1
|
Hull KL, Greenwood MP, Lloyd M, Brink-Hull M, Bester-van der Merwe AE, Rhode C. Drivers of genomic diversity and phenotypic development in early phases of domestication in Hermetia illucens. INSECT MOLECULAR BIOLOGY 2024; 33:756-776. [PMID: 38963286 DOI: 10.1111/imb.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
The black soldier fly (BSF), Hermetia illucens, has the ability to efficiently bioremediate organic waste into usable bio-compounds. Understanding the impact of domestication and mass rearing on fitness and production traits is therefore important for sustainable production. This study aimed to assess patterns of genomic diversity and its association to phenotypic development across early generations of mass rearing under two selection strategies: selection for greater larval mass (SEL lines) and no direct artificial selection (NS lines). Genome-wide single nucleotide polymorphism (SNP) data were generated using 2bRAD sequencing, while phenotypic traits relating to production and population fitness were measured. Declining patterns of genomic diversity were observed across three generations of captive breeding, with the lowest diversity recorded for the F3 generation of both selection lines, most likely due to founder effects. The SEL cohort displayed statistically significantly greater larval weight com the NS lines with pronounced genetic and phenotypic directional changes across generations. Furthermore, lower genetic and phenotypic diversity, particularly for fitness traits, were evident for SEL lines, illustrating the trade-off between selecting for mass and the resulting decline in population fitness. SNP-based heritability was significant for growth, but was low or non-significant for fitness traits. Genotype-phenotype correlations were observed for traits, but individual locus effect sizes where small and very few of these loci demonstrated a signature for selection. Pronounced genetic drift, due to small effective population sizes, is likely overshadowing the impacts of selection on genomic diversity and consequently phenotypic development. The results hold particular relevance for genetic management and selective breeding for BSF in future.
Collapse
Affiliation(s)
- Kelvin L Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Melissa Lloyd
- Research and Development Department, Insect Technology Group Holdings UK Ltd., Guildford, UK
| | - Marissa Brink-Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
St John ME, Dunker JC, Richards EJ, Romero S, Martin CH. Parallel evolution of integrated craniofacial traits in trophic specialist pupfishes. Ecol Evol 2024; 14:e11640. [PMID: 38979003 PMCID: PMC11228360 DOI: 10.1002/ece3.11640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Populations may adapt to similar environments via parallel or non-parallel genetic changes, but the frequency of these alternative mechanisms and underlying contributing factors are still poorly understood outside model systems. We used QTL mapping to investigate the genetic basis of highly divergent craniofacial traits between the scale-eater (Cyprinodon desquamator) and molluscivore (C. brontotheroides) pupfish adapting to two different hypersaline lake environments on San Salvador Island, Bahamas. We lab-reared F2 scale-eater x molluscivore intercrosses from two different lake populations, estimated linkage maps, scanned for significant QTL for 29 skeletal and craniofacial traits, female mate preference, and sex. We compared the location of QTL between lakes to quantify parallel and non-parallel genetic changes. We detected significant QTL for six craniofacial traits in at least one lake. However, nearly all shared QTL loci were associated with a different craniofacial trait within each lake. Therefore, our estimate of parallel evolution of craniofacial genetic architecture could range from one out of six identical trait QTL (low parallelism) to five out of six integrated trait QTL (high parallelism). We suggest that pleiotropy and trait integration can affect estimates of parallel evolution, particularly within rapid radiations. We also observed increased adaptive introgression in shared QTL regions, suggesting that gene flow contributed to parallel evolution. Overall, our results suggest that the same genomic regions may contribute to parallel adaptation across integrated suites of craniofacial traits, rather than specific traits, and highlight the need for a more expansive definition of parallel evolution.
Collapse
Affiliation(s)
| | - Julia C Dunker
- Department of Integrative Biology University of California Berkeley California USA
| | - Emilie J Richards
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota USA
| | - Stephanie Romero
- Department of Evolution and Ecology University of California Davis California USA
| | - Christopher H Martin
- Department of Integrative Biology University of California Berkeley California USA
- Museum of Vertebrate Zoology University of California Berkeley California USA
| |
Collapse
|
3
|
Patton AH, Richards EJ, Gould KJ, Buie LK, Martin CH. Hybridization alters the shape of the genotypic fitness landscape, increasing access to novel fitness peaks during adaptive radiation. eLife 2022; 11:e72905. [PMID: 35616528 PMCID: PMC9135402 DOI: 10.7554/elife.72905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood and processes for surmounting fitness valleys remain controversial. One outstanding system for addressing these connections is a recent adaptive radiation of ecologically and morphologically novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 single nucleotide polymorphisms (SNPs) that were significantly associated with fitness in field enclosures. Six out of the 13 regions most strongly associated with fitness contained differentially expressed genes and fixed SNPs between trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from adaptive alleles and show that scale-eating specialists are the most isolated of the three species on these networks. Intriguingly, introgressed and de novo variants reduced fitness landscape ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness paths from generalist to specialists. Our results suggest that adaptive introgression and de novo mutations alter the shape of the fitness landscape, providing key connections in adaptive walks circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation.
Collapse
Affiliation(s)
- Austin H Patton
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| | - Emilie J Richards
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| | - Katelyn J Gould
- Department of Biology, University of North CarolinaChapel HillUnited States
| | - Logan K Buie
- Department of Biology, University of North CarolinaChapel HillUnited States
| | - Christopher H Martin
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Benjelloun B, Boyer F, Streeter I, Zamani W, Engelen S, Alberti A, Alberto FJ, BenBati M, Ibnelbachyr M, Chentouf M, Bechchari A, Rezaei HR, Naderi S, Stella A, Chikhi A, Clarke L, Kijas J, Flicek P, Taberlet P, Pompanon F. An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Mol Ecol Resour 2019; 19:1497-1515. [PMID: 31359622 PMCID: PMC7115901 DOI: 10.1111/1755-0998.13070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Whole genome sequences (WGS) greatly increase our ability to precisely infer population genetic parameters, demographic processes, and selection signatures. However, WGS may still be not affordable for a representative number of individuals/populations. In this context, our goal was to assess the efficiency of several SNP genotyping strategies by testing their ability to accurately estimate parameters describing neutral diversity and to detect signatures of selection. We analysed 110 WGS at 12× coverage for four different species, i.e., sheep, goats and their wild counterparts. From these data we generated 946 data sets corresponding to random panels of 1K to 5M variants, commercial SNP chips and exome capture, for sample sizes of five to 48 individuals. We also extracted low-coverage genome resequencing of 1×, 2× and 5× by randomly subsampling reads from the 12× resequencing data. Globally, 5K to 10K random variants were enough for an accurate estimation of genome diversity. Conversely, commercial panels and exome capture displayed strong ascertainment biases. Besides the characterization of neutral diversity, the detection of the signature of selection and the accurate estimation of linkage disequilibrium (LD) required high-density panels of at least 1M variants. Finally, genotype likelihoods increased the quality of variant calling from low coverage resequencing but proportions of incorrect genotypes remained substantial, especially for heterozygote sites. Whole genome resequencing coverage of at least 5× appeared to be necessary for accurate assessment of genomic variations. These results have implications for studies seeking to deploy low-density SNP collections or genome scans across genetically diverse populations/species showing similar genetic characteristics and patterns of LD decay for a wide variety of purposes.
Collapse
Affiliation(s)
- Badr Benjelloun
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Frédéric Boyer
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Wahid Zamani
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran
| | - Stefan Engelen
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Adriana Alberti
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Florian J. Alberto
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Mohamed BenBati
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Mustapha Ibnelbachyr
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Mouad Chentouf
- National Institute of Agronomic Research (INRA Maroc), CRRA Tangier, 90010 Tangier, Morocco
| | - Abdelmajid Bechchari
- National Institute of Agronomic Research (INRA Maroc), CRRA Oujda, 60000 Oujda, Morocco
| | - Hamid R. Rezaei
- Department of Environmental Sci, Gorgan University of Agricultural Sciences & Natural Resources, 41996-13776 Gorgan, Iran
| | - Saeid Naderi
- Environmental Sciences Department, Natural Resources Faculty, University of Guilan, 49138-15749 Guilan, Iran
| | - Alessandra Stella
- PTP Science Park, Bioinformatics Unit, Via Einstein-Loc. Cascina Codazza, 26900 Lodi, Italy
| | - Abdelkader Chikhi
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Pierre Taberlet
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Pompanon
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| |
Collapse
|
5
|
Lee Y, Schmidt H, Collier TC, Conner WR, Hanemaaijer MJ, Slatkin M, Marshall JM, Chiu JC, Smartt CT, Lanzaro GC, Mulligan FS, Cornel AJ. Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics 2019; 20:204. [PMID: 30866822 PMCID: PMC6417271 DOI: 10.1186/s12864-019-5586-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In the summer of 2013, Aedes aegypti Linnaeus was first detected in three cities in central California (Clovis, Madera and Menlo Park). It has now been detected in multiple locations in central and southern CA as far south as San Diego and Imperial Counties. A number of published reports suggest that CA populations have been established from multiple independent introductions. RESULTS Here we report the first population genomics analyses of Ae. aegypti based on individual, field collected whole genome sequences. We analyzed 46 Ae. aegypti genomes to establish genetic relationships among populations from sites in California, Florida and South Africa. Based on 4.65 million high quality biallelic SNPs, we identified 3 major genetic clusters within California; one that includes all sample sites in the southern part of the state (South of Tehachapi mountain range) plus the town of Exeter in central California and two additional clusters in central California. CONCLUSIONS A lack of concordance between mitochondrial and nuclear genealogies suggests that the three founding populations were polymorphic for two main mitochondrial haplotypes prior to being introduced to California. One of these has been lost in the Clovis populations, possibly by a founder effect. Genome-wide comparisons indicate extensive differentiation between genetic clusters. Our observations support recent introductions of Ae. aegypti into California from multiple, genetically diverged source populations. Our data reveal signs of hybridization among diverged populations within CA. Genetic markers identified in this study will be of great value in pursuing classical population genetic studies which require larger sample sizes.
Collapse
Affiliation(s)
- Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Travis C. Collier
- Daniel K. Inouye US Pacific Basin Agricultural Research Center (PBARC), United States Department of Agriculture, Agricultural Research Service, Hilo, Hawaii USA
| | - William R. Conner
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California - Davis, Davis, CA 95616 USA
| | - Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California - Berkeley, Berkeley, CA 94720 USA
| | - John M. Marshall
- School of Public Health, University of California - Berkeley, Berkeley, CA 94720 USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California - Davis, Davis, CA 95616 USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962 USA
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | | | - Anthony J. Cornel
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California - Davis, Davis, CA 95616 USA
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California -, Davis, CA 95616 USA
| |
Collapse
|
6
|
Powell JR. Genetic Variation in Insect Vectors: Death of Typology? INSECTS 2018; 9:E139. [PMID: 30314367 PMCID: PMC6316525 DOI: 10.3390/insects9040139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
The issue of typological versus population thinking in biology is briefly introduced and defined. It is then emphasized how population thinking is most relevant and useful in vector biology. Three points are made: (1) Vectors, as they exist in nature, are genetically very heterogeneous. (2) Four examples of how this is relevant in vector biology research are presented: Understanding variation in vector competence, GWAS, identifying the origin of new introductions of invasive species, and resistance to inbreeding. (3) The existence of high levels of vector genetic heterogeneity can lead to failure of some approaches to vector control, e.g., use of insecticides and release of sterile males (SIT). On the other hand, vector genetic heterogeneity can be harnessed in a vector control program based on selection for refractoriness.
Collapse
Affiliation(s)
- Jeffrey R Powell
- Yale University, 21 Sachem Street, New Haven, CT 06520-8105, USA.
| |
Collapse
|
7
|
Hanemaaijer MJ, Houston PD, Collier TC, Norris LC, Fofana A, Lanzaro GC, Cornel AJ, Lee Y. Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division. F1000Res 2018; 7:347. [PMID: 31069048 PMCID: PMC6489993 DOI: 10.12688/f1000research.13807.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/05/2022] Open
Abstract
Here we report the complete mitochondrial sequences of 70 individual field collected mosquito specimens from throughout Sub-Saharan Africa. We generated this dataset to identify species specific markers for the following Anopheles species and chromosomal forms: An. arabiensis, An. coluzzii (The Forest and Mopti chromosomal forms) and An. gambiae (The Bamako and Savannah chromosomal forms). The raw Illumina sequencing reads were mapped to the NC_002084 reference mitogenome sequence. A total of 783 single nucleotide polymorphisms (SNPs) were detected on the mitochondrial genome, of which 460 are singletons (58.7%). None of these SNPs are suitable as molecular markers to distinguish among An. arabiensis, An. coluzzii and An. gambiae or any of the chromosomal forms. The lack of species or chromosomal form specific markers is also reflected in the constructed phylogenetic tree, which shows no clear division among the operational taxonomic units considered here.
Collapse
Affiliation(s)
- Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Parker D. Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Travis C. Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Laura C. Norris
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Abdrahamane Fofana
- Malaria Research and Training Center, University of Bamako, Bamako, E2528, Mali
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Anthony J. Cornel
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California Davis, Davis, CA, 93648, USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| |
Collapse
|
8
|
Hanemaaijer MJ, Houston PD, Collier TC, Norris LC, Fofana A, Lanzaro GC, Cornel AJ, Lee Y. Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division. F1000Res 2018; 7:347. [PMID: 31069048 PMCID: PMC6489993 DOI: 10.12688/f1000research.13807.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 10/12/2023] Open
Abstract
Here we report the complete mitochondrial sequences of 70 individual field collected mosquito specimens from throughout Sub-Saharan Africa. We generated this dataset to identify species specific markers for the following Anopheles species and chromosomal forms: An. arabiensis, An. coluzzii (The Forest and Mopti chromosomal forms) and An. gambiae (The Bamako and Savannah chromosomal forms). The raw Illumina sequencing reads were mapped to the NC_002084 reference mitogenome sequence. A total of 783 single nucleotide polymorphisms (SNPs) were detected on the mitochondrial genome, of which 460 are singletons (58.7%). None of these SNPs are suitable as molecular markers to distinguish among An. arabiensis, An. coluzzii and An. gambiae or any of the chromosomal forms. The lack of species or chromosomal form specific markers is also reflected in the constructed phylogenetic tree, which shows no clear division among the operational taxonomic units considered here.
Collapse
Affiliation(s)
- Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Parker D. Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Travis C. Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Laura C. Norris
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Abdrahamane Fofana
- Malaria Research and Training Center, University of Bamako, Bamako, E2528, Mali
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Anthony J. Cornel
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California Davis, Davis, CA, 93648, USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| |
Collapse
|
9
|
Uncovering Genomic Regions Associated with Trypanosoma Infections in Wild Populations of the Tsetse Fly Glossina fuscipes. G3-GENES GENOMES GENETICS 2018; 8:887-897. [PMID: 29343494 PMCID: PMC5844309 DOI: 10.1534/g3.117.300493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vector-borne diseases are responsible for > 1 million deaths every year but genomic resources for most species responsible for their transmission are limited. This is true for neglected diseases such as sleeping sickness (Human African Trypanosomiasis), a disease caused by Trypanosoma parasites vectored by several species of tseste flies within the genus Glossina. We describe an integrative approach that identifies statistical associations between trypanosome infection status of Glossina fuscipes fuscipes (Gff) flies from Uganda, for which functional studies are complicated because the species cannot be easily maintained in laboratory colonies, and ∼73,000 polymorphic sites distributed across the genome. Then, we identify candidate genes involved in Gff trypanosome susceptibility by taking advantage of genomic resources from a closely related species, G. morsitans morsitans (Gmm). We compiled a comprehensive transcript library from 72 published and unpublished RNAseq experiments of trypanosome-infected and uninfected Gmm flies, and improved the current Gmm transcriptome assembly. This new assembly was then used to enhance the functional annotations on the Gff genome. As a consequence, we identified 56 candidate genes in the vicinity of the 18 regions associated with Trypanosoma infection status in Gff. Twenty-nine of these genes were differentially expressed (DE) among parasite-infected and uninfected Gmm, suggesting that their orthologs in Gff may correlate with disease transmission. These genes were involved in DNA regulation, neurophysiological functions, and immune responses. We highlight the power of integrating population and functional genomics from related species to enhance our understanding of the genetic basis of physiological traits, particularly in nonmodel organisms.
Collapse
|
10
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Crossley MS, Chen YH, Groves RL, Schoville SD. Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. Mol Ecol 2017; 26:6284-6300. [DOI: 10.1111/mec.14339] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Yolanda H. Chen
- Department of Plant and Soil Sciences University of Vermont Burlington VT USA
| | - Russell L. Groves
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| | - Sean D. Schoville
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
12
|
Sougoufara S, Sokhna C, Diagne N, Doucouré S, Sembène PMB, Harry M. The implementation of long-lasting insecticidal bed nets has differential effects on the genetic structure of the African malaria vectors in the Anopheles gambiae complex in Dielmo, Senegal. Malar J 2017; 16:337. [PMID: 28810861 PMCID: PMC5558778 DOI: 10.1186/s12936-017-1992-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes belonging to the Anopheles gambiae complex are the main vectors of malaria in sub-Saharan Africa. Among these, An. gambiae, Anopheles coluzzii and Anopheles arabiensis are the most efficient vectors and are largely distributed in sympatric locations. However, these species present ecological and behavioural differences that impact their vectorial capacity and complicate vector-control efforts, mainly based on long-lasting insecticidal bed nets (LLINs) and indoor residual spraying (IRS). In this study, the genetic structure of these three species in a Senegalese village (Dielmo) was investigated using microsatellite data in samples collected in 2006 before implementation of LLINs, in 2008, when they were introduced, and in 2010, 2 years after the use of LLINs. RESULTS In this study 611 individuals were included, namely 136 An. coluzzii, 101 An. gambiae, 6 An. coluzzii/An. gambiae hybrids and 368 An. arabiensis. According to the species, the effect of the implementation of LLINs in Dielmo is differentiated. Populations of the sister species An. coluzzii and An. gambiae regularly experienced bottleneck events, but without significant inbreeding. The Fst values suggested in 2006 a breakdown of assortative mating resulting in hybrids, but the introduction of LLINs was followed by a decrease in the number of hybrids. This suggests a decrease in mating success of hybrids, ecological maladaptation, or a lesser probability of mating between species due to a decrease in An. coluzzii population size. By contrast, the introduction of LLINs has favoured the sibling species An. arabiensis. In this study, some spatial and temporal structuration between An. arabiensis populations were detected, especially in 2008, and the higher genetic diversity observed could result from a diversifying selection. CONCLUSIONS This work demonstrates the complexity of the malaria context and shows the need to study the genetic structure of Anopheles populations to evaluate the effectiveness of vector-control tools and successful management of malaria vector control.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France. .,Département de Biologie Animale, Faculté des Sciences et Techniques/Université Cheikh Anta Diop, Dakar, Senegal.
| | - Cheikh Sokhna
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France
| | - Nafissatou Diagne
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France
| | - Souleymane Doucouré
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France
| | - Pape MBacké Sembène
- Département de Biologie Animale, Faculté des Sciences et Techniques/Université Cheikh Anta Diop, Dakar, Senegal
| | - Myriam Harry
- UMR EGCE (Évolution, Génomes, Comportement, Écologie) CNRS, IRD-Université Paris-Sud, IDEEV, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
13
|
Richards EJ, Martin CH. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLoS Genet 2017; 13:e1006919. [PMID: 28796803 PMCID: PMC5552031 DOI: 10.1371/journal.pgen.1006919] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity.
Collapse
Affiliation(s)
- Emilie J. Richards
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christopher H. Martin
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
14
|
McGirr JA, Martin CH. Novel Candidate Genes Underlying Extreme Trophic Specialization in Caribbean Pupfishes. Mol Biol Evol 2017; 34:873-888. [PMID: 28028132 PMCID: PMC5850223 DOI: 10.1093/molbev/msw286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic changes responsible for evolutionary transitions from generalist to specialist phenotypes are poorly understood. Here we examine the genetic basis of craniofacial traits enabling novel trophic specialization in a sympatric radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist species and two novel specialists: a small-jawed "snail-eater" and a large-jawed "scale-eater." We genotyped 12 million single nucleotide polymorphisms (SNPs) by whole-genome resequencing of 37 individuals of all three species from nine populations and integrated genome-wide divergence scans with association mapping to identify divergent regions containing putatively causal SNPs affecting jaw size-the most rapidly diversifying trait in this radiation. A mere 22 fixed variants accompanied extreme ecological divergence between generalist and scale-eater species. We identified 31 regions (20 kb) containing variants fixed between specialists that were significantly associated with variation in jaw size which contained 11 genes annotated for skeletal system effects and 18 novel candidate genes never previously associated with craniofacial phenotypes. Six of these 31 regions showed robust signs of hard selective sweeps after accounting for demographic history. Our data are consistent with predictions based on quantitative genetic models of adaptation, suggesting that the effect sizes of regions influencing jaw phenotypes are positively correlated with distance between fitness peaks on a complex adaptive landscape.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
15
|
Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour 2016; 17:142-152. [PMID: 27860289 DOI: 10.1111/1755-0998.12635] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Understanding how and why populations evolve is of fundamental importance to molecular ecology. Restriction site-associated DNA sequencing (RADseq), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq-based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD-tags, genome sizes and extents of linkage disequilibrium (length of haplotype blocks). Under the best-case modelling scenario, we found that RADseq using six- or eight-base pair cutting restriction enzymes would fail to sample many regions of the genome, especially for species with short linkage disequilibrium. We then surveyed recent studies that have used RADseq for genome scans and found that the median density of markers across these studies was 4.08 RAD-tag markers per megabase (one marker per 245 kb). The length of linkage disequilibrium for many species is one to three orders of magnitude less than density of the typical recent RADseq study. Thus, we conclude that genome scans based on RADseq data alone, while useful for studies of neutral genetic variation and genetic population structure, will likely miss many loci under selection in studies of local adaptation.
Collapse
Affiliation(s)
- David B Lowry
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Sean Hoban
- The Morton Arboretum, Lisle, IL, USA.,National Institute for Mathematical and Biological Synthesis (NIMBioS), Knoxville, TN, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35406, USA
| | - Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
16
|
Main BJ, Lee Y, Ferguson HM, Kreppel KS, Kihonda A, Govella NJ, Collier TC, Cornel AJ, Eskin E, Kang EY, Nieman CC, Weakley AM, Lanzaro GC. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis. PLoS Genet 2016; 12:e1006303. [PMID: 27631375 PMCID: PMC5025075 DOI: 10.1371/journal.pgen.1006303] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of "SNP heritability" for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations.
Collapse
Affiliation(s)
- Bradley J Main
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology/University of California, Davis, Davis, California, United States of America
- * E-mail:
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology/University of California, Davis, Davis, California, United States of America
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Katharina S. Kreppel
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Environmental Health and Ecological Sciences Group, Ifakara Health Institute, Ifakara, United Republic of Tanzania
| | - Anicet Kihonda
- Environmental Health and Ecological Sciences Group, Ifakara Health Institute, Ifakara, United Republic of Tanzania
| | - Nicodem J. Govella
- Environmental Health and Ecological Sciences Group, Ifakara Health Institute, Ifakara, United Republic of Tanzania
| | - Travis C. Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology/University of California, Davis, Davis, California, United States of America
| | - Anthony J. Cornel
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Eun Yong Kang
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Catelyn C. Nieman
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology/University of California, Davis, Davis, California, United States of America
| | - Allison M. Weakley
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology/University of California, Davis, Davis, California, United States of America
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology/University of California, Davis, Davis, California, United States of America
| |
Collapse
|
17
|
Abstract
Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.
Collapse
|
18
|
Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda. G3-GENES GENOMES GENETICS 2016; 6:1573-84. [PMID: 27172181 PMCID: PMC4889654 DOI: 10.1534/g3.116.027235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The tsetse fly Glossina fuscipes fuscipes (Gff) is the insect vector of the two forms of Human African Trypanosomiasis (HAT) that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs) distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD) in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r(2) max/2) between 1359 and 2429 bp. The overall LD estimated for the species reaches r(2) max/2 at 708 bp, an order of magnitude slower than in Drosophila Using 53 infected (Trypanosoma spp.) and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis.
Collapse
|
19
|
Maliti DV, Marsden CD, Main BJ, Govella NJ, Yamasaki Y, Collier TC, Kreppel K, Chiu JC, Lanzaro GC, Ferguson HM, Lee Y. Investigating associations between biting time in the malaria vector Anopheles arabiensis Patton and single nucleotide polymorphisms in circadian clock genes: support for sub-structure among An. arabiensis in the Kilombero valley of Tanzania. Parasit Vectors 2016; 9:109. [PMID: 26920563 PMCID: PMC4769569 DOI: 10.1186/s13071-016-1394-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background There is growing evidence that the widespread use of Long-Lasting Insecticidal Nets (LLINs) is prompting malaria vectors to shift their biting towards times and places where people are not protected, such as earlier in the evening and/or outdoors. It is uncertain whether these behavioural shifts are due to phenotypic plasticity and/or ecological changes within vector communities that favour more exophilic species, or involve genetic factors within vector species to limit their contact with LLINs. Possibly variation in the time and location of mosquito biting has a genetic basis, but as yet this phenomenon has received little investigation. Here we used a candidate gene approach to investigate whether polymorphisms in selected circadian clock genes could explain variation in the time and location of feeding (indoors versus outside) within a natural population of the major African malaria vector Anopheles arabiensis. Methods Host-seeking An. arabiensis were collected from two villages (Lupiro and Sagamaganga) in Tanzania by Human Landing Catch (HLC) technique. Mosquitoes were classified into phenotypes of “early” (7 pm–10 pm) or “late” biting (4 am –7 am), and host-seeking indoors or outdoors. In these samples we genotyped 34 coding SNPs in 8 clock genes (PER, TIM, CLK, CYC, PDP1, VRI, CRY1, and CRY2), and tested for associations between these SNPs and biting phenotypes. SNPs in 8 mitochondrial genes (ATP6, ATP8, COX1, COX2, COX3, ND3, ND5 and CYTB) were also genotyped to test population subdivision within An. arabiensis. Results The candidate clock genes exhibited polymorphism within An. arabiensis, but it was unrelated to variation in the timing and location of their biting activity. However, there was evidence of strong genetic structure within An. arabiensis populations in association with the TIM, which was unrelated to geographic distance. Substructure within An. arabiensis was also detected using mitochondrial markers. Conclusions The variable timing and location of biting in An. arabiensis could not be linked to candidate clock genes that are known to influence behaviour in other Diptera. This finding does not rule out the possibility of a genetic basis to biting behaviour in this malaria vector, but suggests these are complex phenotypes that require more intensive ecological, neuronal and genomic analyses to understand. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1394-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deodatus Vincent Maliti
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania. .,Nelson Mandela African Institute of Science and Technology Tanzania, School of Life Sciences, Arusha, Tanzania. .,Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Lancashire, UK.
| | - C D Marsden
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - B J Main
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - N J Govella
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania.
| | - Y Yamasaki
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - T C Collier
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - K Kreppel
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Lancashire, UK.
| | - J C Chiu
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - G C Lanzaro
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - H M Ferguson
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - Y Lee
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
20
|
Kardos M, Husby A, McFarlane SE, Qvarnström A, Ellegren H. Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Mol Ecol Resour 2015; 16:727-41. [PMID: 26649993 DOI: 10.1111/1755-0998.12498] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
Abstract
Dissecting the genetic basis of phenotypic variation in natural populations is a long-standing goal in evolutionary biology. One open question is whether quantitative traits are determined only by large numbers of genes with small effects, or whether variation also exists in large-effect loci. We conducted genomewide association analyses of forehead patch size (a sexually selected trait) on 81 whole-genome-resequenced male collared flycatchers with extreme phenotypes, and on 415 males sampled independent of patch size and genotyped with a 50K SNP chip. No SNPs were genomewide statistically significantly associated with patch size. Simulation-based power analyses suggest that the power to detect large-effect loci responsible for 10% of phenotypic variance was <0.5 in the genome resequencing analysis, and <0.1 in the SNP chip analysis. Reducing the recombination by two-thirds relative to collared flycatchers modestly increased power. Tripling sample size increased power to >0.8 for resequencing of extreme phenotypes (N = 243), but power remained <0.2 for the 50K SNP chip analysis (N = 1245). At least 1 million SNPs were necessary to achieve power >0.8 when analysing 415 randomly sampled phenotypes. However, power of the 50K SNP chip to detect large-effect loci was nearly 0.8 in simulations with a small effective population size of 1500. These results suggest that reliably detecting large-effect trait loci in large natural populations will often require thousands of individuals and near complete sampling of the genome. Encouragingly, far fewer individuals and loci will often be sufficient to reliably detect large-effect loci in small populations with widespread strong linkage disequilibrium.
Collapse
Affiliation(s)
- Marty Kardos
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Arild Husby
- Department of Biosciences, University of Helsinki, PO Box 65, Helsinki, 00014, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - S Eryn McFarlane
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| |
Collapse
|
21
|
Crawford JE, Riehle MM, Guelbeogo WM, Gneme A, Sagnon N, Vernick KD, Nielsen R, Lazzaro BP. Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex. Genome Biol Evol 2015; 7:3116-31. [PMID: 26615027 PMCID: PMC4994751 DOI: 10.1093/gbe/evv203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Speciation as a process remains a central focus of evolutionary biology, but our
understanding of the genomic architecture and prevalence of speciation in the face of gene
flow remains incomplete. The Anopheles gambiae species complex of malaria
mosquitoes is a radiation of ecologically diverse taxa. This complex is well-suited for
testing for evidence of a speciation continuum and genomic barriers to introgression
because its members exhibit partially overlapping geographic distributions as well as
varying levels of divergence and reproductive isolation. We sequenced 20 genomes from wild
A. gambiae s.s., Anopheles coluzzii, Anopheles
arabiensis, and compared these with 12 genomes from the “GOUNDRY” subgroup of
A. gambiae s.l. Amidst a backdrop of strong
reproductive isolation, we find strong evidence for a speciation continuum with
introgression of autosomal chromosomal regions among species and subgroups. The X
chromosome, however, is strongly differentiated among all taxa, pointing to a
disproportionately large effect of X chromosome genes in driving speciation among
anophelines. Strikingly, we find that autosomal introgression has occurred from
contemporary hybridization between A. gambiae and A.
arabiensis despite strong divergence (∼5× higher than autosomal divergence) and
isolation on the X chromosome. In addition to the X, we find strong evidence that lowly
recombining autosomal regions, especially pericentromeric regions, serve as barriers to
introgression secondarily to the X. We show that speciation with gene flow results in
genomic mosaicism of divergence and introgression. Such a reticulate gene pool connecting
vector taxa across the speciation continuum has important implications for malaria control
efforts.
Collapse
Affiliation(s)
- Jacob E Crawford
- Department of Entomology, Cornell University Department of Integrative Biology, University of California, Berkeley
| | | | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Awa Gneme
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Institut Pasteur, Paris, France
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley
| | | |
Collapse
|
22
|
Benjelloun B, Alberto FJ, Streeter I, Boyer F, Coissac E, Stucki S, BenBati M, Ibnelbachyr M, Chentouf M, Bechchari A, Leempoel K, Alberti A, Engelen S, Chikhi A, Clarke L, Flicek P, Joost S, Taberlet P, Pompanon F. Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data. Front Genet 2015; 6:107. [PMID: 25904931 PMCID: PMC4387958 DOI: 10.3389/fgene.2015.00107] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
Since the time of their domestication, goats (Capra hircus) have evolved in a large variety of locally adapted populations in response to different human and environmental pressures. In the present era, many indigenous populations are threatened with extinction due to their substitution by cosmopolitan breeds, while they might represent highly valuable genomic resources. It is thus crucial to characterize the neutral and adaptive genetic diversity of indigenous populations. A fine characterization of whole genome variation in farm animals is now possible by using new sequencing technologies. We sequenced the complete genome at 12× coverage of 44 goats geographically representative of the three phenotypically distinct indigenous populations in Morocco. The study of mitochondrial genomes showed a high diversity exclusively restricted to the haplogroup A. The 44 nuclear genomes showed a very high diversity (24 million variants) associated with low linkage disequilibrium. The overall genetic diversity was weakly structured according to geography and phenotypes. When looking for signals of positive selection in each population we identified many candidate genes, several of which gave insights into the metabolic pathways or biological processes involved in the adaptation to local conditions (e.g., panting in warm/desert conditions). This study highlights the interest of WGS data to characterize livestock genomic diversity. It illustrates the valuable genetic richness present in indigenous populations that have to be sustainably managed and may represent valuable genetic resources for the long-term preservation of the species.
Collapse
Affiliation(s)
- Badr Benjelloun
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France ; National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research Beni-Mellal, Morocco
| | - Florian J Alberto
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute Hinxton, UK
| | - Frédéric Boyer
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - Eric Coissac
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Mohammed BenBati
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research Beni-Mellal, Morocco
| | - Mustapha Ibnelbachyr
- Regional Centre of Agronomic Research Errachidia, National Institute of Agronomic Research (INRA Maroc) Errachidia, Morocco
| | - Mouad Chentouf
- Regional Centre of Agronomic Research Tangier, National Institute of Agronomic Research (INRA Maroc) Tangier, Morocco
| | - Abdelmajid Bechchari
- Regional Centre of Agronomic Research Oujda, National Institute of Agronomic Research (INRA Maroc) Oujda, Morocco
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Adriana Alberti
- Centre National de Séquençage, CEA-Institut de Génomique Genoscope, Évry, France
| | - Stefan Engelen
- Centre National de Séquençage, CEA-Institut de Génomique Genoscope, Évry, France
| | - Abdelkader Chikhi
- Regional Centre of Agronomic Research Errachidia, National Institute of Agronomic Research (INRA Maroc) Errachidia, Morocco
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute Hinxton, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute Hinxton, UK
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - François Pompanon
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | | |
Collapse
|
23
|
Lee Y, Weakley AM, Nieman CC, Malvick J, Lanzaro GC. A multi-detection assay for malaria transmitting mosquitoes. J Vis Exp 2015:e52385. [PMID: 25867057 DOI: 10.3791/52385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays.
Collapse
Affiliation(s)
- Yoosook Lee
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis;
| | - Allison M Weakley
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis
| | - Catelyn C Nieman
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis
| | - Julia Malvick
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis
| | - Gregory C Lanzaro
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis
| |
Collapse
|
24
|
Turissini DA, Gamez S, White BJ. Genome-wide patterns of polymorphism in an inbred line of the African malaria mosquito Anopheles gambiae. Genome Biol Evol 2014; 6:3094-104. [PMID: 25377942 PMCID: PMC4255774 DOI: 10.1093/gbe/evu243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Anopheles gambiae is a major mosquito vector of malaria in Africa. Although increased use of insecticide-based vector control tools has decreased malaria transmission, elimination is likely to require novel genetic control strategies. It can be argued that the absence of an A. gambiae inbred line has slowed progress toward genetic vector control. In order to empower genetic studies and enable precise and reproducible experimentation, we set out to create an inbred line of this species. We found that amenability to inbreeding varied between populations of A. gambiae. After full-sib inbreeding for ten generations, we genotyped 112 individuals--56 saved prior to inbreeding and 56 collected after inbreeding--at a genome-wide panel of single nucleotide polymorphisms (SNPs). Although inbreeding dramatically reduced diversity across much of the genome, we discovered numerous, discrete genomic blocks that maintained high heterozygosity. For one large genomic region, we were able to definitively show that high diversity is due to the persistent polymorphism of a chromosomal inversion. Inbred lines in other eukaryotes often exhibit a qualitatively similar retention of polymorphism when typed at a small number of markers. Our whole-genome SNP data provide the first strong, empirical evidence supporting associative overdominance as the mechanism maintaining higher than expected diversity in inbred lines. Although creation of A. gambiae lines devoid of nearly all polymorphism may not be feasible, our results provide critical insights into how more fully isogenic lines can be created.
Collapse
Affiliation(s)
| | - Stephanie Gamez
- Department of Entomology, University of California, Riverside
| | - Bradley J White
- Department of Entomology, University of California, Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside
| |
Collapse
|
25
|
High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3-GENES GENOMES GENETICS 2014; 4:2219-30. [PMID: 25227227 PMCID: PMC4232547 DOI: 10.1534/g3.114.012815] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima’s D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication.
Collapse
|