1
|
Reis LG, Teeple K, Dinn M, Schoonmaker J, Scinto SB, Ferreira CR, Casey T. Exposure to circadian disrupting environment and high-fat diet during pregnancy and lactation alter reproductive competence and lipid profiles of liver, mammary, plasma and milk of ICR mice. PLoS One 2025; 20:e0320538. [PMID: 40163509 PMCID: PMC11957368 DOI: 10.1371/journal.pone.0320538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
This study's objective was to determine the effects of pre-pregnancy obesity induced by a high-fat diet and exposure to circadian-disrupting light-dark phase shifts on birth littler size, pup survival to 24h and growth to lactation day 12, and their relationship to maternal feeding patterns, fecal corticosterone levels, milk composition, and lipid profiles of liver, plasma, mammary gland, and milk. A 2 by 2 factorial designed experiment of female ICR mice assigned to control (CON; 10% fat) or high-fat (HF; 60% fat) and either a 12-hour light-dark (LD) cycle or a chronic jet lag model of 6-hour phase-shifts (PS) in light-dark cycle every 3 days throughout pregnancy and lactation, resulted in 4 treatment groups: CON-LD, CON-PS, HF-LD and HF-PS. HF diet increased maternal pre-pregnancy body weight and elevated milk lactose. Whereas PS reduced milk lactose within the CON diet group, and increased maternal feed intake and fecal corticosterone levels. PS exposure also affected the time of day of birth. Neither PS nor HF affected birth litter size or pup survival. Only diet impacted final litter weight, with HF greater than CON. Among the 1204 lipids detected by multiple reaction monitoring (MRM)-profiling, diet altered 67.1% in milk, 58.1% in mammary gland, 27.2% in the liver, and 10.9% in plasma, with HF increasing the carbon length of diacylglycerols in the liver and milk, and carbon length of triacylglycerols in plasma, mammary gland and milk. Although exposure to PS had no overall impact on maternal lipid profiles, interactions (P < 0.05) were found between PS and diets in the phosphatidylcholine and phosphatidylethanolanine class of lipids. Findings support that high fat diet and exposure to circadian disrupting environments impact maternal feeding behavior and stress responses as well as lipid profiles, which may relate to their negative association with maternal health and offspring development.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Kelsey Teeple
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Michayla Dinn
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jenna Schoonmaker
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Sara Brook Scinto
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | | | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Halder SK, Melkani GC. The Interplay of Genetic Predisposition, Circadian Misalignment, and Metabolic Regulation in Obesity. Curr Obes Rep 2025; 14:21. [PMID: 40024983 PMCID: PMC11872776 DOI: 10.1007/s13679-025-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE OF REVIEW This review explores the complex interplay between genetic predispositions to obesity, circadian rhythms, metabolic regulation, and sleep. It highlights how genetic factors underlying obesity exacerbate metabolic dysfunction through circadian misalignment and examines promising interventions to mitigate these effects. RECENT FINDINGS Genome-wide association Studies (GWAS) have identified numerous Single Nucleotide Polymorphisms (SNPs) associated with obesity traits, attributing 40-75% heritability to body mass index (BMI). These findings illuminate critical links between genetic obesity, circadian clocks, and metabolic processes. SNPs in clock-related genes influence metabolic pathways, with disruptions in circadian rhythms-driven by poor sleep hygiene or erratic eating patterns-amplifying metabolic dysfunction. Circadian clocks, synchronized with the 24-h light-dark cycle, regulate key metabolic activities, including glucose metabolism, lipid storage, and energy utilization. Genetic mutations or external disruptions, such as irregular sleep or eating habits, can destabilize circadian rhythms, promoting weight gain and metabolic disorders. Circadian misalignment in individuals with genetic predispositions to obesity disrupts the release of key metabolic hormones, such as leptin and insulin, impairing hunger regulation and fat storage. Interventions like time-restricted feeding (TRF) and structured physical activity offer promising strategies to restore circadian harmony, improve metabolic health, and mitigate obesity-related risks.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- UAB Nathan Shock Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
4
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2025; 32:61-82. [PMID: 38776923 PMCID: PMC11569273 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Walzik D, Joisten N, Schenk A, Trebing S, Schaaf K, Metcalfe AJ, Spiliopoulou P, Hiefner J, McCann A, Watzl C, Ueland PM, Gehlert S, Worthmann A, Brenner C, Zimmer P. Acute exercise boosts NAD + metabolism of human peripheral blood mononuclear cells. Brain Behav Immun 2025; 123:1011-1023. [PMID: 39500416 DOI: 10.1016/j.bbi.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/13/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) coenzymes are the central electron carriers in biological energy metabolism. Low NAD+ levels are proposed as a hallmark of ageing and several diseases, which has given rise to therapeutic strategies that aim to tackle these conditions by boosting NAD+ levels. As a lifestyle factor with preventive and therapeutic effects, exercise increases NAD+ levels across various tissues, but so far human trials are mostly focused on skeletal muscle. Given that immune cells are mobilized and redistributed in response to acute exercise, we conducted two complementary trials to test the hypothesis that a single exercise session alters NAD+ metabolism of peripheral blood mononuclear cells (PBMCs). In a randomized crossover trial (DRKS00017686) with 24 young adults (12 female) we show that acute exercise increases gene expression and protein abundance of several key NAD+ metabolism enzymes with high conformity between high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). In a longitudinal exercise trial (DRKS00029105) with 12 young adults (6 female) we confirm these results and reveal that - similar to skeletal muscle - NAD+ salvage is pivotal for PBMCs in response to exercise. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD+ salvage pathway, displayed a pronounced increase in gene expression during exercise, which was accompanied by elevated intracellular NAD+ levels and reduced serum levels of the NAD+ precursor nicotinamide. These results demonstrate that acute exercise triggers NAD+ biosynthesis of human PBMCs with potential implications for immunometabolism, immune effector function, and immunological exercise adaptions.
Collapse
Affiliation(s)
- David Walzik
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany
| | - Niklas Joisten
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany; Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Sprangerweg 2, 37075 Göttingen, Lower Saxony, Germany
| | - Alexander Schenk
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany
| | - Sina Trebing
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Alan J Metcalfe
- Chest Unit, Centre for Human and Applied Physiological Sciences (CHAPS), Denmark Hill Campus, King's College Hospital, King's College London, London, United Kingdom
| | - Polyxeni Spiliopoulou
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece
| | - Johanna Hiefner
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Adrian McCann
- Bevital AS, Frydenbøgården 5. etg., Minde Allé 35, 5068 Bergen, Norway
| | - Carsten Watzl
- Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Per Magne Ueland
- Bevital AS, Frydenbøgården 5. etg., Minde Allé 35, 5068 Bergen, Norway
| | - Sebastian Gehlert
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Philipp Zimmer
- Department of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227 Dortmund, Germany.
| |
Collapse
|
6
|
Liu XL, Duan Z, Yu M, Liu X. Epigenetic control of circadian clocks by environmental signals. Trends Cell Biol 2024; 34:992-1006. [PMID: 38423855 DOI: 10.1016/j.tcb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Circadian clocks have evolved to enable organisms to respond to daily environmental changes. Maintaining a robust circadian rhythm under various perturbations and stresses is essential for the fitness of an organism. In the core circadian oscillator conserved in eukaryotes (from fungi to mammals), a negative feedback loop based on both transcription and translation drives circadian rhythms. The expression of circadian clock genes depends both on the binding of transcription activators at the promoter and on the chromatin state of the clock genes, and epigenetic modifications of chromatin are crucial for transcriptional regulation of circadian clock genes. Herein we review current knowledge of epigenetic regulation of circadian clock mechanisms and discuss how environmental cues can control clock gene expression by affecting chromatin states.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muqun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Chen M, Zhang X, Jiang J, Yang T, Chen L, Liu J, Song X, Zhang Y, Wang R, Qin Y, Dong Z, Yuan W, Guo T, Song Z, Ma J, Dong Y, Song Y, Qin Y. The Modifying Effects of Lifestyle Behaviors on the Association Between Drinking Water Micronutrients and BMI Status Among Children and Adolescents Aged 7~17: A Population-Based Regional Surveillance in 2022. Nutrients 2024; 16:3931. [PMID: 39599717 PMCID: PMC11597896 DOI: 10.3390/nu16223931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND This study aims to investigate the potential modifying effects of lifestyle behavior on the association between drinking water micronutrients and body mass index (BMI) in a large population of children and adolescents. METHODS Data of the present analysis came from a comprehensive regional large-scale surveillance study in 2022, involving 172,880 children and adolescents (50.71% boys vs. 49.29% girls) aged seven to seventeen. A restricted cubic spline (RCS) analysis was utilized to examine the exposure-response association of regular drinking water indices (including fluoride, nitrate nitrogen, pH, chloride, sulfates, and total dissolved solids (TDS), total hardness (TH), and chemical oxygen demand (COD)) with BMI. Generalized linear model and logistic regression were conducted to relate BMI and quartiles of drinking water micronutrients. RESULTS Our findings reveal a nonlinear association between nitrate nitrogen (P for nonlinear < 0.001) and pH (P for nonlinear < 0.001) with BMI. High TH and COD levels significantly increase BMI. Notably, fluoride and chloride were associated with BMI Z-scores but not with overweight and obesity (OB). The BMI Z-score showed a more pronounced association with low and high pH levels in girls. For urban participants, increased TH levels were associated with a higher risk of OB. This study also found that adopting healthy lifestyles could mitigate the negative effects of fluoride, chloride, and sulfate on BMI Z-scores. CONCLUSIONS This large surveillance study provides new insights into the complex interplay between drinking water micronutrients and BMI in children and adolescents. The association of various drinking water parameters on BMI varies, necessitating ongoing focus on their effects, particularly among girls and urban individuals. Healthy lifestyle behavior could mitigate the effects of fluoride, chloride, and sulfate on BMI Z-score.
Collapse
Affiliation(s)
- Manman Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Xiuhong Zhang
- Public Health Institute of Inner Mongolia Center for Disease Control and Prevention, Hohhot 010031, China; (X.Z.); (T.Y.)
| | - Jianuo Jiang
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Tian Yang
- Public Health Institute of Inner Mongolia Center for Disease Control and Prevention, Hohhot 010031, China; (X.Z.); (T.Y.)
| | - Li Chen
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Jieyu Liu
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Xinli Song
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Yi Zhang
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Ruolin Wang
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Yang Qin
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Ziqi Dong
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Wen Yuan
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Tongjun Guo
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Zhiying Song
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Jun Ma
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Yanhui Dong
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Yi Song
- National Health Commission Key Laboratory of Reproductive Health, Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (J.J.); (L.C.); (J.L.); (X.S.); (Y.Z.); (R.W.); (Y.Q.); (Z.D.); (W.Y.); (T.G.); (Z.S.); (J.M.); (Y.S.)
| | - Yuhan Qin
- Public Health Institute of Inner Mongolia Center for Disease Control and Prevention, Hohhot 010031, China; (X.Z.); (T.Y.)
| |
Collapse
|
8
|
He C, Chen M, Jiang X, Ren J, Ganapathiraju SV, Lei P, Yang H, Pannu PR, Zhao Y, Zhang X. Sulforaphane Improves Liver Metabolism and Gut Microbiota in Circadian Rhythm Disorder Mice Models Fed With High-Fat Diets. Mol Nutr Food Res 2024; 68:e2400535. [PMID: 39361249 DOI: 10.1002/mnfr.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Indexed: 11/17/2024]
Abstract
SCOPE This study aims to investigate the effect of sulforaphane (SFN) on hepatic metabolism and gut microbiota in a shifted circadian rhythm (CR) mouse model fed with a high-fat diet (HFD). METHODS AND RESULTS A shifted CR mouse model with HFD is constructed. Biochemical analyses are used to evaluate the effects of SFN on lipid accumulation and liver function. Targeted metabolomics is used for liver metabolites. Results from hematoxylin and eosin staining and Oil Red O staining show that SFN improves liver lipid accumulation and intestinal inflammatory damage in shifted CR treatment with HFD. The concentrations of amino acid metabolites are increased, and the levels of bile acid metabolites are significantly decreased by SFN treatment. Results from 16S rRNA gene sequencing indicate that SFN modulates gut microbiota, particularly by enhancing beneficial bacteria such as Lachnospiraceae, Lactobacillus, Alistipes, Akkermansia, and Eubacteriaum coprostanoligenes. Correlation analysis confirms a close relationship between intestinal microbiota and hepatic metabolites. SFN significantly regulates CR protein expression in the hypothalamus and liver tissues. CONCLUSION SFN alleviates hepatic metabolic disorder and gut microbiota dysbiosis induced by CR disruption under a high-fat diet in a mouse model, indicating the potential of SFN in regulating CR disruption.
Collapse
Affiliation(s)
- Canxia He
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Mengyuan Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiaoxin Jiang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jingyi Ren
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | | | - Peng Lei
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Haitao Yang
- Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, Zhejiang, 315040, China
| | - Prabh Roohan Pannu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Yun Zhao
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
9
|
Panagiotou K, Stefanou G, Kourlaba G, Athanasopoulos D, Kassari P, Charmandari E. The Effect of Time-Restricted Eating on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3700. [PMID: 39519533 PMCID: PMC11547938 DOI: 10.3390/nu16213700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Endogenous metabolic pathways periodically adjust with fluctuations in day and night, a biological process known as circadian rhythm. Time-restricted eating (TRE) aligns the time of food intake with the circadian rhythm. This study aims to investigate the effects of TRE on body weight, body composition and cardiometabolic risk factors. Methods: We reviewed articles from PubMed and Cochrane libraries for clinical trials that compare TRE with regular diet without calorie restriction. We conducted a meta-analysis of 26 studies. Results: Participants who followed TRE demonstrated reduction in body weight [mean-MD: -1.622 kg, (95% confidence interval (CI -2.302 to -0.941)], body mass index (BMI) [MD: -0.919 kg/m2 (95% CI: -1.189 to -0.650)], waist circumference [MD: -2.015 cm (95% CI: -3.212 to -0.819] and whole-body fat mass (WBFM) [MD: -0.662 kg (95% CI: -0.795 to -0.530)]. Improvements in cardiometabolic risk factors such as a decrease in insulin concentrations [MD: -0.458 mIU/L, (95% CI: -0.843 to -0.073)], total cholesterol [MD: -2.889 mg/dL (95% CI: -5.447 to -0.330) and LDL concentrations [MD: -2.717 mg/dL (95% CI: -4.412 to -1.021)] were observed. Conclusions: TRE is beneficial for weight loss and improvements in cardiometabolic risk factors. Further large-scale clinical trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Krystalia Panagiotou
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | | | - Georgia Kourlaba
- Nursing Department, University of the Peloponnese, 22131 Tripoli, Greece
| | - Dimitrios Athanasopoulos
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - Penio Kassari
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
- Center for the Prevention and Management of Overweight and Obesity, Division of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelia Charmandari
- Master of Sciences (MSc) Program "General Pediatrics and Pediatric Subspecialties: Clinical Practice and Research", National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
- Center for the Prevention and Management of Overweight and Obesity, Division of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Latha Laxmi IP, Tamizhselvi R. Epigenetic events influencing the biological clock: Panacea for neurodegeneration. Heliyon 2024; 10:e38836. [PMID: 39430507 PMCID: PMC11489350 DOI: 10.1016/j.heliyon.2024.e38836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
The human biological clock is the 24-h internal molecular network of circadian genes in synchronization with other cells in response to external stimuli. The rhythmicity of the clock genes is maintained by positive and negative transcriptional feedback loops coordinating the 24-h oscillation in different tissues. The superchiasmatic nucleus, the central pacemaker of the biological clock diminishes with aging causing alterations in the clock rhythmicity leading to the onset of neurodegenerative diseases mainly Alzheimer's disease, Parkinson's disease, and Huntington's disease. Studies have shown that brain and muscle Arnt -like 1 (Bmal1) and Circadian Locomotor Output Cycles Kaput (Clock) gene expression is altered in the onset of neurodegeneration. One of the major symptoms of neurodegeneration is changes in the sleep/wake cycle. Moreover, variations in circadian clock oscillations can happen due to lifestyle changes, addiction to alcohol, cocaine, drugs, smoking, food habits and most importantly eating and sleep/awake cycle patterns which can significantly impact the expression of circadian genes. Recent studies have focused on the molecular function of clock genes affected due to environmental cues. Epigenetic modifications are influenced by the external environmental factors. This review aims to focus on the principal mechanism of epigenetics influencing circadian rhythm disruption leading to neurodegeneration and as well as targeting the epigenetic modulators could be a novel therapeutic approach to combat neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
11
|
Qi D, Huang D, Ba M, Xuan S, Si H, Lu D, Pei X, Zhang W, Huang S, Li Z. Long-term high fructose intake reprograms the circadian transcriptome and disrupts homeostasis in mouse extra-orbital lacrimal glands. Exp Eye Res 2024; 246:110008. [PMID: 39025460 DOI: 10.1016/j.exer.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
This study aims to explore the effects of long-term high fructose intake (LHFI) on the structure, functionality, and physiological homeostasis of mouse extra-orbital lacrimal glands (ELGs), a critical component of ocular health. Our findings reveal significant reprogramming of the circadian transcriptome in ELGs following LHFI, alongside the activation of specific inflammatory pathways, as well as metabolic and neural pathways. Notably, LHFI resulted in increased inflammatory infiltration, enhanced lipid deposition, and reduced nerve fiber density in ELGs compared to controls. Functional assessments indicated a marked reduction in lacrimal secretion following cholinergic stimulation in LHFI-treated mice, suggesting impaired gland function. Overall, our results suggest that LHFI disrupts lacrimal gland homeostasis, potentially leading to dry eye disease by altering its structure and secretory function. These insights underscore the profound impact of dietary choices on ocular health and highlight the need for strategies to mitigate these risks.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Mengru Ba
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shuting Xuan
- Department of Ophthalmology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Wenxiao Zhang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
12
|
Meng Y, Sun J, Zhang G. Take the bull by the horns and tackle the potential downsides of the ketogenic diet. Nutrition 2024; 125:112480. [PMID: 38788511 DOI: 10.1016/j.nut.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The ketogenic diet (KD) is a distinctive dietary regimen known for its low-carbohydrate and high-fat composition. Recently, it has garnered considerable interest from the scientific community and the general population because of its claimed efficacy in facilitating weight reduction, improving the management of glucose levels, and raising overall energy levels. The core principle of the KD is the substantial decrease in carbohydrate consumption, which is subsequently substituted by ingesting nourishing fats. While the KD has promising advantages and is gaining popularity, it must be acknowledged that this dietary method may not be appropriate for all individuals. The dietary regimen may give rise to adverse effects, including constipation, halitosis, and imbalances in electrolyte levels, which may pose a potential risk if not adequately supervised. Hence, thorough and meticulous inquiry is needed to better comprehend the possible hazards and advantages linked to the KD over prolonged durations. By obtaining a more comprehensive perspective, we can enhance our ability to make well-informed judgments and suggestions as to implementation of this specific dietary regimen.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
13
|
Santovito LS, Shaikh M, Sharma D, Forsyth CB, Voigt RM, Keshavarzian A, Bishehsari F. Effect of Alcohol on Clock Synchrony and Tissue Circadian Homeostasis in Mice. Mol Nutr Food Res 2024; 68:e2400234. [PMID: 39126133 DOI: 10.1002/mnfr.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Alcohol use disorder accounts for a growing worldwide health system concern. Alcohol causes damages to various organs, including intestine and liver, primarily involved in its absorption and metabolism. However, alcohol-related organ damage risk varies significantly among individuals, even when they report consuming comparable dosages of alcohol. Factor(s) that may modulate the risk of organ injuries from alcohol consumption could be responsible for inter-individual variations in susceptibility to alcohol-related organ damages. Accumulating evidence suggests disruptions in circadian rhythm can exacerbate alcohol-related organ damages. Here we investigated the interplay between alcohol, circadian rhythm, and key tissue cellular processes at baseline, after a regular and a shift in the light/dark cycle (LCD) in mice. Central/peripheral clock expression of core clock genes (CoClGs) was analyzed. We also studied circadian homeostasis of tissue cellular processes that are involved in damages from alcohol. These experiments reveal that alcohol affects the expression of CoClGs causing a central-peripheral dyssynchrony, amplified by shift in LCD. The observed circadian clock dyssynchrony was linked to circadian disorganization of key processes involved in the alcohol-related damages, particularly when alcohol was combined with LCD. These results offer insights into the mechanisms by which alcohol interacts with circadian rhythm disruption to promote organ injury.
Collapse
Affiliation(s)
- Luca S Santovito
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Christopher B Forsyth
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Medicine, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Robin M Voigt
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Medicine, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Medicine, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- MD Anderson Cancer Center-UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, Gastroenterology Research Center, University of Texas, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Kawakami S, Ninomiya R, Maeda Y. Improvement in Epigenetic Aging Clock Induced by BioBran Containing Rice Kefiran in Relation to Various Biomarkers: A Pilot Study. Int J Mol Sci 2024; 25:6332. [PMID: 38928040 PMCID: PMC11203851 DOI: 10.3390/ijms25126332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Many lifestyle-related diseases such as cancer, dementia, myocardial infarction, and stroke are known to be caused by aging, and the WHO's ICD-11 (International Classification of Diseases, 11th edition) created the code "aging-related" in 2022. In other words, aging is irreversible but aging-related diseases are reversible, so taking measures to treat them is important for health longevity and preventing other diseases. Therefore, in this study, we used BioBran containing rice kefiran as an approach to improve aging. Rice kefiran has been reported to improve the intestinal microflora, regulate the intestines, and have anti-aging effects. BioBran has also been reported to have antioxidant effects and improve liver function, and human studies have shown that it affects the diversity of the intestinal microbiota. Quantitative measures of aging that correlate with disease risk are now available through the epigenetic clock test, which examines the entire gene sequence and determines biological age based on the methylation level. Horvath's Clock is the best known of many epigenetic clock tests and was published by Steve Horvath in 2013. In this study, we examine the effect of using Horvath's Clock to improve aging and report on the results, which show a certain effect.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Department of Nutrition, Faculty of Health Care, Kiryu University, Midori 379-2392, Japan
| | - Ryo Ninomiya
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., Tokyo 154-0024, Japan;
| | | |
Collapse
|
15
|
Liu JL, Xu X, Rixiati Y, Wang CY, Ni HL, Chen WS, Gong HM, Zhang ZL, Li S, Shen T, Li JM. Dysfunctional circadian clock accelerates cancer metastasis by intestinal microbiota triggering accumulation of myeloid-derived suppressor cells. Cell Metab 2024; 36:1320-1334.e9. [PMID: 38838643 DOI: 10.1016/j.cmet.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
Circadian homeostasis in mammals is a key intrinsic mechanism for responding to the external environment. However, the interplay between circadian rhythms and the tumor microenvironment (TME) and its influence on metastasis are still unclear. Here, in patients with colorectal cancer (CRC), disturbances of circadian rhythm and the accumulation of monocytes and granulocytes were closely related to metastasis. Moreover, dysregulation of circadian rhythm promoted lung metastasis of CRC by inducing the accumulation of myeloid-derived suppressor cells (MDSCs) and dysfunctional CD8+ T cells in the lungs of mice. Also, gut microbiota and its derived metabolite taurocholic acid (TCA) contributed to lung metastasis of CRC by triggering the accumulation of MDSCs in mice. Mechanistically, TCA promoted glycolysis of MDSCs epigenetically by enhancing mono-methylation of H3K4 of target genes and inhibited CHIP-mediated ubiquitination of PDL1. Our study links the biological clock with MDSCs in the TME through gut microbiota/metabolites in controlling the metastatic spread of CRC, uncovering a systemic mechanism for cancer metastasis.
Collapse
Affiliation(s)
- Jing-Lin Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xu Xu
- Department of Pathology, Soochow Medical College, Soochow University, Suzhou 215123, China
| | - Youlutuziayi Rixiati
- Department of Pathology, Soochow Medical College, Soochow University, Suzhou 215123, China
| | - Chu-Yi Wang
- Department of Pathology, Soochow Medical College, Soochow University, Suzhou 215123, China
| | - Heng-Li Ni
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Shu Chen
- Department of Pathology, Soochow Medical College, Soochow University, Suzhou 215123, China
| | - Hui-Min Gong
- Department of Pathology, Soochow Medical College, Soochow University, Suzhou 215123, China
| | - Zi-Long Zhang
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shi Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Tong Shen
- Department of Pathology, Soochow Medical College, Soochow University, Suzhou 215123, China.
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Pathology, Soochow Medical College, Soochow University, Suzhou 215123, China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
16
|
de Oliveira Melo NC, Cuevas-Sierra A, Souto VF, Martínez JA. Biological Rhythms, Chrono-Nutrition, and Gut Microbiota: Epigenomics Insights for Precision Nutrition and Metabolic Health. Biomolecules 2024; 14:559. [PMID: 38785965 PMCID: PMC11117887 DOI: 10.3390/biom14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Circadian rhythms integrate a finely tuned network of biological processes recurring every 24 h, intricately coordinating the machinery of all cells. This self-regulating system plays a pivotal role in synchronizing physiological and behavioral responses, ensuring an adaptive metabolism within the environmental milieu, including dietary and physical activity habits. The systemic integration of circadian homeostasis involves a balance of biological rhythms, each synchronically linked to the central circadian clock. Central to this orchestration is the temporal dimension of nutrient and food intake, an aspect closely interwoven with the neuroendocrine circuit, gut physiology, and resident microbiota. Indeed, the timing of meals exerts a profound influence on cell cycle regulation through genomic and epigenetic processes, particularly those involving gene expression, DNA methylation and repair, and non-coding RNA activity. These (epi)genomic interactions involve a dynamic interface between circadian rhythms, nutrition, and the gut microbiota, shaping the metabolic and immune landscape of the host. This research endeavors to illustrate the intricate (epi)genetic interplay that modulates the synchronization of circadian rhythms, nutritional signaling, and the gut microbiota, unravelling the repercussions on metabolic health while suggesting the potential benefits of feed circadian realignment as a non-invasive therapeutic strategy for systemic metabolic modulation via gut microbiota. This exploration delves into the interconnections that underscore the significance of temporal eating patterns, offering insights regarding circadian rhythms, gut microbiota, and chrono-nutrition interactions with (epi)genomic phenomena, thereby influencing diverse aspects of metabolic, well-being, and quality of life outcomes.
Collapse
Affiliation(s)
| | - Amanda Cuevas-Sierra
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, 28049 Madrid, Spain;
| | - Vitória Felício Souto
- Department of Nutrition at the Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (N.C.d.O.M.); (V.F.S.)
| | - J. Alfredo Martínez
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centre of Medicine and Endocrinology, University of Valladolid, 47002 Valladolid, Spain
| |
Collapse
|
17
|
Pourali G, Ahmadzade AM, Arastonejad M, Pourali R, Kazemi D, Ghasemirad H, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Avan A. The circadian clock as a potential biomarker and therapeutic target in pancreatic cancer. Mol Cell Biochem 2024; 479:1243-1255. [PMID: 37405534 DOI: 10.1007/s11010-023-04790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer (PC) has a very high mortality rate globally. Despite ongoing efforts, its prognosis has not improved significantly over the last two decades. Thus, further approaches for optimizing treatment are required. Various biological processes oscillate in a circadian rhythm and are regulated by an endogenous clock. The machinery controlling the circadian cycle is tightly coupled with the cell cycle and can interact with tumor suppressor genes/oncogenes; and can therefore potentially influence cancer progression. Understanding the detailed interactions may lead to the discovery of prognostic and diagnostic biomarkers and new potential targets for treatment. Here, we explain how the circadian system relates to the cell cycle, cancer, and tumor suppressor genes/oncogenes. Furthermore, we propose that circadian clock genes may be potential biomarkers for some cancers and review the current advances in the treatment of PC by targeting the circadian clock. Despite efforts to diagnose pancreatic cancer early, it still remains a cancer with poor prognosis and high mortality rates. While studies have shown the role of molecular clock disruption in tumor initiation, development, and therapy resistance, the role of circadian genes in pancreatic cancer pathogenesis is not yet fully understood and further studies are required to better understand the potential of circadian genes as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, 37 Kent Street, QLD, 4102, Australia.
| |
Collapse
|
18
|
Ye Z, Wei Y, Zhang G, Ge L, Wu C, Ren Y, Wang J, Xu X, Yang J, Wang T. Circadian rhythm regulation in the sea cucumber Apostichopus japonicus: Insights into clock gene expression, photoperiod susceptibility, and neurohormone signaling. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110930. [PMID: 38065309 DOI: 10.1016/j.cbpb.2023.110930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Sea cucumber Apostichopus japonicus displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of A. japonicus, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely AjClock, AjArnt1, AjCry1, and AjTimeless, were identified and a comprehensive analysis of their expressions across various tissues in adult A. japonicus was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as AjArnt1 and AjCry1, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in A. japonicus, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.
Collapse
Affiliation(s)
- Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Ying Wei
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Guangbo Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Chenqian Wu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Yucheng Ren
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China.
| |
Collapse
|
19
|
Han C, Lim JY, Koike N, Kim SY, Ono K, Tran CK, Mangutov E, Kim E, Zhang Y, Li L, Pradhan AA, Yagita K, Chen Z, Yoo SH, Burish MJ. Regulation of headache response and transcriptomic network by the trigeminal ganglion clock. Headache 2024; 64:195-210. [PMID: 38288634 PMCID: PMC10961824 DOI: 10.1111/head.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To characterize the circadian features of the trigeminal ganglion in a mouse model of headache. BACKGROUND Several headache disorders, such as migraine and cluster headache, are known to exhibit distinct circadian rhythms of attacks. The circadian basis for these rhythmic pain responses, however, remains poorly understood. METHODS We examined trigeminal ganglion ex vivo and single-cell cultures from Per2::LucSV reporter mice and performed immunohistochemistry. Circadian behavior and transcriptomics were investigated using a novel combination of trigeminovascular and circadian models: a nitroglycerin mouse headache model with mechanical thresholds measured every 6 h, and trigeminal ganglion RNA sequencing measured every 4 h for 24 h. Finally, we performed pharmacogenomic analysis of gene targets for migraine, cluster headache, and trigeminal neuralgia treatments as well as trigeminal ganglion neuropeptides; this information was cross-referenced with our cycling genes from RNA sequencing data to identify potential targets for chronotherapy. RESULTS The trigeminal ganglion demonstrates strong circadian rhythms in both ex vivo and single-cell cultures, with core circadian proteins found in both neuronal and non-neuronal cells. Using our novel behavioral model, we showed that nitroglycerin-treated mice display circadian rhythms of pain sensitivity which were abolished in arrhythmic Per1/2 double knockout mice. Furthermore, RNA-sequencing analysis of the trigeminal ganglion revealed 466 genes that displayed circadian oscillations in the control group, including core clock genes and clock-regulated pain neurotransmitters. In the nitroglycerin group, we observed a profound circadian reprogramming of gene expression, as 331 of circadian genes in the control group lost rhythm and another 584 genes gained rhythm. Finally, pharmacogenetics analysis identified 10 genes in our trigeminal ganglion circadian transcriptome that encode target proteins of current medications used to treat migraine, cluster headache, or trigeminal neuralgia. CONCLUSION Our study unveiled robust circadian rhythms in the trigeminal ganglion at the behavioral, transcriptomic, and pharmacogenetic levels. These results support a fundamental role of the clock in pain pathophysiology. PLAIN LANGUAGE SUMMARY Several headache diseases, such as migraine and cluster headache, have headaches that occur at the same time each day. We learned that the trigeminal ganglion, an important pain structure in several headache diseases, has a 24-hour cycle that might be related to this daily cycle of headaches. Our genetic analysis suggests that some medications may be more effective in treating migraine and cluster headache when taken at specific times of the day.
Collapse
Affiliation(s)
- Chorong Han
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Ji Ye Lim
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sun Young Kim
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Celia K. Tran
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Elizaveta Mangutov
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Yanping Zhang
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lingyong Li
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amynah A. Pradhan
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Mark J. Burish
- Department of Neurosurgery, UTHealth Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
Johanns M, Haas JT, Raverdy V, Vandel J, Chevalier-Dubois J, Guille L, Derudas B, Legendre B, Caiazzo R, Verkindt H, Gnemmi V, Leteurtre E, Derhourhi M, Bonnefond A, Froguel P, Eeckhoute J, Lassailly G, Mathurin P, Pattou F, Staels B, Lefebvre P. Time-of-day-dependent variation of the human liver transcriptome and metabolome is disrupted in MASLD. JHEP Rep 2024; 6:100948. [PMID: 38125300 PMCID: PMC10730870 DOI: 10.1016/j.jhepr.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background & Aims Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.
Collapse
Affiliation(s)
- Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Violetta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Jimmy Vandel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Julie Chevalier-Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Loic Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Benjamin Legendre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Helene Verkindt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | | | | | - Mehdi Derhourhi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Philippe Froguel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | | | | | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| |
Collapse
|
22
|
Hughes BR, Shanaz S, Ismail-Sutton S, Wreglesworth NI, Subbe CP, Innominato PF. Circadian lifestyle determinants of immune checkpoint inhibitor efficacy. Front Oncol 2023; 13:1284089. [PMID: 38111535 PMCID: PMC10727689 DOI: 10.3389/fonc.2023.1284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Immune Checkpoint Inhibitors (ICI) have revolutionised cancer care in recent years. Despite a global improvement in the efficacy and tolerability of systemic anticancer treatments, a sizeable proportion of patients still do not benefit maximally from ICI. Extensive research has been undertaken to reveal the immune- and cancer-related mechanisms underlying resistance and response to ICI, yet more limited investigations have explored potentially modifiable lifestyle host factors and their impact on ICI efficacy and tolerability. Moreover, multiple trials have reported a marked and coherent effect of time-of-day ICI administration and patients' outcomes. The biological circadian clock indeed temporally controls multiple aspects of the immune system, both directly and through mediation of timing of lifestyle actions, including food intake, physical exercise, exposure to bright light and sleep. These factors potentially modulate the immune response also through the microbiome, emerging as an important mediator of a patient's immune system. Thus, this review will look at critically amalgamating the existing clinical and experimental evidence to postulate how modifiable lifestyle factors could be used to improve the outcomes of cancer patients on immunotherapy through appropriate and individualised entrainment of the circadian timing system and temporal orchestration of the immune system functions.
Collapse
Affiliation(s)
- Bethan R. Hughes
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Sadiq Shanaz
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Seline Ismail-Sutton
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Nicholas I. Wreglesworth
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Christian P. Subbe
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
- Department of Acute Medicine, Ysbyty Gwynedd, Bangor, United Kingdom
| | - Pasquale F. Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Cancer Chronotherapy Team, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Research Unit ‘Chronotherapy, Cancers and Transplantation’, Faculty of Medicine, Paris-Saclay University, Villejuif, France
| |
Collapse
|
23
|
Wirth MD, Turner-McGrievy G, Shivappa N, Murphy EA, Hébert JR. Interaction between Meal-timing and Dietary Inflammatory Potential: Association with Cardiometabolic Endpoints in a 3-month Prospective Analysis. J Nutr 2023; 153:S0022-3166(23)72677-1. [PMID: 39492485 PMCID: PMC10739766 DOI: 10.1016/j.tjnut.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Diet quality is a moderator of cardiometabolic markers. The timing of dietary intake may be an important determinant; however, previous results have been mixed. Complex mechanisms may result in an interaction between diet timing and quality. OBJECTIVES This study aimed to examine the association between fasting duration and first and last mealtime and inflammatory and lipid biomarkers. We also explored the interactions between Energy-density Dietary Inflammatory Index (E-DII) scores and meal-timing on inflammatory and lipid biomarkers. METHODS This study was a secondary data analysis of a dietary intervention. Assessments occurred at baseline and 3-months. Three unannounced 24-hour dietary recalls estimated diet for calculation of E-DII scores, nighttime fasting duration, and first and last mealtime. Cardiometabolic markers were obtained from a fasting blood sample. Multiple linear regression of baseline data was used for Aim 1. For Aim 2, the interaction between E-DII change over 3 months and the meal-timing metrics were used to estimate changes in cardiometabolic markers. RESULTS Most participants (n=95) were female (81%) and White (62%) and they had an average age of 46.9 ± 13.4 years and BMI of 31.4 ± 7.1 kg/m2. Every one-hour longer fasting duration was associated with increased total cholesterol (β=5.79, p=0.01), LDL-cholesterol (β=4.47, p=0.03), and LDL:HDL ratio (β=0.08, p=0.04). For every 30-minute later first mealtime, increases in total cholesterol, LDL-cholesterol and LDL:HDL ratios also were observed. Anti-inflammatory E-DII changes were associated with reduced total cholesterol and LDL-C (among participants with shorter fasting durations, later last mealtime, or earlier first mealtime) and C-reactive protein (CRP, among earlier first mealtime and shorter fasting duration). CONCLUSIONS This study provides evidence for interaction between dietary timing and quality on cardiometabolic biomarkers. Worsening lipid profiles seen with longer fasting durations may be an artifact of skipped or delayed breakfast, underlining the potential importance of food consumption early in the morning. CLINICALTRIALS GOV IDENTIFIER NCT02382458 (https://clinicaltrials.gov/ct2/show/NCT02382458).
Collapse
Affiliation(s)
- Michael D Wirth
- College of Nursing, University of South Carolina, Columbia, SC 29208; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208; Connecting Health Innovations, LLC, Columbia, SC 29208.
| | - Gabrielle Turner-McGrievy
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, Columbia, SC 29208
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208; Connecting Health Innovations, LLC, Columbia, SC 29208
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209
| | - James R Hébert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208; Connecting Health Innovations, LLC, Columbia, SC 29208
| |
Collapse
|
24
|
Juan CG, Matchett KB, Davison GW. A systematic review and meta-analysis of the SIRT1 response to exercise. Sci Rep 2023; 13:14752. [PMID: 37679377 PMCID: PMC10485048 DOI: 10.1038/s41598-023-38843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a key physiological regulator of metabolism and a target of therapeutic interventions for cardiometabolic and ageing-related disorders. Determining the factors and possible mechanisms of acute and adaptive SIRT1 response to exercise is essential for optimising exercise interventions aligned to the prevention and onset of disease. Exercise-induced SIRT1 upregulation has been reported in animals, but, to date, data in humans have been inconsistent. This exploratory systematic review and meta-analysis aims to assess various exercise interventions measuring SIRT1 in healthy participants. A total of 34 studies were included in the meta-analysis (13 single bout exercise, 21 training interventions). Studies were grouped according to tissue sample type (blood, muscle), biomarkers (gene expression, protein content, enzyme level, enzyme activity), and exercise protocols. A single bout of high-intensity or fasted exercise per se increases skeletal muscle SIRT1 gene expression as measured by qPCR or RT-PCR, while repeated resistance training alone increases blood SIRT1 levels measured by ELISA. A limited number of studies also show a propensity for an increase in muscle SIRT1 activity as measured by fluorometric or sirtuin activity assay. In conclusion, exercise acutely upregulates muscle SIRT1 gene expression and chronically increases SIRT1 blood enzyme levels.
Collapse
Affiliation(s)
- Ciara Gallardo Juan
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, BT15 1AP, UK.
| | - Kyle B Matchett
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, BT47 6SB, UK
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, BT15 1AP, UK
| |
Collapse
|
25
|
Pawar VA, Srivastava S, Tyagi A, Tayal R, Shukla SK, Kumar V. Efficacy of Bioactive Compounds in the Regulation of Metabolism and Pathophysiology in Cardiovascular Diseases. Curr Cardiol Rep 2023; 25:1041-1052. [PMID: 37458865 DOI: 10.1007/s11886-023-01917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW An imbalance in reactive oxygen species (ROS) homeostasis can wreak damage to metabolic and physiological processes which can eventually lead to an advancement in cardiovascular diseases (CVD). Mitochondrial dysfunction is considered as a key source of ROS. The purpose of the current review is to concisely discuss the role of bioactive compounds in the modulation of cardiovascular metabolism and their potential application in the management of cardiovascular diseases. RECENT FINDINGS Recently, it has been shown that bioactive compounds exhibit immunomodulatory function by regulating inflammatory pathways and ROS homeostasis. It has also been reported that bioactive compounds regulate mitochondria dynamics, thus modulating the autophagy and energy metabolism in the cells. In the present article, we have discussed the roles of different bioactive compounds in the modulation of different inflammatory drivers. The functional properties of bioactive compounds in mitochondrial dynamics and its impact on cardiac disease protection have been briefly summarized. Furthermore, we have also discussed various aspects of bioactive compounds with respect to metabolism, immune modulation, circadian rhythm, and its impact on CVD's pathophysiology.
Collapse
Affiliation(s)
| | - Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, 110054, India
| | - Rajul Tayal
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Surendra Kumar Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
27
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Bonafos B, Feillet-Coudray C, Casas F, Bravo FI, Calvo E, Ávila-Román J, Mulero M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants (Basel) 2023; 12:1606. [PMID: 37627601 PMCID: PMC10452039 DOI: 10.3390/antiox12081606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Béatrice Bonafos
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Christine Feillet-Coudray
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - François Casas
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| |
Collapse
|
28
|
Pitsillou E, Liang JJ, Beh RC, Hung A, Karagiannis TC. Identification of dietary compounds that interact with the circadian clock machinery: Molecular docking and structural similarity analysis. J Mol Graph Model 2023; 123:108529. [PMID: 37263157 DOI: 10.1016/j.jmgm.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
The molecular clock is vital for regulating circadian rhythms in various physiological processes, and its dysregulation is associated with multiple diseases. As such, the use of small molecule modulators to regulate the molecular clock presents a promising therapeutic approach. In this study, we generated a homology model of the human circadian locomotor output cycles kaput (CLOCK) protein to evaluate its ligand binding sites. Using molecular docking, we obtained further insights into the binding mode of the control compound CLK8 and explored a selection of dietary compounds. Our investigation of dietary compounds was guided by their potential interactions with the retinoic acid-related orphan receptors RORα/γ, which are involved in circadian regulation. Through the molecular similarity and docking analyses, we identified oleanolic acid demethyl, 3-epi-lupeol, and taraxasterol as potential ROR-interacting compounds. These compounds may exert therapeutic effects through their modulation of RORα/γ activity and subsequently influence the molecular clock. Overall, our study highlights the potential of small molecule modulators in regulating the molecular clock and the importance of exploring dietary compounds as a source of such modulators. Our findings also provide insights into the binding mechanisms of CLK8 and shed light on potential compounds that can interact with RORs to regulate the molecular clock. Future investigations could focus on validating the efficacy of these compounds in modulating the molecular clock and their potential use as therapeutic agents.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
29
|
Wang T, Wang K, Zhu X, Chen N. ARNTL2 upregulation of ACOT7 promotes NSCLC cell proliferation through inhibition of apoptosis and ferroptosis. BMC Mol Cell Biol 2023; 24:14. [PMID: 37003979 PMCID: PMC10064581 DOI: 10.1186/s12860-022-00450-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/05/2022] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Recent studies have reported that the circadian transcription factor aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2) promotes the metastatic progression of lung adenocarcinoma. However, the molecular mechanisms of ARNTL2 in non-small cell lung cancer (NSCLC) cell growth and proliferation remain to be explored. METHODS The expression of ARNTL2 and acyl-CoA thioesterase 7 (ACOT7) in lung cancer patients was analyzed based on TCGA database. Gain-of-function of ARNTL2 and ACOT7 was conducted by transfecting the cells with plasmids or lentivirus. Knockdown assay was carried out by siRNAs. Western blot and qRT-PCR were performed to check the protein and mRNA expression. Dual luciferase and ChIP-qPCR assay was applied to check the interaction of ARNTL2 on ACOT7's promoter sequence. Triglyceride level, MDA production, the activity of casapase 3 to caspase 7, and lipid ROS were measured by indicated assay kit. Cellular function was detected by CCK8, colony formation and flow cytometry analysis of cell death and cell cycle. RESULTS We demonstrated that ARNTL2 upregulation of ACOT7 was critical for NSCLC cell growth and proliferation. Firstly, overexpression of ARNTL2 conferred the poor prognosis of LUAD patients and supported the proliferation of NSCLC cells. Based on molecular experiments, we showed that ARNTL2 potentiated the transcription activity of ACOT7 gene via direct binding to ACOT7's promoter sequence. ACOT7 high expression was correlated with the worse prognosis of LUAD patients. Gain-of-function and loss-of-function experiments revealed that AOCT7 contributed to NSCLC cell growth and proliferation. ACOT7 regulated the apoptosis and ferroptosis of NSCLC cells, while exhibited no effect on cell cycle progression. ACOT7 overexpression also potentiated fatty acid synthesis and suppressed lipid peroxidation. Lastly, we showed that ARNTL2 knockdown and overexpression inhibited and promoted the cellular triglyceride production and subsequent cell proliferation, which could be reversed by ACOT7 overexpression and knockdown. CONCLUSION Our study illustrated the oncogenic function of ARNTL2/ACOT7 axis in the development of NSCLC. Targeting ARNTL2 or ACOT7 might be promising therapeutic strategies for NSCLC patients with highly expressed ARNTL2.
Collapse
Affiliation(s)
- Tao Wang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kai Wang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Zhu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Nan Chen
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.
| |
Collapse
|
30
|
Wang X, Jin X, Li H, Zhang X, Chen X, Lu K, Chu C. Effects of various interventions on non-alcoholic fatty liver disease (NAFLD): A systematic review and network meta-analysis. Front Pharmacol 2023; 14:1180016. [PMID: 37063273 PMCID: PMC10090390 DOI: 10.3389/fphar.2023.1180016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: With the increasing prevalence of obesity and metabolic syndrome, the incidence of non-alcoholic fatty liver disease (NAFLD) is also increasing. In the next decade, NAFLD may become the main cause of liver transplantation. Therefore, the choice of treatment plan is particularly important. The purpose of this study was to compare several interventions in the treatment of NAFLD to provide some reference for clinicians in selecting treatment methods.Methods: We searched Public Medicine (PubMed), Medline, Excerpta Medica Database (Embase), and Cochrane Library from January 2013 to January 2023 to identify randomized controlled trials (RCTs) published in English. The network meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty-three studies accounting for a total of 2,969 patients were included, and alanine aminotransferase (ALT), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL) were selected as outcome measures for analysis and comparison.Results: We evaluated the results of drug, diet, and lifestyle interventions between the intervention and control groups. Curcumin (CUN) and probiotics (PTC) were selected for medication, the Mediterranean diet (MDED) was selected for special diet (SPD), and various kinds of exercise and lifestyle advice were selected for lifestyle interventions (LFT). The SUCRA was used to rank interventions according to the effect on ALT indicators (SUCRA: PTC 80.3%, SPD 65.2%, LFT 61.4%, PLB 32.8%, CUN 10.2%), TC indicators (SUCRA: PTC 89.4%, SPD 64%, CUN 34%, LFT 36.6%, PLB 17%), and LDL indicators (SUCRA: PTC 84.2%, CUN 69.5%, LFT 51.7%, PLB 30.1%, SPD 14.5%). The pairwise meta-analysis results showed that MDED was significantly better than NT in improving ALT [SMD 1.99, 95% CI (0.38, 3.60)]. In terms of improving TC and LDL, ATS was significantly better than NT [SMD 0.19, 95% CI (0.03, 0.36)] [SMD 0.18, 95% CI (0.01, 0.35)].Conclusion: Our study showed that PTC is most likely to be the most effective treatment for improving NAFLD indicators. Professional advice on diet or exercise was more effective in treating NAFLD than no intervention.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xiaoqian Jin
- Rehabilitation Medicine Department, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hancheng Li
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xianyu Zhang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xi Chen
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuan Lu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Chenliang Chu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
- *Correspondence: Chenliang Chu,
| |
Collapse
|
31
|
Walzik D, Jonas W, Joisten N, Belen S, Wüst RCI, Guillemin G, Zimmer P. Tissue-specific effects of exercise as NAD + -boosting strategy: Current knowledge and future perspectives. Acta Physiol (Oxf) 2023; 237:e13921. [PMID: 36599416 DOI: 10.1111/apha.13921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an evolutionarily highly conserved coenzyme with multi-faceted cell functions, including energy metabolism, molecular signaling processes, epigenetic regulation, and DNA repair. Since the discovery that lower NAD+ levels are a shared characteristic of various diseases and aging per se, several NAD+ -boosting strategies have emerged. Other than pharmacological and nutritional approaches, exercise is thought to restore NAD+ homeostasis through metabolic adaption to chronically recurring states of increased energy demand. In this review we discuss the impact of acute exercise and exercise training on tissue-specific NAD+ metabolism of rodents and humans to highlight the potential value as NAD+ -boosting strategy. By interconnecting results from different investigations, we aim to draw attention to tissue-specific alterations in NAD+ metabolism and the associated implications for whole-body NAD+ homeostasis. Acute exercise led to profound alterations of intracellular NAD+ metabolism in various investigations, with the magnitude and direction of changes being strongly dependent on the applied exercise modality, cell type, and investigated animal model or human population. Exercise training elevated NAD+ levels and NAD+ metabolism enzymes in various tissues. Based on these results, we discuss molecular mechanisms that might connect acute exercise-induced disruptions of NAD+ /NADH homeostasis to chronic exercise adaptions in NAD+ metabolism. Taking this hypothesis-driven approach, we hope to inspire future research on the molecular mechanisms of exercise as NAD+ -modifying lifestyle intervention, thereby elucidating the potential therapeutic value in NAD+ -related pathologies.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Wiebke Jonas
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Sergen Belen
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gilles Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
32
|
Kitazawa S, Haraguchi R, Takaoka Y, Kitazawa R. In situ sequence-specific visualization of single methylated cytosine on tissue sections using ICON probe and rolling-circle amplification. Histochem Cell Biol 2023; 159:263-273. [PMID: 36418613 PMCID: PMC10006048 DOI: 10.1007/s00418-022-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
Since epigenetic modifications differ from cell to cell, detecting the DNA methylation status of individual cells is requisite. Therefore, it is important to conduct "morphology-based epigenetics research", in which the sequence-specific DNA methylation status is observed while maintaining tissue architecture. Here we demonstrate a novel histochemical technique that efficiently shows the presence of a single methylated cytosine in a sequence-dependent manner by applying ICON (interstrand complexation with osmium for nucleic acids) probes. By optimizing the concentration and duration of potassium osmate treatment, ICON probes selectively hybridize to methylated cytosine on tissue sections. Since the elongation process by rolling-circle amplification through the padlock probe and synchronous amplification by the hyperbranching reaction at a constant temperature efficiently amplifies the reaction, it is possible to specifically detect the presence of a single methylated cytosine. Since the ICON probe is cross-linked to the nuclear or mitochondrial DNA of the target cell, subsequent elongation and multiplication reactions proceed like a tree growing in soil with its roots firmly planted, thus facilitating the demonstration of methylated cytosine in situ. Using this novel ICON-mediated histochemical method, detection of the methylation of DNA in the regulatory region of the RANK gene in cultured cells and of mitochondrial DNA in paraffin sections of mouse cerebellar tissue was achievable. This combined ICON and rolling-circle amplification method is the first that shows evidence of the presence of a single methylated cytosine in a sequence-specific manner in paraffin sections, and is foreseen as applicable to a wide range of epigenetic studies.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yuki Takaoka
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
33
|
Chen L, Xia S, Wang F, Zhou Y, Wang S, Yang T, Li Y, Xu M, Zhou Y, Kong D, Zhang Z, Shao J, Xu X, Zhang F, Zheng S. m 6A methylation-induced NR1D1 ablation disrupts the HSC circadian clock and promotes hepatic fibrosis. Pharmacol Res 2023; 189:106704. [PMID: 36813093 DOI: 10.1016/j.phrs.2023.106704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
The roles of nuclear receptor subfamily 1 group d member 1 (NR1D1) and the circadian clock in liver fibrosis remain unclear. Here, we showed that liver clock genes, especially NR1D1, were dysregulated in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. In turn, disruption of the circadian clock exacerbated experimental liver fibrosis. NR1D1-deficient mice were more sensitive to CCl4-induced liver fibrosis, supporting a critical role of NR1D1 in liver fibrosis development. Validation at the tissue and cellular levels showed that NR1D1 was primarily degraded by N6-methyladenosine (m6A) methylation in a CCl4-induced liver fibrosis model, and this result was also validated in rhythm-disordered mouse models. In addition, the degradation of NR1D1 further inhibited the phosphorylation of dynein-related protein 1-serine site 616 (DRP1S616), resulting in weakened mitochondrial fission function and increased mitochondrial DNA (mtDNA) release in hepatic stellate cell (HSC), which in turn activated the cGMP-AMP synthase (cGAS) pathway. Activation of the cGAS pathway induced a local inflammatory microenvironment that further stimulated liver fibrosis progression. Interestingly, in the NR1D1 overexpression model, we observed that DRP1S616 phosphorylation was restored, and cGAS pathway was also inhibited in HSCs, resulting in improved liver fibrosis. Taken together, our results suggest that targeting NR1D1 may be an effective approach to liver fibrosis prevention and management.
Collapse
Affiliation(s)
- Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Shuqi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Ting Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Min Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Ya Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Desong Kong
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
34
|
Yang H, Yang K, Zhang L, Yang N, Mei YX, Zheng YL, He Y, Gong YJ, Ding WJ. Acupuncture ameliorates Mobile Phone Addiction with sleep disorders and restores salivary metabolites rhythm. Front Psychiatry 2023; 14:1106100. [PMID: 36896350 PMCID: PMC9989025 DOI: 10.3389/fpsyt.2023.1106100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVES Mobile Phone Addiction (MPA) is a novel behavioral addiction resulting in circadian rhythm disorders that severely affect mental and physical health. The purpose of this study is to detect rhythmic salivary metabolites in MPA with sleep disorder (MPASD) subjects and investigate the effects of acupuncture. METHODS Six MPASD patients and six healthy controls among the volunteers were enrolled by MPA Tendency Scale (MPATS) and Pittsburgh Sleep Quality Index (PSQI), then the salivary samples of MPASD and healthy controls were collected every 4-h for three consecutive days. Acupuncture was administered for 7 days to MPASD subjects, then saliva samples were collected again. Salivary metabolomes were analyzed with the method of LC-MS. RESULT According to our investigation, 70 (57.85%) MPA patients and 56 (46.28%) MPASD patients were identified among 121 volunteers. The symptoms of the 6 MPASD subjects were significantly alleviated after acupuncture intervention. The number of rhythmic saliva metabolites dropped sharply in MPASD subjects and restored after acupuncture. Representative rhythmic saliva metabolites including melatonin, 2'-deoxyuridine, thymidine, thymidine 3',5'-cyclic monophosphate lost rhythm and restored after acupuncture, which may attribute to promising MPASD treatment and diagnosis biomarkers. The rhythmic saliva metabolites of healthy controls were mainly enriched in neuroactive ligand-receptor interaction, whereas polyketide sugar unit biosynthesis was mainly enriched in MPASD patients. CONCLUSION This study revealed circadian rhythm characteristics of salivary metabolites in MPASD and that acupuncture could ameliorate MPASD by restoring part of the dysrhythmia salivary metabolites.
Collapse
Affiliation(s)
- Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Xiu Mei
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-Li Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Ju Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Rigamonti AE, Bollati V, Favero C, Albetti B, Caroli D, De Col A, Cella SG, Sartorio A. Changes in DNA Methylation of Clock Genes in Obese Adolescents after a Short-Term Body Weight Reduction Program: A Possible Metabolic and Endocrine Chrono-Resynchronization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315492. [PMID: 36497566 PMCID: PMC9738941 DOI: 10.3390/ijerph192315492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/31/2023]
Abstract
Circadian rhythms are generated by a series of genes, collectively named clock genes, which act as a self-sustained internal 24 h timing system in the body. Many physiological processes, including metabolism and the endocrine system, are regulated by clock genes in coordination with environmental cues. Loss of the circadian rhythms has been reported to contribute to widespread obesity, particularly in the pediatric population, which is increasingly exposed to chronodisruptors in industrialized society. The aim of the present study was to evaluate the DNA methylation status of seven clock genes, namely clock, arntl, per1-3 and cry1-2, in a cohort of chronobiologically characterized obese adolescents (n: 45: F/M: 28/17; age ± SD: 15.8 ± 1.4 yrs; BMI SDS: 2.94 [2.76; 3.12]) hospitalized for a 3-week multidisciplinary body weight reduction program (BWRP), as well as a series of cardiometabolic outcomes and markers of hypothalamo-pituitary-adrenal (HPA) function. At the end of the intervention, an improvement in body composition was observed (decreases in BMI SDS and fat mass), as well as glucometabolic homeostasis (decreases in glucose, insulin, HOMA-IR and Hb1Ac), lipid profiling (decreases in total cholesterol, LDL-C, triglycerides and NEFA) and cardiovascular function (decreases in systolic and diastolic blood pressures and heart rate). Moreover, the BWRP reduced systemic inflammatory status (i.e., decrease in C-reactive protein) and HPA activity (i.e., decreases in plasma ACTH/cortisol and 24 h urinary-free cortisol excretion). Post-BWRP changes in the methylation levels of clock, cry2 and per2 genes occurred in the entire population, together with hypermethylation of clock and per3 genes in males and in subjects with metabolic syndrome. In contrast to the pre-BWRP data, at the end of the intervention, cardiometabolic parameters, such as fat mass, systolic and diastolic blood pressures, triglycerides and HDL-C, were associated with the methylation status of some clock genes. Finally, BWRP induced changes in clock genes that were associated with markers of HPA function. In conclusion, when administered to a chronodisrupted pediatric obese population, a short-term BWRP is capable of producing beneficial cardiometabolic effects, as well as an epigenetic remodeling of specific clock genes, suggesting the occurrence of a post-BWRP metabolic and endocrine chronoresynchronization, which might represent a "biomolecular" predictor of successful antiobesity intervention.
Collapse
Affiliation(s)
- Antonello E. Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Benedetta Albetti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| |
Collapse
|
36
|
Pano O, Gamba M, Bullón-Vela V, Aguilera-Buenosvinos I, Roa-Díaz ZM, Minder B, Kopp-Heim D, Laine JE, Martínez-González MÁ, Martinez A, Sayón-Orea C. Eating behaviors and health-related quality of life: A scoping review. Maturitas 2022; 165:58-71. [PMID: 35933794 DOI: 10.1016/j.maturitas.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 10/31/2022]
Abstract
Discrepancies between total life expectancy and healthy life expectancy are in part due to unhealthy lifestyles, in which diet plays an important role. Despite this knowledge, observational studies and randomized trials have yet to show consistent improvements in health and well-being, also known as health-related quality of life (HRQoL), given the variety of elements that conform a healthy diet aside from its content. As such, we aimed to describe the evidence and common topics concerning the effects of modifiable eating behaviors and HRQoL in patients with non-communicable diseases (NCD). This scoping review of six electronic databases included 174 reports (69 % were experimental studies, 10 % longitudinal studies, and 21 % cross-sectional studies). Using VOSviewer, a bibliometric tool with text mining functionalities, we identified relevant aspects of dietary assessments and interventions. Commonly observed topics in experimental studies were those related to diet quality (micro- and macronutrients, food items, and dietary patterns). In contrast, less was found regarding eating schedules, eating locations, culturally accepted food items, and the role of food insecurity in HRQoL. Disregarding these aspects of diets may be limiting the full potential of nutrition as a key element of health and well-being in order to ensure lengthy and fulfilling lives.
Collapse
Affiliation(s)
- Octavio Pano
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Vanessa Bullón-Vela
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Inmaculada Aguilera-Buenosvinos
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Zayne M Roa-Díaz
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Doris Kopp-Heim
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Jessica E Laine
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, Área de Fisiopatología de la Obesidad y la Nutrición. (CIBEROBN), Madrid, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alfredo Martinez
- Department of Food Sciences and Physiology, University of Navarra, Pamplona, Spain; Precision Nutrition and Cardiometabolic Health Program, IMDEA Food Institute, Madrid, Spain
| | - Carmen Sayón-Orea
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, Pamplona, Spain; Centro de Investigación Biomédica en Red, Área de Fisiopatología de la Obesidad y la Nutrición. (CIBEROBN), Madrid, Spain; Navarra Public Health Institute, Navarra, Spain
| |
Collapse
|
37
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
38
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
39
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|