1
|
Gopinath A, Riaz T, Miller E, Phan L, Smith A, Syed O, Franks S, Martinez LR, Khoshbouei H. Methamphetamine induces a low dopamine transporter expressing state without altering the total number of peripheral immune cells. Basic Clin Pharmacol Toxicol 2023; 133:496-507. [PMID: 36710070 PMCID: PMC10382601 DOI: 10.1111/bcpt.13838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Methamphetamine is a widely abused psychostimulant and one of the main targets of dopamine transporter (DAT). Methamphetamine reduces DAT-mediated dopamine uptake and stimulates dopamine efflux leading to increased synaptic dopamine levels many folds above baseline. Methamphetamine also targets DAT-expressing peripheral immune cells, reduces wound healing and increases infection susceptibility. Peripheral immune cells such as myeloid cells, B cells and T cells express DAT. DAT activity on monocytes and macrophages exhibits immune suppressive properties via an autocrine paracrine mechanism, where deletion or inhibition of DAT activity increases inflammatory responses. In this study, utilizing a mouse model of daily single dose of methamphetamine administration, we investigated the impact of the drug on DAT expression in peripheral immune cells. We found in methamphetamine-treated mice that DAT expression was down-regulated in most of the innate and adaptive immune cells. Methamphetamine did not increase or decrease the total number of innate and adaptive immune cells but changed their immunophenotype to low-DAT-expressing phenotype. Moreover, serum cytokine distributions were altered in methamphetamine-treated mice. Therefore, resembling its effect in the CNS, in the periphery, methamphetamine regulates DAT expression on peripheral immune cell subsets, potentially describing methamphetamine regulation of peripheral immunity.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Tabish Riaz
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Emily Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Aidan Smith
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ohee Syed
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Stephen Franks
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Miller EJ, Khoshbouei H. Immunity on ice: The impact of methamphetamine on peripheral immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:217-250. [PMID: 38467482 DOI: 10.1016/bs.apha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Methamphetamine (METH) regulation of the dopamine transporter (DAT) and central nervous system (CNS) dopamine transmission have been extensively studied. However, our understanding of how METH influences neuroimmune communication and innate and adaptive immunity is still developing. Recent studies have shed light on the bidirectional communication between the CNS and the peripheral immune system. They have established a link between CNS dopamine levels, dopamine neuronal activity, and peripheral immunity. Akin to dopamine neurons in the CNS, a majority of peripheral immune cells also express DAT, implying that in addition to their effect in the CNS, DAT ligands such as methamphetamine may have a role in modulating peripheral immunity. For example, by directly influencing DAT-expressing peripheral immune cells and thus peripheral immunity, METH can trigger a feed-forward cascade that impacts the bidirectional communication between the CNS and peripheral immune system. In this review, we aim to discuss the current understanding of how METH modulates both innate and adaptive immunity and identify areas where knowledge gaps exist. These gaps will then be considered in guiding future research directions.
Collapse
Affiliation(s)
- Emily J Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
3
|
Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut–Immune–Brain Axis. Int J Mol Sci 2022; 23:ijms231911224. [PMID: 36232524 PMCID: PMC9569811 DOI: 10.3390/ijms231911224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal–immune–nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1β, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood–brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.
Collapse
|
4
|
Kong D, Mao JH, Li H, Wang JY, Li YY, Wu XC, Re GF, Luo HY, Kuang YQ, Wang KH. Effects and associated transcriptomic landscape changes of methamphetamine on immune cells. BMC Med Genomics 2022; 15:144. [PMID: 35765053 PMCID: PMC9241331 DOI: 10.1186/s12920-022-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Methamphetamine (METH) abuse causes serious health problems, including injury to the immune system, leading to increased incidence of infections and even making withdrawal more difficult. Of course, immune cells, an important part of the immune system, are also injured in methamphetamine abuse. However, due to different research models and the lack of bioinformatics, the mechanism of METH injury to immune cells has not been clarified. Methods We examined the response of three common immune cell lines, namely Jurkat, NK-92 and THP-1 cell lines, to methamphetamine by cell viability and apoptosis assay in vitro, and examined their response patterns at the mRNA level by RNA-sequencing. Differential expression analysis of two conditions (control and METH treatment) in three types of immune cells was performed using the DESeq2 R package (1.20.0). And some of the differentially expressed genes were verified by qPCR. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes by the clusterProfiler R package (3.14.3). And gene enrichment analysis was also performed using MetaScape (www.metascape.org). Results The viability of the three immune cells was differentially affected by methamphetamine, and the rate of NK-cell apoptosis was significantly increased. At the mRNA level, we found disorders of cholesterol metabolism in Jurkat cells, activation of ERK1 and ERK2 cascade in NK-92 cells, and disruption of calcium transport channels in THP-1 cells. In addition, all three cells showed changes in the phospholipid metabolic process. Conclusions The results suggest that both innate and adaptive immune cells are affected by METH abuse, and there may be commonalities between different immune cells at the transcriptome level. These results provide new insights into the potential effects by which METH injures the immune cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01295-9.
Collapse
Affiliation(s)
- Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Jun-Hong Mao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hong Li
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Jian-Yu Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Yu-Yang Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Xiao-Cong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Guo-Fen Re
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hua-You Luo
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Yunnan University, Kunming, 650032, China.
| |
Collapse
|
5
|
Grabowska K, Macur K, Zieschang S, Zaman L, Haverland N, Schissel A, Morsey B, Fox HS, Ciborowski P. HIV-1 and methamphetamine alter galectins -1, -3, and -9 in human monocyte-derived macrophages. J Neurovirol 2022; 28:99-112. [PMID: 35175539 PMCID: PMC9076712 DOI: 10.1007/s13365-021-01025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 12/05/2022]
Abstract
Macrophages are key elements of the innate immune system. Their HIV-1 infection is a complex process that involves multiple interacting factors and various steps and is further altered by exposure of infected cells to methamphetamine (Meth), a common drug of abuse in people living with HIV. This is reflected by dynamic changes in the intracellular and secreted proteomes of these cells. Quantification of these changes poses a challenge for experimental design and associated analytics. In this study, we measured the effect of Meth on expression of intracellular and secreted galectins-1, -3, and -9 in HIV-1 infected human monocyte-derived macrophages (hMDM) using SWATH-MS, which was further followed by MRM targeted mass spectrometry validation. Cells were exposed to Meth either prior to or after infection. Our results are the first to perform comprehensive quantifications of galectins in primary hMDM cells during HIV-1 infection and Meth exposure a building foundation for future studies on the molecular mechanisms underlying cellular pathology of hMDM resulting from viral infection and a drug of abuse—Meth.
Collapse
Affiliation(s)
- Kinga Grabowska
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Macur
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Sarah Zieschang
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lubaba Zaman
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew Schissel
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Glac W, Dunacka J, Grembecka B, Świątek G, Majkutewicz I, Wrona D. Prolonged Peripheral Immunosuppressive Responses as Consequences of Random Amphetamine Treatment, Amphetamine Withdrawal and Subsequent Amphetamine Challenges in Rats. J Neuroimmune Pharmacol 2021; 16:870-887. [PMID: 33586062 PMCID: PMC8714631 DOI: 10.1007/s11481-021-09988-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Drug-induced immunosuppression may underline increased hypothalamic-pituitary-adrenal axis response to stress observed following chronic psychostimulant treatment. However, the consequences of random amphetamine (AMPH) treatment, withdrawal and AMPH challenge after withdrawal on the peripheral immunity and systemic corticosterone response are unknown. In this study, the total blood and spleen leukocyte, lymphocyte, T, B, NK, TCD4+/TCD8+ cell numbers and ratio, pro-inflammatory interferon gamma (IFN-γ), and anti-inflammatory interleukin-4 (IL-4) production, and plasma corticosterone concentration in Wistar rats were investigated after: chronic, random AMPH/SAL treatment alone (20 injections in 60 days, 1 mg/kg b.w., i.p.), AMPH/SAL withdrawal (for 20 consecutive days after random AMPH/SAL exposure) or AMPH/SAL challenge after withdrawal (single injection after the AMPH/SAL withdrawal phase). The results showed blood and spleen leukopenia, lymphopenia, lower blood production of IFN-ɤ, and increased plasma corticosterone concentration after the AMPH treatment, which were more pronounced in the AMPH after withdrawal group. In contrast, an increased number of blood NK cells and production of IL-4 after chronic, random AMPH treatment alone, were found. Blood AMPH-induced leukopenia and lymphopenia were due to decreased total number of T, B lymphocytes and, at least in part, of granulocytes and monocytes. Moreover, decreases in the number of blood TCD4+ and TCD8+ lymphocytes both in the AMPH chronic alone and withdrawal phases, were found.The major findings of this study are that AMPH treatment after the long-term withdrawal from previous random AMPH exposure, accelerates the drug-induced immunosuppressive and systemic corticosterone responses, suggesting prolonged immunosuppressive effects and an increase in incidence of infectious diseases. Prolonged peripheral immunosuppressive responses as consequences of random amphetamine…The results indicate that the chronic and random AMPH exposure alone and the acute (single injection) challenge of the drug after the withdrawal phase induced long-term immunosuppressive effects, which were similar to those occurring during the stress response, and sensitized the peripheral immunosuppressive and corticosterone responses of the rat to the disinhibitory effects of this stressor.
Collapse
Affiliation(s)
- Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308, Gdansk, Poland.
| | - Joanna Dunacka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308, Gdansk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308, Gdansk, Poland
| | - Grzegorz Świątek
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308, Gdansk, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308, Gdansk, Poland
| | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308, Gdansk, Poland.
| |
Collapse
|
8
|
Hernandez-Santini AC, Mitha AN, Chow D, Hamed MF, Gucwa AL, Vaval V, Martinez LR. Methamphetamine facilitates pulmonary and splenic tissue injury and reduces T cell infiltration in C57BL/6 mice after antigenic challenge. Sci Rep 2021; 11:8207. [PMID: 33859291 PMCID: PMC8050260 DOI: 10.1038/s41598-021-87728-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a strong addictive central nervous system stimulant. METH abuse can alter biological processes and immune functions necessary for host defense. The acquisition and transmission of HIV, hepatitis, and other communicable diseases are possible serious infectious consequences of METH use. METH also accumulates extensively in major organs. Despite METH being a major public health and safety problem globally, there are limited studies addressing the impact of this popular recreational psychostimulant on tissue adaptive immune responses after exposure to T cell dependent [ovalbumin (OVA)] and independent [lipopolysaccharide (LPS)] antigens. We hypothesized that METH administration causes pulmonary and splenic tissue alterations and reduces T cell responses to OVA and LPS in vivo, suggesting the increased susceptibility of users to infection. Using a murine model of METH administration, we showed that METH causes tissue injury, apoptosis, and alters helper and cytotoxic T cell recruitment in antigen challenged mice. METH also reduces the expression and distribution of CD3 and CD28 molecules on the surface of human Jurkat T cells. In addition, METH decreases the production of IL-2 in these T-like cells, suggesting a negative impact on T lymphocyte activation and proliferation. Our findings demonstrate the pleotropic effects of METH on cell-mediated immunity. These alterations have notable implications on tissue homeostasis and the capacity of the host to respond to infection.
Collapse
Affiliation(s)
| | - Anum N Mitha
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Daniela Chow
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohamed F Hamed
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Room DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.,Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Azad L Gucwa
- Department of Biology, Farmingdale State College, Farmingdale, NY, USA
| | - Valerie Vaval
- Department of Biomedical Sciences, Long Island University, C. W. Post, Brookville, NY, USA
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Room DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.
| |
Collapse
|
9
|
Mitha AN, Chow D, Vaval V, Guerrero P, Rivera-Rodriguez DE, Martinez LR. Methamphetamine Compromises the Adaptive B Cell-Mediated Immunity to Antigenic Challenge in C57BL/6 Mice. FRONTIERS IN TOXICOLOGY 2021; 3. [PMID: 34109323 PMCID: PMC8186300 DOI: 10.3389/ftox.2021.629451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a substance of abuse that causes dysregulation of the innate and adaptive immunity in users. B cells are involved in the humoral component of the adaptive immunity by producing and secreting antibodies (Abs). METH modifies Ab production, although limited information on the impact of this psychostimulant on antigen (Ag)-specific humoral immune responses is available. Since T cell-dependent and T cell-independent Ags are involved in the activation of B lymphocytes, we explored the role of METH on humoral immunity to ovalbumin (OVA; T cell-dependent) and bacterial lipopolysaccharide (LPS; T cell-independent) in C57BL/6 mice. We demonstrated that METH extends the infiltration of B cells into pulmonary and splenic tissues 7 days post-Ag challenge. METH impairs Ab responses in the blood of animals challenged with OVA and LPS. Furthermore, METH diminishes the expression and distribution of IgM on B cell surface, suggesting a possible detrimental impact on users' humoral immunity to infection or autoimmunity.
Collapse
Affiliation(s)
- Anum N Mitha
- Department of Biomedical Sciences, Long Island University, Brookville, NY, United States.,Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Daniela Chow
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Valerie Vaval
- Department of Biomedical Sciences, Long Island University, Brookville, NY, United States
| | - Paulina Guerrero
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Luis R Martinez
- Department of Biomedical Sciences, Long Island University, Brookville, NY, United States.,Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States.,Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States.,Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| |
Collapse
|
10
|
Hossain MK, Hassanzadeganroudsari M, Apostolopoulos V. Why METH users are at high risk of fatality due to COVID-19 infection? Expert Rev Vaccines 2020; 19:1101-1103. [DOI: 10.1080/14760584.2020.1858059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | | | |
Collapse
|
11
|
Li Y, Li S, Xia Y, Li X, Chen T, Yan J, Wang Y. Alteration of liver immunity by increasing inflammatory response during co-administration of methamphetamine and atazanavir. Immunopharmacol Immunotoxicol 2020; 42:237-245. [PMID: 32249638 DOI: 10.1080/08923973.2020.1745829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Use of methamphetamine (METH) is prevalent among HIV-infected individuals. Previous research has shown that both METH and HIV protease inhibitors exert influences on mitochondrial respiratory metabolism and hepatic nervous system. This study aims to study the joint effect of METH and HIV protease inhibitors on hepatic immune function.Materials and methods: Based on the differentially expressed genes obtained from RNA-seq of the liver from mouse model, the expression levels of CD48 and Macrophage Receptor with Collagenous Structure (MARCO) were examined using qRT-PCR and flow cytometry, and the expression and secretion of cytokines IL-1β, IL-6, IL-8, IL-10, IFN-γ, IFN-β, and TNF-α were determined using qRT-PCR and ELISA in THP-1-derived macrophages.Results: Our results indicated that compared with the control group, CD48 molecules were significantly down-regulated by METH-atazanavir co-treatment, and the expression level of CD48 decreased as METH concentration increases. MARCO molecules were increased, especially at larger doses of METH and atazanavir treatment. In addition, in the presence of METH-atazanavir, the expression and secretion of a series of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 increased while the expression and secretion of anti-inflammatory cytokine IL-10 decreased.Conclusion: These results demonstrated that METH and atazanavir had a combined impact on the liver immunity, suggesting that the co-treatment could enhance inflammatory response and suppress NK cell activation via CD48.
Collapse
Affiliation(s)
- Yanfei Li
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China.,Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Sangsang Li
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Yang Xia
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Xiangrong Li
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Tingjun Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
12
|
Evaluation the multi-organs toxicity of methamphetamine (METH) in rats. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Camacho L, Silva CS, Hanig JP, Schleimer RP, George NI, Bowyer JF. Identification of whole blood mRNA and microRNA biomarkers of tissue damage and immune function resulting from amphetamine exposure or heat stroke in adult male rats. PLoS One 2019; 14:e0210273. [PMID: 30779732 PMCID: PMC6380594 DOI: 10.1371/journal.pone.0210273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
This work extends the understanding of how toxic exposures to amphetamine (AMPH) adversely affect the immune system and lead to tissue damage. Importantly, it determines which effects of AMPH are and are not due to pronounced hyperthermia. Whole blood messenger RNA (mRNA) and whole blood and serum microRNA (miRNA) transcripts were identified in adult male Sprague-Dawley rats after exposure to toxic AMPH under normothermic conditions, AMPH when it produces pronounced hyperthermia, or environmentally-induced hyperthermia (EIH). mRNA transcripts with large increases in fold-change in treated relative to control rats and very low expression in the control group were a rich source of organ-specific transcripts in blood. When severe hyperthermia was produced by either EIH or AMPH, significant increases in circulating organ-specific transcripts for liver (Alb, Fbg, F2), pancreas (Spink1), bronchi/lungs (F3, Cyp4b1), bone marrow (Np4, RatNP-3b), and kidney (Cesl1, Slc22a8) were observed. Liver damage was suggested also by increased miR-122 levels in the serum. Increases in muscle/heart-enriched transcripts were produced by AMPH even in the absence of hyperthermia. Expression increases in immune-related transcripts, particularly Cd14 and Vcan, indicate that AMPH can activate the innate immune system in the absence of hyperthermia. Most transcripts specific for T-cells decreased 50–70% after AMPH exposure or EIH, with the noted exception of Ccr5 and Chst12. This is probably due to T-cells leaving the circulation and down-regulation of these genes. Transcript changes specific for B-cells or B-lymphoblasts in the AMPH and EIH groups ranged widely from decreasing ≈ 40% (Cd19, Cd180) to increasing 30 to 100% (Tk1, Ahsa1) to increasing ≥500% (Stip1, Ackr3). The marked increases in Ccr2, Ccr5, Pld1, and Ackr3 produced by either AMPH or EIH observed in vivo provide further insight into the initial immune system alterations that result from methamphetamine and AMPH abuse and could modify risk for HIV and other viral infections.
Collapse
Affiliation(s)
- Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Camila S. Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert P. Schleimer
- Division of Allergy and Immunology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nysia I. George
- Division of Bioinformatics and Biostatistics, NCTR/U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - John F. Bowyer
- Division of Neurotoxicology, NCTR/U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Papageorgiou M, Raza A, Fraser S, Nurgali K, Apostolopoulos V. Methamphetamine and its immune-modulating effects. Maturitas 2018; 121:13-21. [PMID: 30704560 DOI: 10.1016/j.maturitas.2018.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
The recreational use of methamphetamine (METH, or ice) is a global burden. It pervades and plagues contemporary society; it has been estimated that there are up to 35 million users worldwide. METH is a highly addictive psychotropic compound which acts on the central nervous system, and chronic use can induce psychotic behavior. METH has the capacity to modulate immune cells, giving the drug long-term effects which may manifest as neuropsychiatric disorders, and that increase susceptibility to communicable diseases, such as HIV. In addition, changes to the cytokine balance have been associated with compromise of the blood-brain barrier, resulting to alterations to brain plasticity, creating lasting neurotoxicity. Immune-related signaling pathways are key to further evaluating how METH impacts host immunity through these neurological and peripheral modifications. Combining this knowledge with current data on inflammatory responses will improve understanding of how the adaptive and innate immunity responds to METH, how this can activate premature-ageing processes and how METH exacerbates disturbances that lead to non-communicable age-related diseases, including cardiovascular disease, stroke, depression and dementia.
Collapse
Affiliation(s)
- Marco Papageorgiou
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ali Raza
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Regenerative Medicine and StemCells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| | | |
Collapse
|
15
|
Tarkowski P, Jankowski K, Budzyńska B, Biała G, Boguszewska-Czubara A. Potential pro-oxidative effects of single dose of mephedrone in vital organs of mice. Pharmacol Rep 2018; 70:1097-1104. [PMID: 30308460 DOI: 10.1016/j.pharep.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Mephedrone is a recreationally used synthetic cathinone, relatively new abusive substances with molecular structure similar to amphetamine. As there is still lack of scientific data regarding mechanisms of action as well as metabolism of mephedrone, especially in aspects other than neurotoxicity, addiction or behavioral changes, therefore we aimed, for the first time, to investigate potential pro-oxidative actions of a single dose of mephedrone in organs other than brain and its structures, i.e. in liver, kidneys, heart and spleen of Swiss mice. METHODS The following biomarkers of oxidative stress were measured: concentration of ascorbic acid (AA) and malondialdehyde (MDA) as well as total antioxidant capacity (TAC) of the tissues homogenates. RESULTS Our study revealed that mephedrone intoxication induces oxidative stress by reducing concentration of AA and TAC and increasing concentration of MDA in these organs. CONCLUSIONS Such occurred state of antioxidant-oxidant imbalance may be etiopathological factor of a number of severe diseases within cardiovascular, digestive as well as immunological systems.
Collapse
Affiliation(s)
- Piotr Tarkowski
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jankowski
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Barbara Budzyńska
- Department of Pharmacology and Pharmacokinetics, Medical University of Lublin, Lublin, Poland
| | - Grażyna Biała
- Department of Pharmacology and Pharmacokinetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
16
|
Methamphetamine alters T cell cycle entry and progression: role in immune dysfunction. Cell Death Discov 2018; 4:44. [PMID: 29581895 PMCID: PMC5859078 DOI: 10.1038/s41420-018-0045-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
We and others have demonstrated that stimulants such as methamphetamine (METH) exerts immunosuppressive effects on the host’s innate and adaptive immune systems and has profound immunological implications. Evaluation of the mechanisms responsible for T-cell immune dysregulation may lead to ways of regulating immune homeostasis during stimulant use. Here we evaluated the effects of METH on T cell cycle entry and progression following activation. Kinetic analyses of cell cycle progression of T-cell subsets exposed to METH demonstrated protracted G1/S phase transition and differentially regulated genes responsible for cell cycle regulation. This result was supported by in vivo studies where mice exposed to METH had altered G1 cell cycle phase and impaired T-cell proliferation. In addition, T cells subsets exposed to METH had significant decreased expression of cyclin E, CDK2 and transcription factor E2F1 expression. Overall, our results indicate that METH exposure results in altered T cell cycle entry and progression. Our findings suggest that disruption of cell cycle machinery due to METH may limit T-cell proliferation essential for mounting an effective adaptive immune response and thus may strongly contribute to deleterious effect on immune system.
Collapse
|
17
|
Skowronska M, McDonald M, Velichkovska M, Leda AR, Park M, Toborek M. Methamphetamine increases HIV infectivity in neural progenitor cells. J Biol Chem 2018; 293:296-311. [PMID: 29158267 PMCID: PMC5766929 DOI: 10.1074/jbc.ra117.000795] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Indexed: 01/01/2023] Open
Abstract
HIV-1 infection and methamphetamine (METH) abuse frequently occur simultaneously and may have synergistic pathological effects. Although HIV-positive/active METH users have been shown to have higher HIV viral loads and experience more severe neurological complications than non-users, the direct impact of METH on HIV infection and its link to the development of neurocognitive alternations are still poorly understood. In the present study, we hypothesized that METH impacts HIV infection of neural progenitor cells (NPCs) by a mechanism encompassing NFκB/SP1-mediated HIV LTR activation. Mouse and human NPCs were infected with EcoHIV (modified HIV virus infectious to mice) and HIV, respectively, in the presence or absence of METH (50 or 100 μm). Pretreatment with METH, but not simultaneous exposure, significantly increased HIV production in both mouse and human NPCs. To determine the mechanisms underlying these effects, cells were transfected with different variants of HIV LTR promoters and then exposed to METH. METH treatment induced transcriptional activity of the HIV LTR promotor, an effect that required both NFκB and SP1 signaling. Pretreatment with METH also decreased neuronal differentiation of HIV-infected NPCs in both in vitro and in vivo settings. Importantly, NPC-derived daughter cells appeared to be latently infected with HIV. This study indicates that METH increases HIV infectivity of NPCs, through the NFκB/SP1-dependent activation of the HIV LTR and with the subsequent alterations of NPC neurogenesis. Such events may underlie METH- exacerbated neurocognitive dysfunction in HIV-infected patients.
Collapse
Affiliation(s)
- Marta Skowronska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136.
| | - Marisa McDonald
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ana Rachel Leda
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136; Jerzy Kukuczka Academy of Physical Education, 40-001 Katowice, Poland.
| |
Collapse
|
18
|
Zhu P, Li L, Gao B, Zhang M, Wang Y, Gu Y, Hu L. Impact of chronic methamphetamine treatment on the atherosclerosis formation in ApoE-/- mice fed a high cholesterol diet. Oncotarget 2017; 8:55064-55072. [PMID: 28903402 PMCID: PMC5589641 DOI: 10.18632/oncotarget.19020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/04/2017] [Indexed: 11/25/2022] Open
Abstract
Background We previously reported that methamphetamine could promote atherosclerosis (AS) in ApoE−/− mice fed normal chow. We herein observed the impact of methamphetamine on AS in ApoE−/− mice fed a high cholesterol diet and explored the potential mechanisms. Results and Materials and Methods Male ApoE−/− mice fed a high cholesterol diet were treated with saline (NS, n = 5) or methamphetamine [8 mg/kg/day (M8, n = 6) through intraperitoneal injection] for 24 weeks. Afterwards, the percentage area of atheromatous plaque in aortic root (44.31 ± 3.21% vs. 32.91 ± 3.58%, P < 0.01) and atherosclerotic lesion area on Oil red O stained en face aorta (32.74 ± 6.97% vs. 18.72 ± 3.65%, P < 0.01) were significantly higher in M8 group than in NS group. The percentages of Th1 cells and Th17 cells in spleen were significantly higher while the percentages of Th2 cells and CD4+CD25+Foxp3+ Tregs were significantly lower in M8 group than in NS group. mRNA expressions of TNF-α, IFN-γ, and IL-17 were significantly up-regulated, IL-4, IL-10, Foxp3, and TGF-β were significantly down-regulated in carotid artery and in spleen in M8 group compared to NS group. Conclusions Chronic methamphetamine treatment can enhance atherosclerotic plaque formation possibly through promoting proinflammatory cytokine secretions in ApoE−/− mice fed a high cholesterol diet.
Collapse
Affiliation(s)
- Pengfei Zhu
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lun Li
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Gao
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjing Zhang
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Wang
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye Gu
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liqun Hu
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Ohia-Nwoko O, Haile CN, Kosten TA. Sex differences in the acute locomotor response to methamphetamine in BALB/c mice. Behav Brain Res 2017; 327:94-97. [PMID: 28359885 DOI: 10.1016/j.bbr.2017.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023]
Abstract
Women use methamphetamine more frequently than men and are more vulnerable to its negative psychological effects. Rodent models have been an essential tool for evaluating the sex-dependent effects of psychostimulants; however, evidence of sex differences in the behavioral responses to methamphetamine in mice is lacking. In the present study, we investigated acute methamphetamine-induced (1mg/kg and 4mg/kg) locomotor activation in female and male BALB/c mice. We also evaluated whether basal locomotor activity was associated with the methamphetamine-induced locomotor response. The results indicated that female BALB/c mice displayed enhanced methamphetamine-induced locomotor activity compared to males, while basal locomotor activity was positively correlated with methamphetamine-induced activity in males, but not females. This study is the first to show sex-dependent locomotor effects of methamphetamine in BALB/c mice. Our observations emphasize the importance of considering sex when assessing behavioral responses to methamphetamine.
Collapse
Affiliation(s)
- Odochi Ohia-Nwoko
- University of Houston, Department of Psychology, Houston, TX 77204-6022, United States; Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States
| | - Colin N Haile
- University of Houston, Department of Psychology, Houston, TX 77204-6022, United States; Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States
| | - Therese A Kosten
- University of Houston, Department of Psychology, Houston, TX 77204-6022, United States; Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States.
| |
Collapse
|
20
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 2016; 36:187-198. [PMID: 27156126 DOI: 10.1016/j.intimp.2016.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/09/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023]
Abstract
Accumulating studies have revealed that the dopamine D3 receptor (D3R) plays an important role in methamphetamine (METH) addiction. However, the action of D3R on METH-mediated immune response and the underlying mechanism remain unclear. Mast cells (MCs) are currently identified as effector cells in many processes of immune responses, and MC activation is induced by various stimuli such as lipopolysaccharide (LPS). Moreover, CD117 and FcεRI are known as MC markers due to their specific expression in MCs. To investigate the effects of D3R on METH-mediated alteration of LPS-induced MCs activation and the underlying mechanism, in this study, we examined the expression of CD117 and FcεRI in the intestines of wild-type (D3R(+/+)) and D3R-deficient (D3R(-/-)) mice. We also measured the production of MC-derived cytokines, including TNF-α, IL-6, IL-4, IL-13 and CCL-5, in the bone marrow-derived mast cells (BMMCs) of WT and D3R(-/-) mice. Furthermore, we explored the effects of D3R on METH-mediated TLR4 and downstream MAPK and NF-κB signaling induced by LPS in mouse BMMCs. We found that METH suppressed MC activation induced by LPS in the intestines of D3R(+/)mice. In contrast, LPS-induced MC activation was less affected by METH in D3R(-/-) mice. Furthermore, METH altered LPS-induced cytokine production in BMMCs of D3R(+/+) mice but not D3R(-/-) mice. D3R was also involved in METH-mediated modulation of LPS-induced expression of TLR4 and downstream MAPK and NF-κB signaling molecules in mouse BMMCs. Taken together, our findings demonstrate that the effect of D3R on TLR4 signaling may be implicated in the regulation of METH-mediated MCs activation induced by LPS.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China; Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao-Feng Jin
- Pathology Department, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi'an 710061, China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| |
Collapse
|
21
|
Xue L, Li X, Ren HX, Wu F, Li M, Wang B, Chen FY, Cheng WY, Li JP, Chen YJ, Chen T. The dopamine D3 receptor regulates the effects of methamphetamine on LPS-induced cytokine production in murine mast cells. Immunobiology 2015; 220:744-52. [DOI: 10.1016/j.imbio.2014.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
|
22
|
Mata MM, Napier TC, Graves SM, Mahmood F, Raeisi S, Baum LL. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse. Eur J Pharmacol 2015; 752:26-33. [PMID: 25678251 DOI: 10.1016/j.ejphar.2015.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/10/2023]
Abstract
The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection.
Collapse
Affiliation(s)
- Mariana M Mata
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - T Celeste Napier
- Department of Pharmacology and Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States
| | - Steven M Graves
- Department of Pharmacology and Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States
| | - Fareeha Mahmood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Shohreh Raeisi
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Linda L Baum
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
23
|
Salamanca SA, Sorrentino EE, Nosanchuk JD, Martinez LR. Impact of methamphetamine on infection and immunity. Front Neurosci 2015; 8:445. [PMID: 25628526 PMCID: PMC4290678 DOI: 10.3389/fnins.2014.00445] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ~35 million people worldwide, with over 10 million users in the United States. METH use elicits a myriad of social consequences and the behavioral impact of the drug is well understood. However, new information has recently emerged detailing the devastating effects of METH on host immunity, increasing the acquisition of diverse pathogens and exacerbating the severity of disease. These outcomes manifest as modifications in protective physical and chemical defenses, pro-inflammatory responses, and the induction of oxidative stress pathways. Through these processes, significant neurotoxicities arise, and, as such, chronic abusers with these conditions are at a higher risk for heightened consequences. METH use also influences the adaptive immune response, permitting the unrestrained development of opportunistic diseases. In this review, we discuss recent literature addressing the impact of METH on infection and immunity, and identify areas ripe for future investigation.
Collapse
Affiliation(s)
- Sergio A Salamanca
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Edra E Sorrentino
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Joshua D Nosanchuk
- Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY, USA ; Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine Bronx, NY, USA
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| |
Collapse
|
24
|
Methamphetamine administration modifies leukocyte proliferation and cytokine production in murine tissues. Immunobiology 2013; 218:1063-8. [PMID: 23518444 DOI: 10.1016/j.imbio.2013.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/15/2013] [Accepted: 02/17/2013] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is a potent and highly addictive central nervous system (CNS) stimulant. Additionally, METH adversely impacts immunological responses, which might contribute to the higher rate and more rapid progression of certain infections in drug abusers. However no studies have shown the impact of METH on inflammation within specific organs, cellular participation and cytokine production. Using a murine model of METH administration, we demonstrated that METH modifies, with variable degrees, leukocyte recruitment and alters cellular mediators in the lungs, liver, spleen and kidneys of mice. Our findings demonstrate the pleotropic effects of METH on the immune response within diverse tissues. These alterations have profound implications on tissue homeostasis and the capacity of the host to respond to diverse insults, including invading pathogens.
Collapse
|
25
|
Harms R, Morsey B, Boyer CW, Fox HS, Sarvetnick N. Methamphetamine administration targets multiple immune subsets and induces phenotypic alterations suggestive of immunosuppression. PLoS One 2012; 7:e49897. [PMID: 23227154 PMCID: PMC3515581 DOI: 10.1371/journal.pone.0049897] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/17/2012] [Indexed: 01/24/2023] Open
Abstract
Methamphetamine (Meth) is a widely abused stimulant and its users are at increased risk for multiple infectious diseases. To determine the impact of meth on the immune system, we utilized a murine model that simulates the process of meth consumption in a typical addict. Our phenotypic analysis of leukocytes from this dose escalation model revealed that meth affected key immune subsets. Meth administration led to a decrease in abundance of natural killer (NK) cells and the remaining NK cells possessed a phenotype suggesting reduced responsiveness. Dendritic cells (DCs) and Gr-1high monocytes/macrophages were also decreased in abundance while Gr-1low monocytes/macrophages appear to show signs of perturbation. CD4 and CD8 T cell subsets were affected by methamphetamine, both showing a reduction in antigen-experienced subsets. CD4 T cells also exhibited signs of activation, with increased expression of CD150 on CD226-expressing cells and an expansion of KLRG1+, FoxP3− cells. These results exhibit that meth has the ability to disrupt immune homeostasis and impact key subsets of leukocytes which may leave users more vulnerable to pathogens.
Collapse
Affiliation(s)
- Robert Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.
| | | | | | | | | |
Collapse
|
26
|
Pottiez G, Jagadish T, Yu F, Letendre S, Ellis R, Duarte NA, Grant I, Gendelman HE, Fox HS, Ciborowski P. Plasma proteomic profiling in HIV-1 infected methamphetamine abusers. PLoS One 2012; 7:e31031. [PMID: 22359561 PMCID: PMC3281056 DOI: 10.1371/journal.pone.0031031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/29/2011] [Indexed: 12/21/2022] Open
Abstract
We wanted to determine whether methamphetamine use affects a subset of plasma proteins in HIV-infected persons. Plasma samples from two visits were identified for subjects from four groups: HIV+, ongoing, persistent METH use; HIV+, short-term METH abstinent; HIV+, long term METH abstinence; HIV negative, no history of METH use. Among 390 proteins identified, 28 showed significant changes in expression in the HIV+/persistent METH+ group over the two visits, which were not attributable to HIV itself. These proteins were involved in complement, coagulation pathways and oxidative stress. Continuous METH use is an unstable condition, altering levels of a number of plasma proteins.
Collapse
Affiliation(s)
- Gwenael Pottiez
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Volkow ND, Fowler JS, Wang GJ, Shumay E, Telang F, Thanos PK, Alexoff D. Distribution and pharmacokinetics of methamphetamine in the human body: clinical implications. PLoS One 2010; 5:e15269. [PMID: 21151866 PMCID: PMC2998419 DOI: 10.1371/journal.pone.0015269] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022] Open
Abstract
Background Methamphetamine is one of the most toxic of the drugs of abuse, which may reflect its distribution and accumulation in the body. However no studies have measured methamphetamine's organ distribution in the human body. Methods Positron Emission Tomography (PET) was used in conjunction with [11C]d-methamphetamine to measure its whole-body distribution and bioavailability as assessed by peak uptake (% Dose/cc), rate of clearance (time to reach 50% peak-clearance) and accumulation (area under the curve) in healthy participants (9 Caucasians and 10 African Americans). Results Methamphetamine distributed through most organs. Highest uptake (whole organ) occurred in lungs (22% Dose; weight ∼1246 g), liver (23%; weight ∼1677 g) and intermediate in brain (10%; weight ∼1600 g). Kidneys also showed high uptake (per/cc basis) (7%; weight 305 g). Methamphetamine's clearance was fastest in heart and lungs (7–16 minutes), slowest in brain, liver and stomach (>75 minutes), and intermediate in kidneys, spleen and pancreas (22–50 minutes). Lung accumulation of [11C]d-methamphetamine was 30% higher for African Americans than Caucasians (p<0.05) but did not differ in other organs. Conclusions The high accumulation of methamphetamine, a potent stimulant drug, in most body organs is likely to contribute to the medical complications associated with methamphetamine abuse. In particular, we speculate that methamphetamine's high pulmonary uptake could render this organ vulnerable to infections (tuberculosis) and pathology (pulmonary hypertension). Our preliminary findings of a higher lung accumulation of methamphetamine in African Americans than Caucasians merits further investigation and questions whether it could contribute to the infrequent use of methamphetamine among African Americans.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
28
|
Buchanan JB, Sparkman NL, Johnson RW. A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J Neuroinflammation 2010; 7:82. [PMID: 21092194 PMCID: PMC2995792 DOI: 10.1186/1742-2094-7-82] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/22/2010] [Indexed: 02/08/2023] Open
Abstract
Methamphetamine (MA) use is associated with activation of microglia and, at high doses, can induce neurotoxicity. Given the changes in the neuroinflammatory environment associated with MA, we investigated whether MA administration would interfere with the thermoregulatory and neuroinflammatory response to a subsequent peripheral immune stimulus. C57BL6/J mice were given four i.p. injections of either 5 mg/kg MA or saline at two hour intervals. Twenty-four hours following the first MA injection, mice were given 100 μg/kg LPS or saline i.p. and blood and brains were collected. Here we report that mice exposed to MA developed higher fevers in response to LPS than did those given LPS alone. MA also exacerbated the LPS-induced increase in central cytokine mRNA. MA alone increased microglial Iba1 expression and expression was further increased when mice were exposed to both MA and LPS, suggesting that MA not only activated microglia but also influenced their response to a peripheral immune stimulus. Taken together, these data show that MA administration exacerbates the normal central immune response, most likely by altering microglia.
Collapse
Affiliation(s)
- Jessica B Buchanan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
29
|
Potula R, Hawkins BJ, Cenna JM, Fan S, Dykstra H, Ramirez SH, Morsey B, Brodie MR, Persidsky Y. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. THE JOURNAL OF IMMUNOLOGY 2010; 185:2867-76. [PMID: 20668216 DOI: 10.4049/jimmunol.0903691] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Methamphetamine (METH) abuse is known to be associated with an inordinate rate of infections. Although many studies have described the association of METH exposure and immunosuppression, so far the underlying mechanism still remains elusive. In this study, we present evidence that METH exposure resulted in mitochondrial oxidative damage and caused dysfunction of primary human T cells. METH treatment of T lymphocytes led to a rise in intracellular calcium levels that enhanced the generation of reactive oxygen species. TCR-CD28 linked calcium mobilization and subsequent uptake by mitochondria in METH-treated T cells correlated with an increase in mitochondrion-derived superoxide. Exposure to METH-induced mitochondrial dysfunction in the form of marked decrease in mitochondrial membrane potential, increased mitochondrial mass, enhanced protein nitrosylation and diminished protein levels of complexes I, III, and IV of the electron transport chain. These changes paralleled reduced IL-2 secretion and T cell proliferative responses after TCR-CD28 stimulation indicating impaired T cell function. Furthermore, antioxidants attenuated METH-induced mitochondrial damage by preserving the protein levels of mitochondrial complexes I, III, and IV. Altogether, our data indicate that METH can cause T cell dysfunction via induction of oxidative stress and mitochondrial injury as underlying mechanism of immune impairment secondary to METH abuse.
Collapse
Affiliation(s)
- Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marcondes MCG, Flynn C, Watry DD, Zandonatti M, Fox HS. Methamphetamine increases brain viral load and activates natural killer cells in simian immunodeficiency virus-infected monkeys. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:355-61. [PMID: 20489154 PMCID: PMC2893678 DOI: 10.2353/ajpath.2010.090953] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 01/17/2023]
Abstract
Methamphetamine (Meth) abuse increases risky behaviors that contribute to the spread of HIV infection. In addition, because HIV and Meth independently affect physiological systems including the central nervous system, HIV-induced disease may be more severe in drug users. We investigated changes in blood and brain viral load as well as differences in immune cells in chronically simian immunodeficiency virus-infected rhesus macaques that were either administered Meth or used as controls. Although Meth administration did not alter levels of virus in the plasma, viral load in the brain was significantly increased in Meth-treated animals compared with control animals. Meth treatment also resulted in an activation of natural killer cells. Given the prevalence of Meth use in HIV-infected and HIV at-risk populations, these findings reveal the likely untoward effects of Meth abuse in such individuals.
Collapse
|
31
|
Buchanan J, Sparkman N, Johnson R. Methamphetamine sensitization attenuates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. Brain Behav Immun 2010; 24:502-11. [PMID: 20035859 PMCID: PMC2834480 DOI: 10.1016/j.bbi.2009.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/18/2009] [Accepted: 12/20/2009] [Indexed: 10/20/2022] Open
Abstract
Methamphetamine (MA) use is associated with activation of microglia and, at high doses, can induce neurotoxicity. Given the changes in the neuroinflammatory environment associated with MA, we investigated whether MA sensitization, a model of stimulant psychosis and an indicator of drug addiction, would interfere with the thermoregulatory and neuroinflammatory response to a subsequent peripheral immune stimulus. C57BL6/J mice were given either 1 mg/kg MA or saline i.p. once a day for 5 days to produce behavioral sensitization. Seventy-two hours following the last MA injection, 100 microg/kg LPS or saline was co-administered with 1 mg/kg MA or saline and blood and brains were collected. Here we report that while co-administration of LPS and MA did not affect the LPS-induced increase in central cytokine mRNA, mice sensitized to MA showed an attenuated central response to LPS. Interestingly, the peripheral response to LPS was not affected by MA sensitization. Plasma cytokines increased similarly in all groups after LPS. Further, c-Fos expression in the nucleus of the solitary tract did not differ between groups, suggesting that the periphery-to-brain immune signal is intact in MA-sensitized mice and that the deficit lies in the central cytokine compartment. We also show that MA sensitization decreased LPS- or acute MA-induced microglial Iba1 expression compared to non-sensitized mice. Taken together, these data show that MA sensitization interferes with the normal central immune response, preventing the CNS from efficiently responding to signals from the peripheral immune system.
Collapse
|
32
|
Kim EY, Kwon DH, Lee BD, Kim YT, Ahn YB, Yoon KY, Sa SJ, Cho W, Cho SN. Frequency of osteoporosis in 46 men with methamphetamine abuse hospitalized in a National Hospital. Forensic Sci Int 2009; 188:75-80. [PMID: 19398174 DOI: 10.1016/j.forsciint.2009.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 03/11/2009] [Accepted: 03/15/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Methamphetamine, a derivative of amphetamine, has been well known to cause mental problems in humans; however, its physical effects are little known. Despite relevant information on the effect of methamphetamine abuse on bone quality being available, data regarding the frequency of osteoporosis in methamphetamine abusers are limited. METHODS We selected 46 hospitalized male methamphetamine abusers and 188 reference male controls in whom any conditions affecting bone metabolism were ruled out. Bone mineral density (BMD) in the lumbar spine was measured by dual energy X-ray absorptiometry (DXA). We compared the BMD between methamphetamine abusers and controls and evaluated the frequency of osteoporosis in both groups. RESULTS The mean BMD value was lower in methamphetamine abusers (mean+/-SD, 0.71+/-0.07 g/cm(2)) than in the controls (mean+/-SD, 0.98+/-0.14 g/cm(2)). The frequency of osteoporosis was 22% according to WHO diagnostic guidelines, and osteopenia at the lumbar spine was 76%. The correlation between the extent of methamphetamine abuse and BMD was very clear. CONCLUSION There was considerable loss of bone mineral in a high percentage of methamphetamine abusers. Our study is the first clinical study to determine the frequency of osteoporosis in male methamphetamine abusers.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Psychiatry, Bugok National Hospital, 70 Bugok-ri, Bugok-myun, Changyeong-gun, Kyungnam 635-893, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Methamphetamine and diazepam suppress antigen-specific cytokine expression and antibody production in ovalbumin-sensitized BALB/c mice. Toxicol Lett 2008; 181:157-62. [DOI: 10.1016/j.toxlet.2008.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/17/2022]
|