1
|
Davoodi Karsalari P, Asna Ashari K, Rezaei N. NLRP3 inflammasome: significance and potential therapeutic targets to advance solid organ transplantation. Expert Opin Ther Targets 2025; 29:281-301. [PMID: 40317257 DOI: 10.1080/14728222.2025.2500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, integral to innate immunity, has become a pivotal figure in the inflammatory cascade. AREAS COVERED This article provides an overview of the NLRP3 inflammasome, reviewing its complicated structure, as well as the diverse signals that trigger its assembly. Furthermore, we explored the intricate relationship between the NLRP3 inflammasome and acute and chronic rejection in solid organ transplantation. Solid organ transplantation stands as a crucial medical intervention, yet its efficacy is challenged by immune-mediated complications, including acute rejection, ischemia-reperfusion injury, and chronic allograft rejection. We also investigated the encouraging potential of immunosuppressive therapies targeting NLRP3 signaling to alleviate inflammatory responses linked to transplantation. EXPERT OPINION In recent years, the NLRP3 inflammasome has garnered considerable attention owing to its critical functions spanning diverse fields. This study highlights the critical function of the NLRP3 inflammasome and presents insights, offering fresh perspectives on how its modulation might help to improve the outcomes among patients who undergo solid organ transplantations.
Collapse
Affiliation(s)
- Pershia Davoodi Karsalari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kosar Asna Ashari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tian L, Piao S, Li X, Guo L, Huang L, Gao W. Functional Materials Targeted Regulation of Gasdermins: From Fundamentals to Functionalities and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500873. [PMID: 40273335 PMCID: PMC12021126 DOI: 10.1002/advs.202500873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Indexed: 04/26/2025]
Abstract
Targeted regulation of pyroptosis to modulate the immune landscape has emerged as a novel design strategy for cancer immunotherapy and anti-inflammatory therapy. However, pyroptosis acts as a double-edged sword, making it important to optimize the design strategies of functional materials to appropriately activate pyroptosis for effective disease treatment. This paper summarizes and discusses the structure, pore formation, and molecular mechanisms of "executor" Gasdermins, as well as the events preceding and following these processes. Subsequently, the focus is on reviewing functional materials that directly regulate Gasdermin pore formation to target pyroptosis and those that indirectly regulate the events before and after Gasdermin pore formation to control pyroptosis activity. Finally, the advantages, disadvantages, and future prospects of designing such functional materials are provided, aiming to facilitate the precise design, pharmacological investigation, and clinical translation of pyroptosis-related functional materials.
Collapse
Affiliation(s)
- Luyao Tian
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Shuo Piao
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Xia Li
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Luqi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Wenyuan Gao
- Key Laboratory of Pharmacology School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
3
|
Wei C, Jiang W, Luo M, Shao F. BBB breakdown caused by plasma membrane pore formation. Trends Cell Biol 2025:S0962-8924(25)00064-9. [PMID: 40140333 DOI: 10.1016/j.tcb.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
The blood-brain barrier, recently reintroduced as the blood-brain border (BBB), is a dynamic interface between the central nervous system (CNS) and the bloodstream. Disruption of the BBB exposes the CNS to peripheral pathogens and harmful substances, causing or worsening various CNS diseases. While traditional views attribute BBB failure to tight junction disruption or increased transcytosis, recent studies highlight the critical role of gasdermin D (GSDMD) pore formation in brain endothelial cells (bECs) during BBB disruption by lipopolysaccharide (LPS) or bacterial infections. This mechanism may also be involved in neurological complications like the 'brain fog' seen in long COVID. Pore formation in bECs may represent a prevalent mechanism causing BBB leakage. Investigating membrane-permeabilizing pores or channels and their effects on BBB integrity is a growing area of research. Further exploration of molecular processes that maintain, disrupt, and restore bEC membrane integrity will advance our understanding of brain vasculature and aid in developing new therapies for BBB-related diseases.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, PR China
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China.
| |
Collapse
|
4
|
Maneerat D, Jeerachaipansakul A, Atijit C, Tangjarroenphakdee C, Tipsirisakun P, Hengsanankul N, Krisanaprakornkit W, Krisanaprakornkit S, Makeudom A. Overexpression of inflammatory human caspase-4 in relation to clinical severity of oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol 2025:S2212-4403(25)00773-4. [PMID: 39979138 DOI: 10.1016/j.oooo.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Involvement of non-canonical inflammasome, comprising inflammatory human caspase-4, caspase-5, and Gasdermin D, in the pathogenesis of oral lichen planus (OLP) has never been demonstrated. We aimed to determine human caspase-4, caspase-5, and Gasdermin D expressions in OLP, to correlate their expressions with OLP severity, and to measure salivary interleukin (IL)-1β levels. STUDY DESIGN OLP and normal oral mucosal specimens (n = 42 each) were processed for immunohistochemistry or immunoblotting. The clinical score for OLP severity was assessed at the most severe site. The immunohistochemical (IHC) score was a summation of intensity and positive cell scores. Salivary IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Median IHC scores of caspase-4 and Gasdermin D in OLP group were significantly greater than those in normal mucosal group (P < .01), consistent with significantly upregulated expressions by immunoblotting (P < .05). The IHC scores of caspase-4 and Gasdermin D were positively correlated with the clinical scores (P < .05). Salivary IL-1β levels in the OLP group were significantly greater than those in the normal mucosal group (P < .001). CONCLUSIONS Our study demonstrates enhanced human caspase-4 and Gasdermin D expressions in relation to increased OLP severity with elevated salivary IL-1β levels, proposing clinical applications of these biomolecules as potential prognostic markers and/or new therapeutic intervention for OLP.
Collapse
Affiliation(s)
| | | | - Chanipa Atijit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Chavanya Tangjarroenphakdee
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Panatda Tipsirisakun
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Nattapat Hengsanankul
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Warisara Krisanaprakornkit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Suttichai Krisanaprakornkit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Anupong Makeudom
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand.
| |
Collapse
|
5
|
Rooney M, Duduskar SN, Ghait M, Reißing J, Stengel S, Reuken PA, Quickert S, Zipprich A, Bauer M, Russo AJ, Rathinam VA, Stallmach A, Rubio I, Bruns T. Type-I interferon shapes peritoneal immunity in cirrhosis and drives caspase-5-mediated progranulin release upon infection. J Hepatol 2024; 81:971-982. [PMID: 38936554 DOI: 10.1016/j.jhep.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND & AIMS Gut bacterial translocation contributes to immune dysfunction and spontaneous bacterial peritonitis (SBP) in cirrhosis. We hypothesized that exposure of peritoneal macrophages (PMs) to bacterial DNA results in type-I interferon (IFN) production, shaping subsequent immune responses, inflammasome activation, and the release of damage-associated molecular patterns (DAMPs). METHODS PMs from patients with cirrhosis were stimulated with E. coli single-stranded DNA (ssDNA), lipopolysaccharide and IFN, or infected with E. coli, S. aureus, and Group B streptococcus in vitro. Cytokine release, inflammasome activation, and DAMP release were quantified by quantitative-PCR, ELISA, western blots, and reporter cells employing primary PMs, monocytes, and caspase-deficient THP-1 macrophages. Serum progranulin concentration was correlated with transplant-free survival in 77 patients with SBP. RESULTS E. coli ssDNA induced strong type-I IFN activity in PMs and monocytes, priming them for enhanced lipopolysaccharide-mediated tumor necrosis factor production without inducing toll-like receptor 4 tolerance. During in vitro macrophage bacterial infection, type-I IFN release aligned with upregulated expression of IFN-regulatory factors (IRF)1/2 and guanylate binding proteins (GBP)2/5. PMs upregulated inflammasome-associated proteins and type-I IFN upon E. coli ssDNA exposure and released interleukin-1β upon bacterial infection. Proteomic screening in mouse macrophages revealed progranulin release as being caspase-11-dependent during E. coli infection. PMs and THP-1 macrophages released significant amounts of progranulin when infected with S. aureus or E. coli via gasdermin D in a type-I IFN- and caspase-5-dependent manner. During SBP, PMs upregulated IRF1, GBP2/5 and caspase-5 and higher serum progranulin concentrations were indicative of lower 90-day transplant-free survival after SBP. CONCLUSIONS Type-I IFN shapes peritoneal immune responses and regulates caspase-5-mediated progranulin release during SBP. IMPACT AND IMPLICATIONS Patients with cirrhosis exhibit impaired immune responses and increased susceptibility to bacterial infections. This study reveals that type-I interferon responses, triggered by pathogen-associated molecular patterns, are crucial in regulating macrophage activation and priming them for inflammatory responses. Additionally, we elucidate the mechanisms by which type-I interferons promote the release of progranulin from macrophages during spontaneous bacterial peritonitis. Our findings enhance understanding of how bacterial translocation affects immune responses, identify novel biomarkers for inflammasome activation during infections, and point to potential therapeutic targets.
Collapse
Affiliation(s)
- Michael Rooney
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Johanna Reißing
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Stengel
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany; Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ashley J Russo
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
6
|
Oh S, Santiago G, Manjunath L, Li J, Bouin A, Semler BL, Buisson R. A CRISPR-Cas9 knockout screening identifies IRF2 as a key driver of OAS3/RNase L-mediated RNA decay during viral infection. Proc Natl Acad Sci U S A 2024; 121:e2412725121. [PMID: 39475651 PMCID: PMC11551408 DOI: 10.1073/pnas.2412725121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
OAS-RNase L is a double-stranded RNA-induced antiviral pathway triggered in response to diverse viral infections. Upon activation, OAS-RNase L suppresses virus replication by promoting the decay of host and viral RNAs and inducing translational shutdown. However, whether OASs and RNase L are the only factors involved in this pathway remains unclear. Here, we develop CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that uses translation levels as a readout and identifies IRF2 as a key regulator of OAS3. Mechanistically, we demonstrate that IRF2 promotes basal expression of OAS3 in unstressed cells, allowing a rapid activation of RNase L following viral infection. Furthermore, IRF2 works in concert with the interferon response through STAT2 to further enhance OAS3 expression. We propose that IRF2-induced RNase L is critical in enabling cells to mount a rapid antiviral response immediately after viral infection, serving as the initial line of defense. This rapid response provides host cells the necessary time to activate additional antiviral signaling pathways, forming secondary defense waves.
Collapse
Affiliation(s)
- Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Alexis Bouin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| |
Collapse
|
7
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
8
|
Chen KW, Broz P. Gasdermins as evolutionarily conserved executors of inflammation and cell death. Nat Cell Biol 2024; 26:1394-1406. [PMID: 39187689 DOI: 10.1038/s41556-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
10
|
Robinson KS, Boucher D. Inflammasomes in epithelial innate immunity: front line warriors. FEBS Lett 2024; 598:1335-1353. [PMID: 38485451 DOI: 10.1002/1873-3468.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/12/2024]
Abstract
Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.
Collapse
Affiliation(s)
- Kim Samirah Robinson
- The Skin Innate Immunity and Inflammatory Disease Lab, Skin Research Centre, Department of Hull York Medical School, University of York, UK
- York Biomedical Research Institute, University of York, UK
| | - Dave Boucher
- York Biomedical Research Institute, University of York, UK
- Department of Biology, University of York, UK
| |
Collapse
|
11
|
Wei C, Jiang W, Wang R, Zhong H, He H, Gao X, Zhong S, Yu F, Guo Q, Zhang L, Schiffelers LDJ, Zhou B, Trepel M, Schmidt FI, Luo M, Shao F. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 2024; 629:893-900. [PMID: 38632402 DOI: 10.1038/s41586-024-07314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.
Collapse
Affiliation(s)
- Chao Wei
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Ruiyu Wang
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Haoyu Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Shilin Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Fengting Yu
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bin Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, P. R. China.
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
12
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Wang P, Wang Z, Lin Y, Castellano L, Stebbing J, Zhu L, Peng L. Development of a Novel Pyroptosis-Associated lncRNA Biomarker Signature in Lung Adenocarcinoma. Mol Biotechnol 2024; 66:332-353. [PMID: 37154865 DOI: 10.1007/s12033-023-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Pyroptosis is a novel type of cell death observed in various diseases. Our study aimed to investigate the relationship between pyroptosis-associated-long non-coding RNAs (lncRNAs), immune infiltration, and expression of immune checkpoints in the setting of lung adenocarcinoma and the prognostic value of pyroptosis-related lncRNAs. RNA-seq transcriptome data and clinical information from The Cancer Genome Atlas (TCGA) were downloaded, and consensus clustering analysis was used to separate the samples into two groups. Least absolute shrinkage and selection operator (LASSO) analyses were conducted to construct a risk signature. The association between pyroptosis-associated lncRNAs, immune infiltration, and expression of immune checkpoints were analysed. The cBioPortal tool was used to discover genomic alterations. Gene set enrichment analysis (GSEA) was utilized to investigate downstream pathways of the two clusters. Drug sensitivity was also examined. A total of 43 DEGs and 3643 differentially expressed lncRNAs were identified between 497 lung adenocarcinoma tissues and 54 normal samples. A signature consisting of 11 pyroptosis-related lncRNAs was established as prognostic for overall survival. Patients in the low-risk group have a significant overall survival advantage over those in the high-risk group in the training group. Immune checkpoints were expressed differently between the two risk groups. Risk scores were validated to develop an independent prognostic model based on multivariate Cox regression analysis. The area under time-dependent receiver operating characteristic curve (AUC of the ROC) at 1-, 3-, and 5-years measured0.778, 0.757, and 0.735, respectively. The high-risk group was more sensitive to chemotherapeutic drugs than the low-risk group. This study demonstrates the association between pyroptosis-associated lncRNAs and prognosis in lung adenocarcinoma and enables a robust predictive signature of 11 lncRNAs to inform overall survival.
Collapse
Affiliation(s)
- Peng Wang
- Department of Medical Oncology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Yanke Lin
- Guangdong TCRCure Biopharma Technology Co., Ltd, Guangzhou, China
| | - Leandro Castellano
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Justin Stebbing
- Department of Biomedical Sciences, Anglia Ruskin University, Cambridge, UK
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China.
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Bandharam N, Lockey RF, Kolliputi N. Pyroptosis Inhibition in Disease Treatment: Opportunities and Challenges. Cell Biochem Biophys 2023; 81:615-619. [PMID: 37782424 DOI: 10.1007/s12013-023-01181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Programmed cell death (PCD) is at the center of immune responses, with different types of PCD occurring based on bodily conditions at a given moment. The main three types of PCD include pyroptosis, necroptosis, and apoptosis. Both pyroptosis and necroptosis induce an inflammatory response while apoptosis avoids eliciting an inflammatory reaction. Recently, pyroptosis has come to the forefront of immunology research due to tremendous potential that has been revealed surrounding the regulators of pyroptosis. In addition to previously known regulators of pyroptosis (ZBP1 and NLRP3 genes), a family of proteins called Gasdermin has been discovered. Specifically, Gasdermin D (GSDMD), when cleaved, participates in the onset of pyroptosis of inflammatory diseases. The N-terminal cleaved portion of the molecule causes cellular membrane openings releasing interleukin-18 and IL-1β, inducing pyroptosis. It is hypothesized that the inhibition of GSDMD using drugs such as Dimethyl Fumarate (DMF) and Disulfiram may halt the progression of certain inflammatory diseases including Multiple Sclerosis (MS), autoimmune encephalitis etc. While there is not yet a concrete treatment for pyroptic cell death in inflammatory disease using GSDMD inhibition, there is ample evidence to suggest that there may be success in future studies and therapeutic applications of GSDMD.
Collapse
Affiliation(s)
- Navya Bandharam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
15
|
Ghait M, Duduskar SN, Rooney M, Häfner N, Reng L, Göhrig B, Reuken PA, Bloos F, Bauer M, Sponholz C, Bruns T, Rubio I. The non-canonical inflammasome activators Caspase-4 and Caspase-5 are differentially regulated during immunosuppression-associated organ damage. Front Immunol 2023; 14:1239474. [PMID: 38106412 PMCID: PMC10722270 DOI: 10.3389/fimmu.2023.1239474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The non-canonical inflammasome, which includes caspase-11 in mice and caspase-4 and caspase-5 in humans, is upregulated during inflammatory processes and activated in response to bacterial infections to carry out pyroptosis. Inadequate activity of the inflammasome has been associated with states of immunosuppression and immunopathological organ damage. However, the regulation of the receptors caspase-4 and caspase-5 during severe states of immunosuppression is largely not understood. We report that CASP4 and CASP5 are differentially regulated during acute-on-chronic liver failure and sepsis-associated immunosuppression, suggesting non-redundant functions in the inflammasome response to infection. While CASP5 remained upregulated and cleaved p20-GSDMD could be detected in sera from critically ill patients, CASP4 was downregulated in critically ill patients who exhibited features of immunosuppression and organ failure. Mechanistically, downregulation of CASP4 correlated with decreased gasdermin D levels and impaired interferon signaling, as reflected by decreased activity of the CASP4 transcriptional activators IRF1 and IRF2. Caspase-4 gene and protein expression inversely correlated with markers of organ dysfunction, including MELD and SOFA scores, and with GSDMD activity, illustrating the association of CASP4 levels with disease severity. Our results document the selective downregulation of the non-canonical inflammasome activator caspase-4 in the context of sepsis-associated immunosuppression and organ damage and provide new insights for the development of biomarkers or novel immunomodulatory therapies for the treatment of severe infections.
Collapse
Affiliation(s)
- Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital, Jena, Germany
| | - Laura Reng
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bianca Göhrig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Frank Bloos
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
16
|
Liu X, Wang Y, Xi R, Guo D, Guo W, Cheng L, Du T, Lu H, Wang P, Duan Y, Zhu J, Li F. Identification of IRF1 as a Novel Pyroptosis-Related Prognostic Biomarker of Atopic Dermatitis. Genet Test Mol Biomarkers 2023; 27:370-383. [PMID: 38156909 DOI: 10.1089/gtmb.2023.0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Purpose: The aim of this study was to characterize key biomarkers associated with pyroptosis in atopic dermatitis (AD). Materials and methods: To identify the differentially expressed pyroptosis-related genes (DEPRGs), the gene expression profiles GSE16161 and GSE32924 from the Gene Expression Omnibus (GEO) database were utilized. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to determine the potential biological functions and involved pathways. Furthermore, protein-protein interaction network analyses were performed to identify hub genes. The types and proportions of infiltrating immune cells were detected by immune filtration analysis using CIBERSORT. A 12-axis competing endogenous RNA (ceRNA) network was constructed utilizing the miRNet database. Immunohistochemistry (IHC) further validated the differential expression of a key gene IRF1 in the skin tissues collected from AD patients. The collection of skin tissue from human subjects in this study were reviewed and approved by the IRB of Yueyang Integrated Chinese and Western Medicine Hospital (KYSKSB2020-125). Results: The study identified a total of 76 DEPRGs, which were enriched in genes associated with the inflammatory response and immune regulation. There was a higher percentage of activated dendritic cells and a lower percentage of resting mast cells in AD samples. PVT1 expression was associated with upregulation of hub genes including CXCL8, IRF1, MKI67, and TP53 in the ceRNA network and was correlated with activated dendritic cells in AD. As a transcription factor, IRF1 could regulate the production of downstream inflammatory factors. The IHC study revealed that IRF1 was overexpressed in the skin tissues of AD patients, which were consistent with the results of the bioinformatic study. Conclusions: IRF1 and its related genes were identified as key pyroptosis-related biomarkers in AD, which is a crucial pathway in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruofan Xi
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linyan Cheng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Du
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanzhi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanjuan Duan
- Department of Dermatology, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianyong Zhu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Wu J, Cai J, Tang Y, Lu B. The noncanonical inflammasome-induced pyroptosis and septic shock. Semin Immunol 2023; 70:101844. [PMID: 37778179 DOI: 10.1016/j.smim.2023.101844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.
Collapse
Affiliation(s)
- Junru Wu
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jingjing Cai
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410000, PR China
| | - Ben Lu
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, PR China.
| |
Collapse
|
18
|
Cadena C, Kornfeld OS, Lee BL, Kayagaki N. Epigenetic and transcriptional control of gasdermins. Semin Immunol 2023; 70:101841. [PMID: 37703611 DOI: 10.1016/j.smim.2023.101841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Cells undergo an inflammatory programmed lytic cell death called 'pyroptosis' (with the Greek roots 'fiery'), often featuring morphological hallmarks such as large ballooning protrusions and subsequent bursting. Originally described as a caspase-1-dependent cell death in response to bacterial infection, pyroptosis has since been re-defined in 2018 as a cell death dependent on plasma membrane pores by a gasdermin (GSDM) family member [1,2]. GSDMs form pores in the plasma membrane as well as organelle membranes, thereby initiating membrane destruction and the rapid and lytic demise of a cell. The gasdermin family plays a profound role in the execution of pyroptosis in the context of infection, inflammation, tumor pathogenesis, and anti-tumor therapy. More recently, cell-death-independent functions for some of the GSDMs have been proposed. Therefore, a comprehensive understanding of gasdermin gene regulation, including mechanisms in both homeostatic conditions and during inflammation, is essential. In this review, we will summarize the role of gasdermins in pyroptosis and focus our discussion on the transcriptional and epigenetic mechanisms controlling the expression of GSDMs.
Collapse
Affiliation(s)
- Cristhian Cadena
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Opher S Kornfeld
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bettina L Lee
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
19
|
Broz P. Unconventional protein secretion by gasdermin pores. Semin Immunol 2023; 69:101811. [PMID: 37473560 DOI: 10.1016/j.smim.2023.101811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Unconventional protein secretion (UPS) allows the release of specific leaderless proteins independently of the classical endoplasmic reticulum (ER)-Golgi secretory pathway. While it remains one of the least understood mechanisms in cell biology, UPS plays an essential role in immunity as it controls the release of the IL-1 family of cytokines, which coordinate host defense and inflammatory responses. The unconventional secretion of IL-1β and IL-18, the two most prominent members of the IL-1 family, is initiated by inflammasome complexes - cytosolic signaling platforms that are assembled in response to infectious or noxious stimuli. Inflammasomes activate inflammatory caspases that proteolytically mature IL-1β/- 18, but also induce pyroptosis, a lytic form of cell death. Pyroptosis is caused by gasdermin-D (GSDMD), a member of the gasdermin protein family, which is activated by caspase cleavage and forms large β-barrel plasma membrane pores. This pore-forming activity is shared with other family members that are activated during infection or upon treatment with chemotherapy drugs. While the induction of cell death was assumed to be the main function of gasdermin pores, accumulating evidence suggests that they have also non-lytic functions, such as in the release of cytokines and alarmins, or in regulating ion fluxes. This has raised the possibility that gasdermin pores are one of the main mediators of UPS. Here, I summarize and discuss new insights into gasdermin activation and pore formation, how gasdermin pores achieve selective cargo release, and how gasdermin pore formation and ninjurin-1-driven plasma membrane rupture are executed and regulated.
Collapse
Affiliation(s)
- Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
20
|
Yang X, Tang Z. Role of gasdermin family proteins in cancers (Review). Int J Oncol 2023; 63:100. [PMID: 37477150 PMCID: PMC10552715 DOI: 10.3892/ijo.2023.5548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
The gasdermin (GSDM) family comprises six proteins, including GSDMA‑GSDME and Pejvakin. Most of these proteins have a crucial role in inducing pyroptosis; in particular, GSDMD and GSDME are the most extensively studied proteins as the executioners of the pyroptosis process. Pyroptosis is a highly pro‑inflammatory form of programmed cell death and is closely associated with the incidence, development and prognosis of multiple cancer types. The present review focused on the current knowledge of the molecular mechanism of GSDM‑mediated pyroptosis, its intricate role in cancer and the potential therapeutic value of its anti‑tumor effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
21
|
Fang Y, Tang Y, Huang B. Pyroptosis: A road to next-generation cancer immunotherapy. Semin Immunol 2023; 68:101782. [PMID: 37302166 DOI: 10.1016/j.smim.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
The goal of cancer immunotherapy is to clear tumor cells by activating antitumor immunity, especially by mobilizing tumor-reactive CD8+T cells. Pyroptosis, programmed lytic cell death mediated by gasdermin (GSDM), results in the release of cellular antigens, damage-associated molecular patterns (DAMPs) and cytokines. Therefore, pyroptotic tumor cell-derived tumor antigens and DAMPs not only reverse immunosuppression of the tumor microenvironment (TME) but also enhance tumor antigen presentation by dendritic cells, leading to robust antitumor immunity. Exploring nanoparticles and other approaches to spatiotemporally control tumor pyroptosis by regulating gasdermin expression and activation is promising for next-generation immunotherapy.
Collapse
Affiliation(s)
- Yiliang Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Yaxing Tang
- Department of Anaesthesiology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, PR China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
22
|
Ito M, Ducasa GM, Molina JD, Santos JV, Mallela SK, Kim JJ, Ge M, Mitrofanova A, Sloan A, Merscher S, Mimura I, Fornoni A. ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease. Sci Rep 2023; 13:9616. [PMID: 37316538 PMCID: PMC10267156 DOI: 10.1038/s41598-023-35499-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Decreased ATP Binding Cassette Transporter A1 (ABCA1) expression and caspase-4-mediated noncanonical inflammasome contribution have been described in podocytes in diabetic kidney disease (DKD). To investigate a link between these pathways, we evaluated pyroptosis-related mediators in human podocytes with stable knockdown of ABCA1 (siABCA1) and found that mRNA levels of IRF1, caspase-4, GSDMD, caspase-1 and IL1β were significantly increased in siABCA1 compared to control podocytes and that protein levels of caspase-4, GSDMD and IL1β were equally increased. IRF1 knockdown in siABCA1 podocytes prevented increases in caspase-4, GSDMD and IL1β. Whereas TLR4 inhibition did not decrease mRNA levels of IRF1 and caspase-4, APE1 protein expression increased in siABCA1 podocytes and an APE1 redox inhibitor abrogated siABCA1-induced expression of IRF1 and caspase-4. RELA knockdown also offset the pyroptosis priming, but ChIP did not demonstrate increased binding of NFκB to IRF1 promoter in siABCA1 podocytes. Finally, the APE1/IRF1/Casp1 axis was investigated in vivo. APE1 IF staining and mRNA levels of IRF1 and caspase 11 were increased in glomeruli of BTBR ob/ob compared to wildtype. In conclusion, ABCA1 deficiency in podocytes caused APE1 accumulation, which reduces transcription factors to increase the expression of IRF1 and IRF1 target inflammasome-related genes, leading to pyroptosispriming.
Collapse
Affiliation(s)
- Marie Ito
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Gloria Michelle Ducasa
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Judith David Molina
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Javier Varona Santos
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Shamroop Kumar Mallela
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jin Ju Kim
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Mengyuan Ge
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alla Mitrofanova
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alexis Sloan
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sandra Merscher
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Alessia Fornoni
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
23
|
Yang X, Tang Z. The role of pyroptosis in cognitive impairment. Front Neurosci 2023; 17:1206948. [PMID: 37332874 PMCID: PMC10272378 DOI: 10.3389/fnins.2023.1206948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cognitive impairment is a major global disease, manifests as a decline in cognitive functioning and endangers the health of the population worldwide. The incidence of cognitive impairment has increased rapidly with an increasingly aging population. Although the mechanisms of cognitive impairment have partly been elucidated with the development of molecular biological technology, treatment methods are very limited. As a unique form of programmed cell death, pyroptosis is highly pro-inflammatory and is closely associated with the incidence and progression of cognitive impairment. In this review, we discuss the molecular mechanisms of pyroptosis briefly and the research progress on the relationship between pyroptosis and cognitive impairment and its potential therapeutic values, to provide a reference for research in the field of cognitive impairment.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2023; 20:366-387. [PMID: 36781958 PMCID: PMC10238632 DOI: 10.1038/s41575-023-00743-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Since the identification and characterization of gasdermin (GSDM) D as the main effector of inflammatory regulated cell death (or pyroptosis), literature on the GSDM family of pore-forming proteins is rapidly expanding, revealing novel mechanisms regulating their expression and functions that go beyond pyroptosis. Indeed, a growing body of evidence corroborates the importance of GSDMs within the gastrointestinal system, underscoring their critical contributions to the pathophysiology of gastrointestinal cancers, enteric infections and gut mucosal inflammation, such as inflammatory bowel disease. However, with this increase in knowledge, several important and controversial issues have arisen regarding basic GSDM biology and its role(s) during health and disease states. These include critical questions centred around GSDM-dependent lytic versus non-lytic functions, the biological activities of cleaved versus full-length proteins, the differential roles of GSDM-expressing mucosal immune versus epithelial cells, and whether GSDMs promote pathogenic or protective effects during specific disease settings. This Review provides a comprehensive summary and interpretation of the current literature on GSDM biology, specifically focusing on the gastrointestinal tract, highlighting the main controversial issues and their clinical implications, and addressing future areas of research to unravel the specific role(s) of this intriguing, yet enigmatic, family of proteins.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
25
|
Han J, Zuo Z, Shi X, Zhang Y, Peng Z, Xing Y, Pang X. Hirudin ameliorates diabetic nephropathy by inhibiting Gsdmd-mediated pyroptosis. Cell Biol Toxicol 2023; 39:573-589. [PMID: 34212273 DOI: 10.1007/s10565-021-09622-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023]
Abstract
Our group previously reported that hirudin ameliorated diabetic nephropathy (DN) in streptozotocin (STZ)-injected rats, but the mechanism remained largely unknown. Therefore, we further explored its possible mechanism. We subcutaneously injected 5 U hirudin into STZ-induced WT mice or Gasdermin D (Gsdmd)-/- (KO) mice daily for 12 weeks, respectively, and evaluated their kidney injury. Next, glomerular endothelial cells (GECs), renal tubular epithelial cells (RTECs), and bone-marrow-derived macrophages (BMDMs) were isolated from WT mice and treated with hirudin in the presence of high glucose/lipopolysaccharides and ATP to measure the release of interleukin-18 and interleukin-1β. Kidney injury induced by STZ injection was significantly ameliorated by hirudin through inhibiting Gsdmd-mediated pyroptosis in the mice, not Caspase 1-mediated apoptosis. Meanwhile, hirudin also suppressed pyroptosis in primary GECs, RTECs, and BMDMs in vitro. Moreover, the deletion of Gsdmd reduced pyroptosis and kidney injury both in vivo and in vitro. We also found that hirudin regulated the expression of Gsdmd by inhibiting interferon regulatory factor 2 (Irf2). Hirudin ameliorated Gsdmd-mediated pyroptosis by inhibiting irf2, leading to the improvement of kidney injury. Therefore, hirudin might serve as a potential therapeutic strategy to treat DN.
Collapse
Affiliation(s)
- Jiarui Han
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Zhenkui Zuo
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
- Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Xiujie Shi
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yage Zhang
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Zining Peng
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yufeng Xing
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Xinxin Pang
- Henan University of Chinese Medicine, No. 156 Jinshui Dong Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, the Second Hospital Affiliated to Henan University of Chinese Medicine, No. 2 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
26
|
Wang X, Wei X, Lu Y, Wang Q, Fu R, Wang Y, Wang Q, Wang X, Chen S, Xu A, Yuan S. Characterization of GSDME in amphioxus provides insights into the functional evolution of GSDM-mediated pyroptosis. PLoS Biol 2023; 21:e3002062. [PMID: 37134086 PMCID: PMC10155998 DOI: 10.1371/journal.pbio.3002062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/06/2023] [Indexed: 05/04/2023] Open
Abstract
Members of the gasdermin (GSDM) family are pore-forming effectors that cause membrane permeabilization and pyroptosis, a lytic proinflammatory type of cell death. To reveal the functional evolution of GSDM-mediated pyroptosis at the transition from invertebrates to vertebrates, we conducted functional characterization of amphioxus GSDME (BbGSDME) and found that it can be cleaved by distinct caspase homologs, yielding the N253 and N304 termini with distinct functions. The N253 fragment binds to cell membrane, triggers pyroptosis, and inhibits bacterial growth, while the N304 performs negative regulation of N253-mediated cell death. Moreover, BbGSDME is associated with bacteria-induced tissue necrosis and transcriptionally regulated by BbIRF1/8 in amphioxus. Interestingly, several amino acids that are evolutionarily conserved were found to be important for the function of both BbGSDME and HsGSDME, shedding new lights on the functional regulation of GSDM-mediated inflammation.
Collapse
Affiliation(s)
- Xinli Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| | - Xuxia Wei
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| | - Yan Lu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qinghuan Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rong Fu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yin Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qin Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiangyan Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| |
Collapse
|
27
|
Wang P, Wang Z, Zhu L, Sun Y, Castellano L, Stebbing J, Yu Z, Peng L. A pyroptosis-related lncRNA signature in bladder cancer. Cancer Med 2023; 12:6348-6364. [PMID: 36237132 PMCID: PMC10028168 DOI: 10.1002/cam4.5344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/13/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pyroptosis, a type of programmed cell death, is implicated in the tumorigenesis, development and migration of cancer, which can be regulated by long non-coding RNAs (lncRNAs). Our research aimed to investigate the prognostic role of pyroptosis-related lncRNAs and the relationship to the tumor immune microenvironment through bioinformatics analysis. METHODS The clinical and RNA-sequencing data of bladder cancer patients were downloaded from The Cancer Genome Atlas (TCGA). And 412 bladder cancer subjects with clinical information were divided into training and testing cohort. And 52 reported pyroptosis-related genes were used to screen pyroptosis-related lncRNAs. A pyroptosis-related lncRNA signature was constructed based on Cox regression analyses. RESULTS A 9-pyroptosis-related-lncRNA signature was identified to separate patients with bladder cancer into two groups. The prognosis of bladder cancer patients in the high-risk group was significantly inferior compared with those in the low-risk group. Risk scores were validated to develop an independent prognostic indicator based on multivariate Cox regression analysis. Receiver operating characteristic curve (ROC) analysis examined the signature on overall survival. The area under time-dependent ROC curve (AUC) at 1-, 3, and 5-years measured 0.747, 0.783, and 0.768, respectively. Analysis of the immune landscape and PD-L1 expression showed that PD-L1 is upregulated in the high-risk group. The immunocyte subtypes of the two groups were different. CONCLUSION A novel pyroptosis-related lncRNA signature was identified with prognostic value for bladder cancer patients. Pyroptosis-related lncRNAs have a potential role in cancer immunology and may serve as prognostic or therapeutic targets.
Collapse
Affiliation(s)
- Peng Wang
- Department of Medical Oncology, Yidu Central Hospital of Weifang, Weifang, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Yilan Sun
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Leandro Castellano
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Biomedical Sciences, Anglia Ruskin University, Cambridge, UK
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
28
|
Ryan TAJ, O’Neill LAJ. An Emerging Role for Type I Interferons as Critical Regulators of Blood Coagulation. Cells 2023; 12:778. [PMID: 36899914 PMCID: PMC10001161 DOI: 10.3390/cells12050778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Type I interferons (IFNs) are central mediators of anti-viral and anti-bacterial host defence. Detection of microbes by innate immune cells via pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and cGAS-STING, induces the expression of type I IFN-stimulated genes. Primarily comprising the cytokines IFN-α and IFN-β, type I IFNs act via the type I IFN receptor in an autocrine or exocrine manner to orchestrate rapid and diverse innate immune responses. Growing evidence pinpoints type I IFN signalling as a fulcrum that not only induces blood coagulation as a core feature of the inflammatory response but is also activated by components of the coagulation cascade. In this review, we describe in detail recent studies identifying the type I IFN pathway as a modulator of vascular function and thrombosis. In addition, we profile discoveries showing that thrombin signalling via protease-activated receptors (PARs), which can synergize with TLRs, regulates the host response to infection via induction of type I IFN signalling. Thus, type I IFNs can have both protective (via maintenance of haemostasis) and pathological (facilitating thrombosis) effects on inflammation and coagulation signalling. These can manifest as an increased risk of thrombotic complications in infection and in type I interferonopathies such as systemic lupus erythematosus (SLE) and STING-associated vasculopathy with onset in infancy (SAVI). We also consider the effects on coagulation of recombinant type I IFN therapies in the clinic and discuss pharmacological regulation of type I IFN signalling as a potential mechanism by which aberrant coagulation and thrombosis may be treated therapeutically.
Collapse
Affiliation(s)
- Tristram A. J. Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | | |
Collapse
|
29
|
Cypryk W, Czernek L, Horodecka K, Chrzanowski J, Stańczak M, Nurmi K, Bilicka M, Gadzinowski M, Walczak-Drzewiecka A, Stensland M, Eklund K, Fendler W, Nyman TA, Matikainen S. Lipopolysaccharide Primes Human Macrophages for Noncanonical Inflammasome-Induced Extracellular Vesicle Secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:322-334. [PMID: 36525001 DOI: 10.4049/jimmunol.2200444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/18/2022] [Indexed: 01/04/2023]
Abstract
Human macrophages secrete extracellular vesicles (EVs) loaded with numerous immunoregulatory proteins. Vesicle-mediated protein secretion in macrophages is regulated by poorly characterized mechanisms; however, it is now known that inflammatory conditions significantly alter both the quantities and protein composition of secreted vesicles. In this study, we employed high-throughput quantitative proteomics to characterize the modulation of EV-mediated protein secretion during noncanonical caspase-4/5 inflammasome activation via LPS transfection. We show that human macrophages activate robust caspase-4-dependent EV secretion upon transfection of LPS, and this process is also partially dependent on NLRP3 and caspase-5. A similar effect occurs with delivery of the LPS with Escherichia coli-derived outer membrane vesicles. Moreover, sensitization of the macrophages through TLR4 by LPS priming prior to LPS transfection dramatically augments the EV-mediated protein secretion. Our data demonstrate that this process differs significantly from canonical inflammasome activator ATP-induced vesiculation, and it is dependent on the autocrine IFN signal associated with TLR4 activation. LPS priming preceding the noncanonical inflammasome activation significantly enhances vesicle-mediated secretion of inflammasome components caspase-1, ASC, and lytic cell death effectors GSDMD, MLKL, and NINJ1, suggesting that inflammatory EV transfer may exert paracrine effects in recipient cells. Moreover, using bioinformatics methods, we identify 15-deoxy-Δ12,14-PGJ2 and parthenolide as inhibitors of caspase-4-mediated inflammation and vesicle secretion, indicating new therapeutic potential of these anti-inflammatory drugs.
Collapse
Affiliation(s)
- Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Liliana Czernek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Horodecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Jędrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Katariina Nurmi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marcelina Bilicka
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | | - Maria Stensland
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; and
| | - Kari Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; and
| | - Sampsa Matikainen
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
30
|
Chebly H, Marvaud JC, Safa L, Elkak AK, Kobeissy PH, Kansau I, Larrazet C. Clostridioides difficile Flagellin Activates the Intracellular NLRC4 Inflammasome. Int J Mol Sci 2022; 23:ijms232012366. [PMID: 36293218 PMCID: PMC9604438 DOI: 10.3390/ijms232012366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridioides difficile (C. difficile), is a major cause of nosocomial diarrhea and colitis. C. difficile flagellin FliC contributes toxins to gut inflammation by interacting with the immune Toll-like receptor 5 (TLR5) to activate nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) signaling pathways. Flagella of intracellular pathogens can activate the NLR family CARD domain-containing protein 4 (NLRC4) inflammasome pathway. In this study, we assessed whether flagellin of the extracellular bacterium C. difficile internalizes into epithelial cells and activates the NLRC4 inflammasome. Confocal microscopy showed internalization of recombinant green fluorescent protein (GFP)-FliC into intestinal Caco-2/TC7 cell line. Full-length GFP-FliC activates NLRC4 in Caco-2/TC7 cells in contrast to truncated GFP-FliC lacking the C-terminal region recognized by the inflammasome. FliC induced cleavage of pro-caspase-1 into two subunits, p20 and p10 as well as gasdermin D (GSDMD), suggesting the caspase-1 and NLRC4 inflammasome activation. In addition, colocalization of GFP-FliC and pro-caspase-1 was observed, indicating the FliC-dependent NLRC4 inflammasome activation. Overexpression of the inflammasome-related interleukin (interleukin (IL)-1β, IL-18, and IL-33) encoding genes as well as increasing of the IL-18 synthesis was detected after cell stimulation. Inhibition of I-kappa-B kinase alpha (IKK-α) decreased the FliC-dependent inflammasome interleukin gene expression suggesting a role of the NF-κB pathway in regulating inflammasome. Altogether, these results suggest that FliC internalizes into the Caco-2/TC7 cells and activates the intracellular NLRC4 inflammasome thus contributing to the inflammatory process of C. difficile infection.
Collapse
Affiliation(s)
- Hiba Chebly
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 91400 Orsay, France
- Health Resources and Products Valorization Laboratory, Faculty of Pharmacy, Lebanese University, Beirut 1102-2801, Lebanon
| | | | - Layale Safa
- Health Resources and Products Valorization Laboratory, Faculty of Pharmacy, Lebanese University, Beirut 1102-2801, Lebanon
| | - Assem Khalil Elkak
- Health Resources and Products Valorization Laboratory, Faculty of Pharmacy, Lebanese University, Beirut 1102-2801, Lebanon
| | - Philippe Hussein Kobeissy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Imad Kansau
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 91400 Orsay, France
| | - Cécile Larrazet
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 91400 Orsay, France
- Correspondence:
| |
Collapse
|
31
|
Nowak JK, Adams AT, Kalla R, Lindstrøm JC, Vatn S, Bergemalm D, Keita ÅV, Gomollón F, Jahnsen J, Vatn MH, Ricanek P, Ostrowski J, Walkowiak J, Halfvarson J, Satsangi J, IBD Character Consortium
AnderssonErikArnottIan DMDBayesMonicaPhDBonfiglioFerdinandoPhDBoyapatiRay KMDCarstensAdamMDCasénChristinaMScCiemniejewskaEwaMScD’AmatoMauroPhDA. DahlFredrikPhDDetlieTrond EspenMDDrummondHazel EBScEkelandGunn SMScEkmanDanielMScFrengenAnna BPhDGullbergMatsPhDGutIvo GPhDGutMartaPhDHeathSimon CPhDHjelmFredrikPhDHjortswangHenrikMD, PhDHoGwo-TzerPhDJonkersDaisyPhDKennedyNicholas AMBBS, PhD, FRACPLeesCharles WPhDLindahlTorbjørnMScLindqvistMårtenPhDMerkelAngelikaPhDModigEddieBScMoenAina E FPhDNilsenHildePhDNimmoElaine RPhDNobleColin LMDNordbergNiklasPhDO’LearyKate RMScOcklindAnettePhDOlbjørnChristineMDPetterssonErikPhDPierikMariekeMD, PhDPonceletDominiquePhDRepsilberDirkPhDSabatelCélinePhDSchoemansRenaudPhDShandAlan GMDSöderholmJohan DMD, PhDSølvernesJanneMSSundellMikaelBScTannæsTone MPhDTörkvistLeifMD, PhDVeillardAnne-ClémencePhDVenthamNicholas TMRCS[Eng], PhD, MBBSWilsonDavid CMD, MRCPCHYouPanpanMS. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. J Crohns Colitis 2022; 16:1255-1268. [PMID: 35212366 PMCID: PMC9426667 DOI: 10.1093/ecco-jcc/jjac033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 01/11/2023]
Abstract
AIM To assess the pathobiological and translational importance of whole-blood transcriptomic analysis in inflammatory bowel disease [IBD]. METHODS We analysed whole-blood expression profiles from paired-end sequencing in a discovery cohort of 590 Europeans recruited across six countries in the IBD Character initiative (newly diagnosed patients with Crohn's disease [CD; n = 156], ulcerative colitis [UC; n = 167], and controls [n = 267]), exploring differential expression [DESeq2], co-expression networks [WGCNA], and transcription factor involvement [EPEE, ChEA, DoRothEA]. Findings were validated by analysis of an independent replication cohort [99 CD, 100 UC, 95 controls]. In the discovery cohort, we also defined baseline expression correlates of future treatment escalation using cross-validated elastic-net and random forest modelling, along with a pragmatic ratio detection procedure. RESULTS Disease-specific transcriptomes were defined in IBD [8697 transcripts], CD [7152], and UC [8521], with the most highly significant changes in single genes, including CD177 (log2-fold change [LFC] = 4.63, p = 4.05 × 10-118), MCEMP1 [LFC = 2.45, p = 7.37 × 10-109], and S100A12 [LFC = 2.31, p = 2.15 × 10-93]. Significantly over-represented pathways included IL-1 [p = 1.58 × 10-11], IL-4, and IL-13 [p = 8.96 × 10-9]. Highly concordant results were obtained using multiple regulatory activity inference tools applied to the discovery and replication cohorts. These analyses demonstrated central roles in IBD for the transcription factors NFE2, SPI1 [PU.1], CEBPB, and IRF2, all regulators of cytokine signalling, based on a consistent signal across cohorts and transcription factor ranking methods. A number of simple transcriptome-based models were associated with the need for treatment escalation, including the binary CLEC5A/CDH2 expression ratio in UC (hazard ratio = 23.4, 95% confidence interval [CI] 5.3-102.0). CONCLUSIONS Transcriptomic analysis has allowed for a detailed characterisation of IBD pathobiology, with important potential translational implications.
Collapse
Affiliation(s)
- Jan K Nowak
- Corresponding authors: Dr Jan K. Nowak, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK.
| | | | - Rahul Kalla
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonas C Lindstrøm
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Simen Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Jack Satsangi
- Jack Satsangi, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
32
|
Kumar P, Soory A, Mustfa SA, Sarmah DT, Devvanshi H, Chatterjee S, Bossis G, Ratnaparkhi GS, Srikanth CV. Bidirectional regulation between AP-1 and SUMO genes modulates inflammatory signalling during Salmonella infection. J Cell Sci 2022; 135:276158. [PMID: 35904007 DOI: 10.1242/jcs.260096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Post-translational modifications (PTMs), such as SUMOylation, are known to modulate fundamental processes of a cell. Infectious agents such as Salmonella Typhimurium (STm) that causes gastroenteritis, utilizes PTM mechanism SUMOylation to highjack host cell. STm suppresses host SUMO-pathway genes Ubc9 and PIAS1 to perturb SUMOylation for an efficient infection. In the present study, the regulation of SUMO-pathway genes during STm infection was investigated. A direct binding of c-Fos, a component of AP-1 (Activator Protein-1), to promoters of both UBC9 and PIAS1 was observed. Experimental perturbation of c-Fos led to changes in expression of both Ubc9 and PIAS1. STm infection of fibroblasts with SUMOylation deficient c-Fos (c-FOS-KOSUMO-def-FOS) resulted in uncontrolled activation of target genes, resulting in massive immune activation. Infection of c-FOS-KOSUMO-def-FOS cells favored STm replication, indicating misdirected immune mechanisms. Finally, chromatin Immuno-precipitation assays confirmed a context dependent differential binding and release of AP-1 to/from target genes due to its Phosphorylation and SUMOylation respectively. Overall, our data point towards existence of a bidirectional cross-talk between c-Fos and the SUMO pathway and highlighting its importance in AP-1 function relevant to STm infection and beyond.
Collapse
Affiliation(s)
- Pharvendra Kumar
- Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India.,Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | | | | | - Dipanka Tanu Sarmah
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Himadri Devvanshi
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Samrat Chatterjee
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | | | - C V Srikanth
- Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| |
Collapse
|
33
|
Wang Y, Huang C, Zhao W. Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Mol Biol Rep 2022; 49:7087-7100. [PMID: 35705772 PMCID: PMC9199458 DOI: 10.1007/s11033-022-07519-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas) system, referred to as CRISPR/Cas system, has attracted significant interest in scientific community due to its great potential in translating into versatile therapeutic tools in biomedical field. For instance, a myriad of studies has demonstrated that the CRISPR/Cas system is capable of detecting various types of viruses, killing antibiotic-resistant bacteria, treating inherited genetic diseases, and providing new strategies for cancer therapy. Furthermore, CRISPR/Cas systems are also exploited as research tools such as genome engineering tool that allows researchers to interrogate the biological roles of unexplored genes or uncover novel functions of known genes. Additionally, the CRISPR/Cas system has been employed to edit the genome of a wide range of eukaryotic, prokaryotic organisms and experimental models, including but not limited to mammalian cells, mice, zebrafish, plants, yeast, and Escherichia coli. The present review mainly focuses on summarizing recent discoveries regarding the type II CRISPR/Cas9 and type VI CRISPR/Cas13a systems to give researchers a glimpse of their potential applications in the biological and biomedical field.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China.
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Chun Huang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| | - Weiqin Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Li Z, Ji S, Jiang ML, Xu Y, Zhang CJ. The Regulation and Modification of GSDMD Signaling in Diseases. Front Immunol 2022; 13:893912. [PMID: 35774778 PMCID: PMC9237231 DOI: 10.3389/fimmu.2022.893912] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gasdermin D (GSDMD) serves as a key executor to trigger pyroptosis and is emerging as an attractive checkpoint in host defense, inflammatory, autoimmune diseases, and many other systemic diseases. Although canonical and non-canonical inflammasome-mediated classic GSDMD cleavage, GSDMD-NT migration to cell membrane, GSDMD-NT oligomerization, and pore forming have been well recognized, a few unique features of GSDMD in specific condition beyond its classic function, including non-lytic function of GSDMD, the modification and regulating mechanism of GSDMD signaling have also come to great attention and played a crucial role in biological processes and diseases. In the current review, we emphasized the GSDMD protein expression, stabilization, modification, activation, pore formation, and repair during pyroptosis, especially the regulation and modification of GSDMD signaling, such as GSDMD complex in polyubiquitination and non-pyroptosis release of IL-1β, ADP-riboxanation, NINJ1 in pore forming, GSDMD binding protein TRIM21, GSDMD succination, and Regulator-Rag-mTOR-ROS regulation of GSDMD. We also discussed the novel therapeutic strategies of targeting GSDMD and summarized recently identified inhibitors with great prospect.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, China
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, China
| | - Mei-Ling Jiang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Cun-Jin Zhang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
35
|
Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:919567. [PMID: 35712726 PMCID: PMC9194562 DOI: 10.3389/fphar.2022.919567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Emma M. Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Gullett JM, Tweedell RE, Kanneganti TD. It’s All in the PAN: Crosstalk, Plasticity, Redundancies, Switches, and Interconnectedness Encompassed by PANoptosis Underlying the Totality of Cell Death-Associated Biological Effects. Cells 2022; 11:cells11091495. [PMID: 35563804 PMCID: PMC9105755 DOI: 10.3390/cells11091495] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune system provides the first line of defense against cellular perturbations. Innate immune activation elicits inflammatory programmed cell death in response to microbial infections or alterations in cellular homeostasis. Among the most well-characterized programmed cell death pathways are pyroptosis, apoptosis, and necroptosis. While these pathways have historically been defined as segregated and independent processes, mounting evidence shows significant crosstalk among them. These molecular interactions have been described as ‘crosstalk’, ‘plasticity’, ‘redundancies’, ‘molecular switches’, and more. Here, we discuss the key components of cell death pathways and note several examples of crosstalk. We then explain how the diverse descriptions of crosstalk throughout the literature can be interpreted through the lens of an integrated inflammatory cell death concept, PANoptosis. The totality of biological effects in PANoptosis cannot be individually accounted for by pyroptosis, apoptosis, or necroptosis alone. We also discuss PANoptosomes, which are multifaceted macromolecular complexes that regulate PANoptosis. We consider the evidence for PANoptosis, which has been mechanistically characterized during influenza A virus, herpes simplex virus 1, Francisella novicida, and Yersinia infections, as well as in response to altered cellular homeostasis, in inflammatory diseases, and in cancers. We further discuss the role of IRF1 as an upstream regulator of PANoptosis and conclude by reexamining historical studies which lend credence to the PANoptosis concept. Cell death has been shown to play a critical role in infections, inflammatory diseases, neurodegenerative diseases, cancers, and more; therefore, having a holistic understanding of cell death is important for identifying new therapeutic strategies.
Collapse
|
37
|
Demarco B, Danielli S, Fischer FA, Bezbradica JS. How Pyroptosis Contributes to Inflammation and Fibroblast-Macrophage Cross-Talk in Rheumatoid Arthritis. Cells 2022; 11:1307. [PMID: 35455985 PMCID: PMC9028325 DOI: 10.3390/cells11081307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
About thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication. However, excessive and uncontrolled cell death also contributes to immunopathology in several chronic inflammatory diseases, including arthritis. In this review, we discuss recent findings where pyroptosis contributes to tissue damage and inflammation with a main focus on injury-induced and autoimmune arthritis. We also review novel functions and regulatory mechanisms of the pyroptotic executors gasdermins. Finally, we discuss possible models of how pyroptosis may contribute to the cross-talk between fibroblast and macrophages, and also how this cross-talk may regulate inflammation by modulating inflammasome activation and pyroptosis induction.
Collapse
Affiliation(s)
- Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| | | | | | - Jelena S. Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| |
Collapse
|
38
|
Ghait M, Husain RA, Duduskar SN, Haack TB, Rooney M, Göhrig B, Bauer M, Rubio I, Deshmukh SD. The TLR-chaperone CNPY3 is a critical regulator of NLRP3-Inflammasome activation. Eur J Immunol 2022; 52:907-923. [PMID: 35334124 DOI: 10.1002/eji.202149612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/08/2022]
Abstract
Toll like receptors (TLRs) mediate the recognition of microbial and endogenous insults to orchestrate the inflammatory response. TLRs localize to the plasma membrane or endomembranes, depending on the member, and rely critically on endoplasmic reticulum-resident chaperones to mature and reach their subcellular destinations. The chaperone canopy FGF signaling regulator 3 (CNPY3) is necessary for the proper trafficking of multiple TLRs including TLR1/2/4/5/9 but not TLR3. However, the exact role of CNPY3 in inflammatory signalling downstream of TLRs has not been studied in detail. Consistent with the reported client specificity, we report here that functional loss of CNPY3 in engineered macrophages impairs downstream signalling by TLR2 but not TLR3. Unexpectedly, CNPY3-deficient macrophages show reduced interleukin-1β (IL-1ß) and IL-18 processing and production independent of the challenged upstream TLR species, demonstrating a separate, specific role for CNPY3 in inflammasome activation. Mechanistically, we document that CNPY3 regulates caspase-1 localization to the apoptosis speck and auto-activation of caspase-1. Importantly, we were able to recapitulate these findings in macrophages from an early infantile epileptic encephalopathy (EIEE) patient with a novel CNPY3 loss-of-function variant. Summarizing, our findings reveal a hitherto unknown, TLR-independent role of CNPY3 in inflammasome activation, highlighting a more complex and dedicated role of CNPY3 to the inflammatory response than anticipated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Husain
- Department of Neuropediatrics, Jena University Hospital, Jena, Germany.,Centre for Rare Diseases, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Michael Rooney
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bianca Göhrig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Sachin D Deshmukh
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
39
|
Dong MB, Tang K, Zhou X, Zhou JJ, Chen S. Tumor immunology CRISPR screening: present, past, and future. Trends Cancer 2022; 8:210-225. [PMID: 34920978 PMCID: PMC8854335 DOI: 10.1016/j.trecan.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Recent advances in immunotherapy have fundamentally changed the landscape of cancer treatment by leveraging the specificity and selectivity of the adaptive immune system to kill cancer cells. These successes have ushered in a new wave of research aimed at understanding immune recognition with the hope of developing newer immunotherapies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) technologies and advancement of multiomics modalities have greatly accelerated the discovery process. Here, we review the current literature surrounding CRISPR screens within the context of tumor immunology, provide essential components needed to conduct immune-specific CRISPR screens, and present avenues for future research.
Collapse
Affiliation(s)
- Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA,Immunobiology Program, Yale University, New Haven, CT, USA,Department of Immunobiology, Yale University, New Haven, CT, USA,M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Kaiyuan Tang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA,Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jingjia J. Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA; Immunobiology Program, Yale University, New Haven, CT, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT, USA; Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Mechanisms and Consequences of Noncanonical Inflammasome-Mediated Pyroptosis. J Mol Biol 2022; 434:167245. [PMID: 34537239 PMCID: PMC8844060 DOI: 10.1016/j.jmb.2021.167245] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
The noncanonical inflammasome, comprising inflammatory caspases 4, 5, or 11, monitors the cytosol for bacterial lipopolysaccharide (LPS). Intracellular LPS-elicited autoproteolysis of these inflammatory caspases leads to the cleavage of the pore-forming protein gasdermin D (GSDMD). GSDMD pore formation induces a lytic form of cell death known as pyroptosis and the release of inflammatory cytokines and DAMPs, thereby promoting inflammation. The noncanonical inflammasome-dependent innate sensing of cytosolic LPS plays important roles in bacterial infections and sepsis pathogenesis. Exciting studies in the recent past have significantly furthered our understanding of the biochemical and structural basis of the caspase-4/11 activation of GSDMD, caspase-4/11's substrate specificity, and the biological consequences of noncanonical inflammasome activation of GSDMD. This review will discuss these recent advances and highlight the remaining gaps in our understanding of the noncanonical inflammasome and pyroptosis.
Collapse
|
41
|
Inverse regulation of GSDMD and GSDME gene expression during LPS-induced pyroptosis in RAW264.7 macrophage cells. Apoptosis 2022; 27:14-21. [PMID: 35006493 DOI: 10.1007/s10495-022-01708-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/02/2022]
Abstract
GSDMD and GSDME, members of the gasdermin protein family, are involved in the formation of plasma membrane channels contributing to cell rupture during a certain type of necrosis called pyroptosis. GSDMD is activated in response to immunological stimulation such as lipopolysaccharides (LPS) treatment while GSDME is mainly involved in drug-induced tumor cell death. Here we show that the expression of the GSDMD gene increases significantly during LPS-induced pyroptosis in RAW264.7 murine macrophage cells. In contrast, GSDME expression is decreased in the same cells. The increasing effect of LPS on GSDMD expression was observed only when the cells were cultured in high glucose (4.5 g/l) medium, suggesting that glucose availability is important for this effect. The effect of LPS on GSDMD expression is abolished by 2-deoxyglucose (2DG), confirming that glycolysis plays crucial roles in the increasing effect of LPS. Small interference RNA-mediated knock down of GSDMD or overexpression of GSDME causes LPS-induced pyroptosis to take place through GSDME rather than through GSDMD. Taken together, LPS regulates GSDMD and GSDME expression in opposite directions through, at least in part, its effect on glycolysis. This transcriptional regulation may contribute to the execution of pyroptosis in a GSDMD-dependent manner.
Collapse
|
42
|
Zou J, Zheng Y, Huang Y, Tang D, Kang R, Chen R. The Versatile Gasdermin Family: Their Function and Roles in Diseases. Front Immunol 2021; 12:751533. [PMID: 34858408 PMCID: PMC8632255 DOI: 10.3389/fimmu.2021.751533] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
The gasdermin (GSDM) family, a novel group of structure-related proteins, consists of GSDMA, GSDMB, GSDMC, GSDMD, GSDME/DNFA5, and PVJK/GSDMF. GSDMs possess a C-terminal repressor domain, cytotoxic N-terminal domain, and flexible linker domain (except for GSDMF). The GSDM-NT domain can be cleaved and released to form large oligomeric pores in the membrane that facilitate pyroptosis. The emerging roles of GSDMs include the regulation of various physiological and pathological processes, such as cell differentiation, coagulation, inflammation, and tumorigenesis. Here, we introduce the basic structure, activation, and expression patterns of GSDMs, summarize their biological and pathological functions, and explore their regulatory mechanisms in health and disease. This review provides a reference for the development of GSDM-targeted drugs to treat various inflammatory and tissue damage-related conditions.
Collapse
Affiliation(s)
- Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Zheng M, Karki R, Kancharana B, Berns H, Pruett-Miller SM, Kanneganti TD. Caspase-6 promotes activation of the caspase-11-NLRP3 inflammasome during gram-negative bacterial infections. J Biol Chem 2021; 297:101379. [PMID: 34740613 PMCID: PMC8633687 DOI: 10.1016/j.jbc.2021.101379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The innate immune system acts as the first line of defense against infection. One key component of the innate immune response to gram-negative bacterial infections is inflammasome activation. The caspase-11 (CASP11)-nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is activated by cytosolic lipopolysaccharide, a gram-negative bacterial cell wall component, to trigger pyroptosis and host defense during infection. Although several cellular signaling pathways have been shown to regulate CASP11-NLRP3 inflammasome activation in response to lipopolysaccharide, the upstream molecules regulating CASP11 activation during infection with live pathogens remain unclear. Here, we report that the understudied caspase-6 (CASP6) contributes to the activation of the CASP11-NLRP3 inflammasome in response to infections with gram-negative bacteria. Using in vitro cellular systems with bone marrow-derived macrophages and 293T cells, we found that CASP6 can directly process CASP11 by cleaving at Asp59 and Asp285, the CASP11 auto-cleavage sites, which could contribute to the activation of CASP11 during gram-negative bacterial infection. Thus, the loss of CASP6 led to impaired CASP11-NLRP3 inflammasome activation in response to gram-negative bacteria. These results demonstrate that CASP6 potentiates activation of the CASP11-NLRP3 inflammasome to produce inflammatory cytokines during gram-negative bacterial infections.
Collapse
Affiliation(s)
- Min Zheng
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rajendra Karki
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Hartmut Berns
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
44
|
Ping L, Zhang K, Ou X, Qiu X, Xiao X. A Novel Pyroptosis-Associated Long Non-coding RNA Signature Predicts Prognosis and Tumor Immune Microenvironment of Patients With Breast Cancer. Front Cell Dev Biol 2021; 9:727183. [PMID: 34616734 PMCID: PMC8488148 DOI: 10.3389/fcell.2021.727183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Pyroptosis, a kind of programmed cell death characterized by the rupture of cell membranes and the release of inflammatory substances, plays an important role in the occurrence and development of cancer. However, few studies focus on the pyroptosis-associated long non-coding RNAs (lncRNAs) in breast cancer (BC). The prognostic value of pyroptosis-associated lncRNAs and their relationship with tumor microenvironment (TME) in BC remain unclear. The purpose of this study was to explore the prognostic role of pyroptosis-associated lncRNAs and their relationship with TME in BC. Methods: The transcriptome data and clinical data of female BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 937 patients were randomly assigned to either training set or validation set. A pyroptosis-associated lncRNA signature was constructed in the training set and verified in the validation set. Functional analysis and immune microenvironment analysis related to pyroptosis-associated lncRNAs were performed. A nomogram based on the risk score and clinical characteristics was established. Results: A 9-pyroptosis-associated lncRNA signature was constructed to separate BC patients into two risk groups. High-risk patients had poorer prognosis than low-risk patients. The risk score was proven to be an independent prognostic factor by multivariate Cox regression analysis. Function analysis and immune microenvironment analysis showed that low-risk BC tended to be an immunologically “hot” tumor. A nomogram was constructed with risk score and clinical characteristics. Receiver operating characteristic curve (ROC) analysis demonstrated credible predictive power of the nomogram. The area under time-dependent ROC curve (AUC) reached 0.880 at 1 year, 0.804 at 3 years, and 0.769 at 5 years in the training set, and 0.799 at 1 year, 0.794 at 3 years, and 0.728 at 5 years in the validation set. Conclusion: We identified a novel pyroptosis-associated lncRNA signature that was an independent prognostic indicator for BC patients. Pyroptosis-associated lncRNAs had potential relationship with the immune microenvironment and might be therapeutic targets for BC patients.
Collapse
Affiliation(s)
- Liqin Ping
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kaiming Zhang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
45
|
Rühl S, Broz P. Regulation of Lytic and Non-Lytic Functions of Gasdermin Pores. J Mol Biol 2021; 434:167246. [PMID: 34537232 DOI: 10.1016/j.jmb.2021.167246] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Pyroptosis is a necrotic form of cell death that was initially found to be induced upon activation of inflammatory caspases by inflammasome complexes. Mechanistically, pyroptosis induction requires cleavage of the caspase substrate gasdermin D (GSDMD), and the release of the GSDMD N-terminal fragment, which targets the plasma membrane to form large β-barrel pores. GSDMD shares this pore-forming ability with other gasdermin family members, which induce pyroptosis during infection or upon treatment with chemotherapy drugs. While induction of cell death has been assumed to be the main function of the gasdermin pores, increasing evidence suggests that these pores have non-lytic functions, such as in releasing cytokines or alarmins and in regulating intracellular signaling via ionic fluxes. Here we discuss how gasdermin pore formation is regulated to induce membrane permeabilization or lysis, how gasdermin pores achieve specificity for cargo-release and how cells repair gasdermin-induced damage to the plasma membrane.
Collapse
Affiliation(s)
- Sebastian Rühl
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
46
|
Bourdonnay E, Henry T. Transcriptional and Epigenetic Regulation of Gasdermins. J Mol Biol 2021; 434:167253. [PMID: 34537234 DOI: 10.1016/j.jmb.2021.167253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022]
Abstract
Gasdermins (GSDM) are a family of six homologous proteins (GSDMA to E and Pejvakin) in humans. GSDMA-E are pore-forming proteins targeting the plasma membrane to trigger a rapid cell death termed pyroptosis or bacterial membranes to promote antibacterial immune defenses. Activation of GSDM relies on a proteolytic cleavage but is highly dependent on GSDM expression levels. The different GSDM genes have tissue-specific expression pattern although metabolic, environmental signals, cell stress and numerous cytokines modulate their expression levels in tissues. Furthermore, expression of GSDM genes can be modulated by polymorphisms and have been associated with susceptibility to asthma, inflammatory bowel diseases and rhinovirus wheezing illness. Finally, the expression level of GSDMs controls the balance between apoptosis and pyroptosis affecting both the response and the toxicity to chemotactic drugs and antitumoral treatments. Numerous cancer demonstrate positive or negative modulation of GSDM expression levels correlating with distinct tumor-specific prognosis. In this review, we present the transcriptional and epigenetic mechanisms controlling GSDM levels and their functional consequences in asthma, infection, cancers and inflammatory bowel disease to highlight how this first layer of regulations has key consequences on disease susceptibility and response to treatment.
Collapse
Affiliation(s)
- Emilie Bourdonnay
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007 Lyon, France.
| |
Collapse
|
47
|
Wang J, Yao J, Liu Y, Huang L. Targeting the gasdermin D as a strategy for ischemic stroke therapy. Biochem Pharmacol 2021; 188:114585. [PMID: 33930348 DOI: 10.1016/j.bcp.2021.114585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a major cause of death and disability worldwide that triggers a variety of neuropathological conditions, leading to the initiation of several pro-inflammatory mediators and neuronal damage. Neuroinflammation has been considered the potential therapeutic target and contributes to the pathology of ischemia and reperfusion. Pyroptosis is an inflammatory form of programmed cell death that plays an important role in immune protection against stroke. Gasdermin D (GSDMD) is the final executor of pyroptosis upon cleavage by caspases-1/4/5/11, followed by canonical and noncanonical inflammasome activation, leading to a series of inflammatory responses. GSDMD N-terminal domain assembles plasma membrane as well as organelle membrane pores to induce cytolysis, thereby triggering cytokine release and inflammatory-related cell death. In our review, we concisely summarized and highlighted the potential role of GSDMD-regulated pyroptosis and the biological characteristic of GSDMD as a therapeutic target in ischemic stroke. A better understanding of the roles of GSDMD may provide a theoretical basis for the design of novel therapeutic interventions for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiabing Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China.
| | - Jiali Yao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yugang Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lili Huang
- Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
48
|
Tang D, Wang H, Billiar TR, Kroemer G, Kang R. Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends Immunol 2021; 42:508-522. [PMID: 33906793 DOI: 10.1016/j.it.2021.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Sepsis and septic shock driven by microbial infections are still among the most challenging health problems, causing 11 million deaths worldwide every year. How does the host's response to pathogen infections effectively restore homeostasis instead of precipitating pathogenic and potentially fatal feedforward reactions? Recently, there have been significant new advances in our understanding of the interface between mammalian immunity and coagulation ('immunocoagulation') and its impact on sepsis. In particular, the release and activation of F3 (the main initiator of coagulation) from and on myeloid or epithelial cells is facilitated by activating inflammasomes and consequent gasdermin D (GSDMD)-mediated pyroptosis, coupled to signaling via high mobility group box 1 (HMGB1), stimulator of interferon response CGAMP interactor 1 (STING1), or sequestosome 1 (SQSTM1). Pharmacological modulation of the immunocoagulation pathways emerge as novel and potential therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP; 75015 Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Potts MA, McDonald JA, Sutherland KD, Herold MJ. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. Eur J Immunol 2020; 50:1871-1884. [PMID: 33202035 DOI: 10.1002/eji.202048712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
The mutational landscape of human cancers is highly complex. While next generation sequencing aims to comprehensively catalogue somatic alterations in tumor cells, it fails to delineate driver from passenger mutations. Functional genomic approaches, particularly CRISPR/Cas9, enable both gene discovery, and annotation of gene function. Indeed, recent CRISPR/Cas9 technologies have flourished with the development of more sophisticated and versatile platforms capable of gene knockouts to high throughput genome wide editing of a single nucleotide base. With new platforms constantly emerging, it can be challenging to navigate what CRISPR tools are available and how they can be effectively applied to understand cancer biology. This review provides an overview of current and emerging CRISPR technologies and their power to model cancer and identify novel treatments. Specifically, how CRISPR screening approaches have been exploited to enhance immunotherapies through the identification of tumor intrinsic and extrinsic mechanisms to escape immune recognition will be discussed.
Collapse
Affiliation(s)
- Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jackson A McDonald
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kate D Sutherland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Downs KP, Nguyen H, Dorfleutner A, Stehlik C. An overview of the non-canonical inflammasome. Mol Aspects Med 2020; 76:100924. [PMID: 33187725 PMCID: PMC7808250 DOI: 10.1016/j.mam.2020.100924] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Inflammasomes are large cytosolic multiprotein complexes assembled in response to infection and cellular stress, and are crucial for the activation of inflammatory caspases and the subsequent processing and release of pro-inflammatory mediators. While caspase-1 is activated within the canonical inflammasome, the related caspase-4 (also known as caspase-11 in mice) and caspase-5 are activated within the non-canonical inflammasome upon sensing of cytosolic lipopolysaccharide (LPS) from Gram-negative bacteria. However, the consequences of canonical and non-canonical inflammasome activation are similar. Caspase-1 promotes the processing and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the release of danger signals, as well as a lytic form of cell death called pyroptosis, whereas caspase-4, caspase-5 and caspase-11 directly promote pyroptosis through cleavage of the pore-forming protein gasdermin D (GSDMD), and trigger a secondary activation of the canonical NLRP3 inflammasome for cytokine release. Since the presence of the non-canonical inflammasome activator LPS leads to endotoxemia and sepsis, non-canonical inflammasome activation and regulation has important clinical ramifications. Here we discuss the mechanism of non-canonical inflammasome activation, mechanisms regulating its activity and its contribution to health and disease.
Collapse
Affiliation(s)
- Kevin P Downs
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Huyen Nguyen
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA, 90048, USA.
| |
Collapse
|