1
|
Liu C, Yi F, Niu C, Li Q. Unravelling microbial interactions in a synthetic broad bean paste microbial community. Food Microbiol 2025; 130:104767. [PMID: 40210396 DOI: 10.1016/j.fm.2025.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
The biotic factors governing the assembly and functionality of broad bean paste microbiota remain largely unexplored due to its highly complex fermentation ecosystem. This study constructed a synthetic community comprising Zygosaccharomyces rouxii, Staphylococcus carnosus, Bacillus subtilis, Bacillus amyloliquefaciens, Tetragenococcus halophilus and Weissella confusa, representing key microorganisms involved in broad bean paste fermentation. The generalized Lotka-Volterra (gLV) model revealed that the microbial interaction network among the six species was dominated by pairwise interactions. The abundances of most species in the multi-species communities at 2 and 4 days were accurately predicted using the gLV model, based on pairwise species combinations outcomes. Among pairwise interactions, negative interactions (57 %) were significantly more prevalent than positive interactions (37 %), with the former generally being stronger. Subsequent investigations demonstrated that the tested Z. rouxii inhibited acid accumulation by acid-producing bacteria, while the two strains belonging to the genus Bacillus stimulated lactic acid bacteria growth and lactic acid accumulation. The sequential inoculation strategy, informed by the interaction network, enhanced the synthetic community's bioaugmentation in broad bean paste, significantly improving ester and mellow flavors, reducing unpleasant odors, and increasing volatile flavor substances to 9.43 times that of natural fermentation. Overall, this study revealed the interaction network of six key microorganisms in broad bean paste using the gLV model and guided the application of the synthetic community in its fermentation, significantly enhancing flavor quality.
Collapse
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Feng Yi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Jourdain L, Gu W. Designing synthetic microbial communities for enhanced anaerobic waste treatment. Appl Environ Microbiol 2025:e0040425. [PMID: 40377302 DOI: 10.1128/aem.00404-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Synthetic microbial communities (SynComs) are powerful tools for investigating microbial interactions and community assembly by focusing on minimal yet functionally representative members. Here, we will highlight key principles for designing SynComs, specifically emphasizing the anaerobic digestion (AD) microbiome for waste treatment and upcycling. The AD process has traditionally been used to reduce organic waste volume while producing biogas as a renewable energy source. Its microbiome features well-defined trophic layers and metabolic groups. There has been growing interest in repurposing the AD process to produce value-added products and chemical precursors, contributing to sustainable waste management and the goals of a circular economy. Optimizing the AD process requires a better understanding of microbial interactions and the influence of both biotic and abiotic parameters, where SynComs offer great promise. Focusing on AD microbiomes, we review the principles of SynComs' design, including keystone taxa and function, cross-feeding interactions, and metabolic redundancy, as well as how modeling approaches could guide SynComs design. Furthermore, we address practical considerations for working with AD SynComs and examine constructed SynComs designed for anaerobic waste digestion. Finally, we discuss the challenges associated with designing and applying SynComs to enhance our understanding of the AD process. This review aims to explore the use of synthetic communities in studying anaerobic digestion and highlights their potential for developing innovative biotechnological processes.
Collapse
Affiliation(s)
- Lisa Jourdain
- MICROBE laboratory, Institute of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Wenyu Gu
- MICROBE laboratory, Institute of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
3
|
Liu Y, Cheng YY, Thompson J, Zhou Z, Vivas EI, Warren MF, DuClos JM, Anantharaman K, Rey FE, Venturelli OS. Decoding the role of the arginine dihydrolase pathway in shaping human gut community assembly and health-relevant metabolites. Cell Syst 2025:101292. [PMID: 40339579 DOI: 10.1016/j.cels.2025.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
The arginine dihydrolase pathway (arc operon) provides a metabolic niche by transforming arginine into metabolic byproducts. We investigate the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles. By stabilizing environmental pH, the arc operon reduces variability in community composition in response to pH perturbations and frequently enhances butyrate production in synthetic communities. We use a tailored machine learning model for microbiomes to predict community assembly in response to variation in initial media pH and arc operon activity. This model uncovers the pH- and arc operon-dependent interactions shaping community assembly. Human gut species display altered colonization dynamics in response to the arc operon in the murine gut. In sum, our framework to quantify the contribution of a specific pathway to microbial community assembly and metabolite production can reveal new engineering strategies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew F Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie M DuClos
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ophelia S Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
4
|
M. Zand A, Anastassov S, Frei T, Khammash M. Multi-Layer Autocatalytic Feedback Enables Integral Control Amidst Resource Competition and Across Scales. ACS Synth Biol 2025; 14:1041-1061. [PMID: 40116396 PMCID: PMC12012887 DOI: 10.1021/acssynbio.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Integral feedback control strategies have proven effective in regulating protein expression in unpredictable cellular environments. These strategies, grounded in model-based designs and control theory, have advanced synthetic biology applications. Autocatalytic integral feedback controllers, utilizing positive autoregulation for integral action, are one class of simplest architectures to design integrators. This class of controllers offers unique features, such as robustness against dilution effects and cellular growth, as well as the potential for synthetic realizations across different biological scales, owing to their similarity to self-regenerative behaviors widely observed in nature. Despite this, their potential has not yet been fully exploited. One key reason, we discuss, is that their effectiveness is often hindered by resource competition and context-dependent couplings. This study addresses these challenges using a multilayer feedback strategy. Our designs enabled population-level integral feedback and multicellular integrators, where the control function emerges as a property of coordinated interactions distributed across different cell populations coexisting in a multicellular consortium. We provide a generalized mathematical framework for modeling resource competition in complex genetic networks, supporting the design of intracellular control circuits. The use of our proposed multilayer autocatalytic controllers is examined in two typical control tasks that pose significant relevance to synthetic biology applications: concentration regulation and ratiometric control. We define a ratiometric control task and solve it using a variant of our controller. The effectiveness of our controller motifs is demonstrated through a range of application examples, from precise regulation of gene expression and gene ratios in embedded designs to population growth and coculture composition control in multicellular designs within engineered microbial ecosystems. These findings offer a versatile approach to achieving robust adaptation and homeostasis from subcellular to multicellular scales.
Collapse
Affiliation(s)
- Armin M. Zand
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| | - Stanislav Anastassov
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| | - Timothy Frei
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| | - Mustafa Khammash
- ETH Zurich, Department
of
Biosystems Science and Engineering, Schanzenstrasse 44, Basel 4056, Switzerland
| |
Collapse
|
5
|
Aranda-Díaz A, Willis L, Nguyen TH, Ho PY, Vila J, Thomsen T, Chavez T, Yan R, Yu FB, Neff N, DeFelice BC, Sanchez A, Estrela S, Huang KC. Assembly of stool-derived bacterial communities follows "early-bird" resource utilization dynamics. Cell Syst 2025; 16:101240. [PMID: 40157357 DOI: 10.1016/j.cels.2025.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/19/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
Diet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured in vitro from human stool to develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Among these communities, membership was largely determined by the donor stool, whereas relative abundances were determined by the supplemental carbon source. The absolute abundance of most taxa was independent of the supplementing nutrient due to the ability of a few organisms to quickly exhaust their niche in the complex medium and then exploit and monopolize the supplemental carbon source. Relative abundances of dominant taxa could be predicted from the nutritional preferences and growth dynamics of species in isolation, and exceptions were consistent with strain-level variation in growth capabilities. Our study reveals that assembly of this community of gut commensals can be explained by nutrient utilization dynamics that provide a predictive framework for manipulating community composition through nutritional perturbations.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Po-Yi Ho
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jean Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Tani Thomsen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Taylor Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rose Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Alvaro Sanchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Sylvie Estrela
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Hu T, Meng Y, Zhao C, Sheng D, Yang S, Dai J, Wei T, Zhang Y, Zhao G, Liu Y, Wang Q, Zhang L. Genome-scale metabolic modeling reveals specific vaginal Lactobacillus strains and their metabolites as key inhibitors of Candida albicans. Microbiol Spectr 2025:e0298424. [PMID: 40237492 DOI: 10.1128/spectrum.02984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
As the predominant constituents of the vaginal microbiome in healthy women, Lactobacillus species are considered essential in maintaining a homeostatic vaginal microbiome. Specific Lactobacillus species can produce beneficial metabolites to support their persistence within the host environment and inhibit Candida albicans colonization. Due to the extensive diversity of Lactobacillus species and their metabolites, comprehensively investigating all possible interactions remains challenging. This study employed an integrative approach combining genome-scale metabolic modeling, metagenomic sequencing, and in vitro validation to explore Lactobacillus and C. albicans interactions. Pairwise simulations of 159 Lactobacillus strains with C. albicans revealed that most strains exhibit inhibitory effects, altering fungal amino acid and carbohydrate metabolism. Key inhibitory metabolites identified included formate, L-lactate, and L-malate. Metagenomic analysis of vaginal swabs from 20 vulvovaginal candidiasis (VVC) patients and 20 healthy women showed a correlation between Lactobacillus species abundance and reduced C. albicans colonization. In vitro experiments confirmed the inhibitory effects of these metabolites and the selected Lactobacillus strains on C. albicans growth, thereby validating our computational predictions. These findings provide insights into the metabolic interactions within the vaginal microbiome and pave the way for targeted microbial or metabolite-based therapeutic strategies to manage VVC.IMPORTANCEVulvovaginal candidiasis is a prevalent fungal infection with significant implications for women's health, caused primarily by Candida albicans. Although the protective role of a Lactobacillus-dominated vaginal microbiome is well established, the metabolic mechanisms underlying the interactions between Lactobacillus species and C. albicans remain inadequately understood. Specifically, the Lactobacillus species that effectively inhibit C. albicans and the metabolic pathways involved warrant further investigation. This study offers novel insights into the metabolic mechanisms underlying Lactobacillus antagonism against C. albicans. By identifying critical metabolic pathways and inhibitory metabolites, this study enhances our understanding of vaginal microbiome dynamics and host-microbe interactions. The findings suggest that key Lactobacillus strains and their metabolites could significantly reduce harmful levels of C. albicans, paving the way for future therapeutic strategies that leverage these microbial characteristics to promote vaginal health.
Collapse
Affiliation(s)
- Tianqi Hu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya Meng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sijie Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Junhui Dai
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tiantian Wei
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yiming Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanan Liu
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Chesneau G, Herpell J, Wolf SM, Perin S, Hacquard S. MetaFlowTrain: a highly parallelized and modular fluidic system for studying exometabolite-mediated inter-organismal interactions. Nat Commun 2025; 16:3310. [PMID: 40210863 PMCID: PMC11985495 DOI: 10.1038/s41467-025-58530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
Metabolic fluxes between cells, organisms, or communities drive ecosystem assembly and functioning and explain higher-level biological organization. Exometabolite-mediated inter-organismal interactions, however, remain poorly described due to technical challenges in measuring these interactions. Here, we present MetaFlowTrain, an easy-to-assemble, cheap, semi-high-throughput, and modular fluidic system in which multiple media can be flushed at adjustable flow rates into gnotobiotic microchambers accommodating diverse micro-organisms, ranging from bacteria to small eukaryotes. These microchambers can be used alone or connected in series to create microchamber trains within which metabolites, but not organisms, directionally travel between microchambers to modulate organismal growth. Using MetaFlowTrain, we uncover soil conditioning effects on synthetic community structure and plant growth, and reveal microbial antagonism mediated by exometabolite production. Our study highlights MetaFlowTrain as a versatile system for investigating plant-microbe-microbe metabolic interactions. We also discuss the system´s potential to discover metabolites that function as signaling molecules, drugs, or antimicrobials across various systems.
Collapse
Affiliation(s)
- Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Herpell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah Marie Wolf
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Silvina Perin
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
8
|
Eslami M, Adampour Z, Fadaee Dowlat B, Yaghmayee S, Motallebi Tabaei F, Oksenych V, Naderian R. A Novel Frontier in Gut-Brain Axis Research: The Transplantation of Fecal Microbiota in Neurodegenerative Disorders. Biomedicines 2025; 13:915. [PMID: 40299512 PMCID: PMC12025253 DOI: 10.3390/biomedicines13040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
The gut-brain axis (GBA) represents a sophisticated bidirectional communication system connecting the central nervous system (CNS) and the gastrointestinal (GI) tract. This interplay occurs primarily through neuronal, immune, and metabolic pathways. Dysbiosis in gut microbiota has been associated with multiple neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). In recent years, fecal microbiota transplantation (FMT) has gained attention as an innovative therapeutic approach, aiming to restore microbial balance in the gut while influencing neuroinflammatory and neurodegenerative pathways. This review explores the mechanisms by which FMT impacts the gut-brain axis. Key areas of focus include its ability to reduce neuroinflammation, strengthen gut barrier integrity, regulate neurotransmitter production, and reinstate microbial diversity. Both preclinical and clinical studies indicate that FMT can alleviate motor and cognitive deficits in PD and AD, lower neuroinflammatory markers in MS, and enhance respiratory and neuromuscular functions in ALS. Despite these findings, several challenges remain, including donor selection complexities, uncertainties about long-term safety, and inconsistencies in clinical outcomes. Innovations such as synthetic microbial communities, engineered probiotics, and AI-driven analysis of the microbiome hold the potential to improve the precision and effectiveness of FMT in managing neurodegenerative conditions. Although FMT presents considerable promise as a therapeutic development, its widespread application for neurodegenerative diseases requires thorough validation through well-designed, large-scale clinical trials. It is essential to establish standardized protocols, refine donor selection processes, and deepen our understanding of the molecular mechanisms behind its efficacy.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran;
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Zarifeh Adampour
- Institute of Science, Biotechnology and Biosafety Department, Eskishehir Osmangazi University, Eskishehir 26040, Türkiye;
| | - Bahram Fadaee Dowlat
- School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Shayan Yaghmayee
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Faezeh Motallebi Tabaei
- Department of Medical Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49189-36316, Iran
| | | | - Ramtin Naderian
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
9
|
Kim K, Weiss A, Ma HR, Son HI, Zhou Z, You L. Antibiotic-mediated microbial community restructuring is dictated by variability in antibiotic-induced lysis rates and population interactions. Nat Commun 2025; 16:2299. [PMID: 40055339 PMCID: PMC11889214 DOI: 10.1038/s41467-025-57508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
It is widely known that faster-growing bacterial cells are more susceptible to many antibiotics. Given this notion, it appears intuitive that antibiotic treatment would enrich slower-growing cells in a clonal population or slower-growing populations in a microbial community, which has been commonly observed. However, experimental observations also show the enrichment of faster-growing subpopulations under certain conditions. Does this apparent discrepancy suggest the uniqueness about different growth environments or the role of additional confounding factors? If so, what could be the major determinant in antibiotic-mediated community restructuring? Combining modeling and quantitative measurements using a barcoded heterogeneous E. coli library, we show that the outcome of antibiotic-mediated community restructuring can be driven by two major factors. One is the variability among the clonal responses of different subpopulations to the antibiotic; the other is their interactions. Our results suggest the importance of quantitative measurements of antibiotic responses in individual clones in predicting community responses to antibiotics and addressing subpopulation interactions.
Collapse
Affiliation(s)
- Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Helena R Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Giri S, Shi H, Typas A, Huang KC. Harnessing gut microbial communities to unravel microbiome functions. Curr Opin Microbiol 2025; 83:102578. [PMID: 39787728 DOI: 10.1016/j.mib.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
The gut microbiome impacts human health in direct and indirect ways. While many associations have been discovered between specific microbiome compositions and diseases, establishing causality, understanding the underlying mechanisms, and developing successful microbiome-based therapies require novel experimental approaches. In this opinion, we discuss how in vitro cultivation of diverse communities enables systematic investigation of the individual and collective functions of gut microbes. Up to now, the field has relied mostly on simple, bottom-up assembled synthetic communities or more complex, undefined stool-derived communities. Although powerful for dissecting interactions and mapping causal effects, these communities suffer either from ignoring the complexity, diversity, coevolution, and dynamics of natural communities or from lack of control of community composition. These limitations can be overcome in the future by establishing personalized culture collections from stool samples of different donors and assembling personalized communities to investigate native interactions and ecological relationships in a controlled manner.
Collapse
Affiliation(s)
- Samir Giri
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Athanasios Typas
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Arya S, George AB, O'Dwyer J. The architecture of theory and data in microbiome design: towards an S-matrix for microbiomes. Curr Opin Microbiol 2025; 83:102580. [PMID: 39848217 DOI: 10.1016/j.mib.2025.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Designing microbiomes for applications in health, bioengineering, and sustainability is intrinsically linked to a fundamental theoretical understanding of the rules governing microbial community assembly. Microbial ecologists have used a range of mathematical models to understand, predict, and control microbiomes, ranging from mechanistic models, putting microbial populations and their interactions as the focus, to purely statistical approaches, searching for patterns in empirical and experimental data. We review the success and limitations of these modeling approaches when designing novel microbiomes, especially when guided by (inevitably) incomplete experimental data. Although successful at predicting generic patterns of community assembly, mechanistic and phenomenological models tend to fall short of the precision needed to design and implement specific functionality in a microbiome. We argue that to effectively design microbiomes with optimal functions in diverse environments, ecologists should combine data-driven techniques with mechanistic models - a middle, third way for using theory to inform design.
Collapse
Affiliation(s)
- Shreya Arya
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Ashish B George
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James O'Dwyer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Sulaiman JE, Thompson J, Cheung PLK, Qian Y, Mill J, James I, Im H, Vivas EI, Simcox J, Venturelli OS. Phocaeicola vulgatus shapes the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile. Cell Host Microbe 2025; 33:42-58.e10. [PMID: 39730002 PMCID: PMC11852276 DOI: 10.1016/j.chom.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk for infections. This colonization is influenced by complex molecular and ecological interactions with the human gut microbiota. By investigating C. difficile dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentrations shifted a community containing C. difficile and the prevalent human gut symbiont Phocaeicola vulgatus from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, two key mutations in C. difficile altered its metabolic niche from proline to glucose utilization. These metabolic changes in C. difficile substantially impacted gut microbiota inter-species interactions and reduced disease severity in mice. In sum, interactions with P. vulgatus are crucial in shaping the long-term growth dynamics and evolutionary adaptations of C. difficile, offering key insights for developing anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pak Lun Kevin Cheung
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hanhyeok Im
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Jiang Y, Wang Y, Che L, Yang S, Zhang X, Lin Y, Shi Y, Zou N, Wang S, Zhang Y, Zhao Z, Li S. GutMetaNet: an integrated database for exploring horizontal gene transfer and functional redundancy in the human gut microbiome. Nucleic Acids Res 2025; 53:D772-D782. [PMID: 39526401 PMCID: PMC11701528 DOI: 10.1093/nar/gkae1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Metagenomic studies have revealed the critical roles of complex microbial interactions, including horizontal gene transfer (HGT) and functional redundancy (FR), in shaping the gut microbiome's functional capacity and resilience. However, the lack of comprehensive data integration and systematic analysis approaches has limited the in-depth exploration of HGT and FR dynamics across large-scale gut microbiome datasets. To address this gap, we present GutMetaNet (https://gutmetanet.deepomics.org/), a first-of-its-kind database integrating extensive human gut microbiome data with comprehensive HGT and FR analyses. GutMetaNet contains 21 567 human gut metagenome samples with whole-genome shotgun sequencing data related to various health conditions. Through systematic analysis, we have characterized the taxonomic profiles and FR profiles, and identified 14 636 HGT events using a shared reference genome database across the collected samples. These HGT events have been curated into 8049 clusters, which are annotated with categorized mobile genetic elements, including transposons, prophages, integrative mobilizable elements, genomic islands, integrative conjugative elements and group II introns. Additionally, GutMetaNet incorporates automated analyses and visualizations for the HGT events and FR, serving as an efficient platform for in-depth exploration of the interactions among gut microbiome taxa and their implications for human health.
Collapse
Affiliation(s)
- Yiqi Jiang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Yanfei Wang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
| | - Lijia Che
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Shuo Yang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosafety, 20 East Street, Fengtai District, Beijing, 100071, China
| | - Yu Lin
- State Key Laboratory of Pathogen and Biosafety, 20 East Street, Fengtai District, Beijing, 100071, China
- Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yucheng Shi
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Nanhe Zou
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Shuai Wang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Yuanzheng Zhang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Zicheng Zhao
- OmicLab Limited, Unit 917, 19 Science Park West Avenue, New Territories, Hong Kong
| | - Shuai Cheng Li
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| |
Collapse
|
15
|
Karwowska Z, Aasmets O, Kosciolek T, Org E. Effects of data transformation and model selection on feature importance in microbiome classification data. MICROBIOME 2025; 13:2. [PMID: 39754220 PMCID: PMC11699698 DOI: 10.1186/s40168-024-01996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored. RESULTS Our analysis of over 8500 samples from 24 shotgun metagenomic datasets showed that it is possible to classify healthy and diseased individuals using microbiome data with minimal dependence on the choice of algorithm or transformation. Presence-absence transformations performed comparably to abundance-based transformations, and only a small subset of predictors is necessary for accurate classification. However, while different transformations resulted in comparable classification performance, the most important features varied significantly, which highlights the need to reevaluate machine learning-based biomarker detection. CONCLUSIONS Microbiome data transformations can significantly influence feature selection but have a limited effect on classification accuracy. Our findings suggest that while classification is robust across different transformations, the variation in feature selection necessitates caution when using machine learning for biomarker identification. This research provides valuable insights for applying machine learning to microbiome data and identifies important directions for future work.
Collapse
Affiliation(s)
- Zuzanna Karwowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
| | - Oliver Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tomasz Kosciolek
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland.
- Sano Centre for Computational Medicine, Krakow, Poland.
| | - Elin Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
16
|
Malan-Müller S, Martín-Hernández D, Caso JR, Matthijnssens J, Rodríguez-Urrutia A, Lowry CA, Leza JC. Metagenomic symphony of the intestinal ecosystem: How the composition affects the mind. Brain Behav Immun 2025; 123:510-523. [PMID: 39368785 DOI: 10.1016/j.bbi.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Mental health disorders and neurodegenerative diseases place a heavy burden on patients and societies, and, although great strides have been made to understand the pathophysiology of these conditions, advancement in drug development is lagging. The importance of gastrointestinal health in maintaining overall health and preventing disease is not a new concept. Hundreds of years ago, healers from various cultures and civilizations recognized the crucial role of the gut in sustaining health. More than a century ago, scientists began exploring the restorative effects of probiotics, marking the early recognition of the importance of gut microbes. The omics era brought more enlightenment and enabled researchers to identify the complexity of the microbial ecosystems we harbour, encompassing bacteria, eukaryotes (including fungi), archaea, viruses, and other microorganisms. The extensive genetic capacity of the microbiota is dynamic and influenced by the environment. The microbiota therefore serves as a significant entity within us, with evolutionarily preserved functions in host metabolism, immunity, development, and behavior. The significant role of the bacterial gut microbiome in mental health and neurodegenerative disorders has been realized and described within the framework of the microbiota-gut-brain axis. However, the bacterial members do not function unaccompanied, but rather in concert, and there is a substantial knowledge gap regarding the involvement of non-bacterial microbiome members in these disorders. In this review, we will explore the current literature that implicates a role for the entire metagenomic ensemble, and how their complex interkingdom relationships could influence CNS functioning in mental health disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Amanda Rodríguez-Urrutia
- Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| |
Collapse
|
17
|
Rawstern AH, Hernandez DJ, Afkhami ME. Central Taxa Are Keystone Microbes During Early Succession. Ecol Lett 2025; 28:e70031. [PMID: 39737770 DOI: 10.1111/ele.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025]
Abstract
Microorganisms underpin numerous ecosystem processes and support biodiversity globally. Yet, we understand surprisingly little about what structures environmental microbiomes, including how to efficiently identify key players. Microbiome network theory predicts that highly connected hubs act as keystones, but this has never been empirically tested in nature. Combining culturing, sequencing, networks and field experiments, we isolated 'central' (highly connected, hub taxa), 'intermediate' (moderately connected), and 'peripheral' (weakly/unconnected) microbes and experimentally evaluated their effects on soil microbiome assembly during early succession in nature. Central early colonisers significantly (1) enhanced biodiversity (35%-40% richer communities), (2) reshaped trajectories of microbiome assembly and (3) increased recruitment of additional influential microbes by > 60%. In contrast, peripheral microbes did not increase diversity and were transient taxa, minimally affected by the presence of other microbes. This work elucidates fundamental principles of network theory in microbial ecology and demonstrates for the first time in nature that central microbes act as keystone taxa.
Collapse
Affiliation(s)
- Amanda H Rawstern
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Damian J Hernandez
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Solé R, Maull V, Amor DR, Mauri JP, Núria CP. Synthetic Ecosystems: From the Test Tube to the Biosphere. ACS Synth Biol 2024; 13:3812-3826. [PMID: 39570594 DOI: 10.1021/acssynbio.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The study of ecosystems, both natural and artificial, has historically been mediated by population dynamics theories. In this framework, quantifying population numbers and related variables (associated with metabolism or biological-environmental interactions) plays a central role in measuring and predicting system-level properties. As we move toward advanced technological engineering of cells and organisms, the possibility of bioengineering ecosystems (from the gut microbiome to wildlands) opens several questions that will require quantitative models to find answers. Here, we present a comprehensive survey of quantitative modeling approaches for managing three kinds of synthetic ecosystems, sharing the presence of engineered strains. These include test tube examples of ecosystems hosting a relatively low number of interacting species, mesoscale closed ecosystems (or ecospheres), and macro-scale, engineered ecosystems. The potential outcomes of synthetic ecosystem designs and their limits will be relevant to different disciplines, including biomedical engineering, astrobiology, space exploration and fighting climate change impacts on endangered ecosystems. We propose a space of possible ecosystems that captures this broad range of scenarios and a tentative roadmap for open problems and further exploration.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- European Centre for Living Technology, Sestiere Dorsoduro, 3911, 30123, Venice, Italy
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe New Mexico 87501, United States
| | - Victor Maull
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Daniel R Amor
- LPENS, Département de physique, École normale supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
- IAME, Université de Paris Cité, Université Sorbonne Paris Nord, INSERM, 75005 Paris, France
| | - Jordi Pla Mauri
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Conde-Pueyo Núria
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory (EMBL), Barcelona 08003, Spain
| |
Collapse
|
19
|
Yu Z, Gan Z, Tawfik A, Meng F. Exploring interspecific interaction variability in microbiota: A review. ENGINEERING MICROBIOLOGY 2024; 4:100178. [PMID: 40104221 PMCID: PMC11915528 DOI: 10.1016/j.engmic.2024.100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 03/20/2025]
Abstract
Interspecific interactions are an important component and a strong selective force in microbial communities. Over the past few decades, there has been a growing awareness of the variability in microbial interactions, and various studies are already unraveling the inner working dynamics in microbial communities. This has prompted scientists to develop novel techniques for characterizing the varying interspecific interactions among microbes. Here, we review the precise definitions of pairwise and high-order interactions, summarize the key concepts related to interaction variability, and discuss the strengths and weaknesses of emerging characterization techniques. Specifically, we found that most methods can accurately predict or provide direct information about microbial pairwise interactions. However, some of these methods inevitably mask the underlying high-order interactions in the microbial community. Making reasonable assumptions and choosing a characterization method to explore varying microbial interactions should allow us to better understand and engineer dynamic microbial systems.
Collapse
Affiliation(s)
- Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Urtecho G, Moody T, Huang Y, Sheth RU, Richardson M, Descamps HC, Kaufman A, Lekan O, Zhang Z, Velez-Cortes F, Qu Y, Cohen L, Ricaurte D, Gibson TE, Gerber GK, Thaiss CA, Wang HH. Spatiotemporal dynamics during niche remodeling by super-colonizing microbiota in the mammalian gut. Cell Syst 2024; 15:1002-1017.e4. [PMID: 39541983 PMCID: PMC12066173 DOI: 10.1016/j.cels.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
While fecal microbiota transplantation (FMT) has been shown to be effective in reversing gut dysbiosis, we lack an understanding of the fundamental processes underlying microbial engraftment in the mammalian gut. Here, we explored a murine gut colonization model leveraging natural inter-individual variations in gut microbiomes to elucidate the spatiotemporal dynamics of FMT. We identified a natural "super-donor" consortium that robustly engrafts into diverse recipients and resists reciprocal colonization. Temporal profiling of the gut microbiome showed an ordered succession of rapid engraftment by early colonizers within 72 h, followed by a slower emergence of late colonizers over 15-30 days. Moreover, engraftment was localized to distinct compartments of the gastrointestinal tract in a species-specific manner. Spatial metagenomic characterization suggested engraftment was mediated by simultaneous transfer of spatially co-localizing species from the super-donor consortia. These results offer a mechanism of super-donor colonization by which nutritional niches are expanded in a spatiotemporally dependent manner. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Guillaume Urtecho
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Ravi U Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Miles Richardson
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Kaufman
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Opeyemi Lekan
- Department of Systems Biology, Columbia University, New York, NY, USA; Columbia College, Columbia University, New York, NY 10027, USA
| | - Zetian Zhang
- Department of Systems Biology, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Florencia Velez-Cortes
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Qu
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Lucas Cohen
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Travis E Gibson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA; Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georg K Gerber
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Ishikawa D, Zhang X, Nomura K, Shibuya T, Hojo M, Yamashita M, Koizumi S, Yamazaki F, Iwamoto S, Saito M, Kunigo K, Nakano R, Honma N, Urakawa I, Nagahara A. Anti-inflammatory Effects of Bacteroidota Strains Derived From Outstanding Donors of Fecal Microbiota Transplantation for the Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2024; 30:2136-2145. [PMID: 38733623 DOI: 10.1093/ibd/izae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 05/13/2024]
Abstract
BACKGROUND The proportion of certain Bacteroidota species decreased in patients with ulcerative colitis, and the recovery of Bacteroidota is associated with the efficacy of fecal microbiota transplantation therapy. We hypothesized that certain Bacteroidota may advance ulcerative colitis treatment. Accordingly, we aimed to evaluate the anti-inflammatory effects of Bacteroidota strains isolated from donors. METHODS Donors with proven efficacy of fecal microbiota transplantation for ulcerative colitis were selected, and Bacteroidota strains were isolated from their stools. The immune function of Bacteroidota isolates was evaluated through in vitro and in vivo studies. RESULTS Twenty-four Bacteroidota strains were isolated and identified. Using an in vitro interleukin (IL)-10 induction assay, we identified 4 Bacteroidota strains with remarkable IL-10-induction activity. Of these, an Alistipes putredinis strain exhibited anti-inflammatory effects in a mouse model of colitis induced by sodium dextran sulfate and oxazolone. However, 16S rRNA gene-based sequencing analysis of A. putredinis cultures in the in vivo study revealed unexpected Veillonella strain contamination. A second in vitro study confirmed that the coculture exhibited an even more potent IL-10-inducing activity. Furthermore, the production of A. putredinis-induced IL-10 was likely mediated via toll-like receptor 2 signaling. CONCLUSIONS This study demonstrated that A. putredinis, a representative Bacteroidota species, exhibits anti-inflammatory effects in vivo and in vitro; however, the effects of other Bacteroidota species remain unexplored. Our fecal microbiota transplantation-based reverse translation approach using promising bacterial species may represent a breakthrough in microbiome drug development for controlling dysbiosis during ulcerative colitis.
Collapse
Affiliation(s)
- Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Nomura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makoto Yamashita
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Ibaraki, Japan
| | - Satoshi Koizumi
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Ibaraki, Japan
| | - Fuhito Yamazaki
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Ibaraki, Japan
| | - Susumu Iwamoto
- Research Core Function Laboratories, Research Unit, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Masato Saito
- Medical Pharmacology Department, Development Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Keisuke Kunigo
- Medical Pharmacology Department, Development Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Ryosuke Nakano
- Research Strategy & Planning Department, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Nakayuki Honma
- Research Strategy & Planning Department, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Itaru Urakawa
- Tokyo Research Park, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Blonder BW, Lim MH, Godoy O. Predicting and Prioritising Community Assembly: Learning Outcomes via Experiments. Ecol Lett 2024; 27:e14535. [PMID: 39395405 DOI: 10.1111/ele.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Community assembly provides the foundation for applications in biodiversity conservation, climate change, invasion, restoration and synthetic ecology. However, predicting and prioritising assembly outcomes remains difficult. We address this challenge via a mechanism-free approach useful when little data or knowledge exist (LOVE; Learning Outcomes Via Experiments). We carry out assembly experiments ('actions', here, random combinations of species additions) potentially in multiple environments, wait, and measure abundance outcomes. We then train a model to predict outcomes of novel actions or prioritise actions that would yield the most desirable outcomes. Across 10 single- and multi-environment datasets, when trained on 89 randomly selected actions, LOVE predicts outcomes with 0.5%-3.4% mean error, and prioritises actions for maximising richness, maximising abundance, or removing unwanted species, with 94%-99% mean true positive rate and 10%-84% mean true negative rate across tasks. LOVE complements existing mechanism-first approaches for community ecology and may help address numerous applied challenges.
Collapse
Affiliation(s)
- Benjamin W Blonder
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
| | - Michael H Lim
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California, USA
| | - Oscar Godoy
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| |
Collapse
|
23
|
Tan X, Xue F, Zhang C, Wang T. mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data. Brief Bioinform 2024; 25:bbae580. [PMID: 39526854 PMCID: PMC11551971 DOI: 10.1093/bib/bbae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.
Collapse
Affiliation(s)
- Xiaoxiu Tan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Feng Xue
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
24
|
Wang S, Zhan Y, Jiang X, Lai Y. Engineering Microbial Consortia as Living Materials: Advances and Prospectives. ACS Synth Biol 2024; 13:2653-2666. [PMID: 39174016 PMCID: PMC11421429 DOI: 10.1021/acssynbio.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The field of Engineered Living Materials (ELMs) integrates engineered living organisms into natural biomaterials to achieve diverse objectives. Multiorganism consortia, prevalent in both naturally occurring and synthetic microbial cultures, exhibit complex functionalities and interrelationships, extending the scope of what can be achieved with individual engineered bacterial strains. However, the ELMs comprising microbial consortia are still in the developmental stage. In this Review, we introduce two strategies for designing ELMs constituted of microbial consortia: a top-down strategy, which involves characterizing microbial interactions and mimicking and reconstructing natural ecosystems, and a bottom-up strategy, which entails the rational design of synthetic consortia and their assembly with material substrates to achieve user-defined functions. Next, we summarize technologies from synthetic biology that facilitate the efficient engineering of microbial consortia for performing tasks more complex than those that can be done with single bacterial strains. Finally, we discuss essential challenges and future perspectives for microbial consortia-based ELMs.
Collapse
Affiliation(s)
- Shuchen Wang
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yuewei Zhan
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yong Lai
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
25
|
Batsch M, Guex I, Todorov H, Heiman CM, Vacheron J, Vorholt JA, Keel C, van der Meer JR. Fragmented micro-growth habitats present opportunities for alternative competitive outcomes. Nat Commun 2024; 15:7591. [PMID: 39217178 PMCID: PMC11365936 DOI: 10.1038/s41467-024-51944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Bacteria in nature often thrive in fragmented environments, like soil pores, plant roots or plant leaves, leading to smaller isolated habitats, shared with fewer species. This spatial fragmentation can significantly influence bacterial interactions, affecting overall community diversity. To investigate this, we contrast paired bacterial growth in tiny picoliter droplets (1-3 cells per 35 pL up to 3-8 cells per species in 268 pL) with larger, uniform liquid cultures (about 2 million cells per 140 µl). We test four interaction scenarios using different bacterial strains: substrate competition, substrate independence, growth inhibition, and cell killing. In fragmented environments, interaction outcomes are more variable and sometimes even reverse compared to larger uniform cultures. Both experiments and simulations show that these differences stem mostly from variation in initial cell population growth phenotypes and their sizes. These effects are most significant with the smallest starting cell populations and lessen as population size increases. Simulations suggest that slower-growing species might survive competition by increasing growth variability. Our findings reveal how microhabitat fragmentation promotes diverse bacterial interaction outcomes, contributing to greater species diversity under competitive conditions.
Collapse
Affiliation(s)
- Maxime Batsch
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Isaline Guex
- Department of Mathematics, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Helena Todorov
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Clara M Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Julia A Vorholt
- Institute for Microbiology, Swiss Federal Institute of Technology (ETH Zürich), CH-8049, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
26
|
Luecke SM, Aryee G, Holman DB, Schmidt KN, King LE, Crouse MS, Ward AK, Dahlen CR, Caton JS, Amat S. Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle. Anim Microbiome 2024; 6:48. [PMID: 39210404 PMCID: PMC11360793 DOI: 10.1186/s42523-024-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing. RESULTS Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota. CONCLUSION Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
Collapse
Affiliation(s)
- Sarah M Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Layla E King
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
27
|
Sulaiman JE, Thompson J, Qian Y, Vivas EI, Diener C, Gibbons SM, Safdar N, Venturelli OS. Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes. Nat Commun 2024; 15:7416. [PMID: 39198411 PMCID: PMC11358386 DOI: 10.1038/s41467-024-51062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The human gut pathogen Clostridioides difficile displays substantial inter-strain genetic variability and confronts a changeable nutrient landscape in the gut. We examined how human gut microbiota inter-species interactions influence the growth and toxin production of various C. difficile strains across different nutrient environments. Negative interactions influencing C. difficile growth are prevalent in an environment containing a single highly accessible resource and sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile toxin production displays significant community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile strains exhibit differences in interactions with Clostridium scindens and the ability to compete for proline. Further, C. difficile shows substantial differences in transcriptional profiles in co-culture with C. scindens or Clostridium hiranonis. C. difficile exhibits massive alterations in metabolism and other cellular processes in co-culture with C. hiranonis, reflecting their similar metabolic niches. C. hiranonis uniquely inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and robustly ameliorates disease severity in mice. In sum, understanding the impact of C. difficile strain variability and nutrient environments on inter-species interactions could help improve the effectiveness of anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I Vivas
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, William S. Middleton Veterans Hospital Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Crocker K, Lee KK, Chakraverti-Wuerthwein M, Li Z, Tikhonov M, Mani M, Gowda K, Kuehn S. Environmentally dependent interactions shape patterns in gene content across natural microbiomes. Nat Microbiol 2024; 9:2022-2037. [PMID: 38977908 PMCID: PMC11386527 DOI: 10.1038/s41564-024-01752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
Sequencing surveys of microbial communities in hosts, oceans and soils have revealed ubiquitous patterns linking community composition to environmental conditions. While metabolic capabilities restrict the environments suitable for growth, the influence of ecological interactions on patterns observed in natural microbiomes remains uncertain. Here we use denitrification as a model system to demonstrate how metagenomic patterns in soil microbiomes can emerge from pH-dependent interactions. In an analysis of a global soil sequencing survey, we find that the abundances of two genotypes trade off with pH; nar gene abundances increase while nap abundances decrease with declining pH. We then show that in acidic conditions strains possessing nar fail to grow in isolation but are enriched in the community due to an ecological interaction with nap genotypes. Our study provides a road map for dissecting how associations between environmental variables and gene abundances arise from environmentally modulated community interactions.
Collapse
Affiliation(s)
- Kyle Crocker
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA
- Center for Living Systems, The University of Chicago, Chicago, IL, USA
| | - Kiseok Keith Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA
- Center for Living Systems, The University of Chicago, Chicago, IL, USA
| | - Milena Chakraverti-Wuerthwein
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA
- Center for Living Systems, The University of Chicago, Chicago, IL, USA
- Biophysical Sciences Graduate Program, The University of Chicago, Chicago, IL, USA
| | - Zeqian Li
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA
- Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL, USA
| | - Karna Gowda
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| | - Seppe Kuehn
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA.
- Center for Living Systems, The University of Chicago, Chicago, IL, USA.
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Han HS, Hwang S, Choi SY, Hitayezu E, Humphrey MA, Enkhbayar A, Song D, Kim M, Park J, Park Y, Park J, Cha KH, Choi KY. Roseburia intestinalis-derived extracellular vesicles ameliorate colitis by modulating intestinal barrier, microbiome, and inflammatory responses. J Extracell Vesicles 2024; 13:e12487. [PMID: 39166405 PMCID: PMC11336657 DOI: 10.1002/jev2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 06/29/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder characterized by recurrent gastrointestinal inflammation, lacking a precise aetiology and definitive cure. The gut microbiome is vital in preventing and treating IBD due to its various physiological functions. In the interplay between the gut microbiome and human health, extracellular vesicles secreted by gut bacteria (BEVs) are key mediators. Herein, we explore the role of Roseburia intestinalis (R)-derived EVs (R-EVs) as potent anti-inflammatory mediators in treating dextran sulfate sodium-induced colitis. R was selected as an optimal BEV producer for IBD treatment through ANCOM analysis. R-EVs with a 76 nm diameter were isolated from R using a tangential flow filtration system. Orally administered R-EVs effectively accumulated in inflamed colonic tissues and increased the abundance of Bifidobacterium on microbial changes, inhibiting colonic inflammation and prompting intestinal recovery. Due to the presence of Ile-Pro-Ile in the vesicular structure, R-EVs reduced the DPP4 activity in inflamed colonic tissue and increased the active GLP-1, thereby downregulating the NFκB and STAT3 via the PI3K pathway. Our results shed light on the impact of BEVs on intestinal recovery and gut microbiome alteration in treating IBD.
Collapse
Affiliation(s)
- Hwa Seung Han
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Soonjae Hwang
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Emmanuel Hitayezu
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Mabwi A. Humphrey
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Altai Enkhbayar
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Myungsuk Kim
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Young‐Tae Park
- Natural Product Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Jin‐Soo Park
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Ki Young Choi
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
- NVience Inc.SeoulRepublic of Korea
| |
Collapse
|
30
|
Jiang MZ, Liu C, Xu C, Jiang H, Wang Y, Liu SJ. Gut microbial interactions based on network construction and bacterial pairwise cultivation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1751-1762. [PMID: 38600293 DOI: 10.1007/s11427-023-2537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/27/2024] [Indexed: 04/12/2024]
Abstract
Association networks are widely applied for the prediction of bacterial interactions in studies of human gut microbiomes. However, the experimental validation of the predicted interactions is challenging due to the complexity of gut microbiomes and the limited number of cultivated bacteria. In this study, we addressed this challenge by integrating in vitro time series network (TSN) associations and co-cultivation of TSN taxon pairs. Fecal samples were collected and used for cultivation and enrichment of gut microbiome on YCFA agar plates for 13 days. Enriched cells were harvested for DNA extraction and metagenomic sequencing. A total of 198 metagenome-assembled genomes (MAGs) were recovered. Temporal dynamics of bacteria growing on the YCFA agar were used to infer microbial association networks. To experimentally validate the interactions of taxon pairs in networks, we selected 24 and 19 bacterial strains from this study and from the previously established human gut microbial biobank, respectively, for pairwise co-cultures. The co-culture experiments revealed that most of the interactions between taxa in networks were identified as neutralism (51.67%), followed by commensalism (21.67%), amensalism (18.33%), competition (5%) and exploitation (3.33%). Genome-centric analysis further revealed that the commensal gut bacteria (helpers and beneficiaries) might interact with each other via the exchanges of amino acids with high biosynthetic costs, short-chain fatty acids, and/or vitamins. We also validated 12 beneficiaries by adding 16 additives into the basic YCFA medium and found that the growth of 66.7% of these strains was significantly promoted. This approach provides new insights into the gut microbiome complexity and microbial interactions in association networks. Our work highlights that the positive relationships in gut microbial communities tend to be overestimated, and that amino acids, short-chain fatty acids, and vitamins are contributed to the positive relationships.
Collapse
Affiliation(s)
- Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China.
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China.
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Cowled MS, Phippen CBW, Kromphardt KJK, Clemmensen SE, Frandsen RJN, Frisvad JC, Larsen TO. Unveiling the fungal diversity and associated secondary metabolism on black apples. Appl Environ Microbiol 2024; 90:e0034224. [PMID: 38899884 PMCID: PMC11267942 DOI: 10.1128/aem.00342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Black apples are the result of late-stage microbial decomposition after falling to the ground. This phenomenon is highly comparable from year to year, with the filamentous fungus Monilinia fructigena most commonly being the first invader, followed by Penicillium expansum. Motivated by the fact that only little chemistry has been reported from apple microbiomes, we set out to investigate the chemical diversity and potential ecological roles of secondary metabolites (SMs) in a total of 38 black apples. Metabolomics analyses were conducted on either whole apples or small excisions of fungal biomass derived from black apples. Annotation of fungal SMs in black apple extracts was aided by the cultivation of 15 recently isolated fungal strains on 9 different substrates in a One Strain Many Compounds (OSMAC) approach, leading to the identification of 3,319 unique chemical features. Only 6.4% were attributable to known compounds based on analysis of high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS/MS) data using spectral library matching tools. Of the 1,606 features detected in the black apple extracts, 32% could be assigned as fungal-derived, due to their presence in the OSMAC-based training data set. Notably, the detection of several antifungal compounds indicates the importance of such compounds for the invasion of and control of other microbial competitors on apples. In conclusion, the diversity and abundance of microbial SMs on black apples were found to be much higher than that typically observed for other environmental microbiomes. Detection of SMs known to be produced by the six fungal species tested also highlights a succession of fungal growth following the initial invader M. fructigena.IMPORTANCEMicrobial secondary metabolites constitute a significant reservoir of biologically potent and clinically valuable chemical scaffolds. However, their usefulness is hampered by rapidly developing resistance, resulting in reduced profitability of such research endeavors. Hence, the ecological role of such microbial secondary metabolites must be considered to understand how best to utilize such compounds as chemotherapeutics. Here, we explore an under-investigated environmental microbiome in the case of black apples; a veritable "low-hanging fruit," with relatively high abundances and diversity of microbially produced secondary metabolites. Using both a targeted and untargeted metabolomics approach, the interplay between metabolites, other microbes, and the apple host itself was investigated. This study highlights the surprisingly low incidence of known secondary metabolites in such a system, highlighting the need to study the functionality of secondary metabolites in microbial interactions and complex microbiomes.
Collapse
Affiliation(s)
- Michael S. Cowled
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christopher B. W. Phippen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kresten J. K. Kromphardt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sidsel E. Clemmensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus J. N. Frandsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
32
|
García-Gamboa R, Perfecto-Avalos Y, Gonzalez-Garcia J, Alvarez-Calderon MJ, Gutierrez-Vilchis A, Garcia-Gonzalez A. In vitro analysis of postbiotic antimicrobial activity against Candida Species in a minimal synthetic model simulating the gut mycobiota in obesity. Sci Rep 2024; 14:16760. [PMID: 39033245 PMCID: PMC11271299 DOI: 10.1038/s41598-024-66806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Gut fungal imbalances, particularly increased Candida spp., are linked to obesity. This study explored the potential of Lactiplantibacillus plantarum cell-free extracts (postbiotics) to modulate the growth of Candida albicans and Candida kefyr, key members of the gut mycobiota. A minimal synthetic gut model was employed to evaluate the effects of Lactiplantibacillus plantarum postbiotics on fungal growth in mono- and mixed cultures. Microreactors were employed for culturing, fungal growth was quantified using CFU counting, and regression analysis was used to evaluate the effects of postbiotics on fungal growth. Postbiotics at a concentration of 12.5% significantly reduced the growth of both Candida species. At 24 h, both C. albicans and C. kefyr in monocultures exhibited a decrease in growth of 0.11 log CFU/mL. In contrast, mixed cultures showed a more pronounced antifungal effect, with C. albicans and C. kefyr reductions of 0.62 log CFU/mL and 0.64 log CFU/mL, respectively. Regression analysis using the Gompertz model supported the antifungal activity of postbiotics and revealed species-specific differences in growth parameters. These findings suggest that L. plantarum postbiotics have the potential to modulate the gut mycobiota by reducing Candida growth, potentially offering a therapeutic approach for combating fungal overgrowth associated with obesity.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| | - Yocanxóchitl Perfecto-Avalos
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Julieta Gonzalez-Garcia
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - María J Alvarez-Calderon
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Abel Gutierrez-Vilchis
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| |
Collapse
|
33
|
Sulaiman JE, Thompson J, Cheung PLK, Qian Y, Mill J, James I, Vivas EI, Simcox J, Venturelli O. Human gut microbiota interactions shape the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603560. [PMID: 39071283 PMCID: PMC11275832 DOI: 10.1101/2024.07.15.603560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk factor for infections. This colonization is influenced by complex molecular and ecological interactions with human gut microbiota. By investigating C. difficile dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentration shifted a community containing C. difficile and the prevalent human gut symbiont Phocaeicola vulgatus from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, C. difficile adapted via single-point mutations in key metabolic genes, altering its metabolic niche from proline to glucose utilization. These metabolic changes substantially impacted inter-species interactions and reduced disease severity in the mammalian gut. In sum, human gut microbiota interactions are crucial in shaping the long-term growth dynamics and evolutionary adaptations of C. difficile, offering key insights for developing anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I. Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Meroz N, Livny T, Friedman J. Quantifying microbial interactions: concepts, caveats, and applications. Curr Opin Microbiol 2024; 80:102511. [PMID: 39002491 DOI: 10.1016/j.mib.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members - a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for.
Collapse
Affiliation(s)
- Nittay Meroz
- Institute of Environmental Sciences, Hebrew University, Rehovot
| | - Tal Livny
- Institute of Environmental Sciences, Hebrew University, Rehovot; Department of Immunology and Regenerative Biology, Weizmann Institute, Rehovot
| | | |
Collapse
|
35
|
Chen YC, Destouches L, Cook A, Fedorec AJH. Synthetic microbial ecology: engineering habitats for modular consortia. J Appl Microbiol 2024; 135:lxae158. [PMID: 38936824 DOI: 10.1093/jambio/lxae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Microbiomes, the complex networks of micro-organisms and the molecules through which they interact, play a crucial role in health and ecology. Over at least the past two decades, engineering biology has made significant progress, impacting the bio-based industry, health, and environmental sectors; but has only recently begun to explore the engineering of microbial ecosystems. The creation of synthetic microbial communities presents opportunities to help us understand the dynamics of wild ecosystems, learn how to manipulate and interact with existing microbiomes for therapeutic and other purposes, and to create entirely new microbial communities capable of undertaking tasks for industrial biology. Here, we describe how synthetic ecosystems can be constructed and controlled, focusing on how the available methods and interaction mechanisms facilitate the regulation of community composition and output. While experimental decisions are dictated by intended applications, the vast number of tools available suggests great opportunity for researchers to develop a diverse array of novel microbial ecosystems.
Collapse
Affiliation(s)
- Yue Casey Chen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Louie Destouches
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alice Cook
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
36
|
Atasoy M, Scott WT, Regueira A, Mauricio-Iglesias M, Schaap PJ, Smidt H. Biobased short chain fatty acid production - Exploring microbial community dynamics and metabolic networks through kinetic and microbial modeling approaches. Biotechnol Adv 2024; 73:108363. [PMID: 38657743 DOI: 10.1016/j.biotechadv.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
In recent years, there has been growing interest in harnessing anaerobic digestion technology for resource recovery from waste streams. This approach has evolved beyond its traditional role in energy generation to encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due to their versatile properties. Despite increasing global demand, over 90% of VFAs are currently produced synthetically from petrochemicals. Realizing the potential of large-scale biobased VFA production from waste streams offers significant eco-friendly opportunities but comes with several key challenges. These include low VFA production yields, unstable acid compositions, complex and expensive purification methods, and post-processing needs. Among these, production yield and acid composition stand out as the most critical obstacles impacting economic viability and competitiveness. This paper seeks to offer a comprehensive view of combining complementary modeling approaches, including kinetic and microbial modeling, to understand the workings of microbial communities and metabolic pathways in VFA production, enhance production efficiency, and regulate acid profiles through the integration of omics and bioreactor data.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Department of Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - William T Scott
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Alberte Regueira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, Belgium.
| | - Miguel Mauricio-Iglesias
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Peter J Schaap
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Hauke Smidt
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
37
|
Maya B, Perfecto-Avalos Y, Gutierrez-Vilchis A, Garcia-Gonzalez A. Software sensor to monitor a synthetic microbial community emulating the dietary fiber impact on the gut microbiota. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039749 DOI: 10.1109/embc53108.2024.10782821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Human health is related to the gut microbiota, a complex ecosystem integrated by microorganisms and host cells. In vivo study of microbiota implies sophisticated analytical techniques, making it hard to study its dynamic changes. In vitro studies have proved helpful in deciphering interactions using representative synthetic microbial communities. Its characterization still depends on multiple sensors and analytical and molecular techniques. This work presents a SynCom including three bacteria with inulin as a fiber source to synthesize acetic, propionic, and butyric acids. A software sensor based on the Differential Neural Networks was implemented to estimate the SynCom dynamic. Species growth and byproduct concentration were estimated from available information (pH and optical density). We assessed the approach based on reported datasets; less than 5% of the error was achieved in less than 0.5 h, and we proved that our algorithm is suitable in noisy environments. This approach could accelerate the dynamic description of gut microbiota and reduce cost and time investment.
Collapse
|
38
|
Noecker C, Turnbaugh PJ. Emerging tools and best practices for studying gut microbial community metabolism. Nat Metab 2024; 6:1225-1236. [PMID: 38961185 DOI: 10.1038/s42255-024-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The human gut microbiome vastly extends the set of metabolic reactions catalysed by our own cells, with far-reaching consequences for host health and disease. However, our knowledge of gut microbial metabolism relies on a handful of model organisms, limiting our ability to interpret and predict the metabolism of complex microbial communities. In this Perspective, we discuss emerging tools for analysing and modelling the metabolism of gut microorganisms and for linking microorganisms, pathways and metabolites at the ecosystem level, highlighting promising best practices for researchers. Continued progress in this area will also require infrastructure development to facilitate cross-disciplinary synthesis of scientific findings. Collectively, these efforts can enable a broader and deeper understanding of the workings of the gut ecosystem and open new possibilities for microbiome manipulation and therapy.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Jin R, Song J, Liu C, Lin R, Liang D, Aweya JJ, Weng W, Zhu L, Shang J, Yang S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr Rev Food Sci Food Saf 2024; 23:e13388. [PMID: 38865218 DOI: 10.1111/1541-4337.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.
Collapse
Affiliation(s)
- Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jing Song
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Chang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Longji Zhu
- Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| |
Collapse
|
40
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
41
|
Ross PA, Xu W, Jalomo-Khayrova E, Bange G, Gumerov VM, Bradley PH, Sourjik V, Zhulin IB. Framework for exploring the sensory repertoire of the human gut microbiota. mBio 2024; 15:e0103924. [PMID: 38757952 PMCID: PMC11237719 DOI: 10.1128/mbio.01039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria sense changes in their environment and transduce signals to adjust their cellular functions accordingly. For this purpose, bacteria employ various sensors feeding into multiple signal transduction pathways. Signal recognition by bacterial sensors is studied mainly in a few model organisms, but advances in genome sequencing and analysis offer new ways of exploring the sensory repertoire of many understudied organisms. The human gut is a natural target of this line of study: it is a nutrient-rich and dynamic environment and is home to thousands of bacterial species whose activities impact human health. Many gut commensals are also poorly studied compared to model organisms and are mainly known through their genome sequences. To begin exploring the signals human gut commensals sense and respond to, we have designed a framework that enables the identification of sensory domains, prediction of signals that they recognize, and experimental verification of these predictions. We validate this framework's functionality by systematically identifying amino acid sensors in selected bacterial genomes and metagenomes, characterizing their amino acid binding properties, and demonstrating their signal transduction potential.IMPORTANCESignal transduction is a central process governing how bacteria sense and respond to their environment. The human gut is a complex environment with many living organisms and fluctuating streams of nutrients. One gut inhabitant, Escherichia coli, is a model organism for studying signal transduction. However, E. coli is not representative of most gut microbes, and signaling pathways in the thousands of other organisms comprising the human gut microbiota remain poorly understood. This work provides a foundation for how to explore signals recognized by these organisms.
Collapse
Affiliation(s)
- Patricia A. Ross
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Wenhao Xu
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ekaterina Jalomo-Khayrova
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Patrick H. Bradley
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Lopes W, Amor DR, Gore J. Cooperative growth in microbial communities is a driver of multistability. Nat Commun 2024; 15:4709. [PMID: 38830891 PMCID: PMC11148146 DOI: 10.1038/s41467-024-48521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Microbial communities often exhibit more than one possible stable composition for the same set of external conditions. In the human microbiome, these persistent changes in species composition and abundance are associated with health and disease states, but the drivers of these alternative stable states remain unclear. Here we experimentally demonstrate that a cross-kingdom community, composed of six species relevant to the respiratory tract, displays four alternative stable states each dominated by a different species. In pairwise coculture, we observe widespread bistability among species pairs, providing a natural origin for the multistability of the full community. In contrast with the common association between bistability and antagonism, experiments reveal many positive interactions within and between community members. We find that multiple species display cooperative growth, and modeling predicts that this could drive the observed multistability within the community as well as non-canonical pairwise outcomes. A biochemical screening reveals that glutamate either reduces or eliminates cooperativity in the growth of several species, and we confirm that such supplementation reduces the extent of bistability across pairs and reduces multistability in the full community. Our findings provide a mechanistic explanation of how cooperative growth rather than competitive interactions can underlie multistability in microbial communities.
Collapse
Affiliation(s)
- William Lopes
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Daniel R Amor
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Biology, University of Graz, Graz, Austria
- LPENS, Département de physique, Ecole normale supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, Paris, France
- IAME, Université de Paris Cité, Université Sorbonne Paris Nord, INSERM, Paris, France
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Luo K, Guo Z, Liu Y, Li C, Ma Z, Tian X. Responses of growth performance, immunity, disease resistance of shrimp and microbiota in Penaeus vannamei culture system to Bacillus subtilis BSXE-1601 administration: Dietary supplementation versus water addition. Microbiol Res 2024; 283:127693. [PMID: 38490029 DOI: 10.1016/j.micres.2024.127693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
This study evaluated the effects of Bacillus subtilis BSXE-1601, applied either as dietary supplementation or water addition, on growth performance, immune responses, disease resistance of Penaeus vannamei, and microbiota in shrimp gut and rearing water. During the 42-day feeding experiment, shrimp were fed with basal diet (CO and BW group), basal diet supplemented with live strain BSXE-1601 at the dose of 1 × 109 CFU kg-1 feed (BD group) and 15 mg kg-1 florfenicol (FL group), and basal diet with strain BSXE-1601 added to water at the concentration of 1 × 107 CFU L-1 every five days (BW group). Results showed that dietary supplementation of strain BSXE-1601 significantly promoted growth performance of shrimp, both in the diet and water, enhanced disease resistance against Vibrio parahaemolyticus (P < 0.05). The BD and BW groups exhibited significant increases in acid phosphatase, alkaline phosphatase, lysozyme, peroxidase, superoxide dismutase activities, phenonoloxidase content in the serum of shrimp compared to the control (P < 0.05). Meanwhile, the expression of immune-related genes proPO, LZM, SOD, LGBP, HSP70, Imd, Toll, Relish, TOR, 4E-BP, eIF4E1α, eIF4E2 were significantly up-regulated compared to the control (P < 0.05). When added in rearing water, strain BSXE-1601 induced greater immune responses in shrimp than the dietary supplement (P < 0.05). Chao1 and Shannon indices of microbiota in rearing water were significantly lower in BD group than in the control. The microbiota in rearing water were significantly altered in BD, BW and FL groups compared to the control, while no significant impacts were observed on the microbiota of shrimp gut. When supplemented into the feed, strain BSXE-1601 obviously reduced the number of nodes, edges, modules in the ecological network of rearing water. The results suggested that dietary supplementation of BSXE-1601 could be more suitable than water addition in the practice of shrimp rearing when growth performance, non-specific immunity, disease resistance against V. parahaemolyticus in shrimp were collectively considered.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Zeyang Guo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China; Tropical Fisheries Research Institute of Sanya, Sanya 572018, PR China
| | - Yang Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Changlin Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Zhenhua Ma
- Tropical Fisheries Research Institute of Sanya, Sanya 572018, PR China.
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
44
|
Mirzaei S, Tefagh M. GEM-based computational modeling for exploring metabolic interactions in a microbial community. PLoS Comput Biol 2024; 20:e1012233. [PMID: 38900842 PMCID: PMC11218945 DOI: 10.1371/journal.pcbi.1012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/02/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Microbial communities play fundamental roles in every complex ecosystem, such as soil, sea and the human body. The stability and diversity of the microbial community depend precisely on the composition of the microbiota. Any change in the composition of these communities affects microbial functions. An important goal of studying the interactions between species is to understand the behavior of microbes and their responses to perturbations. These interactions among species are mediated by the exchange of metabolites within microbial communities. We developed a computational model for the microbial community that has a separate compartment for exchanging metabolites. This model can predict possible metabolites that cause competition, commensalism, and mutual interactions between species within a microbial community. Our constraint-based community metabolic modeling approach provides insights to elucidate the pattern of metabolic interactions for each common metabolite between two microbes. To validate our approach, we used a toy model and a syntrophic co-culture of Desulfovibrio vulgaris and Methanococcus maripaludis, as well as another in co-culture between Geobacter sulfurreducens and Rhodoferax ferrireducens. For a more general evaluation, we applied our algorithm to the honeybee gut microbiome, composed of seven species, and the epiphyte strain Pantoea eucalypti 299R. The epiphyte strain Pe299R has been previously studied and cultured with six different phyllosphere bacteria. Our algorithm successfully predicts metabolites, which imply mutualistic, competitive, or commensal interactions. In contrast to OptCom, MRO, and MICOM algorithms, our COMMA algorithm shows that the potential for competitive interactions between an epiphytic species and Pe299R is not significant. These results are consistent with the experimental measurements of population density and reproductive success of the Pe299R strain.
Collapse
Affiliation(s)
- Soraya Mirzaei
- Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
| | - Mojtaba Tefagh
- Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
- Center for Information Systems & Data Science, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
45
|
Algavi YM, Borenstein E. Relative dispersion ratios following fecal microbiota transplant elucidate principles governing microbial migration dynamics. Nat Commun 2024; 15:4447. [PMID: 38789466 PMCID: PMC11126695 DOI: 10.1038/s41467-024-48717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms frequently migrate from one ecosystem to another. Yet, despite the potential importance of this process in modulating the environment and the microbial ecosystem, our understanding of the fundamental forces that govern microbial dispersion is still lacking. Moreover, while theoretical models and in-vitro experiments have highlighted the contribution of species interactions to community assembly, identifying such interactions in vivo, specifically in communities as complex as the human gut, remains challenging. To address this gap, here we introduce a robust and rigorous computational framework, termed Relative Dispersion Ratio (RDR) analysis, and leverage data from well-characterized fecal microbiota transplant trials, to rigorously pinpoint dependencies between taxa during the colonization of human gastrointestinal tract. Our analysis identifies numerous pairwise dependencies between co-colonizing microbes during migration between gastrointestinal environments. We further demonstrate that identified dependencies agree with previously reported findings from in-vitro experiments and population-wide distribution patterns. Finally, we explore metabolic dependencies between these taxa and characterize the functional properties that facilitate effective dispersion. Collectively, our findings provide insights into the principles and determinants of community dynamics following ecological translocation, informing potential opportunities for precise community design.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
46
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
47
|
Vandermaesen J, Daly AJ, Mawarda PC, Baetens JM, De Baets B, Boon N, Springael D. Cooperative interactions between invader and resident microbial community members weaken the negative diversity-invasion relationship. Ecol Lett 2024; 27:e14433. [PMID: 38712704 DOI: 10.1111/ele.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.
Collapse
Affiliation(s)
| | - Aisling J Daly
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, Indonesia
| | - Jan M Baetens
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Bernard De Baets
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| |
Collapse
|
48
|
Sulaiman JE, Thompson J, Qian Y, Vivas EI, Diener C, Gibbons SM, Safdar N, Venturelli OS. Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589383. [PMID: 38659900 PMCID: PMC11042340 DOI: 10.1101/2024.04.13.589383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I. Vivas
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, William S. Middleton Veterans Hospital Madison, Madison, WI, USA
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
49
|
Wang J, Appidi MR, Burdick LH, Abraham PE, Hettich RL, Pelletier DA, Doktycz MJ. Formation of a constructed microbial community in a nutrient-rich environment indicates bacterial interspecific competition. mSystems 2024; 9:e0000624. [PMID: 38470038 PMCID: PMC11019790 DOI: 10.1128/msystems.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the organizational principles of microbial communities is essential for interpreting ecosystem stability. Previous studies have investigated the formation of bacterial communities under nutrient-poor conditions or obligate relationships to observe cooperative interactions among different species. How microorganisms form stabilized communities in nutrient-rich environments, without obligate metabolic interdependency for growth, is still not fully disclosed. In this study, three bacterial strains isolated from the Populus deltoides rhizosphere were co-cultured in complex medium, and their growth behavior was tracked. These strains co-exist in mixed culture over serial transfer for multiple growth-dilution cycles. Competition is proposed as an emergent interaction relationship among the three bacteria based on their significantly decreased growth levels. The effects of different initial inoculum ratios, up to three orders of magnitude, on community structure were investigated, and the final compositions of the mixed communities with various starting composition indicate that community structure is not dependent on the initial inoculum ratio. Furthermore, the competitive relationships within the community were not altered by different initial inoculum ratios. The community structure was simulated by generalized Lotka-Volterra and dynamic flux balance analysis to provide mechanistic predictions into emergence of community structure under a nutrient-rich environment. Metaproteomic analyses provide support for the metabolite exchanges predicted by computational modeling and for highly altered physiologies when microbes are grown in co-culture. These findings broaden our understanding of bacterial community dynamics and metabolic diversity in higher-order interactions and could be significant in the management of rhizospheric bacterial communities. IMPORTANCE Bacteria naturally co-exist in multispecies consortia, and the ability to engineer such systems can be useful in biotechnology. Despite this, few studies have been performed to understand how bacteria form a stable community and interact with each other under nutrient-rich conditions. In this study, we investigated the effects of initial inoculum ratios on bacterial community structure using a complex medium and found that the initial inoculum ratio has no significant impact on resultant community structure or on interaction patterns between community members. The microbial population profiles were simulated using computational tools in order to understand intermicrobial relationships and to identify potential metabolic exchanges that occur during stabilization of the bacterial community. Studying microbial community assembly processes is essential for understanding fundamental ecological principles in microbial ecosystems and can be critical in predicting microbial community structure and function.
Collapse
Affiliation(s)
- Jia Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Leah H. Burdick
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
50
|
Liu Y, Cheng YY, Thompson J, Zhou Z, Vivas EI, Warren MF, Rey FE, Anantharaman K, Venturelli OS. Shaping human gut community assembly and butyrate production by controlling the arginine dihydrolase pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.10.523442. [PMID: 37986770 PMCID: PMC10659395 DOI: 10.1101/2023.01.10.523442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The arginine dihydrolase pathway (arc operon) present in a subset of diverse human gut species enables arginine catabolism. This specialized metabolic pathway can alter environmental pH and nitrogen availability, which in turn could shape gut microbiota inter-species interactions. By exploiting synthetic control of gene expression, we investigated the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles in vitro and in the murine gut. By stabilizing environmental pH, the arc operon reduced variability in community composition across different initial pH perturbations. The abundance of butyrate producing bacteria were altered in response to arc operon activity and butyrate production was enhanced in a physiologically relevant pH range. While the presence of the arc operon altered community dynamics, it did not impact production of short chain fatty acids. Dynamic computational modeling of pH-mediated interactions reveals the quantitative contribution of this mechanism to community assembly. In sum, our framework to quantify the contribution of molecular pathways and mechanism modalities on microbial community dynamics and functions could be applied more broadly.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | - Eugenio I. Vivas
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew F. Warren
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | | | - Ophelia S. Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| |
Collapse
|