1
|
Robinson CM, Carreño D, Weber T, Chen Y, Riglar DT. A discovery platform for identification of host-induced bacterial biosensors from diverse sources. Mol Syst Biol 2025:10.1038/s44320-025-00123-3. [PMID: 40490500 DOI: 10.1038/s44320-025-00123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Synthetic biology approaches such as whole-cell biosensing and 'sense-and-respond' therapeutics aim to enlist the vast sensing repertoire of gut microbes to drive cutting-edge clinical and research applications. However, well-characterised circuit components that sense health- and disease-relevant conditions within the gut remain limited. Here, we extend the flexibility and power of a biosensor screening platform using bacterial memory circuits. We construct libraries of sensory components sourced from diverse gut bacteria using a bespoke two-component system identification and cloning pipeline. Tagging unique strains using a hypervariable DNA barcode enables parallel tracking of thousands of unique clones, corresponding to ~150 putative biosensors, in a single experiment. Evaluating sensor activity and performance heterogeneity across various in vitro and in vivo conditions using mouse models, we identify several biosensors of interest. Validated hits include biosensors with relevance for autonomous control of synthetic functions within the mammalian gut and for non-invasive monitoring of inflammatory disease using faecal sampling. This approach will promote rapid biosensor engineering to advance the development of synthetic biology tools for deployment within complex environments.
Collapse
Affiliation(s)
- Clare M Robinson
- Department of Infectious Disease, Imperial College London, London, SW72AZ, UK
- The Francis Crick Institute, London, NW11AT, UK
- Full Circle Labs Ltd, Venture X White City, London, W127SL, UK
| | - David Carreño
- Department of Infectious Disease, Imperial College London, London, SW72AZ, UK
- The Francis Crick Institute, London, NW11AT, UK
| | - Tim Weber
- Department of Infectious Disease, Imperial College London, London, SW72AZ, UK
- Department of Molecular Life Sciences, University of Zurich, Zurich, CH-8057, Switzerland
| | - Yangyumeng Chen
- Department of Infectious Disease, Imperial College London, London, SW72AZ, UK
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - David T Riglar
- Department of Infectious Disease, Imperial College London, London, SW72AZ, UK.
- The Francis Crick Institute, London, NW11AT, UK.
- Imperial Centre for Engineering Biology, Imperial College London, SW72AZ, London, UK.
| |
Collapse
|
2
|
Moon TS. Be a GEM: Biocontained, environmentally applied, genetically engineered microbes. Adv Drug Deliv Rev 2025; 221:115578. [PMID: 40222715 PMCID: PMC12066214 DOI: 10.1016/j.addr.2025.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Technological advances in engineering biology or synthetic biology have enabled practical applications of genetically engineered microbes (GEMs), including their use as living diagnostics and vehicles for therapeutics. However, technological and non-technological issues associated with biocontainment of GEMs have yet to be addressed before fully realizing their potential. In this short perspective, I briefly discuss the relevant technologies for GEM biocontainment as well as environmental impacts, regulatory issues, and public perception of GEMs.
Collapse
Affiliation(s)
- Tae Seok Moon
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States.
| |
Collapse
|
3
|
Hatstat AK, Kormos R, Xu V, Du G, Liu L, Zhang SQ, DeGrado WF. A Designed Zn 2+ Sensor Domain Transmits Binding Information to Transmembrane Histidine Kinases. J Am Chem Soc 2025. [PMID: 40388352 DOI: 10.1021/jacs.5c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Generating stimulus-responsive allosteric signaling de novo is a significant challenge in protein design. In natural systems like bacterial histidine kinases (HKs), signal transduction occurs when ligand binding initiates a signal that is amplified across biological membranes over long distances to induce large-scale rearrangements and phosphorylation relays. Here, we ask whether our understanding of protein design and multidomain, intramolecular signaling has progressed sufficiently to enable engineering of a HK with tunable de novo components. We generated de novo metal-binding sensor domains and substituted them for the native sensor domain of a transmembrane HK, affording chimeras that transduce signals initiated from a de novo sensor. Signaling depended on the designed sensor's stability and the interdomain linker's phase and length. These results show the usefulness of de novo design to elucidate the biochemical mechanisms and principles of transmembrane signaling.
Collapse
Affiliation(s)
- A Katherine Hatstat
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-9001, United States
- The Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-9001, United States
| | - Rian Kormos
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-9001, United States
- The Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-9001, United States
- Biophysics Graduate Program, University of California, San Francisco, California 94158-9001, United States
| | - Vee Xu
- Biotechnology Program, City College of San Francisco, San Francisco, California 94112, United States
| | - Guoming Du
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Shao-Qing Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-9001, United States
- The Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-9001, United States
| |
Collapse
|
4
|
Fernez MT, Hegde S, Hayes JA, Hoyt KO, Carrier RL, Woolston BM. Development of a Transcriptional Biosensor for Hydrogen Sulfide That Functions under Aerobic and Anaerobic Conditions. ACS Synth Biol 2025. [PMID: 40358934 DOI: 10.1021/acssynbio.5c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogen sulfide (H2S) is a gaseous gut metabolite with disputed effects on gastrointestinal health. Monitoring H2S concentration in the gut would provide insight into its role in disease but is complicated by sulfide's reactivity and volatility. Here we develop a transcriptional sulfide biosensor in Escherichiacoli. The sensor relies on enzymatic oxidation of sulfide catalyzed by a sulfide:quinone oxidoreductase (Sqr) to polysulfides, which interact with the repressor SqrR, triggering unbinding from the promoter and transcription of the reporter. Through promoter engineering and improved soluble SqrR expression, we optimized the system to provide an operational range of 50-750 μM and a dynamic range of 18 aerobically. To enable sensing in anaerobic environments, we identified an Sqr from Wolinella succinogenes that uses menaquinone, facilitating reoxidation through the anaerobic electron transport chain by fumarate or nitrate. Use of this homologue resulted in an anaerobic H2S response up to 750 μM. This sensor could ultimately enable spatially and temporally resolved measurements of H2S in the gastrointestinal tract to elucidate the role of this metabolite in disease and potentially as a noninvasive diagnostic.
Collapse
Affiliation(s)
- Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shanthi Hegde
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Justin A Hayes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kathryn O Hoyt
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Gao S, Liu B, Yuan S, Quan Y, Song S, Jin W, Wang Y, Wang Y. Cross-talk between signal transduction systems and metabolic networks in antibiotic resistance and tolerance. Int J Antimicrob Agents 2025; 65:107479. [PMID: 40024604 DOI: 10.1016/j.ijantimicag.2025.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The comprehensive antibiotic resistance of pathogens signifies the oneset of the "post-antibiotic era", and the myriad treatment challenges posed by "superbugs" have emerged as the primary threat to human health. Recent studies indicate that bacterial resistance and tolerance development are mediated at the metabolic level by various signalling networks (e.g., quorum sensing systems, second messenger systems, and two-component systems), resulting in metabolic rearrangements and alterations in bacterial community behaviour. This review focuses on current research, highlighting the intrinsic link between signalling and metabolic networks in bacterial resistance and tolerance.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shenao Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| |
Collapse
|
6
|
Liu M, Yang W, Zhu W, Yu D. Innovative applications and research advances of bacterial biosensors in medicine. Front Microbiol 2025; 16:1507491. [PMID: 40336836 PMCID: PMC12055861 DOI: 10.3389/fmicb.2025.1507491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 05/09/2025] Open
Abstract
The demand for early disease detection, treatment monitoring, and personalized medicine is increasing, making it more imperative than ever to create effective, accurate, portable, intelligent, multifunctional diagnostic equipment. Bacteria possess a remarkable perception of their surroundings and have the capacity to adapt by altering the expression of specific genes. Bacteria interact with target substances and produce detectable signals in response to their presence or concentration. This unique property has been harnessed in the development of bacterial biosensors. Due to groundbreaking advancements in synthetic biology, genetic engineering now enables the creation of bacteria tailored with exceptional detecting traits. In addition to meeting a wide range of application needs, this allows quick and precise detection in intricate settings and offers a strong technological basis for early disease diagnosis and treatment monitoring. This article reviews the applications and recent advancements of bacterial biosensors in the medical field and discusses the challenges and obstacles that remain in their research and application.
Collapse
Affiliation(s)
- Mengting Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Wenjie Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Wenqi Zhu
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Daojun Yu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Chemla Y, Levin I, Fan Y, Johnson AA, Coley CW, Voigt CA. Hyperspectral reporters for long-distance and wide-area detection of gene expression in living bacteria. Nat Biotechnol 2025:10.1038/s41587-025-02622-y. [PMID: 40216953 DOI: 10.1038/s41587-025-02622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/27/2025] [Indexed: 04/27/2025]
Abstract
Genetically encoded reporters are suitable for short-distance imaging in the laboratory but not for scanning wide outdoor areas from a distance. Here we introduce hyperspectral reporters (HSRs) designed for hyperspectral imaging cameras that are commonly mounted on unmanned aerial vehicles and satellites. HSR genes encode enzymes that produce a molecule with a unique absorption signature that can be reliably distinguished in hyperspectral images. Quantum mechanical simulations of 20,170 metabolites identified candidate HSRs, leading to the selection of biliverdin IXα and bacteriochlorophyll a for their distinct absorption spectra and biosynthetic feasibility. These genes were integrated into chemical sensor circuits in soil (Pseudomonas putida) and aquatic (Rubrivivax gelatinosus) bacteria. The bacteria were detectable outdoors under ambient light from up to 90 m in a single 4,000-m2 hyperspectral image taken using fixed and unmanned aerial vehicle-mounted cameras. The dose-response functions of the chemical sensors were measured remotely. HSRs enable large-scale studies and applications in ecology, agriculture, environmental monitoring, forensics and defense.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Itai Levin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yueyang Fan
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna A Johnson
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Liu H, Shen S, Xu Q, Wang Y, Qi K, Lu B, Tang B, Wu M, Gan F. Noncanonical amino acids as prophage inducers for protein regulation in bacteria-based delivery systems. mBio 2025; 16:e0398824. [PMID: 40084898 PMCID: PMC11980383 DOI: 10.1128/mbio.03988-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Genetically engineered bacteria represent a promising drug delivery tool for disease treatment. The development of new strategies for specific and independent protein regulation is necessary, especially for combination protein drug therapy. Using the well-studied Escherichia coli phage λ as a model system, we applied noncanonical amino acids (ncAAs) as novel inducers for protein regulation in a bacteria-based delivery system. Screening the permissive sites of the Cro protein revealed that incorporation of AlocK at the K8 site with the MbPylRS-349F/tRNAPyl system produced a functional Cro-K8AlocK variant. Using an engineered λ lysogen expressing the MbPylRS-349F/tRNAPyl pair, Cro-8X, and the reporter mNeonGreen, in vitro and in vivo experiments showed that AlocK led to bacterial lysis through prophage activation and the release of mNeonGreen. If mNeonGreen was integrated into the λ prophage genome, λ phages released due to AlocK induction delivered the reporter gene into the recipient E. coli strain, enabling mNeonGreen expression. Furthermore, insertion of pIF at the F14 site with the AfpIFRS/tRNATyr pair produced a functional Cro-F14pIF variant. Importantly, AfpIFRS/tRNATyr and MbPylRS-349F/tRNAPyl pairs were confirmed to be mutually orthogonal. In a mixture of two engineered λ lysogens expressing different aaRS/tRNAs, Cro-ncAAs, and reporter proteins, AlocK and pIF independently induced bacterial lysis and activated the expression of mNeonGreen and mCherry in the recipient E. coli strain. Collectively, the proposed bacteria-based delivery system provides two options for protein delivery and enables independent regulation of multiple proteins with ncAAs, offering a novel approach for in situ protein regulation and combination therapy. IMPORTANCE The use of genetically engineered bacteria as drug delivery vectors has attracted more and more attention in recent years. A key issue with bacteria-based delivery systems is how to regulate multiple protein drugs. Based on genetic code expansion technology, we developed a new strategy of using ncAAs as small molecular inducers for in situ protein regulation and engineered λ phage lysogen into a bacteria-based delivery system that can function in two delivery modes. Furthermore, this strategy enables independent regulation of multiple proteins by different ncAAs, offering important implications for combination therapy. This approach requires minimal genetic engineering efforts, and similar strategies can be applied to engineer other prophage-bacteria systems or study phage biology. This work expands the therapeutic applications of ncAAs and lysogenic phages.
Collapse
Affiliation(s)
- Hongfang Liu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Sijia Shen
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qi Xu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuyang Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Kejing Qi
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bowen Lu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bing Tang
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Min Wu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fei Gan
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Ghorbani Siavashani A, Rehan M, Travas-Sejdic J, Thomas D, Diller E, Stine J, Ghodssi R, Avci E. Ingestible Smart Capsules for Chemical Sensing in the Gut. Anal Chem 2025; 97:5343-5354. [PMID: 40047504 DOI: 10.1021/acs.analchem.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of novel ingestible sensors can aid physicians and patients in obtaining precise data on the health status of the gut at a local level. This in turn can facilitate earlier and more accurate disease diagnosis, improve the delivery of point-of-care medicine, and allow monitoring of the gastrointestinal (GI) tract status. This Tutorial overviews characteristics of the gut for inexpert readers and reviews emerging chemical sensing technologies for the GI tract from an analytical chemistry viewpoint.
Collapse
Affiliation(s)
| | - Muhammad Rehan
- Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Thomas
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Eric Diller
- Microrobotics Lab, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College St., Toronto, ON M5S 3G8, Canada
| | - Justin Stine
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Reza Ghodssi
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Ebubekir Avci
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
10
|
Chen H, Li Y, Li Z, Sun Y, Gu W, Chen C, Cheng Y. Bacterial Autonomous Intelligent Microrobots for Biomedical Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70011. [PMID: 40235203 DOI: 10.1002/wnan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Micro/nanorobots are being increasingly utilized as new diagnostic and therapeutic platforms in the biomedical field, enabling remote navigation to hard-to-reach tissues and the execution of various medical procedures. Although significant progress has been made in the development of biomedical micro/nanorobots, how to achieve closed-loop control of them from sensing, memory, and precise trajectory planning to feedback to carry out biomedical tasks remains a challenge. Bacteria with self-propulsion and autonomous intelligence properties are well suited to be engineered as microrobots to achieve closed-loop control for biomedical applications. By virtue of synthetic biology, bacterial microrobots possess an expanded genetic toolbox, allowing them to load input sensors to respond or remember external signals. To achieve accurate control in the complex physiological environment, the development of bacterial microrobots should be matched with the corresponding control system design. In this review, a detailed summary of the sensing and control mechanisms of bacterial microrobots is presented. The engineering and applications of bacterial microrobots in the biomedical field are highlighted. Their future directions of bacterial autonomous intelligent microrobots for precision medicine are forecasted.
Collapse
Affiliation(s)
- Haotian Chen
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuantai Sun
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weicheng Gu
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Yang X, Ye M, Wang F, Yang X, Gao X, Yu J, Liu W. A Nitrate/Nitrite Biosensor Designed with an Antiterminator for In Vivo Diagnosis of Colitis Based on Bacteroides thetaiotaomicron. ACS Synth Biol 2025; 14:453-462. [PMID: 39801064 DOI: 10.1021/acssynbio.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Bacteroides thetaiotaomicron is a common microorganism in the human gut that has been linked to health benefits. Furthermore, it is an emerging synthetic biology chassis with the potential to be modified into diagnostic or therapeutic engineered probiotics. However, the absence of biological components limits its further applications. In this study, we developed an antiterminator microbial whole-cell biosensor (MWCB) based on B. thetaiotaomicron. The antiterminator-based element allows the chassis to detect colitis in mice by responding to nitrate and nitrite in an inflammatory environment. In particular, the nitrate/nitrite-inducible promoter was obtained by combining the constitutive promoter with the inducible terminator. Subsequently, the promoter and RBS were replaced to optimize a sensitive and specific response to nitrate/nitrite. A preliminary in vitro assessment was conducted to ascertain the functionality of the biosensor. Its in vivo sensing ability was evaluated in a chemically induced mouse model of ulcerative colitis (UC). The results demonstrated that the MWCB exhibited a robust response to colitis, with a notable positive correlation between the intensity of the response and the level of inflammation. This novel sensing element may provide a new avenue for the development of components for unconventional chassis, like B. thetaiotaomicron. It will also facilitate the development of engineered probiotics based on B. thetaiotaomicron, thereby providing patients with a wider range of medical treatment options.
Collapse
Affiliation(s)
- Xiyuchen Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing 210042, P.R. China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu industrial technology research institute, Nanjing 210031, P.R. China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
12
|
Zahedifard Z, Mahmoodi S, Ghasemian A. Genetically Engineered Bacteria as a Promising Therapeutic Strategy Against Cancer: A Comprehensive Review. Biotechnol Appl Biochem 2025. [PMID: 39985148 DOI: 10.1002/bab.2738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
As a significant cause of global mortality, the cancer has also economic impacts. In the era of cancer therapy, mitigating side effects and costs and overcoming drug resistance is crucial. Microbial species can grow inside the tumor microenvironment and inhibit cancer growth through direct killing of tumor cells and immunoregulatory effects. Although microbiota or their products have demonstrated anticancer effects, the possibility of acting as pathogens and exerting side effects in certain individuals is a risk. Hence, several genetically modified/engineered bacteria (GEB) have been developed to this aim with ability of diagnosing and selective targeting and destruction of cancers. Additionally, GEB are expected to be considerably more efficient, safer, more permeable, less costly, and less invasive theranostic approaches compared to wild types. Potential GEB strains such as Escherichia coli (Nissle 1917, and MG1655), Salmonella typhimurium YB1 SL7207 (aroA gene deletion), VNP20009 (∆msbB/∆purI) and ΔppGpp (PTet and PBAD), and Listeria monocytogenes Lmat-LLO have been developed to combat cancer cells. When used in tandem with conventional treatments, GEB substantially improve the efficacy of anticancer therapy outcomes. In addition, public acceptance, optimal timing (s), duration (s), dose (s), and strains identification, interactions with other strains and the host cells, efficacy, safety and quality, and potential risks and ethical dilemmas include major challenges.
Collapse
Affiliation(s)
- Zahra Zahedifard
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
13
|
Fernez MT, Hegde S, Hayes JA, Hoyt KO, Carrier RL, Woolston BM. Development of a Transcriptional Biosensor for Hydrogen Sulfide that Functions under Aerobic and Anaerobic Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639182. [PMID: 40027654 PMCID: PMC11870579 DOI: 10.1101/2025.02.19.639182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Hydrogen sulfide (H2S) is a gaseous gut metabolite with disputed effects on gastrointestinal health. Monitoring H2S concentration in the gut would provide insight into its role in disease, but is complicated by sulfide's reactivity and volatility. Here we develop a transcriptional sulfide biosensor in E. coli. The sensor relies on enzymatic oxidation of sulfide catalyzed by a sulfide:quinone reductase (Sqr) to polysulfides, which bind to the repressor SqrR, triggering unbinding from the promoter and transcription of the reporter. Through promoter engineering and improving soluble SqrR expression, we optimized the system to provide an operational range of 50 μM - 750 μM and dynamic range of 18 aerobically. To enable sensing in anaerobic environments, we identified an Sqr from Wolinella succinogenes that uses menaquinone, facilitating reoxidation through the anaerobic electron transport chain by fumarate or nitrate. Use of this homolog resulted in an anaerobic H2S response up to 750 μM. This sensor could ultimately enable spatially and temporally resolved measurements of H2S in the gastrointestinal tract to elucidate the role of this metabolite in disease, and potentially as a non-invasive diagnostic.
Collapse
Affiliation(s)
| | | | - Justin A Hayes
- Department of Chemical Engineering, Northeastern University
| | - Kathryn O Hoyt
- Department of Chemical Engineering, Northeastern University
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University
- Department of Bioengineering, Northeastern University
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University
- Department of Bioengineering, Northeastern University
| |
Collapse
|
14
|
Woo SG, Kim SK, Lee SG, Lee DH. Engineering probiotic Escherichia coli for inflammation-responsive indoleacetic acid production using RiboJ-enhanced genetic circuits. J Biol Eng 2025; 19:10. [PMID: 39838372 PMCID: PMC11753152 DOI: 10.1186/s13036-025-00479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND As our understanding of gut microbiota's metabolic impacts on health grows, the interest in engineered probiotics has intensified. This study aimed to engineer the probiotic Escherichia coli Nissle 1917 (EcN) to produce indoleacetic acid (IAA) in response to gut inflammatory biomarkers thiosulfate and nitrate. RESULTS Genetic circuits were developed to initiate IAA synthesis upon detecting inflammatory signals, optimizing a heterologous IAA biosynthetic pathway, and incorporating a RiboJ insulator to enhance IAA production. The engineered EcN strains demonstrated increased IAA production in the presence of thiosulfate and nitrate. An IAA-responsive genetic circuit using the IacR transcription factor from Pseudomonas putida 1290 was also developed for real-time IAA monitoring. CONCLUSIONS Given IAA's role in reducing gastrointestinal inflammation, further refinement of this strain could lead to effective, in situ IAA-based therapies. This proof-of-concept advances the field of live biotherapeutic products and offers a promising approach for targeted therapy in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Seung-Gyun Woo
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Seong Keun Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Dae-Hee Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
15
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
16
|
Son HI, Hamrick GS, Shende AR, Kim K, Yang K, Huang TJ, You L. Population-level amplification of gene regulation by programmable gene transfer. Nat Chem Biol 2025:10.1038/s41589-024-01817-9. [PMID: 39779901 DOI: 10.1038/s41589-024-01817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Engineering cells to sense and respond to environmental cues often focuses on maximizing gene regulation at the single-cell level. Inspired by population-level control mechanisms like the immune response, we demonstrate dynamic control and amplification of gene regulation in bacterial populations using programmable plasmid-mediated gene transfer. By regulating plasmid loss rate, transfer rate and fitness effects via Cas9 endonuclease, F conjugation machinery and antibiotic selection, we modulate the fraction of plasmid-carrying cells, serving as an amplification factor for single-cell-level regulation. This approach expands the dynamic range of gene expression and allows orthogonal control across populations. Our platform offers a versatile strategy for dynamically regulating gene expression in engineered microbial communities.
Collapse
Affiliation(s)
- Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Grayson S Hamrick
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ashwini R Shende
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
17
|
Zou ZP, Cai Z, Zhang XP, Zhang D, Xu CY, Zhou Y, Liu R, Ye BC. Delivery of Encapsulated Intelligent Engineered Probiotic for Inflammatory Bowel Disease Therapy. Adv Healthc Mater 2025; 14:e2403704. [PMID: 39629555 DOI: 10.1002/adhm.202403704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Indexed: 01/29/2025]
Abstract
Engineered bacterial therapy holds enormous potential for treating intestinal diseases, employing synthetic biology techniques to achieve localized drug delivery within intestines. However, effective delivery of engineered bacteria to lesion sites and ensuring sustained colonization remain challenging. Here, a mucus encapsulated microsphere gel (MM) delivery system is developed to encapsulate genetically engineered bacteria capable of detecting and treating enteritis. The MM delivery system features an external mucosal coating composed of hyaluronic acid and epigallocatechin gallate, along with internal microspheres of highly biocompatible polyserine modified alginates encapsulating with the engineered probiotics. The MM delivery system effectively protects engineered bacteria harsh environment in stomach and significantly improves intestinal adhesion of the probiotics, extending colonization up to 24 h, and does not affect the entry of biomarker or release of Avcystatin. It exhibits notable diagnostic and therapeutic efficacy in inflammatory bowel disease models, thus facilitating the advancement of live biotherapeutic products toward clinical application.
Collapse
Affiliation(s)
- Zhen-Ping Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhihao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao-Peng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chu-Ying Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
18
|
Jin K, Huang Y, Che H, Wu Y. Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology. Microb Biotechnol 2025; 18:e70080. [PMID: 39801378 PMCID: PMC11725985 DOI: 10.1111/1751-7915.70080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy. The application of microbial therapies in cancer, intestinal diseases, and metabolic disorders underscores their significant potential. The impact of these therapies on the host's native microbiota is crucial, as engineered microbes can modulate and interact with the host's microbial environment, influencing treatment outcomes and overall health. Despite numerous advancements, challenges remain. These include ensuring the long-term survival and safety of bacteria, developing new chassis microbes and gene editing techniques for non-model strains, minimising potential toxicity, and understanding bacterial interactions with the host microbiota. This mini-review examines the current state of engineered bacteria and microbial consortia in disease diagnosis and treatment, highlighting advancements, challenges, and future directions in this promising field.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yi Huang
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Hailong Che
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yihan Wu
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| |
Collapse
|
19
|
Mavros CF, Bongers M, Neergaard FBF, Cusimano F, Sun Y, Kaufman A, Richardson M, Kammler S, Kristensen M, Sommer MOA, Wang HH. Bacteria Engineered to Produce Serotonin Modulate Host Intestinal Physiology. ACS Synth Biol 2024; 13:4002-4014. [PMID: 39601776 PMCID: PMC12016422 DOI: 10.1021/acssynbio.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bacteria in the gastrointestinal tract play a crucial role in intestinal motility, homeostasis, and dysfunction. Unraveling the mechanisms by which microbes impact the host poses many challenges due to the extensive array of metabolites produced or metabolized by bacteria in the gut. Here, we describe the engineering of a gut commensal bacterium, Escherichia coli Nissle 1917, to biosynthesize the human metabolite serotonin for examining the effects of microbially produced biogenic amines on host physiology. Upon oral administration to mice, our engineered bacteria reach the large intestine, where they produce serotonin. Mice treated with serotonin-producing bacteria exhibited biological changes in the gut at transcriptional and physiological levels. This work establishes a novel framework employing engineered bacteria to modulate luminal serotonin levels and suggests potential clinical applications of modified microbial therapeutics to address gut disorders in humans.
Collapse
Affiliation(s)
- Chrystal F. Mavros
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mareike Bongers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Frederik B. F. Neergaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Frank Cusimano
- Department of Nutritional and Metabolic Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yiwei Sun
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Kaufman
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Miles Richardson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Susanne Kammler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Mette Kristensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Morten O. A. Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Harris H. Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
20
|
Merk LN, Shur AS, Jena S, Munoz J, Brubaker DK, Murray RM, Green LN. Diagnostic and Therapeutic Microbial Circuit with Application to Intestinal Inflammation. ACS Synth Biol 2024; 13:3885-3896. [PMID: 39607341 DOI: 10.1021/acssynbio.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bacteria genetically engineered to execute defined therapeutic and diagnostic functions in physiological settings can be applied to colonize the human microbiome, providing in situ surveillance and conditional disease modulation. However, many engineered microbes can only respond to single-input environmental factors, limiting their tunability, precision, and effectiveness as living diagnostic and therapeutic systems. For engineering microbes to improve complex chronic disorders such as inflammatory bowel disease, the bacteria must respond to combinations of stimuli in the proper context and time. This work implements a previously characterized split activator AND logic gate in the probiotic Escherichia coli strain Nissle 1917 (EcN). Our system can respond to two input signals: the inflammatory biomarker tetrathionate and a second input signal, anhydrotetracycline (aTc), for manual control. We report 4-6 fold induction with a minimal leak when the two chemical signals are present. We model the AND gate dynamics using chemical reaction networks and tune parameters in silico to identify critical perturbations that affect our circuit's selectivity. Finally, we engineer the optimized AND gate to secrete a therapeutic anti-inflammatory cytokine IL-22 using the hemolysin secretion pathway in the probiotic E. coli strain. We used a germ-free transwell model of the human gut epithelium to show that our engineering bacteria produce similar host cytokine responses compared to recombinant cytokine. Our study presents a scalable workflow to engineer cytokine-secreting microbes driven by logical signal processing. It demonstrates the feasibility of IL-22 derived from probiotic EcN with minimal off-target effects in a gut epithelial context.
Collapse
Affiliation(s)
- Liana N Merk
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Andrey S Shur
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Javier Munoz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Blood Heart Lung Immunology Research Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, United States
| | - Leopold N Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Santos EN, Magalhães-Guedes KT, Borges FEDM, Ferreira DD, da Silva DF, Conceição PCG, Lima AKDC, Cardoso LG, Umsza-Guez MA, Ramos CL. Probiotic Microorganisms in Inflammatory Bowel Diseases: Live Biotherapeutics as Food. Foods 2024; 13:4097. [PMID: 39767038 PMCID: PMC11675991 DOI: 10.3390/foods13244097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Inflammatory bowel diseases (IBDs) are characterized by chronic and complex inflammatory processes of the digestive tract that evolve with frequent relapses and manifest at any age; they predominantly affect young individuals. Diet plays a direct role in maintaining the gut mucosal integrity and immune function. Regarding the diet, the administration of probiotics stands out. The use of probiotics for IBD treatment has shown promising effects on consumers' quality of life. (2) Methods: This study aimed to conduct a literature review on the effects of probiotic and smart probiotic ingestion on IBD and analyze the available literature based on the searched keywords using boxplot diagrams to search for scientific data in the online literature published up to October 2024. (3) Results: Google Scholar (containing ~6 × 106 articles) and Science Direct (containing ~5 × 106 articles) were the databases with the highest number of articles for the keywords used in the study. When analyzing the content of the articles, although probiotic microorganisms are currently not part of the standard treatment protocol for IBD, these live biotherapeutics have proven to be an effective treatment option, considering the adverse effects of conventional therapies. Furthermore, the development of genetically engineered probiotics or smart probiotics is a promising treatment for IBD. (4) Conclusions: Probiotics and smart probiotics could represent the future of nutritional medicine in IBD care, allowing patients to be treated in a more natural, safe, effective, and nutritious way. However, although many studies have demonstrated the potential of this biotherapy, clinical trials standardizing dosage and strains are still necessary.
Collapse
Affiliation(s)
- Emanuelle Natalee Santos
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| | - Karina Teixeira Magalhães-Guedes
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
- Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Barão of Geremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil
| | - Fernando Elias de Melo Borges
- Post-Graduate Program in Systems Engineering and Automation, Department of Automatic, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil
| | - Danton Diego Ferreira
- Post-Graduate Program in Systems Engineering and Automation, Department of Automatic, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil
| | - Daniele Ferreira da Silva
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| | - Pietro Carlos Gonçalves Conceição
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Ana Katerine de Carvalho Lima
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Lucas Guimarães Cardoso
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Marcelo Andrés Umsza-Guez
- Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Barão of Geremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil
| | - Cíntia Lacerda Ramos
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| |
Collapse
|
22
|
Sun L, Bai Y, Kang F, Lei Y. Biosignals in the Gut-Brain Axis Transmission: Function and Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67045-67053. [PMID: 38572786 DOI: 10.1021/acsami.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The gut-brain axis (GBA) is an important information pathway connecting the brain, the central nervous system (CNS), and the gastrointestinal (GI) tract. On the one hand, gut microbiota can influence the function brain through GBA; on the other hand, the brain can also change the structural composition of gut microbiota via GBA. It contains a myriad of biosignals, such as monoamines, inflammatory cytokines, and macro-biomolecules, as the information carriers. Highly selective, sensitive, and reliable sensing techniques are essential to resolve the specific function of individual biosignals. This review summarizes the widely reported biosignals related to GBA and their functions, and organizes the latest sensing tools to provide feasible characterization ideas for GBA-related work. In addition, these low-cost, fast-responding sensors can also be used for early identification and diagnosis of GBA-related diseases (e.g., depression). Finally, the problems and deficiencies in this field are pointed out to provide a reference for the orientation of researchers in the sensing field.
Collapse
Affiliation(s)
- Linxuan Sun
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yichao Bai
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yu Lei
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
23
|
Cui W, Lin X, Hu R, Chen H, Xiao P, Tao M, Suo F, Han L, Zhou Z. Creation of an orthogonal and universal auto-inducible gene expression platform by reprogramming a two-component signal circuit for efficient production of industrial enzymes. Int J Biol Macromol 2024; 283:137781. [PMID: 39566785 DOI: 10.1016/j.ijbiomac.2024.137781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Bacterial gene expression systems play a crucial role in producing valuable biological macromolecules, such as recombinant proteins and polysaccharides. However, traditional inducible gene systems have limitations that need costly chemical inducers that can harm the host. To address these challenges, a novel peptide-activated auto-inducible gene expression system was developed in Bacillus subtilis, leveraging Accessory gene regulatory system (Agr), a two-component signal system, from Staphylococcus aureus to trigger gene expression in response to an auto-inducible peptide (AIP). This system mimics a cell density-dependent regulatory mechanism, allowing for the intuitive activation of gene expression as accumulation of AIP. By precisely tuning the level of AIP, the auto-induction time was successfully delayed, however, at the expense of slightly reducing the strength of effector promoter P3, thus decreasing level of output expression. Furthermore, modulation of the stoichiometry of sensor protein AgrC allowed for fine-tuning of the auto-induction time, temporal dynamics, and expression levels. The robustness of the system was improved by strengthening P3 while maintaining the delayed auto-induction time. The versatility and efficacy of the system was demonstrated by the efficient production of various industrial enzymes. This study paves the way for the application of bacterial two-component signal systems to design synthetic gene circuits.
Collapse
Affiliation(s)
- Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China.
| | - Xinyu Lin
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Ruichun Hu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Huating Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Peiyuan Xiao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Mengrui Tao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China.
| |
Collapse
|
24
|
Zou ZP, Zhang XP, Zhang Q, Yin BC, Zhou Y, Ye BC. Genetically engineered bacteria as inflammatory bowel disease therapeutics. ENGINEERING MICROBIOLOGY 2024; 4:100167. [PMID: 39628589 PMCID: PMC11611042 DOI: 10.1016/j.engmic.2024.100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease caused by immune response disorders that disrupt the intestinal lumen symbiotic ecosystem and dysregulate mucosal immune functions. Current therapies available for IBD primarily focus on symptom management, making early diagnosis and prompt intervention challenging. The development of genetically engineered bacteria using synthetic biology presents a new strategy for addressing these challenges. In this review, we present recent breakthroughs in the field of engineered bacteria for the treatment and detection of IBD and describe how bacteria can be genetically modified to produce therapeutic molecules or execute diagnostic functions. In particular, we discuss the challenges faced in translating live bacterial therapeutics from bacterial design to delivery strategies for further clinical applications.
Collapse
Affiliation(s)
| | | | - Qian Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
25
|
Capin J, Chabert E, Zuñiga A, Bonnet J. Microbial biosensors for diagnostics, surveillance and epidemiology: Today's achievements and tomorrow's prospects. Microb Biotechnol 2024; 17:e70047. [PMID: 39548716 PMCID: PMC11568237 DOI: 10.1111/1751-7915.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024] Open
Abstract
Microbial biosensors hold great promise for engineering high-performance, field-deployable and affordable detection devices for medical and environmental applications. This review explores recent advances in the field, highlighting new sensing strategies and modalities for whole-cell biosensors as well as the remarkable expansion of microbial cell-free systems. We also discuss improvements in robustness that have enhanced the ability of biosensors to withstand the challenging conditions found in biological samples. However, limitations remain in expanding the detection repertoire, particularly for proteins. We anticipate that the AI-powered revolution in protein design will streamline the engineering of custom-made sensing modules and unlock the full potential of microbial biosensors.
Collapse
Affiliation(s)
- Julien Capin
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
| | - Emile Chabert
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
| | - Ana Zuñiga
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
- INSERM ART SynbioTechnology Research Accelerator for Synthetic BiologyMontpellierFrance
| |
Collapse
|
26
|
Hatstat AK, Kormos R, Xu V, DeGrado WF. A designed Zn 2+ sensor domain transmits binding information to transmembrane histidine kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621206. [PMID: 39553995 PMCID: PMC11565981 DOI: 10.1101/2024.10.30.621206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Generating stimulus-responsive, allosteric signaling de novo is a significant challenge in protein design. In natural systems like bacterial histidine kinases (HKs), signal transduction occurs when ligand binding initiates a signal that is amplified across biological membranes over long distances to induce large-scale rearrangements and phosphorylation relays. Here, we ask whether our understanding of protein design and multi-domain, intramolecular signaling has progressed sufficiently to enable engineering of a HK with tunable de novo components. We generated de novo metal-binding sensor domains and substituted them for the native sensor domain of a transmembrane HK, affording chimeras that transduce signals initiated from a de novo sensor. Signaling depended on the designed sensor's stability and the interdomain linker's phase and length. These results show the usefulness of de novo design to elucidate biochemical mechanisms and principles for design of new signaling systems.
Collapse
|
27
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
28
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Lu J, Shen X, Li H, Du J. Recent advances in bacteria-based platforms for inflammatory bowel diseases treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230142. [PMID: 39439496 PMCID: PMC11491310 DOI: 10.1002/exp.20230142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/18/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurring chronic inflammatory disease. Current treatment strategies are aimed at alleviating clinical symptoms and are associated with gastrointestinal or systemic adverse effects. New delivery strategies are needed for the treatment of IBD. Bacteria are promising biocarriers, which can produce drugs in situ and sense the gut in real time. Herein, we focus on recent studies of engineered bacteria used for IBD treatment and introduce the application of engineered bacteria in the diagnosis. On this basis, the current dilemmas and future developments of bacterial delivery systems are discussed.
Collapse
Affiliation(s)
- Jiaoying Lu
- Department of GastroenterologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xinyuan Shen
- National Key Laboratory of Advanced Drug Delivery and Release SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
| | - Juan Du
- Department of GastroenterologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
30
|
Xu M, Feng G, Fang J. Microcapsules based on biological macromolecules for intestinal health: A review. Int J Biol Macromol 2024; 276:133956. [PMID: 39029830 DOI: 10.1016/j.ijbiomac.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.
Collapse
Affiliation(s)
- Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| |
Collapse
|
31
|
Zhong X, Liu F, Liang T, Lu R, Shi M, Zhou X, Yang M. The two-component system TtrRS boosts Vibrio parahaemolyticus colonization by exploiting sulfur compounds in host gut. PLoS Pathog 2024; 20:e1012410. [PMID: 39038066 PMCID: PMC11293645 DOI: 10.1371/journal.ppat.1012410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
One of the greatest challenges encountered by enteric pathogens is responding to rapid changes of nutrient availability in host. However, the mechanisms by which pathogens sense gastrointestinal signals and exploit available host nutrients for proliferation remain largely unknown. Here, we identified a two-component system in Vibrio parahaemolyticus, TtrRS, which senses environmental tetrathionate and subsequently activates the transcription of the ttrRS-ttrBCA-tsdBA gene cluster to promote V. parahaemolyticus colonization of adult mice. We demonstrated that TsdBA confers the ability of thiosulfate oxidation to produce tetrathionate which is sensed by TtrRS. TtrRS autoregulates and directly activates the transcription of the ttrBCA and tsdBA gene clusters. Activated TtrBCA promotes bacterial growth under micro-aerobic conditions by inducing the reduction of both tetrathionate and thiosulfate. TtrBCA and TsdBA activation by TtrRS is important for V. parahaemolyticus to colonize adult mice. Therefore, TtrRS and their target genes constitute a tetrathionate-responsive genetic circuit to exploit the host available sulfur compounds, which further contributes to the intestinal colonization of V. parahaemolyticus.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Fuwen Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Tianqi Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Ranran Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Mengting Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiujuan Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
32
|
Fan X, Lu Q, Jia Q, Li L, Cao C, Wu Z, Liao M. Prevotella histicola ameliorates DSS-induced colitis by inhibiting IRE1α-JNK pathway of ER stress and NF-κB signaling. Int Immunopharmacol 2024; 135:112285. [PMID: 38762922 DOI: 10.1016/j.intimp.2024.112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent gastrointestinal inflammation regulated by intricate mechanisms. Recently, prebiotics is considered as promising nutritional strategy for the prevention and treatment of IBD. Prevotella histicola (P. histicola), an emerging probiotic, possesses apparently anti-inflammatory bioactivity. However, the role and underlying mechanism of P. histicola on IBD remain unclear. Hence, we probe into the effect of P. histicola on dextran sulfate sodium (DSS)-induced colitis and clarified the potential mechanism. Our results revealed that DSS-induced colonic inflammatory response and damaged epithelial barrier in mice were attenuated by oral administration of P. histicola. Moreover, supplementary P. histicola significantly enriched short-chain fatty acid (SCFA)-producing bacteria (Lactobacillus, and Bacillus) and reduced pathogenic bacteria (Erysipelotrichaceae, Clostridium, Bacteroides) in DSS-induced colitis. Notably, In DSS-treated mice, endoplasmic reticulum stress (ERS) was persistently activated in colonic tissue. Conversely, P. histicola gavage suppressed expansion of endoplasmic reticulum, downregulated PERK-ATF4-CHOP and IRE1α-JNK pathway. In vitro, the P. histicola supernatant eliminated LPS-induced higher production of pro-inflammatory cytokines regulated by NF-κB and impairment of epithelial barrier by inhibiting IRE1α-JNK signaling in Caco-2 cell. In summary, our study indicated that P. histicola mitigated DSS-induced chronic colitis via inhibiting IRE1α-JNK pathway and NF-κB signaling. These findings provide the new insights into the promotion of gut homeostasis and the application potential of P. histicola as a prebiotic for IBD in the future.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiuxia Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing Jia
- Laboratory Animal Resources Center, Wenzhou Medical University, Wenzhou, China
| | - Liangqiong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Cong Cao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziniu Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
33
|
Zhao J, Sun H, Wang G, Wang Q, Wang Y, Li Q, Bi S, Qi Q, Wang Q. Engineering Chimeric Chemoreceptors and Two-Component Systems for Orthogonal and Leakless Biosensing of Extracellular γ-Aminobutyric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14216-14228. [PMID: 38860925 DOI: 10.1021/acs.jafc.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Two-component systems (TCSs) sensing and responding to various stimuli outside and inside cells are valuable resources for developing biosensors with synthetic biology applications. However, the use of TCS-based biosensors suffers from a limited effector spectrum, hypersensitivity, low dynamic range, and unwanted signal crosstalk. Here, we developed a tailor-made Escherichia coli whole-cell γ-aminobutyric acid (GABA) biosensor by engineering a chimeric GABA chemoreceptor PctC and TCS. By testing different TCSs, the chimeric PctC/PhoQ showed the response to GABA. Chimera-directed evolution and introduction of the insulated chimeric pair PctC/PhoQ*PhoP* produced biosensors with up to 3.50-fold dynamic range and good orthogonality. To further enhance the dynamic range and lower the basal leakage, three strategies, engineering of PhoP DNA binding sites, fine-tuning reporter expression by optimizing transcription/translation components, and a tobacco etch virus protease-controlled protein degradation, were integrated. This chimeric biosensor displayed a low basal leakage, a large dynamic range (15.8-fold), and a high threshold level (22.7 g L-1). Finally, the optimized biosensor was successfully applied in the high-throughput microdroplet screening of GABA-overproducing Corynebacterium glutamicum, demonstrating its desired properties for extracellular signal biosensing.
Collapse
Affiliation(s)
- Jingyu Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Huanhuan Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Gege Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Qi Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Shuangyu Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
34
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
35
|
Durmusoglu D, Haller DJ, Al'Abri IS, Day K, Sands C, Clark A, San-Miguel A, Vazquez-Uribe R, Sommer MOA, Crook NC. Programming Probiotics: Diet-Responsive Gene Expression and Colonization Control in Engineered S. boulardii. ACS Synth Biol 2024; 13:1851-1865. [PMID: 38787439 DOI: 10.1021/acssynbio.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Saccharomyces boulardii (Sb) is an emerging probiotic chassis for delivering biomolecules to the mammalian gut, offering unique advantages as the only eukaryotic probiotic. However, precise control over gene expression and gut residence time in Sb have remained challenging. To address this, we developed five ligand-responsive gene expression systems and repaired galactose metabolism in Sb, enabling inducible gene expression in this strain. Engineering these systems allowed us to construct AND logic gates, control the surface display of proteins, and turn on protein production in the mouse gut in response to dietary sugar. Additionally, repairing galactose metabolism expanded Sb's habitat within the intestines and resulted in galactose-responsive control over gut residence time. This work opens new avenues for precise dosing of therapeutics by Sb via control over its in vivo gene expression levels and localization within the gastrointestinal tract.
Collapse
Affiliation(s)
- Deniz Durmusoglu
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Daniel J Haller
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ibrahim S Al'Abri
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Katie Day
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan C Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
36
|
Muramatsu MK, Winter SE. Nutrient acquisition strategies by gut microbes. Cell Host Microbe 2024; 32:863-874. [PMID: 38870902 PMCID: PMC11178278 DOI: 10.1016/j.chom.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The composition and function of the gut microbiota are intimately tied to nutrient acquisition strategies and metabolism, with significant implications for host health. Both dietary and host-intrinsic factors influence community structure and the basic modes of bacterial energy metabolism. The intestinal tract is rich in carbon and nitrogen sources; however, limited access to oxygen restricts energy-generating reactions to fermentation. By contrast, increased availability of electron acceptors during episodes of intestinal inflammation results in phylum-level changes in gut microbiota composition, suggesting that bacterial energy metabolism is a key driver of gut microbiota function. In this review article, we will illustrate diverse examples of microbial nutrient acquisition strategies in the context of habitat filters and anatomical location and the central role of energy metabolism in shaping metabolic strategies to support bacterial growth in the mammalian gut.
Collapse
Affiliation(s)
- Matthew K Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA
| | - Sebastian E Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Ha Y, Ma HR, Wu F, Weiss A, Duncker K, Xu HZ, Lu J, Golovsky M, Reker D, You L. Data-driven learning of structure augments quantitative prediction of biological responses. PLoS Comput Biol 2024; 20:e1012185. [PMID: 38829926 PMCID: PMC11233023 DOI: 10.1371/journal.pcbi.1012185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/09/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Multi-factor screenings are commonly used in diverse applications in medicine and bioengineering, including optimizing combination drug treatments and microbiome engineering. Despite the advances in high-throughput technologies, large-scale experiments typically remain prohibitively expensive. Here we introduce a machine learning platform, structure-augmented regression (SAR), that exploits the intrinsic structure of each biological system to learn a high-accuracy model with minimal data requirement. Under different environmental perturbations, each biological system exhibits a unique, structured phenotypic response. This structure can be learned based on limited data and once learned, can constrain subsequent quantitative predictions. We demonstrate that SAR requires significantly fewer data comparing to other existing machine-learning methods to achieve a high prediction accuracy, first on simulated data, then on experimental data of various systems and input dimensions. We then show how a learned structure can guide effective design of new experiments. Our approach has implications for predictive control of biological systems and an integration of machine learning prediction and experimental design.
Collapse
Affiliation(s)
- Yuanchi Ha
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America
| | - Helena R. Ma
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America
| | - Feilun Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Katherine Duncker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America
| | - Helen Z. Xu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America
| | - Max Golovsky
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
38
|
Gao B, Ruiz D, Case H, Jinkerson RE, Sun Q. Engineering bacterial warriors: harnessing microbes to modulate animal physiology. Curr Opin Biotechnol 2024; 87:103113. [PMID: 38564969 PMCID: PMC11444245 DOI: 10.1016/j.copbio.2024.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
A central goal of synthetic biology is the reprogramming of living systems for predetermined biological functions. While many engineering efforts have been made in living systems, these innovations have been mainly employed with microorganisms or cell lines. The engineering of multicellular organisms including animals remains challenging owing to the complexity of these systems. In this context, microbes, with their intricate impact on animals, have opened new opportunities. Through the utilization of the symbiotic relationships between microbes and animals, researchers have effectively manipulated animals in various ways using engineered microbes. This focused approach has demonstrated its significance in scientific exploration and engineering with model animals, coral preservation and restoration, and advancements in human health.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Daniela Ruiz
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States
| | - Hayden Case
- Department of Biology, Texas A&M University, College Station, TX 77840, United States
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States; Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
39
|
Wu YQ, Zou ZP, Zhou Y, Ye BC. Dual engineered bacteria improve inflammatory bowel disease in mice. Appl Microbiol Biotechnol 2024; 108:333. [PMID: 38739270 PMCID: PMC11090975 DOI: 10.1007/s00253-024-13163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.
Collapse
Affiliation(s)
- Yong-Qi Wu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
40
|
Zheng L, Shen J, Chen R, Hu Y, Zhao W, Leung ELH, Dai L. Genome engineering of the human gut microbiome. J Genet Genomics 2024; 51:479-491. [PMID: 38218395 DOI: 10.1016/j.jgg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The human gut microbiome, a complex ecosystem, significantly influences host health, impacting crucial aspects such as metabolism and immunity. To enhance our comprehension and control of the molecular mechanisms orchestrating the intricate interplay between gut commensal bacteria and human health, the exploration of genome engineering for gut microbes is a promising frontier. Nevertheless, the complexities and diversities inherent in the gut microbiome pose substantial challenges to the development of effective genome engineering tools for human gut microbes. In this comprehensive review, we provide an overview of the current progress and challenges in genome engineering of human gut commensal bacteria, whether executed in vitro or in situ. A specific focus is directed towards the advancements and prospects in cargo DNA delivery and high-throughput techniques. Additionally, we elucidate the immense potential of genome engineering methods to enhance our understanding of the human gut microbiome and engineer the microorganisms to enhance human health.
Collapse
Affiliation(s)
- Linggang Zheng
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Juntao Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruiyue Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau 999078, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Liu X, Zhao H, Wong A. Accounting for the health risk of probiotics. Heliyon 2024; 10:e27908. [PMID: 38510031 PMCID: PMC10950733 DOI: 10.1016/j.heliyon.2024.e27908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.
Collapse
Affiliation(s)
- Xiangyi Liu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Haiyi Zhao
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| |
Collapse
|
42
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
43
|
Parvin T, Sadras SR. Advanced probiotics: bioengineering and their therapeutic application. Mol Biol Rep 2024; 51:361. [PMID: 38403783 DOI: 10.1007/s11033-024-09309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
The role of gut bacteria in human health has long been acknowledged and dysbiosis of the gut microbiota has been correlated with a variety of disorders. Synthetic biology has rapidly grown over the past few years offering a variety of biological applications such as harnessing the relationship between bacteria and human health. Lactic acid bacteria (LAB) are thought to be appropriate chassis organisms for genetic modification with potential biomedical applications. A thorough understanding of the molecular mechanisms behind their beneficial qualities is essential to assist the multifunctional medicinal sectors. Effective genome editing will aid in the creation of next-generation designer probiotics with enhanced resilience and specialized capabilities, furthering our knowledge of the molecular mechanisms behind the physiological impacts of probiotics and their interactions with the host and microbiota. The goal of this review is to provide a brief overview of the methods used to create modified probiotics with the scientific rationale behind gene editing technology, the mechanism of action of engineered probiotics along with their application to treat conditions like inflammatory bowel disease, cancer, bacterial infections, and various metabolic diseases. In addition, application concerns and future directions are also presented.
Collapse
Affiliation(s)
- Tamanna Parvin
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry, India.
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry, India
| |
Collapse
|
44
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Gurbatri CR, Radford GA, Vrbanac L, Im J, Thomas EM, Coker C, Taylor SR, Jang Y, Sivan A, Rhee K, Saleh AA, Chien T, Zandkarimi F, Lia I, Lannagan TRM, Wang T, Wright JA, Kobayashi H, Ng JQ, Lawrence M, Sammour T, Thomas M, Lewis M, Papanicolas L, Perry J, Fitzsimmons T, Kaazan P, Lim A, Stavropoulos AM, Gouskos DA, Marker J, Ostroff C, Rogers G, Arpaia N, Worthley DL, Woods SL, Danino T. Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia. Nat Commun 2024; 15:646. [PMID: 38245513 PMCID: PMC10799955 DOI: 10.1038/s41467-024-44776-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.
Collapse
Affiliation(s)
- Candice R Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Georgette A Radford
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Elaine M Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Samuel R Taylor
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - YoungUk Jang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ayelet Sivan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kyu Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anas A Saleh
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tiffany Chien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Ioana Lia
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Tamsin R M Lannagan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Tongtong Wang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Josephine A Wright
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Hiroki Kobayashi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jia Q Ng
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Matt Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Tarik Sammour
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Michelle Thomas
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Mark Lewis
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Lito Papanicolas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Joanne Perry
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Tracy Fitzsimmons
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Patricia Kaazan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Amanda Lim
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | | | - Dion A Gouskos
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Julie Marker
- Cancer Voices SA, Adelaide, South Australia, Australia
| | - Cheri Ostroff
- University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Geraint Rogers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10027, USA
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Spring Hill, 4000, Queensland, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10027, USA.
- Data Science Institute, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
46
|
Debnath N, Yadav P, Mehta PK, Gupta P, Kumar D, Kumar A, Gautam V, Yadav AK. Designer probiotics: Opening the new horizon in diagnosis and prevention of human diseases. Biotechnol Bioeng 2024; 121:100-117. [PMID: 37881101 DOI: 10.1002/bit.28574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Probiotic microorganisms have been used for therapeutic purposes for over a century, and recent advances in biotechnology and genetic engineering have opened up new possibilities for developing therapeutic approaches using indigenous probiotic microorganisms. Diseases are often related to metabolic and immunological factors, which play a critical role in their onset. With the help of advanced genetic tools, probiotics can be modified to produce or secrete important therapeutic peptides directly into mucosal sites, increasing their effectiveness. One potential approach to enhancing human health is through the use of designer probiotics, which possess immunogenic characteristics. These genetically engineered probiotics hold promise in providing novel therapeutic options. In addition to their immunogenic properties, designer probiotics can also be equipped with sensors and genetic circuits, enabling them to detect a range of diseases with remarkable precision. Such capabilities may significantly advance disease diagnosis and management. Furthermore, designer probiotics have the potential to be used in diagnostic applications, offering a less invasive and more cost-effective alternative to conventional diagnostic techniques. This review offers an overview of the different functional aspects of the designer probiotics and their effectiveness on different diseases and also, we have emphasized their limitations and future implications. A comprehensive understanding of these functional attributes may pave the way for new avenues of prevention and the development of effective therapies for a range of diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen K Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok K Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
47
|
Chai G, Li J, Li Z. The interactive effects of ocean acidification and warming on bioeroding sponge Spheciospongia vesparium microbiome indicated by metatranscriptomics. Microbiol Res 2024; 278:127542. [PMID: 37979302 DOI: 10.1016/j.micres.2023.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Global climate change will cause coral reefs decline and is expected to increase the reef erosion potential of bioeroding sponges. Microbial symbionts are essential for the overall fitness and survival of sponge holobionts in changing ocean environments. However, we rarely know about the impacts of ocean warming and acidification on bioeroding sponge microbiome. Here, the structural and functional changes of the bioeroding sponge Spheciospongia vesparium microbiome, as well as its recovery potential, were investigated at the RNA level in a laboratory system simulating 32 °C and pH 7.7. Based on metatranscriptome analysis, acidification showed no significant impact, while warming or simultaneous warming and acidification disrupted the sponge microbiome. Warming caused microbial dysbiosis and recruited potentially opportunistic and pathogenic members of Nesiotobacter, Oceanospirillaceae, Deltaproteobacteria, Epsilonproteobacteria, Bacteroidetes and Firmicutes. Moreover, warming disrupted nutrient exchange and molecular interactions in the sponge holobiont, accompanied by stimulation of virulence activity and anaerobic metabolism including denitrification and dissimilatory reduction of nitrate and sulfate to promote sponge necrosis. Particularly, the interaction between acidification and warming alleviated the negative effects of warming and enhanced the Rhodobacteraceae-driven ethylmalonyl-CoA pathway and sulfur-oxidizing multienzyme system. The microbiome could not recover during the experiment period after warming or combined stress was removed. This study suggests that warming or combined warming and acidification will irreversibly destabilize the S. vesparium microbial community structure and function, and provides insight into the molecular mechanisms of the interactive effects of acidification and warming on the sponge microbiome.
Collapse
Affiliation(s)
- Guangjun Chai
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinlong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
48
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
49
|
Li H, Jia M, Qi Q, Wang Q. Engineered probiotic Lactobacillus plantarum WCSF I for monitoring and treatment of Staphylococcus aureus infection. Microbiol Spectr 2023; 11:e0182923. [PMID: 37909791 PMCID: PMC10848683 DOI: 10.1128/spectrum.01829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacterial infection and the emergence of drug-resistant strains are major problems in clinical treatment. Staphylococcus aureus, which typically infects the skin and blood of animals, is also a potential intestinal pathogen that needs to be addressed by the emergence of a new treatment approach. Probiotic therapy is the most likely alternative to antibiotic therapy to solve the problem of bacterial drug resistance in clinical practice. In this study, the engineered Lactobacillus plantarum can not only sense the signal AIP to detect S. aureus but also kill S. aureus by secreting the lysostaphin enzyme. Our strategy employed an Agr quorum-sensing genetic circuit to simultaneously detect and treat pathogenic bacteria, which provided a theoretical possibility for solving practical clinical bacterial infection cases in the future.
Collapse
Affiliation(s)
- Haoran Li
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Minjun Jia
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qian Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
50
|
Wang XG, Zou ZP, Du Y, Ye BC, Zhou Y. Construction of an Engineered Escherichia coli with Efficient Chemotactic and Metabolizing Ability toward Tetrathionate. ACS Synth Biol 2023; 12:3414-3423. [PMID: 37939253 DOI: 10.1021/acssynbio.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The emergence of genetically engineered bacteria has provided a new means for the diagnosis and treatment of diseases. However, in vivo applications of these engineered bacteria are hindered by their inefficient accumulation in areas of inflammation. In this study, we constructed an engineered Escherichia coli (E. coli) for directional migration toward tetrathionate (a biomarker of gut inflammation), which is regulated by the TtrSR two-component system (TCS) from Shewanella baltica OS195 (S. baltica). Specifically, we removed endogenous cheZ to control the motility of E. coli. Moreover, we introduced the reductase gene cluster (ttrBCA) from Salmonella enterica serotype typhimurium (S. typhimurium), a major pathogen causing gut inflammation, into E. coli to metabolize tetrathionate. The resulting strain was tested for its motility along the gradients of tetrathionate; the engineered strain exhibits tropism to tetrathionate compared with the original strain. Furthermore, the engineered E. coli could only restore its smooth swimming ability when tetrathionate existed. With these modifications enabling tetrathionate-mediated chemotactic and metabolizing activity, this strategy with therapeutic elements will provide a great potential opportunity for target treatment of various diseases by swapping the corresponding genetic circuits.
Collapse
Affiliation(s)
- Xin-Ge Wang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Zhen-Ping Zou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Yue Du
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| |
Collapse
|