Institute for Genetics of Heart Diseases (IfGH)Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany
| | - Ulrike Henrion
- Institute for Genetics of Heart Diseases (IfGH)Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany
- Department of Physiology IUniversity of TuebingenTuebingenGermany
| | - Matthias Rohrbeck
- Institute for Genetics of Heart Diseases (IfGH)Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany
| | - Rafael Klosowski
- Department of Analytical ChemistryRuhr University BochumBochumGermany
| | - Dirk Wolters
- Department of Analytical ChemistryRuhr University BochumBochumGermany
| | - Stefan Brunner
- Department of Biochemistry ICation Channel GroupRuhr University BochumBochumGermany
| | - Wolfgang‐Michael Franz
- Department of Internal Medicine ILudwig Maximilians UniversityCampus GrosshadernMunichGermany
| | - Lutz Pott
- Department of Cellular PhysiologyRuhr University BochumBochumGermany
| | - Carlos Munoz
- Department of Physiology IUniversity of TuebingenTuebingenGermany
| | - Reinhard Kandolf
- Nora Eccles Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUtahUSA
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart Diseases (IfGH)Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany
| | - Florian Lang
- Department of Physiology IUniversity of TuebingenTuebingenGermany
| | - Karin Klingel
- Department of Molecular PathologyUniversity Hospital of TuebingenTuebingenGermany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH)Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
40
|
Farmer JR, Altschaefl KM, O'Shea KS, Miller DJ. Activation of the type I interferon pathway is enhanced in response to human neuronal differentiation. PLoS One 2013; 8:e58813. [PMID: 23505563 PMCID: PMC3591356 DOI: 10.1371/journal.pone.0058813] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/07/2013] [Indexed: 11/29/2022] Open
Abstract
Despite the crucial role of innate immunity in preventing or controlling pathogen-induced damage in most, if not all, cell types, very little is known about the activity of this essential defense system in central nervous system neurons, especially in humans. In this report we use both an established neuronal cell line model and an embryonic stem cell-based system to examine human neuronal innate immunity and responses to neurotropic alphavirus infection in cultured cells. We demonstrate that neuronal differentiation is associated with increased expression of crucial type I interferon signaling pathway components, including interferon regulatory factor-9 and an interferon receptor heterodimer subunit, which results in enhanced interferon stimulation and subsequent heightened antiviral activity and cytoprotective responses against neurotropic alphaviruses such as western equine encephalitis virus. These results identify important differentiation-dependent changes in innate immune system function that control cell-autonomous neuronal responses. Furthermore, this work demonstrates the utility of human embryonic stem cell-derived cultures as a platform to study the interactions between innate immunity, virus infection, and pathogenesis in central nervous system neurons.
Collapse
Affiliation(s)
- Jocelyn R. Farmer
- Departments of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kate M. Altschaefl
- Department of Epidemiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - K. Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David J. Miller
- Departments of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: .
| |
Collapse
|
41
|
Coxsackievirus B3 infects the bone marrow and diminishes the restorative capacity of erythroid and lymphoid progenitors. J Virol 2012; 87:2823-34. [PMID: 23269810 DOI: 10.1128/jvi.03004-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is known to infect stem cells in the neonatal central nervous system. Here, we evaluated the effects of CVB3 infection on the major source and repository of stem cells, the bone marrow (BM). Viral genome was detectable in BM within 24 h of infection, and productive infection of BM cells was evident, peaking at 48 h postinfection (p.i.), when ∼1 to 2% of BM cells produced infectious virus particles. Beginning at 2 to 3 days p.i., a dramatic and persistent loss of immature erythroid cells, B and T lymphocytes, and neutrophils was observed in BM and, by day 3 to 4 p.i., the femoral BM stroma was largely destroyed. Analysis of peripheral blood revealed a modest neutrophilia, a loss of reticulocytes, and a massive lymphopenia. The abundance of multipotent progenitor cells (Lin(-)/c-kit(+)/Flt3(+)) in BM declined ∼10-fold during CVB3 infection and, consistent with a deficiency of primitive hematopoietic progenitors, serum levels of the hematopoietic growth factor Flt3 ligand were dramatically elevated. Therefore, we analyzed the regenerative capacity of BM from CVB3-infected mice. Granulocyte/macrophage progenitors displayed a relatively normal proliferative ability, consistent with the fact that the peripheral blood level of neutrophils-which are very short-lived cells-remained high throughout infection. However, erythroid and lymphoid hematopoietic progenitors in BM from CVB3-infected mice showed a markedly reduced colony-forming capacity, consonant with the observed loss of both lymphocytes and immature erythroid cells/reticulocytes from the BM and peripheral blood. In summary, CVB3 infects the BM and exerts differential effects on the various hematopoietic progenitor populations.
Collapse
|
42
|
Schneider H, Weber CE, Schoeller J, Steinmann U, Borkowski J, Ishikawa H, Findeisen P, Adams O, Doerries R, Schwerk C, Schroten H, Tenenbaum T. Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res 2012; 170:66-74. [PMID: 23000117 DOI: 10.1016/j.virusres.2012.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 12/27/2022]
Abstract
Enterovirus is the most common pathogen causing viral meningitis especially in children. Besides the blood-brain barrier (BBB) the choroid plexus, which forms the blood-cerebrospinal-fluid (CSF) barrier (BCSFB), was shown to be involved in the pathogenesis of enteroviral meningitis. In a human in vitro model of the BCSFB consisting of human choroid plexus papilloma cells (HIBCPP), the permissiveness of plexus epithelial cells for Echovirus 30 (EV30) was analyzed by immunoblotting and quantitative real-time PCR (Q-PCR). HIBCPP could be directly infected by EV30 from the apical as well as from the physiological relevant basolateral side. During an infection period of 5h no alterations of barrier function and cell viability could be observed. Analysis of the cytokine/chemokine-profile following enteroviral infection with a cytometric bead array (CBA) and Q-PCR revealed an enhanced secretion of PanGRO (CXCL1, CXCL2 and CXCL3), IL8 and CCL5. Q-PCR showed a significant upregulation of CXCL1, CXCL2 and CXCL3 in a time dependant manner. However, there was only a minor effect of HIBCPP-infection with EV30 on transepithelial T lymphocyte migration with or without the chemoattractant CXCL12. Moreover, CXCL3 did not significantly enhance T cell migrations. Therefore additional factors must be involved for the in vivo reported enhanced T cell migration into the CNS in the context of enteroviral meningitis. As HIBCPP are permissive for infection with EV30, they constitute a valuable human in vitro model to study viral infection at the BCSFB.
Collapse
Affiliation(s)
- Henriette Schneider
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tabor-Godwin JM, Tsueng G, Sayen MR, Gottlieb RA, Feuer R. The role of autophagy during coxsackievirus infection of neural progenitor and stem cells. Autophagy 2012; 8:938-53. [PMID: 22751470 DOI: 10.4161/auto.19781] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coxsackievirus B3 (CVB3) has previously been shown to utilize autophagy in an advantageous manner during the course of infection of the host cell. However, few studies have determined whether stem cells induce autophagy in a similar fashion, and whether virus-induced autophagy occurs following infection of stem cells. Therefore, we compared the induction of autophagy following CVB3 infection of neural progenitor and stem cells (NPSCs), which we have recently shown to be highly susceptible to CVB3 infection, to HL-1 cells, a transformed cardiomyocyte cell line. As previously demonstrated for other susceptible host cells, HL-1 cells showed an increase in the activity of autophagic signaling following infection with a CVB3 expressing dsRed protein (dsRed-CVB3). Furthermore, viral titers in HL-1 cells increased in the presence of an inducer of autophagy (CCPA), while viral titers decreased in the presence of an inhibitor of autophagy (3-MA). In contrast, no change in autophagic signaling was seen in NPSCs following infection with dsRed-CVB3. Also, basal levels of autophagy in NPSCs were found to be highly elevated in comparison to HL-1 cells. Autophagy could be induced in NPSCs in the presence of rapamycin without altering levels of dsRed-CVB3 replication. In differentiated NPSC precursors, autophagy was activated during the differentiation process, and a decrease in autophagic signaling was observed within all three CNS lineages following dsRed-CVB3 infection. Hence, we conclude that the role of autophagy in modulating CVB3 replication appears cell type-specific, and stem cells may uniquely regulate autophagy in response to infection.
Collapse
Affiliation(s)
- Jenna M Tabor-Godwin
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Kemball CC, Flynn CT, Hosking MP, Botten J, Whitton JL. Wild-type coxsackievirus infection dramatically alters the abundance, heterogeneity, and immunostimulatory capacity of conventional dendritic cells in vivo. Virology 2012; 429:74-90. [PMID: 22551767 DOI: 10.1016/j.virol.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 11/29/2011] [Accepted: 04/11/2012] [Indexed: 12/21/2022]
Abstract
In vitro studies have shown that enteroviruses employ strategies that may impair the ability of DCs to trigger T cell immunity, but it is unclear how these viruses affect DCs in vivo. Here, we evaluate the effects of wild-type (wt) coxsackievirus B3 on DCs in vitro and in a murine model in vivo. Although CVB3 does not productively infect the vast majority of DCs, virus infection profoundly reduces splenic conventional DC numbers and diminishes their capacity to prime naïve CD8(+) T cells in vitro. In contrast to recombinant CVB3, highly pathogenic wt virus infection significantly diminishes the host's capacity to mount T cell responses, which is temporally associated with the loss of CD8α(+) DCs. Our findings demonstrate that enterovirus infection substantially alters the number, heterogeneity, and stimulatory capacity of DCs in vivo, and these dramatic immunomodulatory effects may weaken the host's capacity to mount antiviral T cell responses.
Collapse
Affiliation(s)
- Christopher C Kemball
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
45
|
Ruller CM, Tabor-Godwin JM, Van Deren DA, Robinson SM, Maciejewski S, Gluhm S, Gilbert PE, An N, Gude NA, Sussman MA, Whitton JL, Feuer R. Neural stem cell depletion and CNS developmental defects after enteroviral infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1107-1120. [PMID: 22214838 DOI: 10.1016/j.ajpath.2011.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 12/30/2022]
Abstract
Coxsackieviruses are significant human pathogens causing myocarditis, meningitis, and encephalitis. We previously demonstrated the ability of coxsackievirus B3 (CVB3) to persist within the neonatal central nervous system (CNS) and to target neural stem cells. Given that CVB3 is a cytolytic virus and may therefore damage target cells, we characterized the potential reduction in neurogenesis within the developing brain and the subsequent developmental defects that occurred after the loss of these essential neural stem cells. Neonatal mice were inoculated with a recombinant CVB3 expressing eGFP (eGFP-CVB3), and alterations in neurogenesis and brain development were evaluated over time. We observed a reduction in proliferating cells in CNS neurogenic regions simultaneously with the presence of nestin(+) cells undergoing apoptosis. The size of the brain appeared smaller by histology, and a permanent decrease in brain wet weight was observed after eGFP-CVB3 infection. We also observed an inverse relationship between the amount of virus material and brain wet weight up to day 30 postinfection. In addition, signs of astrogliosis and a compaction of the cortical layers were observed at 90 days postinfection. Intriguingly, partial brain wet weight recovery was observed in mice treated with the antiviral drug ribavirin during the persistent stage of infection. Hence, long-term neurological sequelae might be expected after neonatal enteroviral infections, yet antiviral treatment initiated long after the end of acute infection might limit virus-mediated neuropathology.
Collapse
Affiliation(s)
- Chelsea M Ruller
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Jenna M Tabor-Godwin
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Donn A Van Deren
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Scott M Robinson
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Sonia Maciejewski
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Shea Gluhm
- Department of Psychology, San Diego State University, San Diego, California
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, San Diego, California
| | - Naili An
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Natalie A Gude
- SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, California
| | - Mark A Sussman
- SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, California
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, California
| | - Ralph Feuer
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California.
| |
Collapse
|
46
|
Activation of apoptotic signalling events in human embryonic stem cells upon Coxsackievirus B3 infection. Apoptosis 2011; 17:132-42. [DOI: 10.1007/s10495-011-0668-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Tsueng G, Tabor-Godwin JM, Gopal A, Ruller CM, Deline S, An N, Frausto RF, Milner R, Crocker SJ, Whitton JL, Feuer R. Coxsackievirus preferentially replicates and induces cytopathic effects in undifferentiated neural progenitor cells. J Virol 2011; 85:5718-32. [PMID: 21471247 PMCID: PMC3126326 DOI: 10.1128/jvi.02261-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/25/2011] [Indexed: 12/21/2022] Open
Abstract
Enteroviruses, including coxsackieviruses, exhibit significant tropism for the central nervous system, and these viruses are commonly associated with viral meningitis and encephalitis. Previously, we described the ability of coxsackievirus B3 (CVB3) to infect proliferating neuronal progenitor cells located in the neonatal subventricular zone and persist in the adult murine central nervous system (CNS). Here, we demonstrate that cultured murine neurospheres, which comprise neural stem cells and their progeny at different stages of development, were highly susceptible to CVB3 infection. Neurospheres, or neural progenitor and stem cells (NPSCs), isolated from neonatal C57BL/6 mice, supported high levels of infectious virus production and high viral protein expression levels following infection with a recombinant CVB3 expressing enhanced green fluorescent protein (eGFP) protein. Similarly, NPSCs isolated from neonatal actin-promoter-GFP transgenic mice (actin-GFP NPSCs) were highly susceptible to infection with a recombinant CVB3 expressing DsRed (Discosoma sp. red fluorescent protein). Both nestin-positive and NG2(+) progenitor cells within neurospheres were shown to preferentially express high levels of viral protein as soon as 24 h postinfection (p.i.). By day 3 p.i., viral protein expression and viral titers increased dramatically in NPSCs with resultant cytopathic effects (CPE) and eventual cell death. In contrast, reduced viral replication, lower levels of CPE, and diminished viral protein expression levels were observed in NPSCs differentiated for 5 or 16 days in the presence of fetal bovine serum (FBS). Despite the presence of CPE and high levels of cell death following early CVB3 infection, surviving neurospheres were readily observed and continued to express detectable levels of viral protein as long as 37 days after initial infection. Also, CVB3 infection of actin-GFP NPSCs increased the percentage of cells expressing neuronal class III β-tubulin following their differentiation in the presence of FBS. These results suggest that neural stem cells may be preferentially targeted by CVB3 and that neurogenic regions of the CNS may support persistent viral replication in the surviving host. In addition, normal progenitor cell differentiation may be altered in the host following infection.
Collapse
Affiliation(s)
- Ginger Tsueng
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California 92182-4614
| | - Jenna M. Tabor-Godwin
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California 92182-4614
| | - Aparajita Gopal
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California 92182-4614
| | - Chelsea M. Ruller
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California 92182-4614
| | - Steven Deline
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California 92182-4614
| | - Naili An
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California 92182-4614
| | - Ricardo F. Frausto
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, La Jolla, California 92037
| | - Richard Milner
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla California 92037
| | - Stephen J. Crocker
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, La Jolla, California 92037
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, La Jolla, California 92037
| | - Ralph Feuer
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California 92182-4614
| |
Collapse
|
48
|
Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology 2011; 411:288-305. [PMID: 21251690 PMCID: PMC3060663 DOI: 10.1016/j.virol.2010.12.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes.
Collapse
Affiliation(s)
- Ross E. Rhoades
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Jenna M. Tabor-Godwin
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Ginger Tsueng
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Ralph Feuer
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| |
Collapse
|
49
|
Viral infection and neural stem/progenitor cell's fate: implications in brain development and neurological disorders. Neurochem Int 2011; 59:357-66. [PMID: 21354238 DOI: 10.1016/j.neuint.2011.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/08/2023]
Abstract
Viral infections in the prenatal (during pregnancy) and perinatal period have been a common cause of brain malformation. Besides the immediate neurological dysfunctions, virus infections may critically affect CNS development culminating in long-term cognitive deficits. Most of these neurotropic viruses are most damaging at a critical stage of the host, when the brain is in a dynamic stage of development. The neuropathology can be attributed to the massive neuronal loss induced by the virus as well as lack of CNS repair owing to a deficit in the neural stem/progenitor cell (NSPC) pool or aberrant formation of new neurons from NSPCs. Being one of the mitotically active populations in the post natal brain, the NSPCs have emerged as the potential targets of neurotropic viruses. The NSPCs are self-renewing and multipotent cells residing in the neurogenic niches of the brain, and, therefore, hampering the developmental fate of these cells may adversely affect the overall neurogenesis pattern. A number of neurotropic viruses utilize NSPCs as their cellular reservoirs and often establish latent and persistent infection in them. Both HIV and Herpes virus infect NSPCs over long periods of time and reactivation of the virus may occur later in life. The virus infected NSPCs either undergoes cell cycle arrest or impaired neuronal or glial differentiation, all of which leads to impaired neurogenesis. The disturbances in neurogenesis and CNS development following neurotropic virus infections have direct implications in the viral pathogenesis and long-term neurobehavioral outcome in infected individuals.
Collapse
|
50
|
Kashiwazaki H, Nomura R, Matsuyama S, Taguchi F, Watanabe R. Spongiform degeneration induced by neuropathogenic murine coronavirus infection. Pathol Int 2011; 61:184-91. [PMID: 21418390 PMCID: PMC7167946 DOI: 10.1111/j.1440-1827.2010.02639.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Soluble receptor‐resistant mutant 7 (ssr7) is isolated from a highly neurovirulent mouse hepatitis virus (MHV) JHMV cl‐2 strain (cl‐2). srr7 exhibits lower virulence than its maternal strain in infected mice, which is typically manifested in a longer lifespan. In this study, during the course of infection with srr7, small spongiotic lesions became apparent at 2 days post‐inoculation (pi), they spread out to form spongiform encephalopathy by 8 to 10 days pi. We recently reported that the initial expressions of viral antigens in the brain are detected in the infiltrating monocyte lineage and in ependymal cells. Here, we demonstrate that the next viral spread was observed in glial fibrillary acidic protein‐positive cells or nestin‐positive progenitor cells which take up positions in the subventricular zone (SVZ). From this restricted site of infection in the SVZ, a large area of gliosis extended deep into the brain parenchyma where no viral antigens were detected but vacuolar degeneration started at 48 h pi of the virus. The extremely short incubation period compared with other experimental models of infectious spongiform degeneration in the brain would provide a superior experimental model to investigate the mechanism of spongiotic lesions formation.
Collapse
Affiliation(s)
- Hiromi Kashiwazaki
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo, Japan
| | | | | | | | | |
Collapse
|