1
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
2
|
He J, Qing Z, Li Y, Lin J, Wang D, Xu W, Chen X, Meng X, Duan J. MiR-214 promotes the antitumor effect of NK cells in colorectal cancer liver metastasis through USP27X/Bim. Cytotechnology 2024; 76:667-681. [PMID: 39435421 PMCID: PMC11490475 DOI: 10.1007/s10616-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 10/23/2024] Open
Abstract
Colorectal cancer (CRC) is a common tumor type, and liver metastasis reduces the long-term survival in CRC patients. Natural killer (NK) cells play an important role in anti-tumor immunity. The aim of this study was to investigate the mechanism of miR-214-5p on NK cells in CRC liver metastasis. We collected clinical samples of CRC liver metastasis and nonmetastatic tissues and purchased the human NK cell lines NK92 and liver metastatic CRC cells KM12L4 for research. RT‒qPCR, Western blot, CCK-8, Transwell, and flow cytometry methods were used to evaluate the effect of miR-214-5p/USP27X/Bim pathway regulating NK cell activity on CRC liver metastasis. In addition, we also investigated the potential targets and regulatory mechanisms of the signaling pathway of miR-214-5p. In this study, we found that miR-214-5p was downregulated in CRC liver metastasis tissues. After transfection of miR-214-5p mimic, the activity of NK cells was significantly enhanced, and the proliferation and migration ability of CRC liver metastasis cells were inhibited, while inducing tumor cell apoptosis. Further research proved that USP27X is a potential target for miR-214-5p and upregulates Bim level through deubiquitination. In addition, miR-214-5p mimic reduced the level of USP27X and Bim, thereby enhancing the antitumor effect of NK cells. In conclusion, our research results show that miR-214-5p promotes the antitumor effect of NK cells by regulating the USP27X/Bim pathway, thereby inhibiting CRC liver metastasis. This finding reveals the important role of miR-214-5p in regulating the immune function of NK cells, and provides new ideas for developing new immunotherapy strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00642-1.
Collapse
Affiliation(s)
- Jinlan He
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Zhe Qing
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Yifei Li
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Jie Lin
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Dan Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Wanggang Xu
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Xiyuan Chen
- Department of Hepatological Surgery, The Third People’s Hospital of Honghe Hani and Yi Autonomous Prefecture, Gejiu, 661000 Yunnan China
| | - Xiangyu Meng
- Department of Hepatological Surgery, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi China
| | - Jian Duan
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| |
Collapse
|
3
|
Han X, Ren C, Lu C, Jiang A, Wang X, Liu L, Yu Z. Phosphorylation of USP27X by PIM2 promotes glycolysis and breast cancer progression via deubiquitylation of MYC. Oncogene 2024; 43:2493-2503. [PMID: 38969771 DOI: 10.1038/s41388-024-03097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Aberrant cell proliferation is a hallmark of cancer, including breast cancer. Here, we show that USP27X is required for cell proliferation and tumorigenesis in breast cancer. We identify a PIM2-USP27X regulator of MYC signaling axis whose activity is an important contributor to the tumor biology of breast cancer. PIM2 phosphorylates USP27X, and promotes its deubiquitylation activity for MYC, which promotes its protein stability and leads to increase HK2-mediated aerobic glycolysis in breast cancer. Moreover, the PIM2-USP27X-MYC axis is also validated in PIM2-knockout mice. Taken together, these findings show a PIM2-USP27X-MYC signaling axis as a new potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Xiaoyun Wang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Lan Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
4
|
Piao MJ, Kang KA, Fernando PDSM, Herath HMUL, Koh YS, Kang HK, Choi YH, Hyun JW. Protective Effect of Fermented Sea Tangle Extract on Skin Cell Damage Caused by Particulate Matter. Int J Med Sci 2024; 21:937-948. [PMID: 38617009 PMCID: PMC11008479 DOI: 10.7150/ijms.93034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The skin is directly exposed to atmospheric pollutants, especially particulate matter 2.5 (PM2.5) in the air, which poses significant harm to skin health. However, limited research has been performed to identify molecules that can confer resistance to such substances. Herein, we analyzed the effect of fermented sea tangle (FST) extract on PM2.5-induced human HaCaT keratinocyte damage. Results showed that FST extract, at concentrations less than 800 μg/mL, exhibited non-significant toxicity to cells and concentration-dependent inhibition of PM2.5-induced reactive oxygen species (ROS) production. PM2.5 induced oxidative stress by stimulating ROS, resulting in DNA damage, lipid peroxidation, and protein carbonylation, which were inhibited by the FST extract. FST extract significantly suppressed the increase in calcium level and apoptosis caused by PM2.5 treatment and significantly restored the reduced cell viability. Mitochondrial membrane depolarization occurred due to PM2.5 treatment, however, FST extract recovered mitochondrial membrane polarization. PM2.5 inhibited the expression of the anti-apoptotic protein Bcl-2, and induced the expression of pro-apoptotic proteins Bax and Bim, the apoptosis initiator caspase-9, as well as the executor caspase-3, however, FST extract effectively protected the changes in the levels of these proteins caused by PM2.5. Interestingly, pan-caspase inhibitor Z-VAD-FMK treatment enhanced the anti-apoptotic effect of FST extract in PM2.5-treated cells. Our results indicate that FST extract prevents PM2.5-induced cell damage via inhibition of mitochondria-mediated apoptosis in human keratinocytes. Accordingly, FST extract could be included in skin care products to protect cells against the harmful effects of PM2.5.
Collapse
Affiliation(s)
- Mei Jing Piao
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Young Sang Koh
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee Kyoung Kang
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Jin Won Hyun
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
5
|
Koch I, Slovik M, Zhang Y, Liu B, Rennie M, Konz E, Cogne B, Daana M, Davids L, Diets IJ, Gold NB, Holtz AM, Isidor B, Mor-Shaked H, Neira Fresneda J, Niederhoffer KY, Nizon M, Pfundt R, Simon M, Stegmann A, Guillen Sacoto MJ, Wevers M, Barakat TS, Yanovsky-Dagan S, Atanassov BS, Toth R, Gao C, Bustos F, Harel T. USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms. Life Sci Alliance 2024; 7:e202302258. [PMID: 38182161 PMCID: PMC10770416 DOI: 10.26508/lsa.202302258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024] Open
Abstract
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.
Collapse
Affiliation(s)
- Intisar Koch
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Maya Slovik
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Yuling Zhang
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Bingyu Liu
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Martin Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emily Konz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Jerusalem, Israel
| | - Laura Davids
- Department of Neurosciences, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nina B Gold
- Massachusetts General Hospital for Children, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alexander M Holtz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Bertrand Isidor
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | | | - Mathilde Nizon
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Meh Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Apa Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Marijke Wevers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Boyko S Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chengjiang Gao
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Francisco Bustos
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, USA
| | - Tamar Harel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
6
|
Xia G, Guo Y, Zhang J, Han M, Meng X, Lv J. An Overview of the Deubiquitinase USP53: A Promising Diagnostic Marker and Therapeutic Target. Curr Protein Pept Sci 2024; 25:708-718. [PMID: 39300775 DOI: 10.2174/0113892037292440240518194922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 09/22/2024]
Abstract
Ubiquitination and deubiquitination are important mechanisms to maintain normal physiological activities, and their disorders or imbalances can lead to various diseases. As a subgroup of deubiquitinases (DUBs), the ubiquitin-specific peptidase (USP) family is closely related to many biological processes. USP53, one of the family members, is widely expressed in human tissues and participates in a variety of life activities, such as cell apoptosis, nerve transmission, and bone remodeling. Mutations in the USP53 gene can cause cholestasis and deafness and may also be a potential cause of schizophrenia. Knockout of USP53 can alleviate neuropathic pain induced by chronic constriction injury. Loss of USP53 up-regulates RANKL expression, promotes the cytogenesis and functional activity of osteoclasts, and triggers osteodestructive diseases. USP53 plays a tumor-suppressive role in lung cancer, renal clear cell carcinoma, colorectal cancer, liver cancer, and esophageal cancer but reduces the radiosensitivity of cervical cancer and esophageal cancer to induce radioresistance. Through the in-depth combination of literature and bioinformatics, this review suggested that USP53 may be a good potential biomarker or therapeutic target for diseases.
Collapse
Affiliation(s)
- Guangce Xia
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Yulin Guo
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Jiajia Zhang
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Xiangchao Meng
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| |
Collapse
|
7
|
Tang GLQ, Lai JXH, Pervaiz S. Ubiquitin-proteasome pathway-mediated regulation of the Bcl-2 family: effects and therapeutic approaches. Haematologica 2024; 109:33-43. [PMID: 37584295 PMCID: PMC10772529 DOI: 10.3324/haematol.2023.283730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Proteasomal degradation of proteins represents an important regulatory mechanism in maintaining healthy homeostasis in cells. Deregulation of the ubiquitin-proteasome system is associated with various diseases as it controls protein abundance and turnover in cells. Furthermore, proteasomal regulation of protein turnover rate can determine a cell's response to external stimuli. The Bcl-2 family of proteins is an important group of proteins involved in mediating cell survival or cell death in response to external stimuli. Aberrant overexpression of anti-apoptotic proteins or deletion of pro-apoptotic proteins can lead to the development of cancer. Unsurprisingly, proteasomal degradation of Bcl-2 proteins also serves as an important factor regulating the level of Bcl-2 proteins and thereby affecting the functional outcome of cell death. This review aims to highlight the regulation of the Bcl-2 family of proteins with particular emphasis on proteasomal-mediated degradation pathways and the current literature on the therapeutic approaches targeting the proteasome system.
Collapse
Affiliation(s)
- Galvin Le Qian Tang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Jolin Xiao Hui Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; National University Cancer Institute, National University Health System.
| |
Collapse
|
8
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
10
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
11
|
Jin S, Kudo Y, Horiguchi T. The Role of Deubiquitinating Enzyme in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010552. [PMID: 36613989 PMCID: PMC9820089 DOI: 10.3390/ijms24010552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitination and deubiquitination are two popular ways for the post-translational modification of proteins. These two modifications affect intracellular localization, stability, and function of target proteins. The process of deubiquitination is involved in histone modification, cell cycle regulation, cell differentiation, apoptosis, endocytosis, autophagy, and DNA repair after damage. Moreover, it is involved in the processes of carcinogenesis and cancer development. In this review, we discuss these issues in understanding deubiquitinating enzyme (DUB) function in head and neck squamous cell carcinoma (HNSCC), and their potential therapeutic strategies for HNSCC patients are also discussed.
Collapse
|
12
|
Zhou Z, Song X, Kang R, Tang D. The Emerging Role of Deubiquitinases in Cell Death. Biomolecules 2022; 12:1825. [PMID: 36551253 PMCID: PMC9775562 DOI: 10.3390/biom12121825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Regulated cell death (RCD) is a signal-controlled process that not only eliminates infected, damaged, or aged cells but is also implicated in a variety of pathological conditions. The process of RCD is regulated by intracellular proteins that undergo varying levels of post-translational modifications, including mono- or polyubiquitination. Functionally, ubiquitination can affect protein abundance, localization, and activity. Like other post-translational modifications, ubiquitination is a dynamic and reversible process mediated by deubiquitinases, a large class of proteases that cleave ubiquitin from proteins and other substrates. The balance between ubiquitination and deubiquitination machinery determines cell fate under stressful conditions. Here, we review the latest advances in our understanding of the role of deubiquitinases in regulating the main types of RCD, including apoptosis, necroptosis, pyroptosis, and ferroptosis. This knowledge may contribute to identifying new protein degradation-related prognostic markers and therapeutic targets for human disease.
Collapse
Affiliation(s)
| | | | | | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Alam S, Zunic A, Venkat S, Feigin ME, Atanassov BS. Regulation of Cyclin D1 Degradation by Ubiquitin-Specific Protease 27X Is Critical for Cancer Cell Proliferation and Tumor Growth. Mol Cancer Res 2022; 20:1751-1762. [PMID: 36001804 PMCID: PMC9722596 DOI: 10.1158/1541-7786.mcr-22-0259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/15/2023]
Abstract
Cyclin D1 (CCND1) is a critical regulator of cell proliferation and its overexpression has been linked to the development and progression of several malignancies. CCND1 overexpression is recognized as a major mechanism of therapy resistance in several cancers; tumors that rely on CCND1 overexpression to evade cancer therapy are extremely sensitive to its ablation. Therefore, targeting CCND1 is a promising strategy for preventing tumor progression and combating therapy resistance in cancer patients. Although CCND1 itself is not a druggable target, it can be targeted indirectly by inhibiting its regulators. CCND1 steady-state levels are tightly regulated by ubiquitin-mediated degradation, and defects in CCND1 ubiquitination are associated with increased CCND1 protein levels in cancer. Here, we uncover a novel function of ubiquitin-specific protease 27X (USP27X), a deubiquitinating enzyme (DUB), in regulating CCND1 degradation in cancer. USP27X binds to and stabilizes CCND1 in a catalytically dependent manner by negatively regulating its ubiquitination. USP27X expression levels correlate with the levels of CCND1 in several HER2 therapy-resistant breast cancer cell lines, and its ablation leads to a severe reduction of CCND1 protein levels, inhibition of tumor growth, and resensitization to targeted therapy. Together, the results presented in our study are the first to expose USP27X as a major CCND1 deubiquitinase and provide a mechanistic explanation for how this DUB fosters tumor growth. IMPLICATIONS As a deubiquitinating enzyme, USP27X is a druggable target. Our study illuminates new avenues for therapeutic intervention in CCND1-driven cancers.
Collapse
Affiliation(s)
- Shamshad Alam
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amanda Zunic
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Boyko S. Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Corresponding author: Boyko S. Atanassov, Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY,14263, USA.
| |
Collapse
|
14
|
Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak. Cell Death Differ 2022; 29:2046-2059. [PMID: 35397654 PMCID: PMC9525694 DOI: 10.1038/s41418-022-00995-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractApoptosis acts in defense against microbial infection, and many infectious agents have developed strategies to inhibit host cell apoptosis. The human pathogen Chlamydia trachomatis (Ctr) is an obligate intracellular bacterium that strongly inhibits mitochondrial apoptosis of its human host cell but there is no agreement how the bacteria achieve this. We here provide a molecular analysis of chlamydial apoptosis-inhibition in infected human cells and demonstrate that the block of apoptosis occurs during the activation of the effectors of mitochondrial apoptosis, Bak and Bax. We use small-molecule Bcl-2-family inhibitors and gene targeting to show that previous models cannot explain the anti-apoptotic effect of chlamydial infection. Although the anti-apoptotic Bcl-2-family protein Mcl-1 was strongly upregulated upon infection, Mcl-1-deficient cells and cells where Mcl-1 was pharmacologically inactivated were still protected. Ctr-infection could inhibit both Bax- and Bak-induced apoptosis. Apoptotic Bax-oligomerization and association with the outer mitochondrial membrane was reduced upon chlamydial infection. Infection further inhibited apoptosis induced conformational changes of Bak, as evidenced by changes to protease sensitivity, oligomerization and release from the mitochondrial porin VDAC2. Mitochondria isolated from Ctr-infected cells were protected against the pro-apoptotic Bcl-2-family proteins Bim and tBid but this protection was lost upon protease digestion. However, the protective effect of Ctr-infection was reduced in cells lacking the Bax/Bak-regulator VDAC2. We further found that OmpA, a porin of the outer membrane of Ctr, associated upon experimental expression with mitochondria and inhibited apoptosis, phenocopying the effect of the infection. These results identify a novel way of apoptosis inhibition, involving only the most downstream modulator of mitochondrial apoptosis and suggest that Chlamydia has a protein dedicated to the inhibition of apoptosis to secure its survival in human cells.
Collapse
|
15
|
The deubiquitinase Usp27x as a novel regulator of cFLIP L protein expression and sensitizer to death-receptor-induced apoptosis. Apoptosis 2022; 27:112-132. [PMID: 35044632 PMCID: PMC8863773 DOI: 10.1007/s10495-021-01706-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
Abstract
Death receptors are transmembrane proteins that can induce the activation of caspase-8 upon ligand binding, initiating apoptosis. Recent work has highlighted the great molecular complexity of death receptor signalling, in particular through ubiquitination/deubiquitination. We have earlier defined the deubiquitinase Ubiquitin-Specific Protease 27x (Usp27x) as an enzyme capable of stabilizing the pro-apoptotic Bcl-2 family member Bim. Here, we report that enhanced expression of Usp27x in human melanoma cells leads to the loss of cellular FLICE-like inhibitory protein (cFLIP) and sensitizes to Tumor necrosis factor receptor 1 (TNF-R1) or Toll-like receptor 3 (TLR3)-induced extrinsic apoptosis through enabling enhanced processing of caspase-8. The loss of cFLIPL upon overexpression of Usp27x was not due to reduced transcription, could be partially counteracted by blocking the ubiquitin proteasome system and was independent of the known cFLIPL destabilizing ubiquitin E3-ligases Itch and DTX1. Instead, Usp27x interacted with the E3-ligase TRIM28 and reduced ubiquitination of TRIM28. Reduction of cFLIPL protein levels by Usp27x-induction depended on TRIM28, which was also required for polyI:C-induced cell death. This work defines Usp27x as a novel regulator of cFLIPL protein expression and a deubiquitinase in fine tuning death receptor signalling pathways to execute apoptosis.
Collapse
|
16
|
Stabilization of SETD3 by deubiquitinase USP27 enhances cell proliferation and hepatocellular carcinoma progression. Cell Mol Life Sci 2022; 79:70. [PMID: 35018513 PMCID: PMC8752572 DOI: 10.1007/s00018-021-04118-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
The histone methyltransferase SETD3 plays critical roles in various biological events, and its dysregulation is often associated with human diseases including cancer. However, the underlying regulatory mechanism remains elusive. Here, we reported that ubiquitin-specific peptidase 27 (USP27) promotes tumor cell growth by specifically interacting with SETD3, negatively regulating its ubiquitination, and enhancing its stability. Inhibition of USP27 expression led to the downregulation of SETD3 protein level, the blockade of the cell proliferation and tumorigenesis of hepatocellular carcinoma (HCC) cells. In addition, we found that USP27 and SETD3 expression is positively correlated in HCC tissues. Notably, higher expression of USP27 and SETD3 predicts a worse survival in HCC patients. Collectively, these data elucidated that a USP27-dependent mechanism controls SETD3 protein levels and facilitates its oncogenic role in liver tumorigenesis.
Collapse
|
17
|
Woo SM, Seo SU, Min KJ, Kwon TK. Melatonin induces apoptotic cell death through Bim stabilization by Sp1-mediated OTUD1 upregulation. J Pineal Res 2022; 72:e12781. [PMID: 34826170 DOI: 10.1111/jpi.12781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Melatonin, secreted by the pineal gland, regulates the circadian rhythms and also plays an oncostatic role in cancer cells. Previously, we showed that melatonin induces the expression of Bim, a pro-apoptotic Bcl-2 protein, at both the transcriptional and post-translational levels. In the present study, we investigated the molecular mechanisms underlying the melatonin-mediated Bim upregulation through post-translational regulation. We found that ovarian tumor domain-containing protein 1 (OTUD1), a deubiquitinase belonging to the OTU protein family, is upregulated by melatonin at the mRNA and protein levels. OTUD1 knockdown inhibited melatonin-induced Bim upregulation and apoptosis in cancer cells. OTUD1 directly interacted with Bim and inhibited its ubiquitination. Melatonin-induced OTUD1 upregulation caused deubiquitination at the lysine 3 residue of Bim, resulting in its stabilization. In addition, melatonin-induced activation of Sp1 was found to be involved in OTUD1 upregulation at the transcriptional level, and pharmacological inhibition and genetic ablation of Sp1 (siRNA) interrupted melatonin-induced OTUD1-mediated Bim upregulation. Furthermore, melatonin reduced tumor growth and induced upregulation of OTUD1 and Bim in a mouse xenograft model. Notably, Bim expression levels correlated with OTUD1 levels in patients with renal clear cell carcinoma. Thus, our results demonstrated that melatonin induces apoptosis by stabilizing Bim via Sp1-mediated OTUD1 upregulation.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Kyoung-Jin Min
- Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), New Drug Development Center, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, South Korea
| |
Collapse
|
18
|
Roberts JZ, Crawford N, Longley DB. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ 2021; 29:272-284. [PMID: 34912054 PMCID: PMC8817035 DOI: 10.1038/s41418-021-00922-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Cell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.
Collapse
Affiliation(s)
- Jamie Z Roberts
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | - Nyree Crawford
- Almac Discovery Laboratories, Health Sciences Building, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
19
|
Mousavi MJ, Mahmoudi M, Ghotloo S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol Med 2020; 26:127. [PMID: 33297945 PMCID: PMC7727198 DOI: 10.1186/s10020-020-00256-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, autoimmune diseases are more prevalent in females than males. Various predisposing factors, including female sex hormones, X chromosome genes, and the microbiome have been implicated in the female bias of autoimmune diseases. During embryogenesis, one of the X chromosomes in the females is transcriptionally inactivated, in a process called X chromosome inactivation (XCI). This equalizes the impact of two X chromosomes in the females. However, some genes escape from XCI, providing a basis for the dual expression dosage of the given gene in the females. In the present review, the contribution of the escape genes to the female bias of autoimmune diseases will be discussed.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Koch RD, Hörner EM, Münch N, Maier E, Kozjak-Pavlovic V. Modulation of Host Cell Death and Lysis Are Required for the Release of Simkania negevensis. Front Cell Infect Microbiol 2020; 10:594932. [PMID: 33194844 PMCID: PMC7658264 DOI: 10.3389/fcimb.2020.594932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Simkania negevensis is a Chlamydia-like bacterium and emerging pathogen of the respiratory tract. It is an obligate intracellular bacterium with a biphasic developmental cycle, which replicates in a wide range of host cells. The life cycle of S. negevensis has been shown to proceed for more than 12 days, but little is known about the mechanisms that mediate the cellular release of these bacteria. This study focuses on the investigation of host cell exit by S. negevensis and its connection to host cell death modulation. We show that Simkania-infected epithelial HeLa as well as macrophage-like THP-1 cells reduce in number during the course of infection. At the same time, the infectivity of the cell culture supernatant increases, starting at the day 3 for HeLa and day 4 for THP-1 cells and reaching maximum at day 5 post infection. This correlates with the ability of S. negevensis to block TNFα-, but not staurosporin-induced cell death up to 3 days post infection, after which cell death is boosted by the presence of bacteria. Mitochondrial permeabilization through Bax and Bak is not essential for host cell lysis and release of S. negevensis. The inhibition of caspases by Z-VAD-FMK, caspase 1 by Ac-YVAD-CMK, and proteases significantly reduces the number of released infectious particles. In addition, the inhibition of myosin II by blebbistatin also strongly affects Simkania release, pointing to a possible double mechanism of exit through host cell lysis and potentially extrusion.
Collapse
Affiliation(s)
- Rebecca-Diana Koch
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eva-Maria Hörner
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nadine Münch
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elke Maier
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
22
|
Tao X, Chu B, Xin D, Li L, Sun Q. USP27X negatively regulates antiviral signaling by deubiquitinating RIG-I. PLoS Pathog 2020; 16:e1008293. [PMID: 32027733 PMCID: PMC7029883 DOI: 10.1371/journal.ppat.1008293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/19/2020] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
RIG-I plays important roles in pathogen sensing and activation of antiviral innate immune responses in response to RNA viruses. RIG-I-mediated signaling must be precisely controlled to maintain innate immune signaling homeostasis. Previous studies demonstrated that lysine 63 (K63)-linked polyubiquitination of RIG-I is vital for its activation, but the mechanisms through which RIG-I is deubiquitinated to control innate immune responses are not well understood. Here we identified USP27X as a negative regulator of antiviral signaling in response to RNA viruses through siRNA library screening. Further functional studies indicated that USP27X negatively modulated RIG-I-mediated antiviral signaling in a deubiquitinase-dependent manner. Mechanistically, we found that USP27X removed K63-linked polyubiquitin chains from RIG-I to negatively modulate type I interferon signaling. Collectively, these studies uncover a novel negative regulatory role of USP27X in targeting RIG-I to balance innate immune responses.
Collapse
Affiliation(s)
- Xinyue Tao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bei Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Cathepsin K inhibition-induced mitochondrial ROS enhances sensitivity of cancer cells to anti-cancer drugs through USP27x-mediated Bim protein stabilization. Redox Biol 2019; 30:101422. [PMID: 31901727 PMCID: PMC6948260 DOI: 10.1016/j.redox.2019.101422] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cathepsin K (Cat K) is expressed in cancer cells, but the effect of Cat K on apoptosis is still elusive. Here, we showed that inhibition of Cat K sensitized the human carcinoma cells to anti-cancer drug through up-regulation of Bim. Inhibition of Cat K increased USP27x expression, and knock down of USP27x markedly blocked Cat K-induced up-regulation of Bim expression. Furthermore, inhibition of Cat K induced proteasome-dependent degradation of regulatory associated protein of mammalian target of rapamycin (Raptor). Down-regulation of Raptor expression increased mitochondrial ROS production, and mitochondria specific superoxide scavengers prevented USP27x-mediated stabilization of Bim by inhibition of Cat K. Moreover, combined treatment with Cat K inhibitor (odanacatib) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reduced tumor growth and induced cell death in a xenograft model. Our results demonstrate that Cat K inhibition enhances anti-cancer drug sensitivity through USP27x-mediated the up-regulation of Bim via the down-regulation of Raptor. Inhibition of Cat K sensitizes cancer cells to anti-cancer drugs. Reduction of Raptor by inhibition of Cat K induces mitochondria dysfunction. Mitochondrial ROS induction by inhibition of Cat K induces USP27X expression. Up-regulation of USP27X by inhibition of Cat K stabilizes Bim protein.
Collapse
|
24
|
Woo SM, Seo SU, Kim SH, Nam JO, Kim S, Park JW, Min KJ, Kwon TK. Hispidulin Enhances TRAIL-Mediated Apoptosis via CaMKK/AMPK/USP51 Axis-Mediated Bim Stabilization. Cancers (Basel) 2019; 11:1960. [PMID: 31817696 PMCID: PMC6966507 DOI: 10.3390/cancers11121960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
: Hispidulin, a natural compound present in herbs, has anti-cancer effects. Here, we investigated whether hispidulin sensitizes human carcinoma cells to apoptosis induced by TRAIL. Sub-lethal dosages of TRAIL alone and hispidulin alone does not increase apoptosis, but hispidulin increases sensitivity to TRAIL, resulting in induction of apoptosis in hispidulin plus TRAIL-treated cancer cells. In addition, combined treatment with hispidulin and TRAIL also reduced tumor growth and increased apoptosis in xenograft models. However, hispidulin did not alter cell viability in human renal normal mesangial cells and human skin fibroblast. Hispidulin markedly increased the BH3-only proteins Bim at the post-translational levels. Depletion of Bim with siRNA significantly blocked hispidulin plus TRAIL-induced apoptosis. Furthermore, we found that activation of AMPK by hispidulin has a crucial role in Bim proteins stability through up-regulation of USP51 expression. Our findings suggest that USP51-dependent stabilization of Bim by AMPK activation plays a critical role in hispidulin-mediated sensitization of cancer cells to apoptosis induced by TRAIL.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Seung Un Seo
- Department of Immunology, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Sang Hyun Kim
- Deaprtment of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Ju-Ock Nam
- Department of Ecological Environment Conservation, Kyungpook National University, Daegu 41566, Korea;
| | - Shin Kim
- Department of Immunology, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Jong-Wook Park
- Department of Immunology, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Kyoung-jin Min
- Department of Immunology, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
- New Drug Development Cancer, Deagu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro, Dong-gu, Daegu 41061, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| |
Collapse
|
25
|
Robinson EJ, Aguiar S, Smidt MP, van der Heide LP. MCL1 as a Therapeutic Target in Parkinson's Disease? Trends Mol Med 2019; 25:1056-1065. [PMID: 31706839 DOI: 10.1016/j.molmed.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022]
Abstract
Dopamine neurons in the substantia nigra (SN) pars compacta are selectively lost during the progression of Parkinson's disease (PD). Recent work performed on the role of the Bcl2 family (highly specialized proteins which control cellular survival and death) in midbrain dopamine neurons has led to the identification of the Bcl2 factor Mcl1 as a weak link in the survival of these neurons. We hypothesize that the regulation of BCL2 proteins may explain this selective vulnerability, and may even provide a novel therapeutic opportunity - strengthening weak links such as MCL1 could result in a delay or complete abrogation of cell death during PD.
Collapse
Affiliation(s)
- Edward J Robinson
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sebastian Aguiar
- Ageing and Cellular Senescence Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
27
|
ROS-mediated JNK pathway critically contributes to PFOS-triggered apoptosis in SH-SY5Y cells. Neurotoxicol Teratol 2019; 75:106821. [DOI: 10.1016/j.ntt.2019.106821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 01/14/2023]
|
28
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Shen WM, Yin JN, Xu RJ, Xu DF, Zheng SY. Ubiquitin specific peptidase 49 inhibits non-small cell lung cancer cell growth by suppressing PI3K/AKT signaling. Kaohsiung J Med Sci 2019; 35:401-407. [PMID: 31001918 DOI: 10.1002/kjm2.12073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
Ubiquitin specific peptidase 49 (USP49) has been reported as a tumor suppressor in several tumors, but its function and molecular mechanism in non-small cell lung cancer (NSCLC) are still unknown. In this study, USP49 was found downregulated in NSCLC primary tissues and cell lines, and high USP49 predicted a positive index for the overall survival of NSCLC patients. Overexpression of USP49 downregulated the expression levels of Cyclin D1, and upregulated p53 expression. Further flow cytometry analysis showed that overexpressed USP49 induced cell cycle arrest at G0/G1 phase. As a result, overexpression of USP49 significantly inhibited cell growth of NSCLC cells. In mechanism, overexpression of USP49 inhibited PI3K/AKT signaling, but knockdown of USP49 enhanced this signaling. Further studies indicated that USP49 deubiquitinated PTEN and stabilized PTEN protein, which suggested that USP49 inhibited PI3K/AKT signaling by stabilizing PTEN in NSCLC cells. In conclusion, we demonstrated that USP49 was functional in NSCLC cells, and inhibited NSCLC cell growth by suppressing PI3K/AKT signaling, suggesting that USP49 could be as a novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Wen-Ming Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Emergency Surgery, The Affiliated Wujin People's Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Jin-Nan Yin
- Department of Emergency Surgery, The Affiliated Wujin People's Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Rui-Jun Xu
- Department of Endocrinology, The Affiliated Wujin People's Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Da-Fu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Thoracic Surgery, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Shi-Ying Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
30
|
Brokatzky D, Dörflinger B, Haimovici A, Weber A, Kirschnek S, Vier J, Metz A, Henschel J, Steinfeldt T, Gentle IE, Häcker G. A non-death function of the mitochondrial apoptosis apparatus in immunity. EMBO J 2019; 38:embj.2018100907. [PMID: 30979778 DOI: 10.15252/embj.2018100907] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is a frequent form of programmed cell death, but the apoptotic signaling pathway can also be engaged at a low level, in the absence of cell death. We here report that such sub-lethal engagement of mitochondrial apoptosis signaling causes the secretion of cytokines from human epithelial cells in a process controlled by the Bcl-2 family of proteins. We further show that sub-lethal signaling of the mitochondrial apoptosis pathway is initiated by infections with all tested viral, bacterial, and protozoan pathogens and causes damage to the genomic DNA. Epithelial cells infected with these pathogens secreted cytokines, and this cytokine secretion upon microbial infection was substantially reduced if mitochondrial sub-lethal apoptosis signaling was blocked. In the absence of mitochondrial pro-apoptotic signaling, the ability of epithelial cells to restrict intracellular bacterial growth was impaired. Triggering of the mitochondrial apoptosis apparatus thus not only causes apoptosis but also has an independent role in immune defense.
Collapse
Affiliation(s)
- Dominik Brokatzky
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Benedikt Dörflinger
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Aladin Haimovici
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnim Weber
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Juliane Vier
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arlena Metz
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Julia Henschel
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tobias Steinfeldt
- Faculty of Medicine, Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ian E Gentle
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Ross JA, Dungen KV, Bressler KR, Fredriksen M, Khandige Sharma D, Balasingam N, Thakor N. Eukaryotic initiation factor 5B (eIF5B) provides a critical cell survival switch to glioblastoma cells via regulation of apoptosis. Cell Death Dis 2019; 10:57. [PMID: 30670698 PMCID: PMC6342974 DOI: 10.1038/s41419-018-1283-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Abstract
Physiological stress conditions attenuate global mRNA translation via modifications of key eukaryotic initiation factors. However, non-canonical translation initiation mechanisms allow cap-independent translation of certain mRNAs. We have previously demonstrated that eIF5B promotes cap-independent translation of the mRNA encoding the antiapoptotic factor, XIAP, during cellular stress. Here, we show that depletion of eIF5B sensitizes glioblastoma multiforme cells to TRAIL-induced apoptosis by a pathway involving caspases-8, −9, and −7, with no significant effect on cell cycle progression. eIF5B promotes evasion of apoptosis by promoting the translation of several IRES-containing mRNAs, encoding the antiapoptotic proteins XIAP, Bcl-xL, cIAP1, and c-FLIPS. We also show that eIF5B promotes translation of nuclear factor erythroid 2-related factor 2 and suggest that reactive oxygen species contribute to increased apoptosis under conditions of eIF5B depletion. Finally, eIF5B depletion leads to decreased activation of the canonical NF-κB pathway. Taken together, our data suggest that eIF5B represents a regulatory node, allowing cancer cells to evade apoptosis by promoting the translation of pro-survival proteins from IRES-containing mRNAs.
Collapse
Affiliation(s)
- Joseph A Ross
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Keiran Vanden Dungen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Kamiko R Bressler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Mikayla Fredriksen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Divya Khandige Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Nirujah Balasingam
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada. .,Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada. .,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
32
|
Lambies G, Miceli M, Martínez-Guillamon C, Olivera-Salguero R, Peña R, Frías CP, Calderón I, Atanassov BS, Dent SYR, Arribas J, García de Herreros A, Díaz VM. TGFβ-Activated USP27X Deubiquitinase Regulates Cell Migration and Chemoresistance via Stabilization of Snail1. Cancer Res 2018; 79:33-46. [PMID: 30341066 DOI: 10.1158/0008-5472.can-18-0753] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022]
Abstract
In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability. Expression of USP27X in breast and pancreatic cancer cell lines and tumors positively correlated with Snail1 expression levels. Accordingly, downregulation of USP27X decreased Snail1 protein in several tumor cell lines. USP27X depletion impaired Snail1-dependent cell migration and invasion and metastasis formation and increased cellular sensitivity to cisplatin. USP27X was upregulated by TGFβ during EMT and was required for TGFβ-induced expression of Snail1 and other mesenchymal markers in epithelial cells and CAF. In agreement with this, depletion of USP27X prevented TGFβ-induced EMT and fibroblast activation. Collectively, these results indicate that USP27X is an essential protein controlling Snail1 expression and function and may serve as a target for inhibition of Snail1-dependent tumoral invasion and chemoresistance. SIGNIFICANCE: These findings show that inhibition of USP27X destabilizes Snail1 to impair EMT and renders tumor cells sensitive to chemotherapy, thus opening new strategies for the inhibition of Snail1 expression and its protumoral actions.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/33/F1.large.jpg.
Collapse
Affiliation(s)
- Guillem Lambies
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Miceli
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Catalina Martínez-Guillamon
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Rubén Olivera-Salguero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Carolina-Paola Frías
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Irene Calderón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Boyko S Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO) CIBERONC, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
33
|
Singh PK, Weber A, Häcker G. The established and the predicted roles of dynein light chain in the regulation of mitochondrial apoptosis. Cell Cycle 2018; 17:1037-1047. [PMID: 30019621 DOI: 10.1080/15384101.2018.1464851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The mitochondrial pathway of apoptosis is regulated by the interplay between the members of Bcl-2 family. Within this family, BH3-only proteins are the sensors of apoptotic stimuli and can trigger apoptosis either by inhibiting the anti-apoptotic Bcl-2-family proteins or by directly activating the effectors Bax and Bak. An expanding body of research suggests that a number of non-Bcl-2 proteins can also interact with Bcl-2 proteins and contribute to the decision of cell fate. Dynein light chain (LC8, DYNLL or DLC), a hub protein and a dimerizing engine has been proposed to regulate the pro-apoptotic activity of two BH3-only proteins, Bim and Bmf. Our recent work has provided insight into the mechanisms through which DLC1 (DYNLL1) modulates Bim activity. Here we discuss the present day understanding of Bim-DLC interaction and endeavor to evaluate this interaction in the light of information from studies of DLC with other binding partners.
Collapse
Affiliation(s)
- Prafull Kumar Singh
- a Institute of Medical Microbiology and Hygiene, Faculty of Medicine , Medical Center-University of Freiburg , Freiburg , Germany
| | - Arnim Weber
- a Institute of Medical Microbiology and Hygiene, Faculty of Medicine , Medical Center-University of Freiburg , Freiburg , Germany
| | - Georg Häcker
- a Institute of Medical Microbiology and Hygiene, Faculty of Medicine , Medical Center-University of Freiburg , Freiburg , Germany.,b BIOSS Centre for Biological Signalling Studies , University of Freiburg , Freiburg , Germany
| |
Collapse
|
34
|
Hantusch A, Rehm M, Brunner T. Counting on Death – Quantitative aspects of Bcl‐2 family regulation. FEBS J 2018; 285:4124-4138. [DOI: 10.1111/febs.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Hantusch
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| | - Markus Rehm
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland Dublin 2 Ireland
- Centre for Systems Medicine Royal College of Surgeons in Ireland Dublin 2 Ireland
- Institute of Cell Biology and Immunology University of Stuttgart Germany
- Stuttgart Research Center Systems Biology University of Stuttgart Germany
| | - Thomas Brunner
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| |
Collapse
|
35
|
Leznicki P, Natarajan J, Bader G, Spevak W, Schlattl A, Abdul Rehman SA, Pathak D, Weidlich S, Zoephel A, Bordone MC, Barbosa-Morais NL, Boehmelt G, Kulathu Y. Expansion of DUB functionality generated by alternative isoforms - USP35, a case study. J Cell Sci 2018; 131:jcs.212753. [PMID: 29685892 DOI: 10.1242/jcs.212753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/01/2018] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitylation is a dynamic post-translational modification that can be reversed by deubiquitylating enzymes (DUBs). It is unclear how the small number (∼100) of DUBs present in mammalian cells regulate the thousands of different ubiquitylation events. Here, we analysed annotated transcripts of human DUBs and found ∼300 ribosome-associated transcripts annotated as protein coding, which thus increases the total number of DUBs. By using USP35, a poorly studied DUB, as a case study, we provide evidence that alternative isoforms contribute to the functional expansion of DUBs. We show that there are two different USP35 isoforms that localise to different intracellular compartments and have distinct functions. Our results reveal that isoform 1 is an anti-apoptotic factor that inhibits staurosporine- and TNF-related apoptosis-inducing ligand (TRAIL; also known as TNFSF10)-induced apoptosis. In contrast, USP35 isoform 2 is an integral membrane protein of the endoplasmic reticulum (ER) that is also present at lipid droplets. Manipulations of isoform 2 levels cause rapid ER stress, likely through deregulation of lipid homeostasis, and lead to cell death. Our work highlights how alternative isoforms provide functional expansion of DUBs and sets directions for future research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Pawel Leznicki
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jayaprakash Natarajan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, 1120 Vienna, Austria
| | - Walter Spevak
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, 1120 Vienna, Austria
| | - Andreas Schlattl
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, 1120 Vienna, Austria
| | - Syed Arif Abdul Rehman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Deepika Pathak
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andreas Zoephel
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, 1120 Vienna, Austria
| | - Marie C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, 1120 Vienna, Austria
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
36
|
Haschka M, Karbon G, Fava LL, Villunger A. Perturbing mitosis for anti-cancer therapy: is cell death the only answer? EMBO Rep 2018; 19:e45440. [PMID: 29459486 PMCID: PMC5836099 DOI: 10.15252/embr.201745440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Interfering with mitosis for cancer treatment is an old concept that has proven highly successful in the clinics. Microtubule poisons are used to treat patients with different types of blood or solid cancer since more than 20 years, but how these drugs achieve clinical response is still unclear. Arresting cells in mitosis can promote their demise, at least in a petri dish. Yet, at the molecular level, this type of cell death is poorly defined and cancer cells often find ways to escape. The signaling pathways activated can lead to mitotic slippage, cell death, or senescence. Therefore, any attempt to unravel the mechanistic action of microtubule poisons will have to investigate aspects of cell cycle control, cell death initiation in mitosis and after slippage, at single-cell resolution. Here, we discuss possible mechanisms and signaling pathways controlling cell death in mitosis or after escape from mitotic arrest, as well as secondary consequences of mitotic errors, particularly sterile inflammation, and finally address the question how clinical efficacy of anti-mitotic drugs may come about and could be improved.
Collapse
Affiliation(s)
- Manuel Haschka
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Luca L Fava
- Centre for Integrative Biology (CIBIO), University of Trento, Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Gupta I, Singh K, Varshney NK, Khan S. Delineating Crosstalk Mechanisms of the Ubiquitin Proteasome System That Regulate Apoptosis. Front Cell Dev Biol 2018; 6:11. [PMID: 29479529 PMCID: PMC5811474 DOI: 10.3389/fcell.2018.00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/26/2018] [Indexed: 01/10/2023] Open
Abstract
Regulatory functions of the ubiquitin-proteasome system (UPS) are exercised mainly by the ubiquitin ligases and deubiquitinating enzymes. Degradation of apoptotic proteins by UPS is central to the maintenance of cell health, and deregulation of this process is associated with several diseases including tumors, neurodegenerative disorders, diabetes, and inflammation. Therefore, it is the view that interrogating protein turnover in cells can offer a strategy for delineating disease-causing mechanistic perturbations and facilitate identification of drug targets. In this review, we are summarizing an overview to elucidate the updated knowledge on the molecular interplay between the apoptosis and UPS pathways. We have condensed around 100 enzymes of UPS machinery from the literature that ubiquitinates or deubiquitinates the apoptotic proteins and regulates the cell fate. We have also provided a detailed insight into how the UPS proteins are able to fine-tune the intrinsic, extrinsic, and p53-mediated apoptotic pathways to regulate cell survival or cell death. This review provides a comprehensive overview of the potential of UPS players as a drug target for cancer and other human disorders.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Kanika Singh
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
38
|
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J 2017; 284:4177-4195. [PMID: 28548464 PMCID: PMC6193418 DOI: 10.1111/febs.14122] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The ERK1/2 signalling pathway is best known for its role in connecting activated growth factor receptors to changes in gene expression due to activated ERK1/2 entering the nucleus and phosphorylating transcription factors. However, active ERK1/2 also translocate to a variety of other organelles including the endoplasmic reticulum, endosomes, golgi and mitochondria to access specific substrates and influence cell physiology. In this article, we review two aspects of ERK1/2 signalling at the mitochondria that are involved in regulating cell fate decisions. First, we describe the prominent role of ERK1/2 in controlling the BCL2-regulated, cell-intrinsic apoptotic pathway. In most cases ERK1/2 signalling promotes cell survival by activating prosurvival BCL2 proteins (BCL2, BCL-xL and MCL1) and repressing prodeath proteins (BAD, BIM, BMF and PUMA). This prosurvival signalling is co-opted by oncogenes to confer cancer cell-specific survival advantages and we describe how this information has been used to develop new drug combinations. However, ERK1/2 can also drive the expression of the prodeath protein NOXA to control 'autophagy or apoptosis' decisions during nutrient starvation. We also describe recent studies demonstrating a link between ERK1/2 signalling, DRP1 and the mitochondrial fission machinery and how this may influence metabolic reprogramming during tumorigenesis and stem cell reprogramming. With advances in subcellular proteomics it is likely that new roles for ERK1/2, and new substrates, remain to be discovered at the mitochondria and other organelles.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | - Kate Stuart
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | | | | |
Collapse
|
39
|
Singh PK, Roukounakis A, Frank DO, Kirschnek S, Das KK, Neumann S, Madl J, Römer W, Zorzin C, Borner C, Haimovici A, Garcia-Saez A, Weber A, Häcker G. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis. Genes Dev 2017; 31:1754-1769. [PMID: 28982759 PMCID: PMC5666674 DOI: 10.1101/gad.302497.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022]
Abstract
In this study, Singh et al. investigated Bim structure and activity and show that Bim is regulated by the formation of large protein complexes containing dynein light chain 1 (DLC1). Their findings demonstrate that control of apoptosis at mitochondria extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members and involves more complex structures of proteins at the mitochondrial outer membrane. The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim–Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Prafull Kumar Singh
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aristomenis Roukounakis
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel O Frank
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Kushal Kumar Das
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 72076 Tübingen, Germany
| | - Simon Neumann
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104 Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Carina Zorzin
- Institute of Pharmaceutical Technology and Biopharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Ana Garcia-Saez
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 72076 Tübingen, Germany
| | - Arnim Weber
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
40
|
Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget 2017; 8:70452-70462. [PMID: 29050293 PMCID: PMC5642568 DOI: 10.18632/oncotarget.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila have been used to identify new components in apoptosis regulation. The Drosophila protein Dark forms an octameric apoptosome complex that induces the initiator caspase Dronc to trigger the caspase cell death pathway and, therefore, plays an important role in controlling apoptosis. Caspases and Dark are constantly expressed in cells, but their activity is blocked by DIAP1 E3 ligase-mediated ubiquitination and subsequent inactivation or proteasomal degradation. One of the regulatory mechanisms that stabilize proapoptotic factors is the removal of ubiquitin chains by deubiquitinases. In this study performed a modified genetic screen for deubiquitinases (dsRNA lines) to identify those involved in stabilizing proapoptotic components. Loss-of-function alleles of deubiquitinase DUSP31 were identified as suppressors of the Dronc overexpression phenotype. DUSP31 deficiency also suppresses apoptosis induced by the RHG protein, Grim. Genetic analysis revealed for the first time that DUSP31 deficiency sufficiently suppresses the Dark phenotype, indicating its involvement in the control of Dark/Dronc apoptosome function in invertebrate apoptosis.
Collapse
|
41
|
He M, Zhou Z, Wu G, Chen Q, Wan Y. Emerging role of DUBs in tumor metastasis and apoptosis: Therapeutic implication. Pharmacol Ther 2017; 177:96-107. [PMID: 28279784 PMCID: PMC5565705 DOI: 10.1016/j.pharmthera.2017.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malfunction of ubiquitin-proteasome system is tightly linked to tumor formation and tumor metastasis. Targeting the ubiquitin-pathway provides a new strategy for anti-cancer therapy. Despite the parts played by ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in governing the multiple steps of the metastatic cascade, including local invasion, dissemination, and eventual colonization of the tumor to distant organs. Both deregulated ubiquitination and deubiquitination could lead to dysregulation of various critical events and pathways such as apoptosis and epithelial-mesenchymal transition (EMT). Recent TCGA study has further revealed the connection between mutations of DUBs and various types of tumors. In addition, emerging drug design targeting DUBs provides a new strategy for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and highlight the recent discoveries of DUBs with regards to multiple metastatic events including anti-apoptosis pathway and EMT. We will further discuss the regulation of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - George Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
42
|
Kennedy D, Mnich K, Oommen D, Chakravarthy R, Almeida-Souza L, Krols M, Saveljeva S, Doyle K, Gupta S, Timmerman V, Janssens S, Gorman AM, Samali A. HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2017; 8:e3026. [PMID: 29048431 PMCID: PMC5596589 DOI: 10.1038/cddis.2017.408] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 01/11/2023]
Abstract
BIM, a pro-apoptotic BH3-only protein, is a key regulator of the intrinsic (or mitochondrial) apoptosis pathway. Here, we show that BIM induction by endoplasmic reticulum (ER) stress is suppressed in rat PC12 cells overexpressing heat shock protein B1 (HSPB1 or HSP27) and that this is due to enhanced proteasomal degradation of BIM. HSPB1 and BIM form a complex that immunoprecipitates with p-ERK1/2. We found that HSPB1-mediated proteasomal degradation of BIM is dependent on MEK-ERK signaling. Other studies have shown that several missense mutations in HSPB1 cause the peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease, which is associated with nerve degeneration. Here we show that cells overexpressing CMT-related HSPB1 mutants exhibited increased susceptibility to ER stress-induced cell death and high levels of BIM. These findings identify a novel function for HSPB1 as a negative regulator of BIM protein stability leading to protection against ER stress-induced apoptosis, a function that is absent in CMT-associated HSPB1 mutants.
Collapse
Affiliation(s)
- Donna Kennedy
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Deepu Oommen
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Reka Chakravarthy
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Leonardo Almeida-Souza
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Michiel Krols
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Svetlana Saveljeva
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Karen Doyle
- Discipline of Physiology, NUI Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, School of Medicine, NUI Galway, Galway, Ireland
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Sophie Janssens
- Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Centre, Ghent University, Gent, Belgium.,Department of Internal Medicine, Ghent University, Gent, Belgium
| | - Adrienne M Gorman
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| |
Collapse
|
43
|
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
44
|
Weber A, Heinlein M, Dengjel J, Alber C, Singh PK, Häcker G. The deubiquitinase Usp27x stabilizes the BH3-only protein Bim and enhances apoptosis. EMBO Rep 2016; 17:724-38. [PMID: 27013495 DOI: 10.15252/embr.201541392] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/25/2016] [Indexed: 12/27/2022] Open
Abstract
Bim is a pro-apoptotic Bcl-2 family member of the BH3-only protein subgroup. Expression levels of Bim determine apoptosis susceptibility in non-malignant and in tumour cells. Bim protein expression is downregulated by proteasomal degradation following ERK-dependent phosphorylation and ubiquitination. Here, we report the identification of a deubiquitinase, Usp27x, that binds Bim upon its ERK-dependent phosphorylation and can upregulate its expression levels. Overexpression of Usp27x reduces ERK-dependent Bim ubiquitination, stabilizes phosphorylated Bim, and induces apoptosis in PMA-stimulated cells, as well as in tumour cells with a constitutively active Raf/ERK pathway. Loss of endogenous Usp27x enhances the Bim-degrading activity of oncogenic Raf. Overexpression of Usp27x induces low levels of apoptosis in melanoma and non-small cell lung cancer (NSCLC) cells and substantially enhances apoptosis induced in these cells by the inhibition of ERK signalling. Finally, deletion of Usp27x reduces apoptosis in NSCLC cells treated with an EGFR inhibitor. Thus, Usp27x can trigger via its proteolytic activity the deubiquitination of Bim and enhance its levels, counteracting the anti-apoptotic effects of ERK activity, and therefore acts as a tumour suppressor.
Collapse
Affiliation(s)
- Arnim Weber
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
| | - Melanie Heinlein
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany Center for Biological Systems Analysis (ZBSA), Freiburg Institute for Advanced Studies (FRIAS) University of Freiburg, Freiburg, Germany
| | - Claudia Alber
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
| | - Prafull Kumar Singh
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|