1
|
Den Hartogh DJ, MacPherson REK, Tsiani E. Muscle cell palmitate-induced insulin resistance, JNK, IKK/NF-κB, and STAT3 activation are attenuated by carnosic and rosmarinic acid. Appl Physiol Nutr Metab 2025; 50:1-14. [PMID: 39805098 DOI: 10.1139/apnm-2024-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids, often observed in obesity, lead to impaired insulin action, and promote the development of insulin resistance and type 2 diabetes mellitus. c-Jun N-terminal kinase (JNK), inhibitor of kappa B (IκB) kinase (IKK)-nuclear factor-kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3) are known to be involved in skeletal muscle insulin resistance. We reported previously that carnosic acid (CA) and rosmarinic acid (RA) attenuated the palmitate-induced skeletal muscle insulin resistance, an effect that was associated with increased AMPK activation and reduced mammalian target of rapamycin-p70S6K signaling. In the present study, we examined the effects of CA and RA on JNK, IKK-NF-κB, and STAT3. Exposure of cells to palmitate increased the phosphorylation/activation of JNK, IKKα/β, IκBα, NF-κBp65, and STAT3. Importantly, CA and RA attenuated the deleterious effects of palmitate. Our data indicate that CA and RA have the potential to counteract the palmitate-induced skeletal muscle cell insulin resistance by modulating JNK, IKK-NF-κB, and STAT3 signaling.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
2
|
Akbari S, Sohouli MH, Ebrahimzadeh S, Ghanaei FM, Hosseini AF, Aryaeian N. Effect of rosemary leaf powder with weight loss diet on lipid profile, glycemic status, and liver enzymes in patients with nonalcoholic fatty liver disease: A randomized, double-blind clinical trial. Phytother Res 2022; 36:2186-2196. [PMID: 35318738 DOI: 10.1002/ptr.7446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Experimental and some clinical studies have shown beneficial effects of rosemary leaf on liver function and biochemical parameters. The present study aimed to examine the impact of rosemary leaf powder with a weight loss diet in patients with nonalcoholic fatty liver disease. In a randomized double-blinded clinical trial, 110 patients were randomly assigned to receive either 4 g rosemary leaf or placebo (starch) powders for 8 weeks. In addition, all participants in the study were given weight loss diet and physical activity recommendations. Compared with baseline, alanine aminotransferase (p < .001), aspartate aminotransferase (p < .001), alkaline phosphatase (p < .001), gamma glutamyltransferase (p < .001), fasting blood glucose (p < .001), fasting insulin (p < .001), insulin resistance (p < .001), total cholesterol (p = .003), triglyceride (p < .001), low-density lipoprotein cholesterol (p < .001), and anthropometric indices (weight, body mass index, and waist circumferences) decreased significantly in the rosemary and placebo group with weight loss. However, after 8 weeks, no significant difference between the rosemary and placebo groups was detected in the variables as mentioned above except homeostasis model assessment of β-cell dysfunction (p = .014). The findings of the current clinical trial study revealed that rosemary group did produce changes, but they were not statistically different from those produced by the diet/activity intervention alone.
Collapse
Affiliation(s)
- Shayan Akbari
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Ebrahimzadeh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Mansour Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Agha Fatemeh Hosseini
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
4
|
Lee DK, Jang HD. Carnosic Acid Attenuates an Early Increase in ROS Levels during Adipocyte Differentiation by Suppressing Translation of Nox4 and Inducing Translation of Antioxidant Enzymes. Int J Mol Sci 2021; 22:ijms22116096. [PMID: 34198827 PMCID: PMC8201016 DOI: 10.3390/ijms22116096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
The objective of this study was to investigate molecular mechanisms underlying the ability of carnosic acid to attenuate an early increase in reactive oxygen species (ROS) levels during MDI-induced adipocyte differentiation. The levels of superoxide anion and ROS were determined using dihydroethidium (DHE) and 2′-7′-dichlorofluorescin diacetate (DCFH-DA), respectively. Both superoxide anion and ROS levels peaked on the second day of differentiation. They were suppressed by carnosic acid. Carnosic acid attenuates the translation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4), p47phox, and p22phox, and the phosphorylation of nuclear factor-kappa B (NF-κB) and NF-κB inhibitor (IkBa). The translocation of NF-κB into the nucleus was also decreased by carnosic acid. In addition, carnosic acid increased the translation of heme oxygenase-1 (HO-1), γ–glutamylcysteine synthetase (γ-GCSc), and glutathione S-transferase (GST) and both the translation and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, these results indicate that carnosic acid could down-regulate ROS level in an early stage of MPI-induced adipocyte differentiation by attenuating ROS generation through suppression of NF-κB-mediated translation of Nox4 enzyme and increasing ROS neutralization through induction of Nrf2-mediated translation of phase II antioxidant enzymes such as HO-1, γ-GCS, and GST, leading to its anti-adipogenetic effect.
Collapse
|
5
|
Hasei S, Yamamotoya T, Nakatsu Y, Ohata Y, Itoga S, Nonaka Y, Matsunaga Y, Sakoda H, Fujishiro M, Kushiyama A, Asano T. Carnosic Acid and Carnosol Activate AMPK, Suppress Expressions of Gluconeogenic and Lipogenic Genes, and Inhibit Proliferation of HepG2 Cells. Int J Mol Sci 2021; 22:ijms22084040. [PMID: 33919842 PMCID: PMC8070802 DOI: 10.3390/ijms22084040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Carnosic acid (CA), carnosol (CL) and rosmarinic acid (RA), components of the herb rosemary, reportedly exert favorable metabolic actions. This study showed that both CA and CL, but not RA, induce significant phosphorylation of AMP-dependent kinase (AMPK) and its downstream acetyl-CoA carboxylase 1 (ACC1) in HepG2 hepatoma cells. Glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), rate-limiting enzymes of hepatic gluconeogenesis, are upregulated by forskolin stimulation, and this upregulation was suppressed when incubated with CA or CL. Similarly, a forskolin-induced increase in CRE transcriptional activity involved in G6PC and PCK1 regulations was also stymied when incubated with CA or CL. In addition, mRNA levels of ACC1, fatty acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP-1c) were significantly reduced when incubated with CA or CL. Finally, it was shown that CA and CL suppressed cell proliferation and reduced cell viability, possibly as a result of AMPK activation. These findings raise the possibility that CA and CL exert a protective effect against diabetes and fatty liver disease, as well as subsequent cases of hepatoma.
Collapse
Affiliation(s)
- Shun Hasei
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan; (S.H.); (T.Y.); (Y.N.); (Y.O.)
| | - Takeshi Yamamotoya
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan; (S.H.); (T.Y.); (Y.N.); (Y.O.)
| | - Yusuke Nakatsu
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan; (S.H.); (T.Y.); (Y.N.); (Y.O.)
| | - Yukino Ohata
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan; (S.H.); (T.Y.); (Y.N.); (Y.O.)
| | - Shota Itoga
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan; (S.I.); (Y.N.)
| | - Yuji Nonaka
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan; (S.I.); (Y.N.)
| | - Yasuka Matsunaga
- Center for Translational Research in Infection & Inflammation, School of Medicine, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA;
| | - Hideyuki Sakoda
- Department of Internal Medicine, Division of Neurology, Respirology, Endocrinology and Metabolism, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Midori Fujishiro
- Department of Internal Medicine, Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Kiyose City, Tokyo 204-8588, Japan;
| | - Tomoichiro Asano
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan; (S.H.); (T.Y.); (Y.N.); (Y.O.)
- Correspondence:
| |
Collapse
|
6
|
Colson C, Batrow PL, Gautier N, Rochet N, Ailhaud G, Peiretti F, Amri EZ. The Rosmarinus Bioactive Compound Carnosic Acid Is a Novel PPAR Antagonist That Inhibits the Browning of White Adipocytes. Cells 2020; 9:cells9112433. [PMID: 33171828 PMCID: PMC7695189 DOI: 10.3390/cells9112433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect β-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.
Collapse
Affiliation(s)
- Cécilia Colson
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Pierre-Louis Batrow
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nadine Gautier
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nathalie Rochet
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Gérard Ailhaud
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Franck Peiretti
- Aix Marseille Université, INSERM, INRAE, C2VN, 13007 Marseille, France;
| | - Ez-Zoubir Amri
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
- Correspondence: ; Tel.: +33-493-37-70-82; Fax: +33-493-81-70-58
| |
Collapse
|
7
|
Zhang W, Chen Q, Xu L, Cai J, Zhang J. The potential role of PSMA6 in modulating fat deposition in pigs by promoting preadipocyte proliferation and differentiation. Gene 2020; 769:145228. [PMID: 33096182 DOI: 10.1016/j.gene.2020.145228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
To investigate whether the proteasome subunit alpha 6 (PSMA6) gene has an effect on fat deposition, the gene expression profile was first detected in Berkshire pigs and Jinhua pigs (JHP). The results demonstrated that significantly higher levels of mRNA expression were identified in adipose tissues and the liver. Interestingly, when compared to the longissimus dorsi muscle (LDM) in each breed, it was discovered that the expression levels of the PSMA6 gene in these tissues of JHP were considerably higher than those in Berkshire pigs. Meantime, some significant correlations of PSMA6 mRNA expression in lipid metabolism-related tissues such as the liver and LDM with the marbling score, as well as the content of intramuscular fat (IMF), in pigs were found by correlation coefficient analysis. To further explore the effects of PSMA6 expression on fat deposition, we performed PSMA6 overexpression in 3T3-L1 cells via Lentivirus infection. Our results indicated that PSMA6 could promote cell proliferation and accelerate cell division. It was also found that the transcription factors CCAAT/enhancer-binding protein alpha (CEBPA) and peroxisome proliferator-activated receptor gamma (PPARG), as well as the key genes related to adipogenesis, were upregulated, while the genes related to fat oxidation were significantly downregulated, which indicated that the PSMA6 gene could stimulate the differentiation of preadipocytes.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liaoyi Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
8
|
Anyanwu GO, Kolb AF, Bermano G. Antiobesity functional leads and targets for drug development. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020:143-160. [DOI: 10.1016/b978-0-12-817890-4.00009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM. Hypolipidemic effects of Rosmarinus officinalis L. J Cell Physiol 2019; 234:14680-14688. [PMID: 30693502 DOI: 10.1002/jcp.28221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/11/2019] [Indexed: 01/24/2023]
Abstract
Dyslipidemia is one of the major risk factors for cardiovascular diseases (CVDs). Current strategies are not effective in the management of dyslipidemia. Thus, there is a necessity to find new preventative and therapeutic approaches. In recent years, herbal medicine has drawn great attention regarding the prevention and management of dyslipidemia. Rosmarinus officinalis, commonly known as rosemary, is an evergreen shrub containing several polyphenols. The plant grows in the Mediterranean and South American regions. Rosemary and its main components have antioxidant, anti-inflammatory, and lipid-lowering properties. The present review has focused on in vivo and in vitro studies on the hypolipidemic effects of rosemary and its main constituents as well as their functional mechanisms. Studies have described lipid-scavenging activities of rosemary through its flavonoid contents. Modulating inflammation and oxidative stress have been described as possible mechanisms by which rosemary ameliorates dyslipidemia. However, the exact mechanisms are not fully understood yet. Conducting experimental and clinical trial studies are recommended to confirm the safety and efficacy of rosemary in the prevention and management of dyslipidemia and other cardio-metabolic diseases.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | |
Collapse
|
10
|
Issara U, Park S, Park S. Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro. Food Sci Anim Resour 2019; 39:430-445. [PMID: 31304472 PMCID: PMC6612783 DOI: 10.5851/kosfa.2019.e38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/22/2023] Open
Abstract
Natural edible waxes mixed with plant oils, containing high levels of unsaturated
fatty acids (FAs), are known as oleogels. Oleogels are used for replacing
saturated FAs in animal-derived food with unsaturated FAs. However, the health
effects of edible waxes are not yet clearly defined. The purpose of this study
was to investigate the effect of FAs and natural waxes on the adipogenesis in
3T3-L1 cells. The 3T3-L1 cells were differentiated and treated with FAs and
waxes. These FAs [Palmitic acid (PA), Stearic acid (SA), Oleic acid (OA),
Linoleic acid (LA), and Alpha-linolenic acid (ALA)] and waxes [beeswax (BW) and
carnauba wax (CW)] were prepared at varying concentrations, and cell toxicity,
triglyceride accumulation, lipid droplets size, and distribution inside of cells
were determined. Adipogenic gene expression including
PPARγ, FASN,
C/EBPα, SREBP-1, and
CPT-1 was determined. Results showed that increasing the
concentration of FAs and waxes led to a decrease in the adipocyte cells
viability and metabolic performance. SA showed the highest level of triglyceride
accumulation (p<0.05), whereas ALA showed the lowest (p<0.05).
Both BW and CW at 3.0 ppm showed significantly higher lipid accumulation than in
the control and other groups (p<0.05). ALA had significantly
downregulated adipogenic gene expression levels, excluding those of
CPT-1, compared to the other treatment groups
(p<0.05). Moreover, BW demonstrated similar adipogenic gene expression
levels as ALA compared to CW. Consequently, ALA and BW may have health benefits
by reducing adipogenesis and can be used in processed meat.
Collapse
Affiliation(s)
- Utthapon Issara
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Suhyun Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
11
|
Lee YH, Lim W, Sung MK. Carnosic Acid Modulates Increased Hepatic Lipogenesis and Adipocytes Differentiation in Ovariectomized Mice Fed Normal or High-Fat Diets. Nutrients 2018; 10:nu10121984. [PMID: 30558262 PMCID: PMC6315337 DOI: 10.3390/nu10121984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/24/2022] Open
Abstract
As postmenopausal women experience a rapid increase in cardiovascular disease (CVD) risk with an increase in abdominal fat, dietary interventions to reduce CVD risk have been emphasized. This study was aimed at investigating the effect of a high-fat diet (HFD) in combination with an ovariectomy on liver and adipose tissue fat metabolism. The efficacy of carnosic acid (CA) supplementation in the suppression of HFD- and ovariectomy-induced obesity was also evaluated. Ovariectomized (OVX) or sham-operated mice at eight weeks of age were fed with a normal diet (ND), HFD, ND and 0.02% CA, or HFD and 0.02% CA for 12 weeks. All of the animals were sacrificed at the age of 20 weeks. The blood and tissue markers of the lipogenesis and adipocyte differentiation were measured. As expected, ovariectomy decreased the uterus weight and serum 17β-estradiol concentration. The HFD and ovariectomy significantly contributed to increases in the body weight and total fat mass, which were effectively inhibited by CA supplementation. The circulating concentrations of insulin, leptin, and TG (triglyceride) were significantly higher in the HFD group, and the concentrations were two to five times higher in the OVX and HFD group compared with those of the ND group. The CA supplementation significantly lowered the insulin, leptin, and TG concentrations in the OVX and HFD mice. The hepatic protein expressions of pAMPK and pACC were up-regulated by CA supplementation in OVX mice fed either ND or HFD. The expressions of hepatic SREBP1c and FAS mRNA were the highest in the OVX and HFD group, which were suppressed by CA supplementation. The adipose tissue PPARγ, aP2, and lipoprotein lipase (LPL) mRNA expressions were up-regulated by a HFD or ovariectomy, while they were significantly reduced in the mice fed a CA supplemented diet. The TNF-α and IL-6 mRNA levels in the adipose tissue were decreased by providing CA in the OVX groups. These results suggest that HFD and ovariectomy independently contribute to body fat accumulation, and CA effectively alleviated the ovariectomy-induced increases in lipogenesis and adipocyte differentiation. Further human trials are required in order to evaluate the efficacy of rosemary-derive CA as natural anti-adipogenic compounds, especially in postmenopausal women.
Collapse
Affiliation(s)
- Yoon-Hee Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| | - Whasun Lim
- Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579 beon-gil, Gangneung-si, Gangwon-do 210-701, Republic of Korea.
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| |
Collapse
|
12
|
Cytotoxic Tolerance of Healthy and Cancerous Bone Cells to Anti-microbial Phenolic Compounds Depend on Culture Conditions. Appl Biochem Biotechnol 2018; 188:514-526. [PMID: 30536030 DOI: 10.1007/s12010-018-02934-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Carnosol and carnosic acid are polyphenolic compounds found in rosemary and sage with known anti-oxidant, anti-inflammatory, and anti-microbial properties. Here, we addressed the potential use of carnosol and carnosic acid for in vitro bone tissue engineering applications, specifically depending on their cytotoxic effects on bone marrow stromal and stem cells, and osteosarcoma cells in monolayer and 3D cultures. Carnosol and carnosic acid displayed a bacteriostatic effect on Gram-positive bacteria, especially on S. aureus. The viability results indicated that bone marrow stromal cells and bone marrow stem cells were more tolerant to the presence of carnosol compared to osteosarcoma cells. 3D culture conditions increased this tolerance further for healthy cells, while not affecting the cytotoxic potential of carnosol for osteosarcoma cells. Carnosic acid was found to be more cytotoxic for all cell types used in the study. Results suggest that phenolic compounds might have potential use as anti-microbial and anti-carcinogenic agents for bone tissue engineering with further optimization for controlled release.
Collapse
|
13
|
Thomas SS, Kim M, Lee SJ, Cha YS. Antiobesity Effects of Purple Perilla (Perilla frutescens var. acuta) on Adipocyte Differentiation and Mice Fed a High-fat Diet. J Food Sci 2018; 83:2384-2393. [PMID: 30070698 DOI: 10.1111/1750-3841.14288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/31/2018] [Accepted: 06/24/2018] [Indexed: 02/06/2023]
Abstract
Purple perilla (PE) is a medicinal plant that has several health benefits. In this study, the antiobesity effect of PE was studied in 3T3-L1 preadipocytes and C57BL/6J mice fed high-fat diets. Triglyceride quantification and Oil Red O staining in matured adipocytes revealed that PE reduced lipid accumulation in differentiated adipocytes by downregulating adipogenic gene and upregulating lipolytic gene expressions. Mice were fed normal diet, high-fat diet and high-fat diet supplemented with different concentrations of PE. Treatment with PE significantly prevented body weight gain, improved serum lipids, hepatic lipids and reduced the epididymal fat. Furthermore, in the adipose tissue and liver, expression of genes related to lipolysis and fatty acid β-oxidation were upregulated in PE- treated mice. Thus, our results suggested that PE has antiobesity effects in rodents and can be effective in obesity management. PRACTICAL APPLICATION Purple perilla, rich in polyphenols such as rosmarinic acid, showed lipid lowering in adipocyte cells and prevented body weight gain in mice. Therefore we conclude that purple perilla may be a potential candidate for the development of functional foods or nutraceuticals in managing obesity in humans.
Collapse
Affiliation(s)
- Shalom Sara Thomas
- Dept. of Food Science and Human Nutrition, Chonbuk National Univ., Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Mina Kim
- Div. of Functional Food and Nutrition, Dept. of Agrofood Resources, National Inst. of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Seung Je Lee
- Research and Development Office, Jeonbuk Inst. for Food-Bioindustry, Jeonju, 54810, Republic of Korea
| | - Youn-Soo Cha
- Dept. of Food Science and Human Nutrition, Chonbuk Natl. Univ., Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
14
|
Liu KL, Kuo WC, Lin CY, Lii CK, Liu YL, Cheng YH, Tsai CW. Prevention of 4-hydroxynonenal-induced lipolytic activation by carnosic acid is related to the induction of glutathione S-transferase in 3T3-L1 adipocytes. Free Radic Biol Med 2018; 121:1-8. [PMID: 29698741 DOI: 10.1016/j.freeradbiomed.2018.04.567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023]
Abstract
UNLABELLED Induction of 4-hydroxynonenal (4-HNE), a major lipid peroxidation aldehyde, is observed in patients with obesity and type 2 diabetes mellitus. The lipolytic response by 4-HNE has been linked to insulin resistance. In this study, we investigated the effects of carnosic acid (CA) on 4-HNE-induced lipolysis and the inhibition of β-oxidation in 3T3-L1 adipocytes. The results indicated that cells pretreated with CA reduced 4-HNE-mediated free fatty acid (FFA) release. Furthermore, CA reversed the inhibition of phosphorylation of Tyr632 of insulin receptor substrate-1 (IRS-1) and Akt and the phosphorylation of Ser307 of IRS-1. CA inhibited 4-HNE-induced phosphorylation of protein kinase A (PKA) and hormone-sensitive lipase (HSL), and reversed the suppression by 4-HNE of phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (p < 0.05). Pretreatment of cells with forskolin (a cAMP agonist) and compound C (an AMPK inhibitor) reversed these effects, respectively (p < 0.05). In human subcutaneous adipocytes, CA also attenuated 4-HNE-induced FFA release and the phosphorylation of PKA and HSL (p < 0.05). Moreover, CA increased the protein expression of glutathione S-transferase (GST) A and M. Pretreatment with ethacrynic acid, a GST inhibitor, prevented the 4-HNE-conjugated proteins suppression, the PKA and HSL phosphorylation reduction, and the FFA release inhibition by CA (p < 0.05). CONCLUSION The attenuation by CA of the lipolytic response by 4-HNE is likely related to the induction of GST, which in turn reduced 4-HNE-conjugated proteins and decreased the activation of the PKA/HSL pathway. The observed effects may explain how CA improves 4-HNE-induced insulin resistance.
Collapse
Affiliation(s)
- Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Dietitian, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Chen Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yen-Lin Liu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yun-Hsin Cheng
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Rosemary Extract as a Potential Anti-Hyperglycemic Agent: Current Evidence and Future Perspectives. Nutrients 2017; 9:nu9090968. [PMID: 28862678 PMCID: PMC5622728 DOI: 10.3390/nu9090968] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), a disease on the rise and with huge economic burden to health care systems around the globe, results from defects in insulin action (termed insulin resistance) combined with impaired insulin secretion. Current methods of prevention and treatments for insulin resistance and T2DM are lacking in number and efficacy and, therefore, there is a need for new preventative measures and targeted therapies. In recent years, chemicals found in plants/herbs have attracted attention for their use as functional foods or nutraceuticals for preventing and treating insulin resistance and T2DM. Rosemary is an evergreen shrub indigenous to the Mediterranean region and South America, which contains various polyphenols. Rosemary extract and its polyphenolic constituents have been reported to have antioxidant, anti-inflammatory, anticancer, and anti-hyperglycemic properties. The current review summarizes the existing in vitro and in vivo studies examining the anti-diabetic effects of rosemary extract and its polyphenolic components and highlights the known mechanism of action.
Collapse
|
16
|
Bahri S, Jameleddine S, Shlyonsky V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed Pharmacother 2016; 84:569-582. [PMID: 27694001 DOI: 10.1016/j.biopha.2016.09.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/29/2016] [Accepted: 09/18/2016] [Indexed: 12/14/2022] Open
Abstract
Carnosic acid is a phenolic diterperne compound found in abundance in sage and rosemary, which are both widely used in traditional medicine. Research over the past decade indicates that carnosic acid has multiple bioactive properties including antioxidant, anti-inflammatory and anticancer activities among others. This review summarizes the current in vitro and in vivo data about the efficacy of carnosic acid in the prevention or treatment of various experimental health disorders. The analysis of the literature allows an insight into the participation of numerous signaling pathways modulated by carnosic acid, into its synergistic potential and, thus, into the divergence in cellular mechanisms of action of this molecule.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia
| | - Vadim Shlyonsky
- Laboratory of Physiopathology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:931-49. [PMID: 27178264 DOI: 10.1007/s00210-016-1256-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome is defined by a constellation of complex coexisting cardiometabolic risk factors such as hyperglycemia, dyslipidemia, inflammation, abdominal obesity, coagulopathies, and hypertension that raise the risk of diabetes mellitus and cardiovascular disease. Recently, there has been an increasing interest in the use of herbs and natural compounds in prevention and treatment of diseases and a large number of published articles have focused on this issue. Rosmarinus officinalis L. or rosemary (Lamiaceae) is a rich source of phenolic phytochemicals having significant anti-oxidant, anti-inflammatory, hypoglycemic, hypolipidemic, hypotensive, anti-atherosclerotic, anti-thrombotic, hepatoprotective, and hypocholesterolemic effects. The purpose of this review is to highlight the interesting pharmacological effects of rosemary, and its active compounds, and the related mechanisms in the management of metabolic syndrome that are documented in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Faezeh Vahdati Hassani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Shirani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|