1
|
Parchwani D, Singh R, Patel D. Biological and translational attributes of mitochondrial DNA copy number: Laboratory perspective to clinical relevance. World J Methodol 2025; 15:102709. [DOI: 10.5662/wjm.v15.i3.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
The mitochondrial DNA copy number (mtDNAcn) plays a vital role in cellular energy metabolism and mitochondrial health. As mitochondria are responsible for adenosine triphosphate production through oxidative phosphorylation, maintaining an appropriate mtDNAcn level is vital for the overall cellular function. Alterations in mtDNAcn have been linked to various diseases, including neurodegenerative disorders, metabolic conditions, and cancers, making it an important biomarker for understanding the disease pathogenesis. The accurate estimation of mtDNAcn is essential for clinical applications. Quantitative polymerase chain reaction and next-generation sequencing are commonly employed techniques with distinct advantages and limitations. Clinically, mtDNAcn serves as a valuable indicator for early diagnosis, disease progression, and treatment response. For instance, in oncology, elevated mtDNAcn levels in blood samples are associated with tumor aggressiveness and can aid in monitoring treatment efficacy. In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, altered mtDNAcn patterns provide insights into disease mechanisms and progression. Understanding and estimating mtDNAcn are critical for advancing diagnostic and therapeutic strategies in various medical fields. As research continues to uncover the implications of mtDNAcn alterations, its potential as a clinical biomarker is likely to expand, thereby enhancing our ability to diagnose and manage complex diseases.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Digisha Patel
- Department of Physiology, Shantabaa Medical College and General Hospital Amreli, Amreli 365601, Gujarāt, India
| |
Collapse
|
2
|
Ratnaike T, Paramonov I, Olimpio C, Hoischen A, Beltran S, Matalonga L, Horváth R. Mitochondrial DNA disease discovery through evaluation of genotype and phenotype data: The Solve-RD experience. Am J Hum Genet 2025:S0002-9297(25)00144-2. [PMID: 40306282 DOI: 10.1016/j.ajhg.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The diagnosis of mitochondrial DNA (mtDNA) diseases remains challenging with next-generation sequencing, where bioinformatic analysis is usually more focused on the nuclear genome. We developed a workflow for the evaluation of mtDNA diseases and applied it in a large European rare disease cohort (Solve-RD). A semi-automated bioinformatic pipeline with MToolBox was used to filter the unsolved Solve-RD cohort for rare mtDNA variants after validating this pipeline on exome datasets of 42 individuals previously diagnosed with mtDNA variants. Variants were filtered based on blood heteroplasmy levels (≥1%) and reported association with disease. Overall, 10,157 exome and genome datasets from 9,923 affected individuals from 9,483 families within Solve-RD met the quality inclusion criteria. 136 mtDNA variants in 135 undiagnosed individuals were prioritized using the filtering approach. A focused MitoPhen-based phenotype similarity scoring method was tested in a separate genetically diagnosed "phenotype test cohort" consisting of nuclear gene and mtDNA diseases using a receiving operator characteristic evaluation. We applied the MitoPhen-based phenotype similarity score of >0.3, which was highly sensitive for detecting mtDNA diseases in the phenotype test cohort, to the filtered cohort of 135 undiagnosed individuals. This aided the prioritization of 34 out of 37 (92%) individuals who received confirmed and likely causative mtDNA disease diagnoses. The phenotypic evaluation was limited by the quality of input data in some individuals. The overall pipeline led to an additional diagnostic yield of 0.4% in a cohort where mitochondrial disease was not initially suspected. This highlights the value of our mtDNA analysis pipeline in diverse datasets.
Collapse
Affiliation(s)
- Thiloka Ratnaike
- Department of Paediatrics, University of Cambridge, Cambridge, UK; Department of Paediatrics, Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, UK
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Catarina Olimpio
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | | | - Rita Horváth
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Stenton SL, Laricchia K, Lake NJ, Chaluvadi S, Ganesh V, DiTroia S, Osei-Owusu I, Pais L, O'Heir E, Austin-Tse C, O'Leary M, Abu Shanap M, Barrows C, Berger S, Bönnemann CG, Bujakowska KM, Campagna DR, Compton AG, Donkervoort S, Fleming MD, Gallacher L, Gleeson JG, Haliloglu G, Pierce EA, Place EM, Sankaran VG, Shimamura A, Stark Z, Tan TY, Thorburn DR, White SM, Zaki MS, Vilain E, Lek M, Rehm HL, O'Donnell-Luria A. Mitochondrial DNA variant detection in over 6,500 rare disease families by the systematic analysis of exome and genome sequencing data resolves undiagnosed cases. HGG ADVANCES 2025; 6:100441. [PMID: 40241304 DOI: 10.1016/j.xhgg.2025.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025] Open
Abstract
Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is not always specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants. Here, we analyzed a cohort of 6,660 rare disease families (5,625 genetically undiagnosed [84%]) from the Genomics Research to Elucidate the Genetics of Rare diseases (GREGoR) Consortium, as well as other rare disease cohorts. Using dedicated pipelines to address the technical challenges posed by the mtDNA-circular genome, variant heteroplasmy, and nuclear misalignment-we called single nucleotide variants, small insertions/deletions, and large mtDNA deletions from exome and/or genome sequencing data, in addition to RNA sequencing data when available. Diagnostic mtDNA variants were identified in 10 previously genetically undiagnosed families (1 large deletion, 8 reported pathogenic variants, and 1 previously unreported likely pathogenic variant), as well as candidate diagnostic variants in a further 11 undiagnosed families. In one additional undiagnosed proband, detection of >900 heteroplasmic variants provided functional evidence of pathogenicity to a de novo variant in the nuclear gene POLG (DNA polymerase gamma), responsible for mtDNA replication and repair. Overall, mtDNA variant calling from data generated by exome and genome sequencing-primarily for nuclear variant analysis-resulted in a genetic diagnosis for 0.2% of undiagnosed families affected by a broad range of rare diseases, as well as the identification of additional promising candidates in 0.2%.
Collapse
Affiliation(s)
- Sarah L Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Sushma Chaluvadi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Melanie O'Leary
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayada Abu Shanap
- Hematology/Oncology, Bone Marrow Transplantation and Cellular Therapy, Pediatric Department, King Hussein Cancer Centre (KHCC), Amman, Jordan
| | - Chelsea Barrows
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Seth Berger
- Children's National Research Institute, Washington, DC, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Goknur Haliloglu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emily M Place
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12311, Egypt
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Kelly C, Cross M, Junker A, Englestad K, Rosales XQ, Hirano M, Trumpff C, Picard M. Perceived association of mood and symptom severity in adults with mitochondrial diseases. Mitochondrion 2025; 84:102033. [PMID: 40164290 DOI: 10.1016/j.mito.2025.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Individuals with genetic mitochondrial diseases suffer from multisystem symptoms that vary in severity and over time, but the factors influencing disease manifestations are poorly understood. Based upon i) patient and family reports that stressful life events trigger or exacerbate symptoms, ii) biologically plausible pathways whereby psychological states and stress hormones influence mitochondrial energy transformation capacity, and iii) epidemiological literature linking traumatic/stressful life events and multiple neurologic disorders, we hypothesized that mitochondrial disease symptom severity may in part vary with daily mood. To examine patients' perception around potential psycho-biological mechanisms known to operate in other chronic illnesses, we administered the Stress, Health and Emotion Survey (SHES) to 70 adults with self-reported mitochondrial diseases. Participants rated how severe each of their symptom(s) was over the past year, separately for either 'good' (happy, calm) or 'bad' (stress, sad) emotional days. On average, patients reported that most symptoms were better on "good" emotional days (p < 0.0001) and worse on "bad" emotional days (p < 0.0001). Of the 29 symptoms assessed, 27 were associated with daily mood (p < 0.01). Some but not all symptoms were reported to be less or more severe on good and bad days, respectively, including fatigue, exercise intolerance, brain fog, and fine motor coordination (ps < 0.0001). These associative results suggest that on average individuals living with mitochondrial diseases perceive a connection between their mood and symptoms severity. These preliminary findings constitute an initial step towards developing more comprehensive models to understand the psychobiological factors that influence the course of mitochondrial diseases.
Collapse
Affiliation(s)
- Catherine Kelly
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Marissa Cross
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alex Junker
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kris Englestad
- Department of Neurology, H. Houston Merritt Center, Columbia University Irving Medical Center, New York 10032, USA
| | - Xiomara Q Rosales
- Department of Neurology, H. Houston Merritt Center, Columbia University Irving Medical Center, New York 10032, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia University Irving Medical Center, New York 10032, USA
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia University Irving Medical Center, New York 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Robert N Butler Columbia Aging Center, Mailman School of Public Health, New York, NY 10032, USA.
| |
Collapse
|
5
|
Skoczylas S, Płoszaj T, Gadzalska K, Gorządek M, Jakiel P, Juścińska E, Malarska M, Traczyk-Borszyńska M, Biezynska H, Rychlik M, Pastorczak A, Zmysłowska A. Mitochondrial DNA variants revealed by whole exome sequencing: from screening to diagnosis and follow-up. Neurogenetics 2025; 26:38. [PMID: 40138026 DOI: 10.1007/s10048-025-00820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Mutations in mitochondrial DNA play a crucial role in several diseases, but interpreting the clinical significance of mitochondrial DNA variants is challenging due to heteroplasmy, age-related loss of variants and evolving phenotypes. The aim of study was to identify mitochondrial pathogenic variants and explore their potential future association with specific phenotypes in patients during their lifetime, for both known and novel variants. We used a Python pipeline to analyse exome sequencing data from 418 patients (median age: 15 years; 52.9% males and 47.1% females), mostly diagnosed with neurological disorders, developmental and intellectual disabilities, behavioural and sensory disorders, cardiovascular and metabolic abnormalities, renal diseases and others. Screening identified 1,000 unique variants with heteroplasmy levels greater than 10% and 192 unique variants with 1-10% heteroplasmy, excluding hypervariable regions. Among these variants, four confirmed pathogenic variants were detected according to MITOMAP (m.1555 A > G, m.3243 A > G, m.9035T > C, and m.11778G > A), each identified in one patient. The application of pathogenicity and frequency criteria led to the identification of three unique variants and one in monozygotic twin sister with low levels of heteroplasmy, which were confirmed by next-generation sequencing. Finally, one of them, the variant m.15897G > A, was recognised as likely pathogenic (PP3, PS2). Our study highlights the complexity of diagnosing mitochondrial diseases associated with mtDNA mutations and emphasises the need for a comprehensive genotype-phenotype approach to correctly identify causal variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hanna Biezynska
- Student Society for Genetic Counseling and Clinical Genetics, Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, Lodz, 92-213, Poland
| | - Magdalena Rychlik
- Student Society for Genetic Counseling and Clinical Genetics, Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, Lodz, 92-213, Poland
| | - Agata Pastorczak
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
6
|
Castelluccio N, Spath K, Li D, De Coo IFM, Butterworth L, Wells D, Mertes H, Poulton J, Heindryckx B. Genetic and reproductive strategies to prevent mitochondrial diseases. Hum Reprod Update 2025:dmaf004. [PMID: 40085924 DOI: 10.1093/humupd/dmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) diseases pose unique challenges for genetic counselling and require tailored approaches to address recurrence risks and reproductive options. The intricate dynamics of mtDNA segregation and heteroplasmy shift significantly impact the chances of having affected children. In addition to natural pregnancy, oocyte donation, and adoption, IVF-based approaches can reduce the risk of disease transmission. Prenatal diagnosis (PND) and preimplantation genetic testing (PGT) remain the standard methods for women carrying pathogenic mtDNA mutations; nevertheless, they are not suitable for every patient. Germline nuclear transfer (NT) has emerged as a novel therapeutic strategy, while mitochondrial gene editing has increasingly become a promising research area in the field. However, challenges and safety concerns associated with all these techniques remain, highlighting the need for long-term follow-up studies, an improved understanding of disease mechanisms, and personalized approaches to diagnosis and treatment. Given the inherent risks of adverse maternal and child outcomes, careful consideration of the balance between potential benefits and drawbacks is also warranted. This review will provide critical insights, identify knowledge gaps, and underscore the importance of advancing mitochondrial disease research in reproductive health.
Collapse
Affiliation(s)
- Noemi Castelluccio
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | | | - Danyang Li
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Irenaeus F M De Coo
- Department of Translational Genomics, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Lyndsey Butterworth
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Juno Genetics UK, Oxford, UK
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences and Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Fu Y, Land M, Kavlashvili T, Cui R, Kim M, DeBitetto E, Lieber T, Ryu KW, Choi E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Lareau CA, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA deletions by reconstituting end joining in human mitochondria. Cell 2025:S0092-8674(25)00194-1. [PMID: 40068680 DOI: 10.1016/j.cell.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled precise base substitutions and the efficient elimination of genomes carrying pathogenic mutations. However, reconstituting mtDNA deletions linked to mitochondrial myopathies remains challenging. Here, we engineered mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. Using mitochondrial EJ (mito-EJ) and mito-ScaI, we generated a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion across the full spectrum of heteroplasmy. Investigating these cells revealed a critical threshold of ∼75% deleted genomes, beyond which oxidative phosphorylation (OXPHOS) protein depletion, metabolic disruption, and impaired growth in galactose-containing media were observed. Single-cell multiomic profiling identified two distinct nuclear gene deregulation responses: one triggered at the deletion threshold and another progressively responding to heteroplasmy. Ultimately, we show that our method enables the modeling of disease-associated mtDNA deletions across cell types and could inform the development of targeted therapies.
Collapse
Affiliation(s)
- Yi Fu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Land
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamar Kavlashvili
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruobing Cui
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minsoo Kim
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily DeBitetto
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toby Lieber
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elim Choi
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rahul Saha
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meril Takizawa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daphne Baker
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caleb A Lareau
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Vandiver AR, Torres A, Sanden A, Nguyen TL, Gasilla J, Doan MT, Martirosian V, Hoang A, Wanagat J, Teitell MA. Increased mitochondrial mutation heteroplasmy induces aging phenotypes in pluripotent stem cells and their differentiated progeny. Aging Cell 2025; 24:e14402. [PMID: 39680477 PMCID: PMC11896400 DOI: 10.1111/acel.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 12/18/2024] Open
Abstract
The mitochondrial genome (mtDNA) is an important source of inherited extranuclear variation. Clonal increases in mtDNA mutation heteroplasmy have been implicated in aging and disease, although the impact of this shift on cell function is challenging to assess. Reprogramming to pluripotency affects mtDNA mutation heteroplasmy. We reprogrammed three human fibroblast lines with known heteroplasmy for deleterious mtDNA point or deletion mutations. Quantification of mutation heteroplasmy in the resulting 76 induced pluripotent stem cell (iPSC) clones yielded a bimodal distribution, creating three sets of clones with high levels or absent mutation heteroplasmy with matched nuclear genomes. iPSC clones with elevated deletion mutation heteroplasmy show altered growth dynamics, which persist in iPSC-derived progenitor cells. We identify transcriptomic and metabolic shifts consistent with increased investment in neutral lipid synthesis as well as increased epigenetic age in high mtDNA deletion mutation iPSC, consistent with changes occurring in cellular aging. Together, these data demonstrate that high mtDNA mutation heteroplasmy induces changes occurring in cellular aging.
Collapse
Affiliation(s)
- Amy R. Vandiver
- Division of Dermatology, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Alejandro Torres
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Amberly Sanden
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of BiologyCalifornia State University NorthridgeCaliforniaUSA
| | - Thang L. Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Jasmine Gasilla
- Division of Dermatology, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Mary T. Doan
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Vahan Martirosian
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Austin Hoang
- Division of Geriatrics, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Bioengineering, California Nano Systems Institute, and Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Martín-Jimenez P, Bermejo-Guerrero L, Navarro-Riquelme M, Serrano-Lorenzo P, Garrido-Moraga R, Hernández-Laín A, Hernández-Voth A, Lora D, Morales M, Arenas J, Blázquez A, Martín MÁ, Domínguez-González C. Comprehensive analysis of GDF15 as a biomarker in primary mitochondrial myopathies. Mol Genet Metab 2025; 144:109023. [PMID: 39854975 DOI: 10.1016/j.ymgme.2025.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND AND OBJECTIVES Mitochondrial diseases are caused by defects in oxidative phosphorylation, with primary mitochondrial myopathies (PMM) being a subset where muscle involvement is predominant. PMM presents symptoms ranging from exercise intolerance to progressive muscle weakness, often involving ocular muscles, leading to ptosis and progressive external ophthalmoplegia (PEO). PMM can be due to variants in mitochondrial or nuclear DNA. Growth differentiation factor 15 (GDF15) has been identified as an accurate biomarker for mitochondrial dysfunction. This study evaluates the utility of GDF15 as a biomarker for monitoring PMM. METHODS This observational study involved 50 adult PMM patients. Clinical data were collected alongside functional motor outcomes measured by the Motor Research Council scale, 6-min walk test, North Star Ambulatory Assessment, and 100-m run test (100MRT). Biomarkers including serum lactate, creatine kinase (CK), creatinine, and plasma GDF15 were assessed. RESULTS Patients exhibited diverse phenotypes, including exercise intolerance (8 %), progressive myopathy (22 %), isolated PEO (24 %), and PEO plus (42 %). Significant correlations were found among motor function tests, with 100MRT being particularly sensitive. Biomarker analysis showed elevated lactate in 32 %, elevated CK in 54 %, reduced creatinine in 76 %, and elevated GDF15 in 86 % of cases. GDF15 levels correlated with motor performance, lactate levels, and mtDNA mutation load in muscle. Creatinine levels were strongly linked to disease severity. DISCUSSION This study underscores the heterogeneity of PMM and the importance of reliable biomarkers. GDF15 was consistently elevated across all PMM phenotypes and genotypes, correlating well with disease severity. Reduced creatinine also emerged as a potential prognostic marker.
Collapse
Affiliation(s)
- Paloma Martín-Jimenez
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Bermejo-Guerrero
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain
| | - María Navarro-Riquelme
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain
| | - Pablo Serrano-Lorenzo
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Garrido-Moraga
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain
| | | | - Ana Hernández-Voth
- Pulmonology Department, Mechanical Ventilation and Neuromuscular Disorders Unit, Hospital 12 de Octubre, Madrid 28041, Spain
| | - David Lora
- Clinical Research Unit, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Department of Statistics and Data Science, Facultad de Estudios Estadísticos, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Montserrat Morales
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Blázquez
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ángel Martín
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Genetics Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
| | - Cristina Domínguez-González
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Yu M, Song M, Zhang M, Chen S, Ni B, Li X, Lei W, Shen Z, Fan Y, Zhang J, Hu S. Mitochondrial Mutation Leads to Cardiomyocyte Hypertrophy by Disruption of Mitochondria-Associated ER Membrane. Cell Prolif 2025:e70002. [PMID: 39981966 DOI: 10.1111/cpr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
m.3243A>G is the most common pathogenic mtDNA mutation. High energy-demanding organs, such as heart, are usually involved in mitochondria diseases. However, whether and how m.3243A>G affects cardiomyocytes remain unknown. We have established patient-specific iPSCs carrying m.3243A>G and induced cardiac differentiation. Cardiomyocytes with high m.3243A>G burden exhibited hypertrophic phenotype. This point mutation is localised in MT-TL1 encoding tRNALeu (UUR). m.3243A>G altered tRNALeu (UUR) conformation and decreased its stability. mtDNA is essential for mitochondrial function. Mitochondria dysfunction occurred and tended to become round. Its interaction with ER, mitochondria-associated ER membrane (MAM), was disrupted with decreased contact number and length. MAM is a central hub for calcium trafficking. Disrupted MAM disturbed calcium homeostasis, which may be the direct and leading cause of cardiomyocyte hypertrophy, as MAM enforcement reversed this pathological state. Considering the threshold effect of mitochondrial disease, mito-TALENs were introduced to eliminate mutant mitochondria and release mutation load. Mutation reduction partially reversed the cellular behaviour and made it approach to that of control one. These findings reveal the pathogenesis underlying m.3243A>G from perspective of organelle interaction, rather than organelle. Beyond mitochondria quality control, its proper interaction with other organelles, such as ER, matters for mitochondria disease. This study may provide inspiration for mitochondria disease intervention.
Collapse
Affiliation(s)
- Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Min Song
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, Shanghai, China
| | - Shuangshuang Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Baoqiang Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuechun Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Stoevesandt D, Schlitt A, Röntgen P, Kraya T. Cardiac manifestations in adult MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes syndrome)- a cross-sectional study. Orphanet J Rare Dis 2025; 20:62. [PMID: 39930534 PMCID: PMC11812182 DOI: 10.1186/s13023-025-03534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025] Open
Abstract
BACKROUND Cardiac involvement has been reported in different mitochondrial geno- and phenotypes, including mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like (MELAS) syndrome. However, cardiac manifestations are diverse and not well described. METHODS We prospectively examined cardiac manifestations in 11 adult patients with MELAS syndrome harboring the MTTL1 m.3243A < G-mutation using patient records, cardiac MRI (1.5 Tesla), echocardiography, electrocardiogram (ECG), laboratory tests of cardiac markers (CK, CK-MB, Trop I, BNP), and clinical severity (NMDAS = Newcastle Mitochondrial Disease Scale). RESULTS Among 11 consecutive patients with MELAS syndrome (73% male, mean age 37.5 ± 10.6 years) cardiac manifestations were found in nine (82%). Pathology was mainly detected using MRI (9 of 11, 82%). Six patients showed diffuse late enhancement in the left ventricle, one a left ventricular ejection fraction (LVEF) below 30%, two with a LVEF in the range of 40-50% in the cardiac MRI, and another five patients presenting diastolic dysfunction as defined by echocardiography. Only one patient with late enhancement on MRI also showed a conduction block in the ECG. There was no correlation between the cardiac manifestations and the NMDAS score or heteroplasmy grade. CONCLUSIONS Cardiac involvement in MELAS syndrome harboring the MTTL1 m.3243A > G mutation mostly entails cardiomyopathy, which was particularly evident in the cardiac MRI. Only one patient (1/11, 9.1%) had conduction defects. Thus, cardiac testing including cardiac MRI, echocardiography and ECG seems to be important for prognosis of MELAS patients.
Collapse
Affiliation(s)
- Dietrich Stoevesandt
- Department of Radiology, University Hospital Halle-Saale, Ernst-Grube Str. 40, 06097, Halle/Saale, Germany.
| | - Axel Schlitt
- Medical Faculty, Martin Luther-University Halle-Wittenberg, Halle/Saale, Germany
- Paracelsus-Harz-Clinic Bad Suderode, Quedlinburg, Germany
| | - Philipp Röntgen
- Department of Radiology, University Hospital Halle-Saale, Ernst-Grube Str. 40, 06097, Halle/Saale, Germany
| | - Torsten Kraya
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube Str. 40, 06097, Halle/Saale, Germany
- Department of Neurology, St Georg Hospital Leipzig, Ernst-Grube Str. 40, 06097, Halle/Saale, Leipzig, Germany
| |
Collapse
|
12
|
Chanoine JP, Thompson DM, Lehman A. Diabetes Associated With Maternally Inherited Diabetes and Deafness (MIDD): From Pathogenic Variant to Phenotype. Diabetes 2025; 74:153-163. [PMID: 39556456 PMCID: PMC11755681 DOI: 10.2337/db24-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
ARTICLE HIGHLIGHTS Maternally inherited diabetes and deafness (MIDD) is a mitochondrial disorder characterized primarily by hearing impairment and diabetes. m.3243A>G, the most common phenotypic variant, causes a complex rewiring of the cell with discontinuous remodeling of both mitochondrial and nuclear genome expressions. We propose that MIDD depends on a combination of insulin resistance and impaired β-cell function that occurs in the presence of high skeletal muscle heteroplasmy (approximately ≥60%) and more moderate cell heteroplasmy (∼25%-72%) for m.3243A>G. Understanding the complex mechanisms of MIDD is necessary to develop disease-specific management guidelines that are presently lacking.
Collapse
Affiliation(s)
- Jean-Pierre Chanoine
- Endocrinology and Diabetes Unit, Department of Pediatrics, BC Children’s Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| | - David M. Thompson
- Division of Endocrinology, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
He D, Liu H, Zhao Y, Wei W, Cai Q, Shi S, Chu X, Zhang N, Qin X, Jia Y, Wen Y, Cheng B, Zhang F. Assessing the Interaction Effects of Mitochondrial DNA Polymorphisms and Lifestyle on Heel Bone Mineral Density. J Clin Endocrinol Metab 2025; 110:e339-e346. [PMID: 38536958 DOI: 10.1210/clinem/dgae195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/22/2025]
Abstract
BACKGROUND Bone mineral density (BMD) is a major predictor of osteoporotic fractures, and previous studies have reported the effects of mitochondrial dysfunction and lifestyle on BMD, respectively. However, their interaction effects on BMD are still unclear. OBJECTIVE We aimed to investigate the possible interaction of mitochondrial DNA (mtDNA) and common lifestyles contributing to osteoporosis. METHODS Our analysis included 119 120 white participants (Nfemale = 65 949 and Nmale = 53 171) from the UK Biobank with heel BMD phenotype data. A generalized linear regression model of PLINK was performed to assess the interaction effects of mtDNA and 5 life environmental factors on heel BMD, including smoking, drinking, physical activity, dietary diversity score, and vitamin D. In addition, we also performed linear regression analysis for total body BMD. Finally, we assessed the potential causal relationships between mtDNA copy number (mtDNA-CN) and life environmental factors using Mendelian randomization (MR) analysis. RESULTS Our study identified 4 mtDNA loci showing suggestive evidence of heel BMD, such as m.16356T>C (MT-DLOOP; P = 1.50 × 10-3) in total samples. Multiple candidate mtDNA × lifestyle interactions were also detected for heel BMD, such as MT-ND2 × physical activity (P = 2.88 × 10-3) in total samples and MT-ND1 × smoking (P = 8.54 × 10-4) in males. Notably, MT-CYB was a common candidate mtDNA loci for heel BMD to interact with 5 life environmental factors. Multivariable MR analysis indicated a causal effect of physical activity on heel BMD when mtDNA-CN was considered (P = 1.13 × 10-3). CONCLUSION Our study suggests the candidate interaction between mtDNA and lifestyles on heel BMD, providing novel clues for exploring the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
14
|
Cao B, Lu H, Liu P, Zhang Y, Wang C. Serum metabolomics signature of maternally inherited diabetes and deafness by gas chromatography-time of flight mass spectrometry. J Diabetes Investig 2025; 16:146-153. [PMID: 39480690 DOI: 10.1111/jdi.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
AIMS/INTRODUCTION The aim of this study was to identify a metabolic signature of MIDD as compared to healthy controls and other types of diabetes. METHODS We performed a comprehensive serum metabolomic analysis using gas chromatography-time of flight mass spectrometry (GC-TOFMS) in participants diagnosed with MIDD (n = 14), latent autoimmune diabetes in adults (LADA) (n = 14), type 2 diabetes mellitus (n = 14), and healthy controls (n = 14). Each group was matched for gender and age. RESULTS There were significant metabolic differences among MIDD and other diabetic and control groups. Compared with control, MIDD patients had high levels of carbohydrates (glucose, galactose, mannose, sorbose, and maltose), fatty acids (2-Hydroxybutyric acid, eicosapentaenoic acid, and octadecanoic acid), and other metabolites (alanine, threonic acid, cholesterol, lactic acid, and gluconic acid), but low level of threonine. Compared with LADA, MIDD patients had high levels of threonic acid and some amino acids (alanine, tryptophan, histidine, proline, glutamine, and creatine) but low levels of serine. Compared with type 2 diabetes mellitus, MIDD patients had high levels of citrulline, creatine, 3-Amino-2-piperidone, but low levels of ornithine, fatty acids (arachidonic acid and octadecanoic acid), and intermediates of the tricarboxylic acid cycle (malic acid and succinic acid). CONCLUSIONS Our study identified a specific metabolic profile related to glycolysis and the tricarboxylic acid cycle in MIDD that differs from healthy controls and other types of diabetes. This unique metabolic signature provides new perspectives for understanding the pathophysiology and underlying mechanisms of MIDD.
Collapse
Affiliation(s)
- Baige Cao
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huijuan Lu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinan Zhang
- The Metabolic Disease Biobank, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Rius R, Compton AG, Baker NL, Balasubramaniam S, Best S, Bhattacharya K, Boggs K, Boughtwood T, Braithwaite J, Bratkovic D, Bray A, Brion MJ, Burke J, Casauria S, Chong B, Coman D, Cowie S, Cowley M, de Silva MG, Delatycki MB, Edwards S, Ellaway C, Fahey MC, Finlay K, Fletcher J, Frajman LE, Frazier AE, Gayevskiy V, Ghaoui R, Goel H, Goranitis I, Haas M, Hock DH, Howting D, Jackson MR, Kava MP, Kemp M, King-Smith S, Lake NJ, Lamont PJ, Lee J, Long JC, MacShane M, Madelli EO, Martin EM, Marum JE, Mattiske T, McGill J, Metke A, Murray S, Panetta J, Phillips LK, Quinn MCJ, Ryan MT, Schenscher S, Simons C, Smith N, Stroud DA, Tchan MC, Tom M, Wallis M, Ware TL, Welch AE, Wools C, Wu Y, Christodoulou J, Thorburn DR. The Australian Genomics Mitochondrial Flagship: A national program delivering mitochondrial diagnoses. Genet Med 2025; 27:101271. [PMID: 39305161 DOI: 10.1016/j.gim.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024] Open
Abstract
PURPOSE Families living with mitochondrial diseases (MD) often endure prolonged diagnostic journeys and invasive testing, yet many remain without a molecular diagnosis. The Australian Genomics Mitochondrial Flagship, comprising clinicians, diagnostic, and research scientists, conducted a prospective national study to identify the diagnostic utility of singleton genomic sequencing using blood samples. METHODS A total of 140 children and adults living with suspected MD were recruited using modified Nijmegen criteria (MNC) and randomized to either exome + mitochondrial DNA (mtDNA) sequencing or genome sequencing. RESULTS Diagnostic yield was 55% (n = 77) with variants in nuclear (n = 37) and mtDNA (n = 18) MD genes, as well as phenocopy genes (n = 22). A nuclear gene etiology was identified in 77% of diagnoses, irrespective of disease onset. Diagnostic rates were higher in pediatric-onset (71%) than adult-onset (31%) cases and comparable in children with non-European (78%) vs European (67%) ancestry. For children, higher MNC scores correlated with increased diagnostic yield and fewer diagnoses in phenocopy genes. Additionally, 3 adult patients had a mtDNA deletion discovered in skeletal muscle that was not initially identified in blood. CONCLUSION Genomic sequencing from blood can simplify the diagnostic pathway for individuals living with suspected MD, especially those with childhood onset diseases and high MNC scores.
Collapse
Affiliation(s)
- Rocio Rius
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia; The University of Melbourne, Melbourne, VIC, Australia
| | - Alison G Compton
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Naomi L Baker
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Shanti Balasubramaniam
- Sydney Children's Hospitals Network, Westmead, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | - Stephanie Best
- The University of Melbourne, Melbourne, VIC, Australia; Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia; Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Kirsten Boggs
- Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Tiffany Boughtwood
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jeffrey Braithwaite
- Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia
| | | | - Alessandra Bray
- Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Marie-Jo Brion
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jo Burke
- Tasmanian Clinical Genetics Service, Hobart, Australia; The University of Tasmania, Hobart, TAS, Australia
| | - Sarah Casauria
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - David Coman
- Queensland Children's Hospital, Brisbane, QLD, Australia; Wesley Hospital, Brisbane, QLD, Australia; University of Queensland, Brisbane, QLD, Australia
| | - Shannon Cowie
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Mark Cowley
- Children's Cancer Institute, University of New South Wales, NSW, Australia
| | - Michelle G de Silva
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Martin B Delatycki
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Carolyn Ellaway
- S1ydney Children's Hospitals Network, Westmead, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | | | - Keri Finlay
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Leah E Frajman
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ann E Frazier
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Roula Ghaoui
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Ilias Goranitis
- The University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Matilda Haas
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Daniella H Hock
- The University of Melbourne, Melbourne, VIC, Australia; Bio 21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia; Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Denise Howting
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Matilda R Jackson
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | | | - Madonna Kemp
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Sarah King-Smith
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Nicole J Lake
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Yale School of Medicine, New Haven, CT
| | - Phillipa J Lamont
- Perth Children's Hospital, Perth, WA, Australia; Royal Perth Hospital, Perth, WA, Australia
| | - Joy Lee
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Royal Children's Hospital, Melbourne, VIC, Australia
| | - Janet C Long
- Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia
| | - Mandi MacShane
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Evanthia O Madelli
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Justine E Marum
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Tessa Mattiske
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jim McGill
- Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Alejandro Metke
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | | | | | | | - Michael C J Quinn
- Australian Genomics, Genetic Health Queensland, Brisbane, QLD, Australia
| | | | | | - Cas Simons
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
| | - Nicholas Smith
- Department of Neurology and Clinical Neurophysiology, Women's and Children's Hospital, Adelaide, SA, Australia; Discipline of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - David A Stroud
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Bio 21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Melanie Tom
- Genetic Health Queensland, Brisbane, QLD, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Hobart, TAS, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia; Royal Hobart Hospital, Hobart, TAS, Australia
| | | | | | | | - You Wu
- The University of Melbourne, Melbourne, VIC, Australia
| | - John Christodoulou
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia.
| | - David R Thorburn
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol 2025; 32:e70014. [PMID: 39831374 PMCID: PMC11744304 DOI: 10.1111/ene.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration. METHODS Medline, Embase, Scopus and Web of Science were searched for articles published from inception until October 2023. Studies focused on mtDNA haplogroups or hereditary pathogenic variants were excluded. Critical appraisal was performed using the Quality Assessment for Diagnostic Accuracy Studies criteria. RESULTS Fifty-nine original studies met our a priori-defined inclusion criteria. The majority of CSF-focused studies showed (i) decreased mtDNA levels in PD and AD; (ii) increased levels in MS compared to controls. No studies evaluated CSF mtDNA in ALS. Results focused on blood cell-free and intracellular mtDNA were contradictory, even within studies evaluating the same disease. This poor reproducibility is likely due to the lack of consideration of the many factors known to affect mtDNA levels. mtDNA damage and methylation levels were increased and reduced in patients compared to controls, respectively. A few studies investigated the correlation between mtDNA and disease severity, with conflicting results. CONCLUSIONS Additional well-designed studies are needed to evaluate CSF and blood mtDNA profiles as putative biomarkers in neurodegenerative diseases. The identification of "mitochondrial subtypes" of disease may enable novel precision medicine strategies to counteract neurodegeneration.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Giada Cuconato
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Alessandro Padovani
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Unit of NeurologyASST Spedali CiviliBresciaItaly
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Massimiliano Filosto
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
17
|
Heath O, Feichtinger RG, Achleitner MT, Hofbauer P, Mayr D, Merkevicius K, Spenger J, Steinbrücker K, Steindl C, Tiefenthaler E, Mayr JA, Wortmann SB. Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know. Eur J Paediatr Neurol 2025; 54:75-88. [PMID: 39793294 DOI: 10.1016/j.ejpn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025]
Abstract
Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms. This holds promise for the development of targeted treatments in this group of patients. Against a backdrop of inherent challenges and recent technological advances in mitochondrial medicine, this review discusses the current diagnostic approach to a child with suspected mitochondrial disease and outlines management considerations of particular relevance to paediatric neurologists. We highlight the importance of mitochondrial expertise centres in providing the laboratory infrastructure needed to supplement uninformative first line genomic testing with focused and/or further unbiased investigations where needed, as well as coordinating an integrated multidisciplinary model of care that is paramount to the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Oliver Heath
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T Achleitner
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Peter Hofbauer
- Department of Production, Landesapotheke Salzburg, Hospital Pharmacy, Salzburg, Austria
| | - Doris Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Kajus Merkevicius
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Johannes Spenger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Katja Steinbrücker
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Carina Steindl
- Institut für Klinische Psychologie der UK für Psychiatrie, Psychotherapie und Psychosomatik der PMU, Salzburg, Austria
| | - Elke Tiefenthaler
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Imasawa T, Murayama K, Hirano D, Nozu K. Comprehensive review of mitochondrial nephropathy-a renal phenotype in mitochondrial disease: causative genes, clinical and pathological features, diagnosis, prognosis, and treatment. Clin Exp Nephrol 2025; 29:39-56. [PMID: 39625678 PMCID: PMC11928409 DOI: 10.1007/s10157-024-02554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Mitochondrial nephropathy is a genetic renal disease characterized by oxidative phosphorylation abnormalities in the mitochondrial respiratory chain in kidney cells, caused by pathogenic gene variants located on mitochondrial or nuclear DNA. Recent advancements in genetic diagnostic techniques and their widespread adoption have led to the identification of various genes associated with mitochondrial nephropathy. This review investigates the causative genes and clinicopathological features of mitochondrial nephropathy, including the various phenotypes and associated complications, and suggests potential pathogenic mechanisms. Furthermore, the diagnostic methods of the disease are explained with particular emphasis on characteristic pathological findings and genetic analysis. We also analyze the available long-term observational prognostic data. Although there is currently no evidence-based treatment for mitochondrial nephropathy, an overview of the existing treatment options is discussed, including future expectations. The choice of renal replacement therapy in cases with progression to end-stage renal disease has also been discussed. Overall, this review highlights the importance of raising awareness about mitochondrial nephropathy and establishing appropriate diagnostic systems to facilitate rapid and effective treatment.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chibahigashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba, 206-8712, Japan.
| | - Kei Murayama
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
19
|
Stenton SL, Laricchia K, Lake NJ, Chaluvadi S, Ganesh V, DiTroia S, Osei-Owusu I, Pais L, O’Heir E, Austin-Tse C, O’Leary M, Abu Shanap M, Barrows C, Berger S, Bönnemann CG, Bujakowska KM, Campagna DR, Compton AG, Donkervoort S, Fleming MD, Gallacher L, Gleeson JG, Haliloglu G, Pierce EA, Place EM, Sankaran VG, Shimamura A, Stark Z, Tan TY, Thorburn DR, White SM, Vilain E, Lek M, Rehm HL, O’Donnell-Luria A. Mitochondrial DNA variant detection in over 6,500 rare disease families by the systematic analysis of exome and genome sequencing data resolves undiagnosed cases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.22.24319370. [PMID: 39763565 PMCID: PMC11703311 DOI: 10.1101/2024.12.22.24319370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Background Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants. Methods Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available. A cohort of 6,660 rare disease families were analyzed (5,625 genetically undiagnosed, 84%) from the Genomics Research to Elucidate the Genetics of Rare diseases (GREGoR) Consortium as well as other rare disease cohorts. Results Diagnostic mtDNA variants were identified in 10 previously genetically undiagnosed families (one large deletion, eight reported pathogenic variants, one novel pathogenic variant). In one additional undiagnosed proband, the detection of >900 heteroplasmic variants provided functional evidence of pathogenicity to a novel de novo variant in the nuclear gene POLG (DNA polymerase gamma), responsible for mtDNA replication and repair. Conclusion mtDNA variant calling from data generated by exome and genome sequencing for nuclear variant analysis resulted in a genetic diagnosis or detection of a candidate variant for 0.4% of undiagnosed families affected by a broad range of rare diseases.
Collapse
Affiliation(s)
- Sarah L. Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Sushma Chaluvadi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Vijay Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Emily O’Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Melanie O’Leary
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Mayada Abu Shanap
- Hematology/Oncology, Bone Marrow Transplantation and Cellular Therapy, Pediatric Department, King Hussein Cancer Centre (KHCC), Amman, Jordan
| | - Chelsea Barrows
- University of California, Department of Neurosciences, San Diego, CA; Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Seth Berger
- Children’s National Research Institute, Washington, DC, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kinga M. Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dean R. Campagna
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alison G. Compton
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Joseph G. Gleeson
- University of California, Department of Neurosciences, San Diego, CA; Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Goknur Haliloglu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emily M. Place
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Akiko Shimamura
- Department of Hematology and Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R. Thorburn
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Susan M. White
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | | | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Gao R, Gu L, Zuo W, Wang P. Long-term prognostic factors and outcomes in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes: a clinical and biochemical marker analysis. Front Neurol 2024; 15:1491283. [PMID: 39697439 PMCID: PMC11652343 DOI: 10.3389/fneur.2024.1491283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Background MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes) is a common subtype of mitochondrial encephalomyopathy. However, few studies have explored the relationship between biochemical markers and prognosis. This study aimed to explore the relationship between clinical and biochemical markers and prognosis of patients with MELAS. Methods This was a retrospective single-center study. A total of 39 MELAS patients were followed for an average of 7.3 ± 4.7 (range 1-21 years). All patients underwent detailed demographic registration, neurological examinations, biochemical and mitochondrial DNA analyses, muscle biopsy. Throughout the follow-up period, the modified Rankin Scale (mRS) scores, recurrent strokes rates, and mortality were tracked. Results All patients initially presented with stroke-like episodes. Of the 39 subjects who were followed, 8 died, primarily due to acute stroke-like episodes and status epilepticus. Univariate analysis showed a higher risk of mortality in patients with severe lactate elevation compared to those with normal and mildly elevated levels (OR = 5.714, 95% CI 1.086-30.071, p = 0.040). While the absence of anemia was associated with a lower risk of death compared to those with anemia (OR = 0.175, 95% CI 0.033-0.921, p = 0.040). In multivariate analysis, severe lactate elevation (OR = 7.279, 95% CI 1.102-48.086, p = 0.039) and anemia (OR = 0.137, 95% CI 0.021-0.908, p = 0.039) were identified as independent predictors of mortality. MRS scores were categorized as follows: 41% of patients scored 0 to 2, 38.5% scored 3 to 5, and 20.5% had a score of 6 or had died. There was a positive correlation between lactic acid levels and MRS scores (r = 0.460, p = 0.003). In contrast, hemoglobin levels were negatively correlated with MRS scores (r = -0.375, p = 0.015). Furthermore, a positive correlation was observed between MRS scores and the frequency of stroke-like episodes (r = 0.280, p = 0.042). Conclusion Our study found that the majority of patients with MELAS had poor clinical outcomes. Anemia and significantly increased lactate levels were identified as indicators of poor prognosis in MELAS. Early intervention may lead to improvements in clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Zhao Y, Zhao X, Ji K, Wang J, Zhao Y, Lin J, Gang Q, Yu M, Yuan Y, Jiang H, Sun C, Fang F, Yan C, Wang Z. The clinical and genetic spectrum of mitochondrial diseases in China: A multicenter retrospective cross-sectional study. Clin Genet 2024; 106:733-744. [PMID: 39118480 DOI: 10.1111/cge.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Mitochondrial diseases (MtDs) present diverse clinical phenotypes, yet large-scale studies are hindered by their rarity. This retrospective, multicenter study, conducted across five Chinese hospitals' neurology departments from 2009 to 2019, aimed to address this gap. Nationwide, 1351 patients were enrolled, with a median onset age of 14.0 (18.5) years. The predominant phenotype was mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) (45.0%). Mitochondrial DNA (mtDNA) mutations were prevalent (87.4%), with m.3243A>G being the most common locus (48.7%). Meanwhile, POLG mutations in nuclear DNA (nDNA) accounted for 16.5%. Comparative analysis based on age groups (with a cut-off at 14 years) revealed the highest prevalence of MELAS, with Leigh syndrome (LS) and chronic progressive external ophthalmoplegia (CPEO) being the second most common phenotypes in junior and senior groups, respectively. Notably, the most commonly mutated nuclear genes varied across age groups. In conclusion, MELAS predominated in this Chinese MtD cohort, underscored by m.3243A>G and POLG as principal mtDNA mutations and pathogenic nuclear genes. The phenotypic and genotypic disparities observed among different age cohorts highlight the complex nature of MtDs.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xutong Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kunqian Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Ambrose A, Bahl S, Sharma S, Zhang D, Hung C, Jain-Ghai S, Chan A, Mercimek-Andrews S. Genetic landscape of primary mitochondrial diseases in children and adults using molecular genetics and genomic investigations of mitochondrial and nuclear genome. Orphanet J Rare Dis 2024; 19:424. [PMID: 39533303 PMCID: PMC11555972 DOI: 10.1186/s13023-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMD) are one of the most common metabolic genetic disorders. They are due to pathogenic variants in the mitochondrial genome (mtDNA) or nuclear genome (nDNA) that impair mitochondrial function and/or structure. We hypothesize that there is overlap between PMD and other genetic diseases that are mimicking PMD. For this reason, we performed a retrospective cohort study. METHODS All individuals with suspected PMD that underwent molecular genetic and genomic investigations were included. Individuals were grouped for comparison: (1) individuals with mtDNA-PMD; (2) individuals with nDNA-PMD; (3) individuals with other genetic diseases mimicking PMD (non-PMD); (4) individuals without a confirmed genetic diagnosis. RESULTS 297 individuals fulfilled inclusion criteria. The diagnostic yield of molecular genetics and genomic investigations was 31.3%, including 37% for clinical exome sequencing and 15.8% for mitochondrial genome sequencing. We identified 71 individuals with PMD (mtDNA n = 41, nDNA n = 30) and 22 individuals with non-PMD. Adults had higher percentage of mtDNA-PMD compared to children (p-value = 0.00123). There is a statistically significant phenotypic difference between children and adults with PMD. CONCLUSION We report a large cohort of individuals with PMD and the diagnostic yield of urine mitochondrial genome sequencing (16.1%). We think liver phenotype might be progressive and should be studied further in PMD. We showed a relationship between non-PMD genes and their indirect effects on mitochondrial machinery. Differentiation of PMD from non-PMD can be achieved using specific phenotypes as there was a statistically significant difference for muscular, cardiac, and ophthalmologic phenotypes, seizures, hearing loss, peripheral neuropathy in PMD group compared to non-PMD group.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shalini Bahl
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Saloni Sharma
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Dan Zhang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shailly Jain-Ghai
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Alicia Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
- Alberta Health Services, Edmonton Zone, AB, Canada.
| |
Collapse
|
23
|
Akamatsu S, Mitsuhashi S, Soga K, Mizukami H, Shiraishi M, Frith MC, Yamano Y. Targeted nanopore sequencing using the Flongle device to identify mitochondrial DNA variants. Sci Rep 2024; 14:25161. [PMID: 39448697 PMCID: PMC11502840 DOI: 10.1038/s41598-024-75749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Variants in mitochondrial genomes (mtDNA) can cause various neurological and mitochondrial diseases such as mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS). Given the 16 kb length of mtDNA, continuous sequencing is feasible using long-read sequencing (LRS). Herein, we aimed to show a simple and accessible method for comprehensive mtDNA sequencing with potential diagnostic applications for mitochondrial diseases using the compact and affordable LRS flow cell "Flongle." Whole mtDNA amplification (WMA) was performed using genomic DNA samples derived from four patients with mitochondrial diseases, followed by LRS using Flongle. We compared these results to those obtained using Cas9 enrichment. Additionally, the accuracy of heteroplasmy rates was assessed by incorporating mtDNA variants at equimolar levels. Finally, mtDNA from 19 patients with Parkinson's disease (PD) was sequenced using Flongle to identify disease risk-associated variants. mtDNA variants were detected in all four patients with mitochondrial diseases, with results comparable to those obtained from Cas9 enrichment. Heteroplasmy levels were accurately detected (r2 > 0.99) via WMA using Flongle. A reported variant was identified in three patients with PD. In conclusion, Flongle can simplify the traditionally cumbersome and expensive mtDNA sequencing process, offering a streamlined and accessible approach to diagnosing mitochondrial diseases.
Collapse
Affiliation(s)
- Shintaro Akamatsu
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
| | - Kaima Soga
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Heisuke Mizukami
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Makoto Shiraishi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
24
|
Fu Y, Land M, Cui R, Kavlashvili T, Kim M, Lieber T, Ryu KW, DeBitetto E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA Deletions by Reconstituting End-Joining in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618543. [PMID: 39463974 PMCID: PMC11507875 DOI: 10.1101/2024.10.15.618543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled the precise introduction of base substitutions and the effective removal of genomes carrying harmful mutations. However, the reconstitution of mtDNA deletions responsible for severe mitochondrial myopathies and age-related diseases has not yet been achieved in human cells. Here, we developed a method to engineer specific mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. As a proof-of-concept, we used mito-EJ and mito-ScaI to generate a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion with the full spectrum of heteroplasmy. Investigating these isogenic cells revealed a critical threshold of ∼75% deleted genomes, beyond which cells exhibited depletion of OXPHOS proteins, severe metabolic disruption, and impaired growth in galactose-containing media. Single-cell multiomic analysis revealed two distinct patterns of nuclear gene deregulation in response to mtDNA deletion accumulation; one triggered at the deletion threshold and another progressively responding to increasing heteroplasmy. In summary, the co-expression of mito-EJ and programable nucleases provides a powerful tool to model disease-associated mtDNA deletions in different cell types. Establishing a panel of cell lines with a large-scale deletion at varying levels of heteroplasmy is a valuable resource for understanding the impact of mtDNA deletions on diseases and guiding the development of potential therapeutic strategies. Highlights Combining prokaryotic end-joining with targeted endonucleases generates specific mtDNA deletions in human cellsEngineering a panel of cell lines with a large-scale deletion that spans the full spectrum of heteroplasmy75% heteroplasmy is the threshold that triggers mitochondrial and cellular dysfunctionTwo distinct nuclear transcriptional programs in response to mtDNA deletions: threshold-triggered and heteroplasmy-sensing.
Collapse
|
25
|
Büyükyılmaz G, İnözü M, Çavdarlı B. A case with short stature and proteinuria: atypical presentation of a family with m.3243A>G mutation. Turk J Pediatr 2024; 66:490-498. [PMID: 39387423 DOI: 10.24953/turkjpediatr.2024.4702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The mitochondrial DNA (mtDNA) m.3243A>G mutation is one of the most common pathogenic mtDNA variants. The phenotypes associated with this mutation range from asymptomatic induviduals to well-defined clinical syndromes, or non-syndromic mitochondrial disorders. Variable clinical features in pediatric cases may cause difficulty in diagnosis. Kidney involvement in this mutation is uncommon and reported on a case-by-case basis. Here, we report on a patient with m.3243A>G mutation, who presented with short stature and proteinuria, and his family, who share the same genotype but exhibit different heteroplasmy levels in different tissues and variable phenotypes. CASE PRESENTATION A 15-year-old male patient was admitted to the pediatric endocrinology department with short stature. His examinations revealed nephrotic range proteinuria, hearing loss, impaired glucose tolerance, and Wolf-Parkinson-White syndrome. From family history, it was learned that diabetes mellitus (DM) and progressive sensorineural hearing loss were common in this family. The patient's mother, who had chronic kidney disease, DM, and hearing loss, had died suddenly for an unknown reason. Considering the family history, a genetic analysis was performed for mitochondrial disease. Mitochondrial DNA analysis revealed a m.3243A>G mutation with 47% heteroplasmy in blood, 62% heteroplasmy in buccal cells, and 96% heteroplasmy in urothelial cells in our patient. CONCLUSIONS Short stature without any other complaint and renal involvement are rare findings in m.3243A>G mutation. In patients presenting with proteinuria, in the presence of conditions affecting many systems such as endocrine system pathologies, hearing loss, and cardiac pathologies, and in the presence of individuals with a similar family history of multiple organ involvement, mitochondrial diseases should be considered, and examined from this perspective. Our case illustrates the value of a detailed medical and family history.
Collapse
Affiliation(s)
- Gönül Büyükyılmaz
- Department of Pediatric Endocrinology, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Mihriban İnözü
- Department of Pediatric Nephrology, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Büşranur Çavdarlı
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
26
|
Kelly C, Trumpff C, Acosta C, Assuras S, Baker J, Basarrate S, Behnke A, Bo K, Bobba-Alves N, Champagne FA, Conklin Q, Cross M, De Jager P, Engelstad K, Epel E, Franklin SG, Hirano M, Huang Q, Junker A, Juster RP, Kapri D, Kirschbaum C, Kurade M, Lauriola V, Li S, Liu CC, Liu G, McEwen B, McGill MA, McIntyre K, Monzel AS, Michelson J, Prather AA, Puterman E, Rosales XQ, Shapiro PA, Shire D, Slavich GM, Sloan RP, Smith JLM, Spann M, Spicer J, Sturm G, Tepler S, de Schotten MT, Wager TD, Picard M. A platform to map the mind-mitochondria connection and the hallmarks of psychobiology: the MiSBIE study. Trends Endocrinol Metab 2024; 35:884-901. [PMID: 39389809 PMCID: PMC11555495 DOI: 10.1016/j.tem.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024]
Abstract
Health emerges from coordinated psychobiological processes powered by mitochondrial energy transformation. But how do mitochondria regulate the multisystem responses that shape resilience and disease risk across the lifespan? The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study was established to address this question and determine how mitochondria influence the interconnected neuroendocrine, immune, metabolic, cardiovascular, cognitive, and emotional systems among individuals spanning the spectrum of mitochondrial energy transformation capacity, including participants with rare mitochondrial DNA (mtDNA) lesions causing mitochondrial diseases (MitoDs). This interdisciplinary effort is expected to generate new insights into the pathophysiology of MitoDs, provide a foundation to develop novel biomarkers of human health, and integrate our fragmented knowledge of bioenergetic, brain-body, and mind-mitochondria processes relevant to medicine and public health.
Collapse
Affiliation(s)
- Catherine Kelly
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carlos Acosta
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Assuras
- Department of Clinical Neuropsychology, Division of Cognitive Neuroscience, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Baker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sophia Basarrate
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander Behnke
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Natalia Bobba-Alves
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Quinn Conklin
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Marissa Cross
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip De Jager
- Center for Translational and Computational Neuroimmunology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kris Engelstad
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Elissa Epel
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Soah G Franklin
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada
| | - Darshana Kapri
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Clemens Kirschbaum
- Faculty of Psychology, Institute of Biopsychology, Technical University Dresden, Dresden, Germany
| | - Mangesh Kurade
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Lauriola
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shufang Li
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Cynthia C Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Bruce McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Marlon A McGill
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kathleen McIntyre
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Aric A Prather
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiomara Q Rosales
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Peter A Shapiro
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Consultation-Liaison Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard P Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Janell L M Smith
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Marisa Spann
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Sturm
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sophia Tepler
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA; Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
27
|
Korotkevich E, Conrad DN, Gartner ZJ, O’Farrell PH. Selection promotes age-dependent degeneration of the mitochondrial genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615276. [PMID: 39386732 PMCID: PMC11463671 DOI: 10.1101/2024.09.27.615276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Somatic mutations in mitochondrial genomes (mtDNA) accumulate exponentially during aging. Using single cell sequencing, we characterize the spectrum of age-accumulated mtDNA mutations in mouse and human liver and identify directional forces that accelerate the accumulation of mutations beyond the rate predicted by a neutral model. "Driver" mutations that give genomes a replicative advantage rose to high cellular abundance and carried along "passenger" mutations, some of which are deleterious. In addition, alleles that alter mtDNA-encoded proteins selectively increased in abundance overtime, strongly supporting the idea of a "destructive" selection that favors genomes lacking function. Overall, this combination of selective forces acting in hepatocytes promotes somatic accumulation of mutations in coding regions of mtDNA that are otherwise conserved in evolution. We propose that these selective processes could contribute to the population prevalence of mtDNA mutations, accelerate the course of heteroplasmic mitochondrial diseases and promote age-associated erosion of the mitochondrial genome.
Collapse
Affiliation(s)
- Ekaterina Korotkevich
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Daniel N. Conrad
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Patrick H. O’Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
28
|
Majamaa K, Kärppä M, Moilanen JS. Neurological manifestations in adult patients with the m.3243A>G variant in mitochondrial DNA. BMJ Neurol Open 2024; 6:e000825. [PMID: 39324021 PMCID: PMC11423728 DOI: 10.1136/bmjno-2024-000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
ABSTRACT Background The m.3243A>G variant in mitochondrial DNA (mtDNA) is the most common cause of the MELAS (Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) syndrome usually commencing in childhood or adolescence. In adults, the variant presents with versatile and mostly neurological phenotypes, but MELAS may not be common. Objective To examine the frequency of phenotypes in adults with m.3243A>G in a population-based cohort and in a meta-analysis of reported case series. Methods We clinically examined 51 adult patients with m.3243A>G to determine the frequency of phenotypes and to analyse the contribution of variant heteroplasmy, age, sex and mtDNA haplogroup to the phenotypes. The frequencies of neurological features were also assessed in a meta-analysis on 25 published case series reporting 1314 patients. Results Sensorineural hearing impairment (HI), cognitive impairment and myopathy were the most common manifestations, whereas stroke-like episodes were infrequent. Variant heteroplasmy and age were only modest predictors of the phenotypes, although heteroplasmy correlated significantly with disability and Kaplan-Meier analysis showed progression of phenotypes with age. Male sex predicted more severe disability, whereas haplogroup UK was associated with no significant disability. Meta-analysis revealed substantial heterogeneity of phenotype frequencies and preferential inclusion of the MELAS phenotype. Discussion In adult patients with m.3243A>G sensorineural HI, cognitive impairment and myopathy are common manifestations with lifetime prevalences approaching unity. Stroke-like episodes are rare. Variant heteroplasmy, age, sex and mtDNA haplogroup contribute to the severity of the disease. Meta-analysis provided a solid estimate of the various neurological symptoms in adults with m.3243A>G.
Collapse
Affiliation(s)
- Kari Majamaa
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu and Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu and Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Jukka S Moilanen
- Research Unit of Clinical Medicine, Clinical Genetics, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
29
|
Tamvaka N, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Parfitt F, Graff-Radford MR, Wszolek ZK, Graff-Radford N, Valentino RR, Ross OA. Associations of mitochondrial genomic variation with successful neurological aging. Mitochondrion 2024; 78:101948. [PMID: 39179138 DOI: 10.1016/j.mito.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Mitochondrial health is an integral factor in aging, with mitochondrial dysfunction known to increase with age and contribute to the development of age-related neurodegenerative disorders. Additionally, the mitochondrial genome (mtDNA) has been shown to acquire potentially damaging somatic variation as part of the aging process, while mtDNA single nucleotide polymorphism (SNPs) have been shown to be both protective and detrimental for various neurodegenerative diseases. Yet, little is known about the involvement of mtDNA variation in longevity and successful neurological aging. In this study, we examined the association of mtDNA SNPs, in the form of mitochondrial haplogroups, with successful neurological aging in 1,405 unrelated neurologically healthy subjects. Although not quite significant after correcting for multiple testing (P < 0.0017 considered as significant), we detected a nominally significant association between the I haplogroup (N = 45, 3.2 %) and a younger age (β: -5.00, P = 0.006), indicating that this haplogroup is observed less frequently in older neurologically healthy individuals and may be associated with decreased survival. Replication of this finding in independent neurologically healthy cohorts will be imperative for shaping our understanding of the biological processes underlying healthy neurological aging.
Collapse
Affiliation(s)
- Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francine Parfitt
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Department of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Sazonova MA, Kirichenko TV, Ryzhkova AI, Sazonova MD, Doroschuk NA, Omelchenko AV, Nikiforov NG, Ragino YI, Postnov AY. Variability of Mitochondrial DNA Heteroplasmy: Association with Asymptomatic Carotid Atherosclerosis. Biomedicines 2024; 12:1868. [PMID: 39200332 PMCID: PMC11351276 DOI: 10.3390/biomedicines12081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Background and Objectives: Atherosclerosis is one of the main reasons for cardiovascular disease development. This study aimed to analyze the association of mtDNA mutations and atherosclerotic plaques in carotid arteries of patients with atherosclerosis and conditionally healthy study participants from the Novosibirsk region. Methods: PCR fragments of DNA containing the regions of 10 investigated mtDNA mutations were pyrosequenced. The heteroplasmy levels of mtDNA mutations were analyzed using a quantitative method based on pyrosequencing technology developed by M. A. Sazonova and colleagues. Results: In the analysis of samples of patients with atherosclerotic plaques of the carotid arteries and conditionally healthy study participants from the Novosibirsk region, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected. A west-east gradient was found in the distribution of the mtDNA mutations m.5178C>A, m.3256C>T, m.652insG, and m.13513G>A. Conclusions: Therefore, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A, and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected in patients with atherosclerotic plaques in their carotid arteries from the Novosibirsk region.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Natalya A. Doroschuk
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Andrey V. Omelchenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Yulia I. Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630089, Russia;
| | - Anton Yu. Postnov
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| |
Collapse
|
31
|
Walker MA, Li S, Livak KJ, Karaa A, Wu CJ, Mootha VK. T cell activation contributes to purifying selection against the MELAS-associated m.3243A>G pathogenic variant in blood. J Inherit Metab Dis 2024; 47:757-765. [PMID: 38499449 PMCID: PMC11251844 DOI: 10.1002/jimd.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
T cells have been shown to maintain a lower percentage (heteroplasmy) of the pathogenic m.3243A>G variant (MT-TL1, associated with maternally inherited diabetes and deafness [MIDD] and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes [MELAS]). The mechanism(s) underlying this purifying selection, however, remain unknown. Here we report that purified patient memory CD4+ T cells have lower bulk m.3243A>G heteroplasmy compared to naïve CD4+ T cells. In vitro activation of naïve CD4+ m.3243A>G patient T cells results in lower bulk m.3243A>G heteroplasmy after proliferation. Finally, m.3243A>G patient T cell receptor repertoire sequencing reveals relative oligoclonality compared to controls. These data support a role for T cell activation in peripheral, purifying selection against high m.3243A>G heteroplasmy T cells at the level of the cell, in a likely cell-autonomous fashion.
Collapse
Affiliation(s)
- Melissa A Walker
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute and the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amel Karaa
- Department of Pediatrics, Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
33
|
Bury A, Pyle A, Vincent AE, Actis P, Hudson G. Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues. Sci Rep 2024; 14:13789. [PMID: 38877095 PMCID: PMC11178779 DOI: 10.1038/s41598-024-64455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Alexander Bury
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, Leeds, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK.
- Bragg Centre for Materials Research, Leeds, UK.
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| |
Collapse
|
34
|
de Muijnck C, van Schooneveld MJ, Plomp AS, Rodenburg RJ, van Genderen MM, Boon CJ. Leber's hereditary optic neuropathy like disease in MT-ATP6 variant m.8969G>A. Am J Ophthalmol Case Rep 2024; 34:102070. [PMID: 38756953 PMCID: PMC11096717 DOI: 10.1016/j.ajoc.2024.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose To describe a case with Leber's hereditary optic neuropathy (LHON) like optic atrophy in the presence of MT-ATP6 gene variant m.8969G > A. Observations A 20-year-old patient with a history of mild developmental delay, mild cognitive impairment, and positional tremor presented with subacute painless visual loss over a few weeks. Mitochondrial genome sequencing revealed a variant in MT-ATP6, m.8969G > A (p.Ser148Asn). This variant was previously reported in association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia (MLASA) and with nephropathy, followed by brain atrophy, muscle weakness and arrhythmias, but not with optic atrophy. Conclusions and importance Rare variants in MT-ATP6 can also cause LHON like optic atrophy. It is important to perform further genetic analysis of mitochondrial DNA in genetically unsolved cases suspected of Leber's hereditary optic neuropathy to confirm the clinical diagnosis.
Collapse
Affiliation(s)
- Cansu de Muijnck
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Mary J. van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Astrid S. Plomp
- Department of Human Genetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine, Departments of Pediatrics and Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maria M. van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
35
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
36
|
Kim M, Gorelick AN, Vàzquez-García I, Williams MJ, Salehi S, Shi H, Weiner AC, Ceglia N, Funnell T, Park T, Boscenco S, O'Flanagan CH, Jiang H, Grewal D, Tang C, Rusk N, Gammage PA, McPherson A, Aparicio S, Shah SP, Reznik E. Single-cell mtDNA dynamics in tumors is driven by coregulation of nuclear and mitochondrial genomes. Nat Genet 2024; 56:889-899. [PMID: 38741018 PMCID: PMC11096122 DOI: 10.1038/s41588-024-01724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.
Collapse
Affiliation(s)
- Minsoo Kim
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, New York City, NY, USA
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alexander N Gorelick
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ignacio Vàzquez-García
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Nick Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Tyler Funnell
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Tricia Park
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sonia Boscenco
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ciara H O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Hui Jiang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diljot Grewal
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Cerise Tang
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Nicole Rusk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Payam A Gammage
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Beatson Institute, Glasgow, UK
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sam Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Ed Reznik
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| |
Collapse
|
37
|
Kotrys AV, Durham TJ, Guo XA, Vantaku VR, Parangi S, Mootha VK. Single-cell analysis reveals context-dependent, cell-level selection of mtDNA. Nature 2024; 629:458-466. [PMID: 38658765 PMCID: PMC11078733 DOI: 10.1038/s41586-024-07332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.
Collapse
Affiliation(s)
- Anna V Kotrys
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoyan A Guo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Venkata R Vantaku
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
38
|
Qiu J, Wu H, Xie Q, Zhou Y, Gao Y, Liu J, Jiang X, Suo L, Kuang Y. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner. Front Bioeng Biotechnol 2024; 12:1372211. [PMID: 38655388 PMCID: PMC11035818 DOI: 10.3389/fbioe.2024.1372211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Mitochondrial diseases caused by mtDNA have no effective cures. Recently developed DddA-derived cytosine base editors (DdCBEs) have potential therapeutic implications in rescuing the mtDNA mutations. However, the performance of DdCBEs relies on designing different targets or improving combinations of split-DddA halves and orientations, lacking knowledge of predicting the results before its application. Methods: A series of DdCBE pairs for wide ranges of aC or tC targets was constructed, and transfected into Neuro-2a cells. The mutation rate of targets was compared to figure out the potential editing rules. Results: It is found that DdCBEs mediated mtDNA editing is predictable: 1) aC targets have a concentrated editing window for mtDNA editing in comparison with tC targets, which at 5'C8-11 (G1333) and 5'C10-13 (G1397) for aC target, while 5'C4-13 (G1333) and 5'C5-14 (G1397) for tC target with 16bp spacer. 2) G1333 mediated C>T conversion at aC targets in DddA-half-specific manner, while G1333 and G1397 mediated C>T conversion are DddA-half-prefer separately for tC and aC targets. 3) The nucleotide adjacent to the 3' end of aC motif affects mtDNA editing. Finally, by the guidance of these rules, a cell model harboring a pathogenic mtDNA mutation was constructed with high efficiency and no bystander effects. Discussion: In summary, this discovery helps us conceive the optimal strategy for accurate mtDNA editing, avoiding time- and effort-consuming optimized screening jobs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Matsumoto S, Uchiumi T, Noda N, Ueyanagi Y, Hotta T, Kang D. Droplet digital polymerase chain reaction to measure heteroplasmic m.3243A>G mitochondrial mutations. Lab Med 2024; 55:227-233. [PMID: 37478467 PMCID: PMC10920975 DOI: 10.1093/labmed/lmad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVE Different mitochondrial DNA genotypes can coexist in a cell population as well as in a single cell, a condition known as heteroplasmy. Here, we accurately determined the heteroplasmy levels of the m.3243A>G mutation, which is the most frequently identified mutation in patients with mitochondrial diseases, using droplet digital polymerase chain reaction (ddPCR). METHODS The m.3243A>G heteroplasmy levels in artificial heteroplasmy controls mixed with various proportions of wild-type and mutant plasmids were measured using ddPCR, PCR-restriction fragment length polymorphism, and Sanger sequencing. The m.3243A>G heteroplasmy levels in DNA, extracted from the peripheral blood of patients with suspected mitochondrial disease and healthy subjects, were determined using ddPCR. RESULTS The accuracy of the ddPCR method was high. The lower limit of detection was 0.1%, which indicated its higher sensitivity compared with other methods. The m.3243A>G heteroplasmy levels in peripheral blood, measured using ddPCR, correlated inversely with age at the time of analysis. The m.3243A>G mutation may be overlooked in the peripheral blood-derived DNA of elderly people, as patients >60 years of age have heteroplasmy levels <10%, which is difficult to detect using methods other than the highly sensitive ddPCR. CONCLUSION ddPCR may be considered an accurate and sensitive method for measuring m.3243 A>G heteroplasmy levels of mitochondrial DNA.
Collapse
Affiliation(s)
- Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Noda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Taeko Hotta
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
40
|
Chen D, Yan Z, Yuan Q, Xie F, Liu Y, Feng Z, Wang Z, Zhou F, Xing J, Zhang Z, Wang F, Guo X. Mitochondrial DNA Haplogroups and SNPs: Risk Factors in Multiple Cancers Based on a Cross-Tumor Analysis in Chinese Population. Cancer Epidemiol Biomarkers Prev 2024; 33:381-388. [PMID: 38214580 DOI: 10.1158/1055-9965.epi-23-1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/22/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Mitochondrial DNA's (mtDNA) haplogroups and SNPs were associated with the risk of different cancer. However, there is no evidence that the same haplogroup or mitochondrial SNP (mtSNP) exhibits the pleiotropic effect on multiple cancers. METHODS We recruited 2,489 participants, including patients with colorectal, hepatocellular, lung, ovarian, bladder, breast, pancreatic, and renal cell carcinoma. In addition, 715 healthy individuals from Northern China served as controls. Next, cross-tumor analysis was performed to determine whether mtDNA variation is associated with multiple cancers. RESULTS Our results revealed a significant decrease in the occurrence risk of multiple cancers among individuals belonging to haplogroup A [OR = 0.553, 95% confidence interval (CI) = 0.375-0.815, P = 0.003]. Furthermore, we identified 11 mtSNPs associated with multiple cancers and divided the population into high-risk and low-risk groups. Low-risk groups showed a significantly reduced risk of occurrence compared with high-risk groups (OR = 0.614, 95% CI = 0.507-0.744, P < 0.001). Furthermore, using interaction analysis, we identified a special group of individuals belonging to haplogroup A/M7 and the low-risk population, who exhibit a lower risk of multiple cancers compared with other populations (OR = 0.195, 95% CI = 0.106-0.359, P < 0.001). Finally, gene set enrichment analysis confirmed that haplogroup A/M7 patients had lower expression levels of cancer-related pathway genes compared with haplogroup D patients. CONCLUSIONS We found that specific mtDNA haplogroups and mtSNPs may play a role in predicting multiple cancer predisposition in Chinese populations. IMPACT This may provide a potential tool for early screening in clinical settings for individuals in the Chinese population.
Collapse
Affiliation(s)
- Dongbo Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zeyu Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Qing Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Fanfan Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zehui Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhenni Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Feng Zhou
- Department of General Surgery, the 71st Group Army Hospital of the People's Liberation Army, Xuzhou, Jiangsu, P.R. China
| | - Jinliang Xing
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhaohui Zhang
- Department of General Surgery, the 71st Group Army Hospital of the People's Liberation Army, Xuzhou, Jiangsu, P.R. China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
41
|
Sanchez-Lechuga B, Salvucci M, Ng N, Kinsley B, Hatunic M, Kennelly M, Edwards J, Fleming A, Byrne B, Byrne MM. A retrospective cohort study evaluating pregnancy outcomes in women with MIDD. Acta Diabetol 2024; 61:323-331. [PMID: 37907768 DOI: 10.1007/s00592-023-02202-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
AIMS The most common pathogenic mitochondrial mutation associated with mitochondrial disease is m.3243A>G. Increased obstetric complications, such as spontaneous abortion, gestational diabetes (GDM), preterm delivery, and preeclampsia, have been reported in women carrying this mutation. We aimed to determine the fetal and maternal outcomes in pregnant women with mitochondrial disease. METHODS We retrospectively studied the obstetric and perinatal outcomes in 88 pregnancies of 26 women with genetically confirmed mitochondrial disease (m.3243A>G in the MTTL1 gene (n = 25); m.12258C>A in the MT-TS2 gene (n = 1)). Outcomes included pregnancy related complications, mode of delivery, gestational age at delivery and birthweight. RESULTS Mean heteroplasmy rate was 18%. The miscarriage rate was higher than background at 25%. 21 pregnancies (24%) were complicated by GDM; 9 pregnancies (13.6%) had a preterm delivery and 2 of them (3%) an extreme premature delivery < 32 weeks. One woman had preeclampsia and one had a postpartum hemorrhage. The caesarean section (CS) rate was 20%. For every unit increase in maternal heteroplasmy levels there was a 26% increased risk of undergoing an assisted operative vaginal delivery (OR 1.26, 95% CI 1.04-1.53, P = 0.002, Bonferroni corrected P = 0.005) and an 18% increased risk of undergoing a CS (OR 1.18, 95% CI 1.01-1.39, P = 0.01, Bonferroni corrected P = 0.03) compared to a spontaneous vaginal delivery. There was a statistical significant correlation between maternal and offspring heteroplasmy levels. Spearman correlation rho = 0.96, 95% CI 0.78-0.99, P = 0.0002. CONCLUSION Women with mitochondrial disease appear to have more frequent obstetric complications including miscarriage and GDM. Pre-pregnancy diagnosis of m.3243A>G will enable the counseling of women and increase awareness of possible obstetric complications.
Collapse
Affiliation(s)
- B Sanchez-Lechuga
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland.
- Rotunda Maternity Hospital, Dublin, Ireland.
| | - M Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - N Ng
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
- Rotunda Maternity Hospital, Dublin, Ireland
| | - B Kinsley
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
- Coombe Women and Infants University Hospital, Dublin, Ireland
| | - M Hatunic
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
- National Maternity Hospital, Dublin, Ireland
| | - M Kennelly
- Rotunda Maternity Hospital, Dublin, Ireland
| | - J Edwards
- Rotunda Maternity Hospital, Dublin, Ireland
| | - A Fleming
- Rotunda Maternity Hospital, Dublin, Ireland
| | - B Byrne
- Coombe Women and Infants University Hospital, Dublin, Ireland
| | - M M Byrne
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
- Rotunda Maternity Hospital, Dublin, Ireland
| |
Collapse
|
42
|
Spinazzola A, Perez-Rodriguez D, Ježek J, Holt IJ. Mitochondrial DNA competition: starving out the mutant genome. Trends Pharmacol Sci 2024; 45:225-242. [PMID: 38402076 DOI: 10.1016/j.tips.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK.
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Jan Ježek
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK; Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE (Basque Foundation for Science), 48013 Bilbao, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain; Universidad de País Vasco, Barrio Sarriena s/n, 48940 Leioa, Bilbao, Spain.
| |
Collapse
|
43
|
Acquaah J, Ferdinand P, Roffe C. Adult-onset mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS): a diagnostic challenge. BMJ Case Rep 2024; 17:e256306. [PMID: 38413140 PMCID: PMC10900328 DOI: 10.1136/bcr-2023-256306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Rare causes of stroke-like presentations can be difficult to diagnose. We report a case of a man in his 40s who first presented with stroke symptoms, but whose clinical course was not typical for a stroke. A detailed investigation of the patient's medical history revealed bilateral sensorineural hearing loss which prompted a wider diagnostic assessment.Furthermore, lack of vascular risk factors and a normal angiogram strengthened our suspicion of an unusual underlying condition. Raised lactic acid levels and genetic analysis confirmed a diagnosis of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome.
Collapse
Affiliation(s)
- Jason Acquaah
- Neurosciences, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Phillip Ferdinand
- Neurosciences, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Christine Roffe
- Neurosciences, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
- Stroke Research, Keele University School of Medicine, Keele, UK
| |
Collapse
|
44
|
Cannon SJ, Hall T, Hawkes G, Colclough K, Boggan RM, Wright CF, Pickett SJ, Hattersley AT, Weedon MN, Patel KA. Penetrance and expressivity of mitochondrial variants in a large clinically unselected population. Hum Mol Genet 2024; 33:465-474. [PMID: 37988592 PMCID: PMC10877468 DOI: 10.1093/hmg/ddad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Whole genome sequencing (WGS) from large clinically unselected cohorts provides a unique opportunity to assess the penetrance and expressivity of rare and/or known pathogenic mitochondrial variants in population. Using WGS from 179 862 clinically unselected individuals from the UK Biobank, we performed extensive single and rare variant aggregation association analyses of 15 881 mtDNA variants and 73 known pathogenic variants with 15 mitochondrial disease-relevant phenotypes. We identified 12 homoplasmic and one heteroplasmic variant (m.3243A>G) with genome-wide significant associations in our clinically unselected cohort. Heteroplasmic m.3243A>G (MAF = 0.0002, a known pathogenic variant) was associated with diabetes, deafness and heart failure and 12 homoplasmic variants increased aspartate aminotransferase levels including three low-frequency variants (MAF ~0.002 and beta~0.3 SD). Most pathogenic mitochondrial disease variants (n = 66/74) were rare in the population (<1:9000). Aggregated or single variant analysis of pathogenic variants showed low penetrance in unselected settings for the relevant phenotypes, except m.3243A>G. Multi-system disease risk and penetrance of diabetes, deafness and heart failure greatly increased with m.3243A>G level ≥ 10%. The odds ratio of these traits increased from 5.61, 12.3 and 10.1 to 25.1, 55.0 and 39.5, respectively. Diabetes risk with m.3243A>G was further influenced by type 2 diabetes genetic risk. Our study of mitochondrial variation in a large-unselected population identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected settings. m.3243A>G was an exception at higher heteroplasmy showing a significant impact on health making it a good candidate for incidental reporting.
Collapse
Affiliation(s)
- Stuart J Cannon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Timothy Hall
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kevin Colclough
- Exeter Genomics Laboratory, RILD Building, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Roisin M Boggan
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| |
Collapse
|
45
|
Kelly C, Junker A, Englestad K, Hirano M, Trumpff C, Picard M. Perceived association of mood and symptom severity in adults with mitochondrial diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302076. [PMID: 38352338 PMCID: PMC10862998 DOI: 10.1101/2024.02.02.24302076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Individuals with genetic mitochondrial diseases suffer from multisystemic symptoms that vary in severity from day-to-day and week-to-week, but the underlying causes of symptomatic fluctuations are not understood. Based upon observations that: i) patients and their families frequently report that stressful life events either trigger exacerbations of existing symptoms or the onset of new symptoms, ii) psychological states and stress hormones influence mitochondrial energy production capacity, and iii) epidemiological reports document a robust connection between traumatic/stressful life events and various neurologic disorders, we hypothesized that mitochondrial disease symptom severity may vary according to participant's mood. To investigate this we administered the Stress, Health and Emotion Survey (SHES) in 70 adults (majority white (84%) cisgender women (83%), ages 18-74) with self-reported mitochondrial diseases (MELAS, 18%; CPEO, 17%; Complex I deficiency, 13%). Participants rated the severity of each of their symptom(s) over the past year on either good or bad days. On days marked by more stress, sadness and other negative emotions, some but not all symptoms were reported to be worse, including fatigue, exercise intolerance, brain fog, and fine motor coordination. By contrast, on days marked by happiness and calmness, participants reported these and other symptoms to be better, or less severe. Other symptoms including diminished sweating, hearing problems, and dystonia were in general unrelated to mood. Thus, some individuals living with mitochondrial diseases, at times perceive a connection between their mood and symptom severity. These preliminary associative results constitute an initial step towards developing more comprehensive models of the factors that influence the clinical course of mitochondrial diseases.
Collapse
Affiliation(s)
- Catherine Kelly
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alex Junker
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kris Englestad
- Department of Neurology, H. Houston Merritt Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- New York State Psychiatric Institute, New York, NY 10032, USA
- Robert N Butler Columbia Aging Center, Mailman School of Public Health, New York, NY 10032, USA
| |
Collapse
|
46
|
Mack HG, Milea D, Thyagarajan D, Fagan X. Reply: Stroke-like episode of the optic nerve. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:e78. [PMID: 38280822 DOI: 10.1016/j.jcjo.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Affiliation(s)
- Heather G Mack
- Melbourne Medical School, University of Melbourne, Melbourne, Australia; Melbourne Health, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute and Duke-NUS, Singapore
| | | | - Xavier Fagan
- Centre for Eye Research Australia, Melbourne, Australia; Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
47
|
Korolija M, Sukser V, Vlahoviček K. Mitochondrial point heteroplasmy: insights from deep-sequencing of human replicate samples. BMC Genomics 2024; 25:48. [PMID: 38200446 PMCID: PMC10782721 DOI: 10.1186/s12864-024-09963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Human mitochondrial heteroplasmy is an extensively investigated phenomenon in the context of medical diagnostics, forensic identification and molecular evolution. However, technical limitations of high-throughput sequencing hinder reliable determination of point heteroplasmies (PHPs) with minor allele frequencies (MAFs) within the noise threshold. RESULTS To investigate the PHP landscape at an MAF threshold down to 0.1%, we sequenced whole mitochondrial genomes at approximately 7.700x coverage, in multiple technical and biological replicates of longitudinal blood and buccal swab samples from 11 human donors (159 libraries in total). The results obtained by two independent sequencing platforms and bioinformatics pipelines indicate distinctive PHP patterns below and above the 1% MAF cut-off. We found a high inter-individual prevalence of low-level PHPs (MAF < 1%) at polymorphic positions of the mitochondrial DNA control region (CR), their tissue preference, and a tissue-specific minor allele linkage. We also established the position-dependent potential of minor allele expansion in PHPs, and short-term PHP instability in a mitotically active tissue. We demonstrate that the increase in sensitivity of PHP detection to minor allele frequencies below 1% within a robust experimental and analytical pipeline, provides new information with potential applicative value. CONCLUSIONS Our findings reliably show different mutational loads between tissues at sub-1% allele frequencies, which may serve as an informative medical biomarker of time-dependent, tissue-specific mutational burden, or help discriminate forensically relevant tissues in a single person, close maternal relatives or unrelated individuals of similar phylogenetic background.
Collapse
Affiliation(s)
- Marina Korolija
- Biology and Fibres Department, Forensic Science Centre "Ivan Vučetić", Ministry of the Interior of the Republic of Croatia, Ilica 335, HR-10000, Zagreb, Croatia.
| | - Viktorija Sukser
- Biology and Fibres Department, Forensic Science Centre "Ivan Vučetić", Ministry of the Interior of the Republic of Croatia, Ilica 335, HR-10000, Zagreb, Croatia
| | - Kristian Vlahoviček
- Bioinformatics group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| |
Collapse
|
48
|
Feng Z, Peng F, Xie F, Liu Y, Zhang H, Ma J, Xing J, Guo X. Comparison of capture-based mtDNA sequencing performance between MGI and illumina sequencing platforms in various sample types. BMC Genomics 2024; 25:41. [PMID: 38191319 PMCID: PMC10773069 DOI: 10.1186/s12864-023-09938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Mitochondrial genome abnormalities can lead to mitochondrial dysfunction, which in turn affects cellular biology and is closely associated with the development of various diseases. The demand for mitochondrial DNA (mtDNA) sequencing has been increasing, and Illumina and MGI are two commonly used sequencing platforms for capture-based mtDNA sequencing. However, there is currently no systematic comparison of mtDNA sequencing performance between these two platforms. To address this gap, we compared the performance of capture-based mtDNA sequencing between Illumina's NovaSeq 6000 and MGI's DNBSEQ-T7 using tissue, peripheral blood mononuclear cell (PBMC), formalin-fixed paraffin-embedded (FFPE) tissue, plasma, and urine samples. RESULTS Our analysis indicated a high degree of consistency between the two platforms in terms of sequencing quality, GC content, and coverage. In terms of data output, DNBSEQ-T7 showed higher rates of clean data and duplication compared to NovaSeq 6000. Conversely, the amount of mtDNA data obtained by per gigabyte sequencing data was significantly lower in DNBSEQ-T7 compared to NovaSeq 6000. In terms of detection mtDNA copy number, both platforms exhibited good consistency in all sample types. When it comes to detection of mtDNA mutations in tissue, FFPE, and PBMC samples, the two platforms also showed good consistency. However, when detecting mtDNA mutations in plasma and urine samples, significant differenceof themutation number detected was observed between the two platforms. For mtDNA sequencing of plasma and urine samples, a wider range of DNA fragment size distribution was found in NovaSeq 6000 when compared to DNBSEQ-T7. Additionally, two platforms exhibited different characteristics of mtDNA fragment end preference. CONCLUSIONS In summary, the two platforms generally showed good consistency in capture-based mtDNA sequencing. However, it is necessary to consider the data preferences generated by two sequencing platforms when plasma and urine samples were analyzed.
Collapse
Affiliation(s)
- Zehui Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fanfan Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Ma
- Yanbian University Medical College, Yanji, 133002, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
49
|
Chin HL, Lai PS, Tay SKH. A clinical approach to diagnosis and management of mitochondrial myopathies. Neurotherapeutics 2024; 21:e00304. [PMID: 38241155 PMCID: PMC10903095 DOI: 10.1016/j.neurot.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stacey Kiat Hong Tay
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore.
| |
Collapse
|
50
|
Saunders C, Longman C, Gorman G, James K, Oliwa A, Petty R, Snadden L, Farrugia ME. The West of Scotland Cohort of Mitochondrial Individuals with the m.3243A>G Variant: Variations in Phenotypes and Predictors of Disease Severity. J Neuromuscul Dis 2024; 11:179-189. [PMID: 38108361 PMCID: PMC10789362 DOI: 10.3233/jnd-230166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The m.3243A>G variant is the commonest mitochondrial (mt) DNA pathogenic variant and a frequent cause of mitochondrial disease. Individuals present with a variety of clinical manifestations from diabetes to neurological events resembling strokes. Due to this, patients are commonly cared for by a multidisciplinary team. OBJECTIVES This project aimed to identify patients with confirmed mt.3243A>G-related mitochondrial disease attending the Muscle Clinic at Queen Elizabeth University Hospital in Glasgow. We explored potential correlates between clinical phenotypes and mtDNA heteroplasmy levels, HbA1c levels, body mass index, and specific clinical manifestations. We investigated if there were discrepancies between non-neurological speciality labelling in clinical records and individuals' phenotypes. METHODS Data were gathered from the West of Scotland electronic records. Phenotypes were ascertained by a clinician with expertise in mitochondrial disorders. Statistical analyses were applied to study relationships between tissue heteroplasmy, HbA1c and clinical phenotypes including body mass index (BMI). RESULTS Forty-six individuals were identified from 31 unrelated pedigrees. Maternally inherited diabetes and deafness was the prominent syndromic phenotype (48%). A significant association was found between overall number of symptoms and bowel dysmotility (p < 0.01). HbA1c was investigated as a predictor of severity with potential association seen. Although used widely as a prognosticator, neither corrected blood nor urine mtDNA heteroplasmy levels were associated with increased number of symptoms. In 74.1% of records, syndromic phenotypes were incorrectly used by non-neurological specialities. CONCLUSIONS This m.3243 A > G patient cohort present with marked clinical heterogeneity. Urine and blood heteroplasmy levels are not reliable predictors of disease severity. HbA1c may be a novel predictor of disease severity with further research required to investigate this association. We infer that prognosis may be worse in patients with low BMIs and in those with bowel dysmotility. These results underscore a multidisciplinary approach and highlight a problem with inaccurate use of the existing nomenclature.
Collapse
Affiliation(s)
- Charlie Saunders
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Cheryl Longman
- Genetics Department, West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Kelly James
- Department of Geographical and Earth Sciences, University of Glasgow, Glasgow, G20 8QQ, UK
| | - Agata Oliwa
- Genetics Department, West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Richard Petty
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Lesley Snadden
- Genetics Department, West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Maria Elena Farrugia
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|