1
|
Stelcer E, Blatkiewicz M, Jopek K, Suchorska WM, Rucinski M. Can the reprogrammed cancer cells serve as an alternative source of (induced) cancer stem cells? Rep Pract Oncol Radiother 2024; 29:651-656. [PMID: 39759558 PMCID: PMC11698551 DOI: 10.5603/rpor.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/27/2024] [Indexed: 01/07/2025] Open
Abstract
Background Cancer stem cells (CSCs) constitute a small and elusive subpopulation of cancer cells within a tumor mass and are characterized by stem cell properties. Reprogrammed CSCs exhibit similar capability to initiate tumor growth, metastasis, and chemo- and radio-resistance and have similar gene profiles to primary CSCs. However, the efficiency of cancer cell reprogramming remained relatively low. There is limited literature available on the reprogramming of lung cancer cells. Hence, in this study we have conducted reprogramming of human lung cancer cells towards more benign type of cells. Materials and methods The reprogramming process was carried out with the use of STEMCCA vector. We have investigated the gene expression profile of induced CSCs (iCSCs) using the microarray technique. Results The lung iCSCs demonstrate morphology characteristics of induced pluripotent stem cells (iPSCs) and gene expression profile that significantly differ from cells before reprogramming. We have also presented the elevated level of expression of genes associated with the cancer stemness and thus revealed new interesting CSC-like molecular markers. Conclusions These preliminary results demonstrated that the reprogramming process in vitro leads to the remarkable changes in cells at the gene level and has potential to be an alternative method of generating CSC-like cells.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Lab, Greater Poland Cancer Centre, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Pedrosa P, Zhang Z, Nuñez-Quintela V, Macias D, Ge J, Denholm M, Dyas A, Estevez-Souto V, Lado-Fernandez P, Gonzalez P, Gomez M, Martin JE, Da Silva-Alvarez S, Collado M, Muñoz-Espín D. Inhibition of lung tumorigenesis by transient reprogramming in cancer cells. Cell Death Dis 2024; 15:857. [PMID: 39587064 PMCID: PMC11589828 DOI: 10.1038/s41419-024-07207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Oncogenic transformation and Oct4, Sox2, Klf4 and c-Myc (OSKM)-mediated induction of pluripotency are two independent and incompatible cellular fates. While continuous expression of OSKM can convert normal somatic cells into teratogenic pluripotent cells, it remains speculative what is the impact of transient OSKM expression in cancer cells. Here, we find that OSKM expression limits the growth of transformed lung cells by inducing apoptosis and senescence. We identify Oct4 and Klf4 as the main individual reprogramming factors responsible for this effect. Mechanistically, the induction of cell cycle inhibitor p21 downstream of the reprogramming factors acts as mediator of cell death and senescence. Using a variety of in vivo systems, including allografts, orthotopic transplantation and KRAS-driven lung cancer mouse models, we demonstrate that transient reprogramming by OSKM expression in cancer cells impairs tumor growth and reduces tumor burden. Altogether, our results show that the induction of transient reprogramming in cancer cells is antitumorigenic opening novel potential therapeutic avenues in oncology.
Collapse
Affiliation(s)
- Pablo Pedrosa
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Zhenguang Zhang
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Victor Nuñez-Quintela
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - David Macias
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jianfeng Ge
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mary Denholm
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna Dyas
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Valentin Estevez-Souto
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Patricia Lado-Fernandez
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia Gonzalez
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Gomez
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jose Ezequiel Martin
- CMDL, Department of Oncology, SMCL, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Sabela Da Silva-Alvarez
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Manuel Collado
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- CRUK Cambridge Centre Thoracic Cancer Programme, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
4
|
Bekas N, Samiotaki M, Papathanasiou M, Mokos P, Pseftogas A, Xanthopoulos K, Thanos D, Mosialos G, Dafou D. Inactivation of Tumor Suppressor CYLD Inhibits Fibroblast Reprogramming to Pluripotency. Cancers (Basel) 2023; 15:4997. [PMID: 37894364 PMCID: PMC10605754 DOI: 10.3390/cancers15204997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical regulatory function in a variety of signaling pathways and biological processes involved in cancer development and progression, many of which are also key modulators of somatic cell reprogramming. Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of investigating the involvement of CYLD in reprogramming and developing a better understanding of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT) and CYLD DUB-deficient (CYLDΔ9/Δ9) mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4, c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower early reprogramming kinetics. The introduction of WT CYLD to CYLDΔ9/Δ9 MEFs rescued the phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in CYLDΔ9/Δ9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix and several metabolic pathways. Our findings not only establish for the first time CYLD's significance as a regulatory component of early reprogramming but also highlight its role as an extracellular matrix regulator, which has profound implications in cancer research.
Collapse
Affiliation(s)
- Nikolaos Bekas
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
| | - Maria Papathanasiou
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - Panagiotis Mokos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Athanasios Pseftogas
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Dimitra Dafou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| |
Collapse
|
5
|
Abd GM, Laird MC, Ku JC, Li Y. Hypoxia-induced cancer cell reprogramming: a review on how cancer stem cells arise. Front Oncol 2023; 13:1227884. [PMID: 37614497 PMCID: PMC10442830 DOI: 10.3389/fonc.2023.1227884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Cancer stem cells are a subset of cells within the tumor that possess the ability to self-renew as well as differentiate into different cancer cell lineages. The exact mechanisms by which cancer stem cells arise is still not completely understood. However, current research suggests that cancer stem cells may originate from normal stem cells that have undergone genetic mutations or epigenetic changes. A more recent discovery is the dedifferentiation of cancer cells to stem-like cells. These stem-like cells have been found to express and even upregulate induced pluripotent stem cell markers known as Yamanaka factors. Here we discuss developments in how cancer stem cells arise and consider how environmental factors, such as hypoxia, plays a key role in promoting the progression of cancer stem cells and metastasis. Understanding the mechanisms that give rise to these cells could have important implications for the development of new strategies in cancer treatments and therapies.
Collapse
Affiliation(s)
- Genevieve M. Abd
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Madison C. Laird
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
6
|
Fu X, Zhuang Q, Babarinde IA, Shi L, Ma G, Hu H, Li Y, Chen J, Xiao Z, Deng B, Sun L, Jauch R, Hutchins AP. Restricting epigenetic activity promotes the reprogramming of transformed cells to pluripotency in a line-specific manner. Cell Death Discov 2023; 9:245. [PMID: 37452056 PMCID: PMC10349098 DOI: 10.1038/s41420-023-01533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Somatic cell reprogramming and oncogenic transformation share surprisingly similar features, yet transformed cells are resistant to reprogramming. Epigenetic barriers must block transformed cells from reprogramming, but the nature of those barriers is unclear. In this study, we generated a systematic panel of transformed mouse embryonic fibroblasts (MEFs) using oncogenic transgenes and discovered transformed cell lines compatible with reprogramming when transfected with Oct4/Sox2/Klf4/Myc. By comparing the reprogramming-capable and incapable transformed lines we identified multiple stages of failure in the reprogramming process. Some transformed lines failed at an early stage, whilst other lines seemed to progress through a conventional reprogramming process. Finally, we show that MEK inhibition overcomes one critical reprogramming barrier by indirectly suppressing a hyperacetylated active epigenetic state. This study reveals that diverse epigenetic barriers underly resistance to reprogramming of transformed cells.
Collapse
Affiliation(s)
- Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zhuang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
8
|
An Alternate Approach to Generate Induced Pluripotent Stem Cells with Precise CRISPR/Cas9 Tool. Stem Cells Int 2022; 2022:4537335. [PMID: 36187228 PMCID: PMC9522500 DOI: 10.1155/2022/4537335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The induced pluripotent stem cells (iPSCs) are considered powerful tools in pharmacology, biomedicine, toxicology, and cell therapy. Multiple approaches have been used to generate iPSCs with the expression of reprogramming factors. Here, we generated iPSCs by integrating the reprogramming cassette into a genomic safe harbor, CASH-1, with the use of a precise genome editing tool, CRISPR/Cas9. The integration of cassette at CASH-1 into target cells did not alter the pattern of proliferation and interleukin-6 secretion as a response to ligands of multiple signaling pathways involving tumor necrosis factor-α receptor, interleukin-1 receptor, and toll-like receptors. Moreover, doxycycline-inducible expression of OCT4, SOX2, and KLF4 reprogrammed engineered human dermal fibroblasts and human embryonic kidney cell line into iPSCs. The generated iPSCs showed their potential to make embryoid bodies and differentiate into the derivatives of all three germ layers. Collectively, our data emphasize the exploitation of CASH-1 by CRISPR/Cas9 tool for therapeutic and biotechnological applications including but not limited to reprogramming of engineered cells into iPSCs.
Collapse
|
9
|
Weiand M, Ballmaier P, Niemietz C, Schmidt H, Zibert A. Combined transgene immortalized urothelial cells capable of reprogramming and hepatic differentiation. Biochem Biophys Rep 2022; 31:101308. [PMID: 35865272 PMCID: PMC9294256 DOI: 10.1016/j.bbrep.2022.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
|
10
|
Revisiting Epithelial Carcinogenesis. Int J Mol Sci 2022; 23:ijms23137437. [PMID: 35806442 PMCID: PMC9267463 DOI: 10.3390/ijms23137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The origin of cancer remains one of the most important enigmas in modern biology. This paper presents a hypothesis for the origin of carcinomas in which cellular aging and inflammation enable the recovery of cellular plasticity, which may ultimately result in cancer. The hypothesis describes carcinogenesis as the result of the dedifferentiation undergone by epithelial cells in hyperplasia due to replicative senescence towards a mesenchymal cell state with potentially cancerous behavior. In support of this hypothesis, the molecular, cellular, and histopathological evidence was critically reviewed and reinterpreted when necessary to postulate a plausible generic series of mechanisms for the origin and progression of carcinomas. In addition, the implications of this theoretical framework for the current strategies of cancer treatment are discussed considering recent evidence of the molecular events underlying the epigenetic switches involved in the resistance of breast carcinomas. The hypothesis also proposes an epigenetic landscape for their progression and a potential mechanism for restraining the degree of dedifferentiation and malignant behavior. In addition, the manuscript revisits the gradual degeneration of the nonalcoholic fatty liver disease to propose an integrative generalized mechanistic explanation for the involution and carcinogenesis of tissues associated with aging. The presented hypothesis might serve to understand and structure new findings into a more encompassing view of the genesis of degenerative diseases and may inspire novel approaches for their study and therapy.
Collapse
|
11
|
Chen X, Wen F, Li Z, Li W, Zhou M, Sun X, Zhao P, Zou C, Liu T. Identification of MAEL as a promoter for the drug resistance model of iPSCs derived from T-ALL. Cancer Med 2022; 11:3479-3490. [PMID: 35488386 PMCID: PMC9487874 DOI: 10.1002/cam4.4712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Significant progress has been made in the diagnosis and treatment of the drug‐resistant and highly recurrent refractory T cell acute lymphoblastic leukemia (T‐ALL). Primary tumor cell‐derived induced pluripotent stem cells (iPSCs) have become very useful tumor models for cancer research including drug sensitivity tests. In the present study, we investigated the mechanism underlying drug resistance in T‐ALL using the T‐ALL‐derived iPSCs (T‐iPSCs) model. T‐ALL cells were transformed using iPSC reprogramming factors (Sox‐2, Klf4, Oct4, and Myc) via nonintegrating Sendai virus. T‐iPSCs with the Notch1 mutation were then identified through genomic sequencing. Furthermore, T‐iPSCs resistant to 80 μM LY411575, a γ‐secretase and Notch signal inhibitor, were also established. We found a significant difference in the expression of drug resistance‐related genes between the drug‐resistant T‐iPSCs and drug‐sensitive groups. Among the 27 genes, six most differently expressed genes (DEGs) based on Log2FC >5 were identified. Knockdown analyses using RNA interference (RNAi) revealed that MAEL is the most important gene associated with drug resistance in T‐ALL cells. Also, MAEL knockdown downregulated expression of MRP and LRP in drug‐resistant T‐iPSCs. Interestingly, this phenomenon partially restored the sensitivity of the cells to LY411575. Furthermore, overexpression of the MAEL gene enhanced drug resistance against LY411575. Conclusively, MAEL promotes LY411575 resistance in T‐ALL cells increasing the expression of MRP and LRP genes.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China.,Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhu Li
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Weiran Li
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China.,Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Meiling Zhou
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Xizhuo Sun
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Pan Zhao
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Chang Zou
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Tao Liu
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
12
|
Ito K, Nagata K, Ohta S, Matsuda Y, Ukai T, Yasuda I, Ota A, Kobayashi R, Kabata M, Sankoda N, Maeda T, Woltjen K, Yang L, Maruyama R, Katayama R, Yamamoto T, Yamada Y. The oncogene-dependent resistance to reprogramming unveils cancer therapeutic targets. Cell Rep 2022; 39:110721. [PMID: 35476996 DOI: 10.1016/j.celrep.2022.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/01/2021] [Accepted: 03/31/2022] [Indexed: 11/03/2022] Open
Abstract
The resistance to transcription factor-mediated reprogramming into pluripotent stem cells is one of the distinctive features of cancer cells. Here we dissect the profiles of reprogramming factor binding and the subsequent transcriptional response in cancer cells to reveal its underlying mechanisms. Using clear cell sarcomas (CCSs), we show that the driver oncogene EWS/ATF1 misdirects the reprogramming factors to cancer-specific enhancers and thereby impairs the transcriptional response toward pluripotency that is otherwise provoked. Sensitization to the reprogramming cue is observed in other cancer types when the corresponding oncogenic signals are pharmacologically inhibited. Exploiting this oncogene dependence of the transcriptional "stiffness," we identify mTOR signaling pathways downstream of EWS/ATF1 and discover that inhibiting mTOR activity substantially attenuates the propagation of CCS cells in vitro and in vivo. Our results demonstrate that the early transcriptional response to cell fate perturbations can be a faithful readout to identify effective therapeutics targets in cancer cells.
Collapse
Affiliation(s)
- Kenji Ito
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kohei Nagata
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Third Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Yutaka Matsuda
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa 247-8530, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Akira Ota
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryota Kobayashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Nao Sankoda
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan.
| |
Collapse
|
13
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
14
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
15
|
Kim J. Cellular reprogramming to model and study epigenetic alterations in cancer. Stem Cell Res 2020; 49:102062. [PMID: 33202305 PMCID: PMC7768185 DOI: 10.1016/j.scr.2020.102062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular reprogramming to model human cancer. Cellular reprogramming to rewire epigenetic alterations in human cancer. Selective reactivation of malignancy in the cell lineage cancer is originated. Cellular reprogramming to recapitulate human cancer progression.
Although genetic mutations are required for cancer development, reversible non-genetic alterations also play a pivotal role in cancer progression. Failure of well-orchestrated gene regulation by chromatin states and master transcription factors can be one such non-genetic etiology for cancer development. Master transcription factor-mediated cellular reprogramming of human cancer cells allows us to model cancer progression. Here I cover the history and recent advances in reprogramming cancer cells, followed by lessons from cellular reprogramming of normal cells that may apply to cancer. Lastly, I share my perspective on cellular reprogramming for studying epigenetic alterations that have occurred in tumorigenesis, discuss the current limitations, and propose ways to overcome the obstacles in the reprogramming of cancer.
Collapse
Affiliation(s)
- Jungsun Kim
- Department of Molecular and Medical Genetics, Cancer Early Detection Advanced Research Center, Knight Cancer Institute (Cancer Biology Research Program), Oregon Health & Science University School of Medicine, KCRB 5001.51, 2720 SW Moody Ave., Portland, OR 97201, United States.
| |
Collapse
|
16
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
17
|
"Reprogram Enablement" as an Assay for Identifying Early Oncogenic Pathways by Their Ability to Allow Neoplastic Cells to Reacquire an Epiblast State. Stem Cell Reports 2020; 15:761-775. [PMID: 32795421 PMCID: PMC7486218 DOI: 10.1016/j.stemcr.2020.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
One approach to understanding how tissue-specific cancers emerge is to determine the requirements for “reprograming” such neoplastic cells back to their developmentally normal primordial pre-malignant epiblast-like pluripotent state and then scrutinizing their spontaneous reconversion to a neoplasm, perhaps rendering salient the earliest pivotal oncogenic pathway(s) (before other aberrations accumulate in the adult tumor). For the prototypical malignancy anaplastic thyroid carcinoma (ATC), we found that tonic RAS reduction was obligatory for reprogramming cancer cells to a normal epiblast-emulating cells, confirmed by changes in their transcriptomic and epigenetic profiles, loss of neoplastic behavior, and ability to derive normal somatic cells from their “epiblast organoids.” Without such suppression, ATCs re-emerged from the clones. Hence, for ATC, RAS inhibition was its “reprogram enablement” (RE) factor. Each cancer likely has its own RE factor; identifying it may illuminate pre-malignant risk markers, better classifications, therapeutic targets, and tissue-specification of a previously pluripotent, now neoplastic, cell. The factors for reprogramming a cancer cell to an epiblast-like cell can be assayed “Reprogram enablement” can yield insights into the earliest pivotal oncogenic steps For anaplastic thyroid carcinoma, RAS inhibition was obligatory for reprograming Each tissue-specific cancer will have its own reprogramming enablement requirement
Collapse
|
18
|
Wang Y, Lu T, Sun G, Zheng Y, Yang S, Zhang H, Hao S, Liu Y, Ma S, Zhang H, Ru Y, Gao S, Yen K, Cheng H, Cheng T. Targeting of apoptosis gene loci by reprogramming factors leads to selective eradication of leukemia cells. Nat Commun 2019; 10:5594. [PMID: 31811153 PMCID: PMC6898631 DOI: 10.1038/s41467-019-13411-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Applying somatic cell reprogramming strategies in cancer cell biology is a powerful approach to analyze mechanisms of malignancy and develop new therapeutics. Here, we test whether leukemia cells can be reprogrammed in vivo using the canonical reprogramming transcription factors-Oct4, Sox2, Klf4, and c-Myc (termed as OSKM). Unexpectedly, we discover that OSKM can eradicate leukemia cells and dramatically improve survival of leukemia-bearing mice. By contrast, OSKM minimally impact normal hematopoietic cells. Using ATAC-seq, we find OSKM induce chromatin accessibility near genes encoding apoptotic regulators in leukemia cells. Moreover, this selective effect also involves downregulation of H3K9me3 as an early event. Dissection of the functional effects of OSKM shows that Klf4 and Sox2 play dominant roles compared to c-Myc and Oct4 in elimination of leukemia cells. These results reveal an intriguing paradigm by which OSKM-initiated reprogramming induction can be leveraged and diverged to develop novel anti-cancer strategies.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Experimental Hematology, Beijing, China.,National Clinical Research Center for Blood Diseases, Tianjin, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, the First People's Hospital of Yunnan Province, Yunnan, China
| | - Ting Lu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, Beijing, China.,National Clinical Research Center for Blood Diseases, Tianjin, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, Beijing, China.,National Clinical Research Center for Blood Diseases, Tianjin, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, Beijing, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongyan Zhang
- State Key Laboratory of Experimental Hematology, Beijing, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, Beijing, China.,National Clinical Research Center for Blood Diseases, Tianjin, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yanfeng Liu
- State Key Laboratory of Experimental Hematology, Beijing, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, Beijing, China.,National Clinical Research Center for Blood Diseases, Tianjin, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Houyu Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Beijing, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Beijing, China. .,National Clinical Research Center for Blood Diseases, Tianjin, China. .,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China. .,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Beijing, China. .,National Clinical Research Center for Blood Diseases, Tianjin, China. .,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China. .,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
19
|
Gong L, Yan Q, Zhang Y, Fang X, Liu B, Guan X. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun (Lond) 2019; 39:48. [PMID: 31464654 PMCID: PMC6716904 DOI: 10.1186/s40880-019-0393-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
In the past decade, remarkable progress has been made in reprogramming terminally differentiated somatic cells and cancer cells into induced pluripotent cells and cancer cells with benign phenotypes. Recent studies have explored various approaches to induce reprogramming from one cell type to another, including lineage-specific transcription factors-, combinatorial small molecules-, microRNAs- and embryonic microenvironment-derived exosome-mediated reprogramming. These reprogramming approaches have been proven to be technically feasible and versatile to enable re-activation of sequestered epigenetic regions, thus driving fate decisions of differentiated cells. One of the significant utilities of cancer cell reprogramming is the therapeutic potential of retrieving normal cell functions from various malignancies. However, there are several major obstacles to overcome in cancer cell reprogramming before clinical translation, including characterization of reprogramming mechanisms, improvement of reprogramming efficiency and safety, and development of delivery methods. Recently, several insights in reprogramming mechanism have been proposed, and determining progress has been achieved to promote reprogramming efficiency and feasibility, allowing it to emerge as a promising therapy against cancer in the near future. This review aims to discuss recent applications in cancer cell reprogramming, with a focus on the clinical significance and limitations of different reprogramming approaches, while summarizing vital roles played by transcription factors, small molecules, microRNAs and exosomes during the reprogramming process.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Yu Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xiaona Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China.
| |
Collapse
|
20
|
Khoshchehreh R, Totonchi M, Carlos Ramirez J, Torres R, Baharvand H, Aicher A, Ebrahimi M, Heeschen C. Epigenetic reprogramming of primary pancreatic cancer cells counteracts their in vivo tumourigenicity. Oncogene 2019; 38:6226-6239. [PMID: 31308488 PMCID: PMC6756074 DOI: 10.1038/s41388-019-0871-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) arises through accumulation of multiple genetic alterations. However, cancer cells also acquire and depend on cancer-specific epigenetic changes. To conclusively demonstrate the crucial relevance of the epigenetic programme for the tumourigenicity of the cancer cells, we used cellular reprogramming technology to reverse these epigenetic changes. We reprogrammed human PDAC cultures using three different techniques - (1) lentivirally via induction of Yamanaka Factors (OSKM), (2) the pluripotency-associated gene OCT4 and the microRNA mir-302, or (3) using episomal vectors as a safer alternative without genomic integration. We found that induction with episomal vectors was the most efficient method to reprogram primary human PDAC cultures as well as primary human fibroblasts that served as positive controls. Successful reprogramming was evidenced by immunostaining, alkaline phosphatase staining, and real-time PCR. Intriguingly, reprogramming of primary human PDAC cultures drastically reduced their in vivo tumourigenicity, which appeared to be driven by the cells' enhanced differentiation and loss of stemness upon transplantation. Our study demonstrates that reprogrammed primary PDAC cultures are functionally distinct from parental PDAC cells resulting in drastically reduced tumourigenicity in vitro and in vivo. Thus, epigenetic alterations account at least in part for the tumourigenicity and aggressiveness of pancreatic cancer, supporting the notion that epigenetic modulators could be a suitable approach to improve the dismal outcome of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Reyhaneh Khoshchehreh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Raul Torres
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, 08036, Spain
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Alexandra Aicher
- Gene and Stem Cell Therapy Program, Centenary Institute, the University of Sydney, Camperdown, 2050, NSW, Australia.
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Madrid, Spain.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| | - Christopher Heeschen
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Chao MP, Majeti R. Induced pluripotent stem cell modeling of malignant hematopoiesis. Exp Hematol 2019; 71:68-76. [DOI: 10.1016/j.exphem.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
|
22
|
Reprogramming Captures the Genetic and Tumorigenic Properties of Neurofibromatosis Type 1 Plexiform Neurofibromas. Stem Cell Reports 2019; 12:411-426. [PMID: 30713041 PMCID: PMC6373434 DOI: 10.1016/j.stemcr.2019.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 12/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disease caused by mutations in the NF1 tumor suppressor gene. Plexiform neurofibromas (PNFs) are benign Schwann cell (SC) tumors of the peripheral nerve sheath that develop through NF1 inactivation and can progress toward a malignant soft tissue sarcoma. There is a lack of non-perishable model systems to investigate PNF development. We reprogrammed PNF-derived NF1(-/-) cells, descendants from the tumor originating cell. These NF1(-/-)-induced pluripotent stem cells (iPSCs) captured the genomic status of PNFs and were able to differentiate toward neural crest stem cells and further to SCs. iPSC-derived NF1(-/-) SCs exhibited a continuous high proliferation rate, poor myelination ability, and a tendency to form 3D spheres that expressed the same markers as their PNF-derived primary SC counterparts. They represent a valuable model to study and treat PNFs. PNF-derived iPSC lines were banked for making them available.
Collapse
|
23
|
Ius T, Ciani Y, Ruaro ME, Isola M, Sorrentino M, Bulfoni M, Candotti V, Correcig C, Bourkoula E, Manini I, Pegolo E, Mangoni D, Marzinotto S, Radovic S, Toffoletto B, Caponnetto F, Zanello A, Mariuzzi L, Di Loreto C, Beltrami AP, Piazza S, Skrap M, Cesselli D. An NF-κB signature predicts low-grade glioma prognosis: a precision medicine approach based on patient-derived stem cells. Neuro Oncol 2019; 20:776-787. [PMID: 29228370 DOI: 10.1093/neuonc/nox234] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background While recent genome-wide association studies have suggested novel low-grade glioma (LGG) stratification models based on a molecular classification, we explored the potential clinical utility of patient-derived cells. Specifically, we assayed glioma-associated stem cells (GASC) that are patient-derived and representative of the glioma microenvironment. Methods By next-generation sequencing, we analyzed the transcriptional profile of GASC derived from patients who underwent anaplastic transformation either within 48 months (GASC-BAD) or ≥7 years (GASC-GOOD) after surgery. Gene set enrichment and pathway enrichment analyses were applied. The prognostic role of a nuclear factor-kappaB (NF-κB) signature derived from GASC-BAD was tested in 530 newly diagnosed diffuse LGG patients comprised within The Cancer Genome Atlas (TCGA) database. The prognostic value of the GASC upstream regulator p65 NF-κB was assessed, by univariate and multivariate Cox analyses, in a single center case study, including 146 grade II LGGs. Results The key elements differentiating the transcriptome of GASC isolated from LGG with different prognoses were mostly related to hallmarks of cancer (eg, inflammatory/immune process, NF-κB activation). Consistently, the NF-κB signature extrapolated from the GASC study was prognostic in the dataset of TCGA. Finally, the nuclear expression of the NF-kB-p65 protein, assessed using an inexpensive immunohistochemical method, was an independent predictor of both overall survival and malignant progression-free survival in 146 grade II LGGs. Conclusion This study demonstrates for the first time the independent prognostic role of NF-kB activation in LGG and outlines the role of patient-based stem cell models as a tool for precision medicine approaches.
Collapse
Affiliation(s)
- Tamara Ius
- Department of Neurosurgery, University Hospital of Udine, Udine, Italy
| | - Yari Ciani
- Laboratorio Nazionale, Consorzio Interuniversitario Biotecnologie (LNCIB), Trieste, Italy
| | - Maria Elisabetta Ruaro
- Department of Neurosurgery, University Hospital of Udine, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Miriam Isola
- Department of Medicine, University of Udine, Udine, Italy
| | - Marisa Sorrentino
- Department of Neurosurgery, University Hospital of Udine, Udine, Italy.,Department of Pathology, University Hospital of Udine, Udine, Italy
| | | | | | - Cecilia Correcig
- Department of Pathology, University Hospital of Udine, Udine, Italy
| | | | - Ivana Manini
- Department of Medicine, University of Udine, Udine, Italy
| | - Enrico Pegolo
- Department of Pathology, University Hospital of Udine, Udine, Italy
| | | | | | | | | | | | - Andrea Zanello
- Department of Medicine, University of Udine, Udine, Italy
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, Udine, Italy.,Department of Pathology, University Hospital of Udine, Udine, Italy
| | - Carla Di Loreto
- Department of Medicine, University of Udine, Udine, Italy.,Department of Pathology, University Hospital of Udine, Udine, Italy
| | | | - Silvano Piazza
- Laboratorio Nazionale, Consorzio Interuniversitario Biotecnologie (LNCIB), Trieste, Italy.,Bioinformatics Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Miran Skrap
- Department of Neurosurgery, University Hospital of Udine, Udine, Italy.,Department of Pathology, University Hospital of Udine, Udine, Italy
| | | |
Collapse
|
24
|
Aranda-Anzaldo A, Dent MA. Landscaping the epigenetic landscape of cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:155-174. [DOI: 10.1016/j.pbiomolbio.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
|
25
|
Genadry KC, Pietrobono S, Rota R, Linardic CM. Soft Tissue Sarcoma Cancer Stem Cells: An Overview. Front Oncol 2018; 8:475. [PMID: 30416982 PMCID: PMC6212576 DOI: 10.3389/fonc.2018.00475] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
Soft tissue sarcomas (STSs) are an uncommon group of solid tumors that can arise throughout the human lifespan. Despite their commonality as non-bony cancers that develop from mesenchymal cell precursors, they are heterogeneous in their genetic profiles, histology, and clinical features. This has made it difficult to identify a single target or therapy specific to STSs. And while there is no one cell of origin ascribed to all STSs, the cancer stem cell (CSC) principle—that a subpopulation of tumor cells possesses stem cell-like properties underlying tumor initiation, therapeutic resistance, disease recurrence, and metastasis—predicts that ultimately it should be possible to identify a feature common to all STSs that could function as a therapeutic Achilles' heel. Here we review the published evidence for CSCs in each of the most common STSs, then focus on the methods used to study CSCs, the developmental signaling pathways usurped by CSCs, and the epigenetic alterations critical for CSC identity that may be useful for further study of STS biology. We conclude with discussion of some challenges to the field and future directions.
Collapse
Affiliation(s)
- Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Silvia Pietrobono
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
26
|
Skvortsova EV, Sinenko SA, Tomilin AN. Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state. Oncotarget 2018; 9:35241-35250. [PMID: 30443291 PMCID: PMC6219659 DOI: 10.18632/oncotarget.26235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/06/2018] [Indexed: 12/21/2022] Open
Abstract
To date different cell types of various mammalian species have been reprogrammed to induced pluripotent stem cells (iPSCs) using Yamanaka's cocktail of transcription factors (Oct4, Klf4, Sox2, and cMyc). It has been shown that several primary human cancer cell lines could be reprogrammed to iPSCs. We sought if immortalized mouse fibroblast cell lines could also be reprogrammed to iPSCs. The approach of generating iPSCs from such cells should be valuable in different experimental settings as it allows clonally derive cell lines carrying mutations whose impact on reprogramming could be next evaluated. Therefore, we investigated reprogramming of widely used immortalized cell lines (NIH3T and STO), as well as of de novo immortalized fibroblast line (tKM) with the use of highly effective lentiviral polycistronic OKSM expression system. Our reprogramming experiments have shown that in contrast to mouse embryonic fibroblasts (MEFs), none of the immortalized cell lines can be reprogrammed to pluripotent state. Contrary to colonies derived from MEFs, those derived from the immortalized cells lines (1) developed much later, (2) contained large round cells, not typical for iPSCs, and (3) were negative for trusted markers of matured iPSCs, Nanog and SSEA1. Immortalized cell lines NIH3T and STO are known to be mostly aneuploid, whereas tKM population includes cells with normal karyotype, however, neither cell type can be reprogrammed. Thus our data argue that aneuploidy per se is not a reason for the observed refractoriness of mouse immortalized cells to reprogramming to pluripotent state.
Collapse
Affiliation(s)
- Elena V Skvortsova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation.,Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, Russian Federation
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation.,St Petersburg State University, St Petersburg, Russian Federation
| |
Collapse
|
27
|
Hiew MSY, Cheng HP, Huang CJ, Chong KY, Cheong SK, Choo KB, Kamarul T. Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype. J Biomed Sci 2018; 25:57. [PMID: 30025541 PMCID: PMC6052640 DOI: 10.1186/s12929-018-0461-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
Background Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking. Methods iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis. Results The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation. Conclusions Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming. Electronic supplementary material The online version of this article (10.1186/s12929-018-0461-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michele Sook Yuin Hiew
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.,Postgraduate Program, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia.,Present address: Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Han Ping Cheng
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.,Postgraduate Program, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Kowit Yu Chong
- Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science & Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Soon Keng Cheong
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.,Dean's Office, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia
| | - Kong Bung Choo
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia. .,Postgraduate Program, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia.
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence for Research and Learning & Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Modeling cancer using patient-derived induced pluripotent stem cells to understand development of childhood malignancies. Cell Death Discov 2018. [PMID: 29531804 PMCID: PMC5841293 DOI: 10.1038/s41420-017-0009-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro modeling of complex diseases is now a possibility with the use of patient-derived induced pluripotent stem (iPS) cells. Their stem cell properties, including self-renewal and their potential to virtually differentiate into any cell type, emphasize their importance as a translational tool for modeling disorders that so far have been limited by the unavailability of primary cell lines, animal models, or inaccessible human materials. Around 100 genes with germline mutations have been described to be responsible for cancer predisposition. Familial cancers are usually diagnosed earlier in life since these patients already carry the first transforming hit. Deriving iPS cells from patients suffering from familial cancers provides a valuable tool for understanding the mechanisms underlying pediatric cancer onset and progression since they require less mutation recurrence than adult cancers to develop. At the same time, some familial mutations are found in sporadic cases and are a valuable prognostic tool. Patient-derived iPS cells from germline malignancies can also create new tools in developing specific drugs with more personalized-therapy strategies.
Collapse
|
29
|
Turinetto V, Orlando L, Giachino C. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. Int J Mol Sci 2017; 18:E1952. [PMID: 28902128 PMCID: PMC5618601 DOI: 10.3390/ijms18091952] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
Evaluation of the extent and nature of induced pluripotent stem cell (iPSC) genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion) and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations.
Collapse
Affiliation(s)
- Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | - Luca Orlando
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| |
Collapse
|
30
|
Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 2017; 22:1392-1401. [PMID: 27923030 DOI: 10.1038/nm.4238] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Together with recent advances in the processing and culture of human tissue, bioengineering, xenotransplantation and genome editing, Induced pluripotent stem cells (iPSCs) present a range of new opportunities for the study of human cancer. Here we discuss the main advantages and limitations of iPSC modeling, and how the method intersects with other patient-derived models of cancer, such as organoids, organs-on-chips and patient-derived xenografts (PDXs). We highlight the opportunities that iPSC models can provide beyond those offered by existing systems and animal models and present current challenges and crucial areas for future improvements toward wider adoption of this technology.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Câmara DAD, Porcacchia AS, Costa AS, Azevedo RA, Kerkis I. Murine melanoma cells incomplete reprogramming using non-viral vector. Cell Prolif 2017; 50. [PMID: 28618452 DOI: 10.1111/cpr.12352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The reprogramming of cancer cells into induced pluripotent stem cells or less aggressive cancer cells can provide a modern platform to study cancer-related genes and their interactions with cell environment before and after reprogramming. Herein, we aimed to investigate the reprogramming capacity of murine melanoma B16F10 cells. MATERIALS AND METHODS The B16F10 was transfected using non-viral circular DNA plasmid containing the genes Sox-2, Oct4, Nanog, Lin28 and green fluorescent protein (GFP). These cells were characterized by immunofluorescence, analysis RT-PCR and cell cycle. RESULTS Our results demonstrated for the first time that reprogramming of B16F10 may be induced using non-viral minicircle DNA containing the four reprogramming factors Oct4, Sox2, Lin 28, Nanog (OSLN) and the GFP reporter gene. The resulting clones are composed by epithelioid cells. These cells display characteristics of cancer stem cells, thus expressing pluripotent stem cell markers and dividing asymmetrically and symmetrically. Reprogrammed B16F10 cells did not form teratomas; however, they showed the suppression of tumourigenic abilities characterized by a reduced tumour size, when compared with parental B16F10 cell line. In contrast to parental cell line that showed accumulation of the cells in S phase of cell cycle, the cells of reprogrammed clones are accumulated in G1 phase. Long-term cultivation of reprogrammed B16F10 cells induces regression of their reprogramming. CONCLUSIONS Our data imply that in result of reprogramming of B16F10 cells less aggressive Murine Melanoma Reprogrammed Cancer Cells may be obtained. These cells represent an interesting model to study mechanism of cells malignancy as well as provide a novel tool for anti-cancer drugs screening.
Collapse
Affiliation(s)
- D A D Câmara
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil.,Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - A S Porcacchia
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| | - A S Costa
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| | - R A Azevedo
- Departament of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - I Kerkis
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| |
Collapse
|
32
|
Ishikawa T. Next-generation sequencing traces human induced pluripotent stem cell lines clonally generated from heterogeneous cancer tissue. World J Stem Cells 2017; 9:77-88. [PMID: 28596815 PMCID: PMC5440771 DOI: 10.4252/wjsc.v9.i5.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing.
METHODS Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer (OCT3/4, SOX2, and KLF4). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer.
RESULTS In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2, TTN, ULK4, TSSK1B, FLT4, STK19, STK31, TRRAP, WNK1, PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells.
CONCLUSION The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.
Collapse
|
33
|
Verusingam ND, Yeap SK, Ky H, Paterson IC, Khoo SP, Cheong SK, Ong AHK, Kamarul T. Susceptibility of Human Oral Squamous Cell Carcinoma (OSCC) H103 and H376 cell lines to Retroviral OSKM mediated reprogramming. PeerJ 2017; 5:e3174. [PMID: 28417059 PMCID: PMC5392249 DOI: 10.7717/peerj.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
Although numbers of cancer cell lines have been shown to be successfully reprogrammed into induced pluripotent stem cells (iPSCs), reprogramming Oral Squamous Cell Carcinoma (OSCC) to pluripotency in relation to its cancer cell type and the expression pattern of pluripotent genes under later passage remain unexplored. In our study, we reprogrammed and characterised H103 and H376 oral squamous carcinoma cells using retroviral OSKM mediated method. Reprogrammed cells were characterized for their embryonic stem cells (ESCs) like morphology, pluripotent gene expression via quantitative real-time polymerase chain reaction (RT-qPCR), immunofluorescence staining, embryoid bodies (EB) formation and directed differentiation capacity. Reprogrammed H103 (Rep-H103) exhibited similar ESCs morphologies with flatten cells and clear borders on feeder layer. Reprogrammed H376 (Rep-H376) did not show ESCs morphologies but grow with a disorganized morphology. Critical pluripotency genes Oct4, Sox2 and Nanog were expressed higher in Rep-H103 against the parental counterpart from passage 5 to passage 10. As for Rep-H376, Nanog expression against its parental counterpart showed a significant decrease at passage 5 and although increased in passage 10, the level of expression was similar to the parental cells. Rep-H103 exhibited pluripotent signals (Oct4, Sox2, Nanog and Tra-1-60) and could form EB with the presence of three germ layers markers. Rep-H103 displayed differentiation capacity into adipocytes and osteocytes. The OSCC cell line H103 which was able to be reprogrammed into an iPSC like state showed high expression of Oct4, Sox2 and Nanog at late passage and may provide a potential iPSC model to study multi-stage oncogenesis in OSCC.
Collapse
Affiliation(s)
- Nalini Devi Verusingam
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia.,Current affiliation: China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor, Malaysia
| | - Huynh Ky
- College of Agriculture and Applied Science, Cantho University, Vietnam
| | - Ian C Paterson
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Majlis Kanser Nasional (MAKNA) Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Alan H K Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Sarig R, Tzahor E. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians? Carcinogenesis 2017; 38:359-366. [DOI: 10.1093/carcin/bgw103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023] Open
|
35
|
Kotini AG, Chang CJ, Chow A, Yuan H, Ho TC, Wang T, Vora S, Solovyov A, Husser C, Olszewska M, Teruya-Feldstein J, Perumal D, Klimek VM, Spyridonidis A, Rampal RK, Silverman L, Reddy EP, Papaemmanuil E, Parekh S, Greenbaum BD, Leslie CS, Kharas MG, Papapetrou EP. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell 2017; 20:315-328.e7. [PMID: 28215825 PMCID: PMC5337161 DOI: 10.1016/j.stem.2017.01.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/18/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022]
Abstract
Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions.
Collapse
Affiliation(s)
- Andriana G Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chan-Jung Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arthur Chow
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Han Yuan
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tzu-Chieh Ho
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shailee Vora
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Solovyov
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chrystel Husser
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deepak Perumal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Virginia M Klimek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Raajit K Rampal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lewis Silverman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - E Premkumar Reddy
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Parekh
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin D Greenbaum
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Fagnocchi L, Zippo A. Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Front Cell Dev Biol 2017; 5:7. [PMID: 28217689 PMCID: PMC5289991 DOI: 10.3389/fcell.2017.00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSCs) are defined by their self-renewal potential, which permits their unlimited propagation, and their pluripotency, being able to generate cell of the three embryonic lineages. These properties render PSCs a valuable tool for both basic and medical research. To induce and stabilize the pluripotent state, complex circuitries involving signaling pathways, transcription regulators and epigenetic mechanisms converge on a core transcriptional regulatory network of PSCs, thus determining their cell identity. Among the transcription factors, MYC represents a central hub, which modulates and integrates multiple mechanisms involved both in the maintenance of pluripotency and in cell reprogramming. Indeed, it instructs the PSC-specific cell cycle, metabolism and epigenetic landscape, contributes to limit exit from pluripotency and modulates signaling cascades affecting the PSC identity. Moreover, MYC extends its regulation on pluripotency by controlling PSC-specific non-coding RNAs. In this report, we review the MYC-controlled networks, which support the pluripotent state and discuss how their perturbation could affect cell identity. We further discuss recent finding demonstrating a central role of MYC in triggering epigenetic memory in PSCs, which depends on the establishment of a WNT-centered self-reinforcing circuit. Finally, we comment on the therapeutic implications of the role of MYC in affecting PSCs. Indeed, PSCs are used for both disease and cancer modeling and to derive cells for regenerative medicine. For these reasons, unraveling the MYC-mediated mechanism in those cells is fundamental to exploit their full potential and to identify therapeutic targets.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| | - Alessio Zippo
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| |
Collapse
|
37
|
Zhou S, Abdouh M, Arena V, Arena M, Arena GO. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment. PLoS One 2017; 12:e0169899. [PMID: 28068409 PMCID: PMC5222525 DOI: 10.1371/journal.pone.0169899] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells.
Collapse
Affiliation(s)
- Shufeng Zhou
- Cancer Research Program, McGill University Health Centre-Research Institute, Montreal, Canada
- Department of Experimental Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| | - Mohamed Abdouh
- Cancer Research Program, McGill University Health Centre-Research Institute, Montreal, Canada
| | - Vincenzo Arena
- Deparment of Obstetrics and Gynecology, Santo Bambino Hospital, Catania, Italy
| | - Manuel Arena
- Department of Surgical Sciences, Organ Transplantation and Advances Technologies, University of Catania, Catania, Italy
| | - Goffredo Orazio Arena
- Cancer Research Program, McGill University Health Centre-Research Institute, Montreal, Canada
- Department of Surgery, St. Mary Hospital, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
38
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
39
|
Huang Z, Wu T, Liu AY, Ouyang G. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget 2016; 6:39550-63. [PMID: 26474460 PMCID: PMC4741845 DOI: 10.18632/oncotarget.6098] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor cells actively contribute to constructing their own microenvironment during tumorigenesis and tumor progression. The tumor microenvironment contains multiple types of stromal cells that work together with the extracellular matrix and local and systemic factors to coordinately contribute to tumor initiation and progression. Tumor cells and their stromal compartments acquire many genetic and/or epigenetic alternations to facilitate tumor growth and metastasis. The cancer stem cell (CSC) concept has been widely applied to interpreting tumor initiation, growth, metastasis, dormancy and relapse. CSCs have differentiation abilities to generate the original lineage cells that are similar to their normal stem cell counterparts. Interestingly, recent evidence demonstrates that CSCs also have the potential to transdifferentiate into vascular endothelial cells and pericytes, indicating that CSCs can transdifferentiate into other lineage cells for promoting tumor growth and metastasis in some tissue contexts instead of only recruiting stromal cells from local or distant tissues. Although the transdifferentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity, many aspects of CSC transdifferentiation remain elusive. In this review, we summarize the multi-lineage differentiation and transdifferentiation potentials of CSCs as well as discuss their potential contributions to tumor heterogeneity and tumor microenvironment in tumor progression.
Collapse
Affiliation(s)
- Zhengjie Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tiantian Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Allan Yi Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Wang XQ, Lo CM, Chen L, Ngan ESW, Xu A, Poon RY. CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ 2016; 24:38-48. [PMID: 27636107 PMCID: PMC5260505 DOI: 10.1038/cdd.2016.84] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/08/2023] Open
Abstract
The mechanisms of how signaling pathways are coordinated and integrated for the
maintenance of the self-renewal of human embryonic stem cells (hESCs) and the
acquisition of pluripotency in reprogramming are still only partly understood.
CDK1 is a key regulator of mitosis. Recently, CDK1 has been shown to be involved
in regulating self-renewal of stem cells, even though the mechanistic role of
how CDK1 regulates pluripotency is unknown. In this report, we aim to understand
how CDK1 can control pluripotency by reducing CDK1 activity to a level that has
no effect on cell cycle progression. We demonstrated that high levels of CDK1 is
associated with the pluripotency stage of hESCs; and decreased CDK1 activity to
a level without perturbing the cell cycle is sufficient to induce
differentiation. CDK1 specifically targets the phosphorylation of PDK1 and
consequently the activity of PI3K/Akt and its effectors ERK and
GSK3β. Evidence of the reversion of inactive CDK1-mediated
differentiation by the inhibition of Akt signaling effectors suggests that the
CDK1-PDK1-PI3K/Akt kinase cascade is a functional signaling pathway for the
pluripotency of hESCs. Moreover, cyclin B1-CDK1 complexes promote somatic
reprogramming efficiency, probably by regulating the maturation of induced
pluripotent stem cells (iPSCs), as cyclin B1 stimulates a higher cellular level
of LIN28A, suggesting that monitoring iPSC factors could be a new path for the
enhancement of reprogramming efficiency. Together, we demonstrate an essential
role for the CDK1-PDK1-PI3K/Akt kinase signaling pathway in the regulation
of self-renewal, differentiation, and somatic reprogramming, which provides a
novel kinase cascade mechanism for pluripotency control and acquisition.
Collapse
Affiliation(s)
- Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Elly S-W Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Randy Yc Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
41
|
Yao J, Zhang L, Hu L, Guo B, Hu X, Borjigin U, Wei Z, Chen Y, Lv M, Lau JTY, Wang X, Li G, Hu YP. Tumorigenic potential is restored during differentiation in fusion-reprogrammed cancer cells. Cell Death Dis 2016; 7:e2314. [PMID: 27468690 PMCID: PMC4973342 DOI: 10.1038/cddis.2016.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022]
Abstract
Detailed understanding of the mechanistic steps underlying tumor initiation and malignant progression is critical for insights of potentially novel therapeutic modalities. Cellular reprogramming is an approach of particular interest because it can provide a means to reset the differentiation state of the cancer cells and to revert these cells to a state of non-malignancy. Here, we investigated the relationship between cellular differentiation and malignant progression by the fusion of four independent mouse cancer cell lines from different tissues, each with differing developmental potentials, to pluripotent mouse embryonic stem (ES) cells. Fusion was accompanied by loss of differentiated properties of the four parental cancer cell lines and concomitant emergence of pluripotency, demonstrating the feasibility to reprogram the malignant and differentiative properties of cancer cells. However, the original malignant and differentiative phenotypes re-emerge upon withdrawal of the fused cells from the embryonic environment in which they were maintained. cDNA array analysis of the malignant hepatoma progression implicated a role for Foxa1, and silencing Foxa1 prevented the re-emergence of malignant and differentiation-associated gene expression. Our findings support the hypothesis that tumor progression results from deregulation of stem cells, and our approach provides a strategy to analyze possible mechanisms in the cancer initiation.
Collapse
Affiliation(s)
- J Yao
- Department of Cell Biology, Center for Stem Cells and Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xian 710061, People's Republic of China
| | - L Zhang
- Key Laboratory of Molecular and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - L Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xian 710061, People's Republic of China
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Shanxi 030024, People's Republic of China
| | - B Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xian 710061, People's Republic of China
| | - X Hu
- Key Laboratory of Molecular and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - U Borjigin
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
| | - Z Wei
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
| | - Y Chen
- Pearl Laboratory Animal Science and Technology Co. Ltd, Guangzhou, People's Republic of China
| | - M Lv
- Pearl Laboratory Animal Science and Technology Co. Ltd, Guangzhou, People's Republic of China
| | - J T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - X Wang
- Key Laboratory of Molecular and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
- Hepatoscience Inc., Sunnyvale, CA, USA
| | - G Li
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot 010021, People's Republic of China
| | - Y-P Hu
- Department of Cell Biology, Center for Stem Cells and Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
42
|
Reprogramming bladder cancer cells for studying cancer initiation and progression. Tumour Biol 2016; 37:13237-13245. [DOI: 10.1007/s13277-016-5226-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
|
43
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Lu B, Huang X, Mo J, Zhao W. Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting. Front Pharmacol 2016; 7:84. [PMID: 27148051 PMCID: PMC4828437 DOI: 10.3389/fphar.2016.00084] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
The theory of cancer stem-like cell (or cancer stem cell, CSC) has been established to explain how tumor heterogeneity arises and contributes to tumor progression in diverse cancer types. CSCs are believed to drive tumor growth and elicit resistance to conventional therapeutics. Therefore, CSCs are becoming novel target in both medical researches and clinical studies. Emerging evidences showed that nanoparticles effectively inhibit many types of CSCs by targeting various specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) and signaling pathways (Notch, Hedgehog, and TGF-β), which are critically involved in CSC function and maintenance. In this review, we briefly summarize the current status of CSC research and review a number of state-of-the-art nanomedicine approaches targeting CSC. In addition, we discuss emerging therapeutic strategies using epigenetic drugs to eliminate CSCs and inhibit cancer cell reprogramming.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University Guangzhou, China
| | - Xiaojia Huang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University Guangzhou, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
46
|
Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 2015; 7:1150-1184. [PMID: 26516408 PMCID: PMC4620423 DOI: 10.4252/wjsc.v7.i9.1150] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/30/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.
Collapse
|