1
|
Joshi N, Azizi Machekposhti S, Narayan RJ. Evolution of Transdermal Drug Delivery Devices and Novel Microneedle Technologies: A Historical Perspective and Review. JID INNOVATIONS 2023; 3:100225. [PMID: 37744689 PMCID: PMC10514214 DOI: 10.1016/j.xjidi.2023.100225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
The history of transdermal drug delivery is as old as humankind. Transdermal drug delivery has undergone three generations of development; the third generation has involved the use of medical devices and instruments. This review provides a historical perspective on the primary approaches employed in the three generations of transdermal drug delivery. In addition, we explore some of the recently developed transdermal techniques that are deemed promising in the field of drug delivery. We discuss how advances in these techniques have led to the development of devices for the delivery of a therapeutically effective amount of drug across human skin and highlight the limitations of the first- and second-generation drug delivery tools. As such, a review of the performance of these techniques and the toxicity of the devices used in transdermal drug delivery are considered. In the last section of the review, a discussion of the fabrication and operation of different types of microneedles is presented. The applications of microneedles in the sensing and delivery of various therapeutic agents are described in detail. Furthermore, an overview of the efficacy of microneedles as emerging tools for the controlled release of drugs is presented.
Collapse
Affiliation(s)
- Naveen Joshi
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sina Azizi Machekposhti
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Roger J. Narayan
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, Banga AK. Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm 2018; 129:88-103. [PMID: 29800617 DOI: 10.1016/j.ejpb.2018.05.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 01/07/2023]
Abstract
Poly (vinyl alcohol) microneedles were fabricated, characterized, and applied to enhance in vitro transdermal delivery of doxorubicin. The microneedles were fabricated using the micromolding technique with the drug load in different locations within the needle array. The polymer solution was assessed for rheological properties, drug dissolution, and chemical structurestudies. Microneedles (unloaded) and drug-loaded microneedles were characterized by optical microscopy, fluorescent microscopy, scanning electron microscopy, and drug release kinetics. Successful microporation of dermatomed human cadaver skin was demonstrated by dye binding, pore uniformity, histology, confocal laser microscopy, and skin integrity studies. The microneedles-mediated transdermal delivery of doxorubicin was investigated using vertical Franz diffusion cells. The fabricated microneedles were sharp, strong, and uniform. In vitro permeation studies showed that the microneedle-treated skin (4351.55 ± 560.87 ng/sq.cm) provided a significantly greater drug permeability than the untreated group (0.00 ± 0.00 ng/sq.cm, n = 4, p < 0.01). The drug location within the needle array was found to affect the drug release profile as well as its permeation into and across human skin. Skin microporation achieved by poly (vinyl alcohol) microneedles was found to enhance transdermal delivery of doxorubicin in vitro.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Behnam Dasht Bozorg
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Yujin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Alena Wieber
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Gudrun Birk
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Dieter Lubda
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States.
| |
Collapse
|
3
|
Schulze K, Ebensen T, Riese P, Prochnow B, Lehr CM, Guzmán CA. New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy. Curr Top Microbiol Immunol 2017; 398:207-234. [PMID: 27370343 DOI: 10.1007/82_2016_495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The young twenty-first century has already brought several medical advances, such as a functional artificial human liver created from stem cells, improved antiviral (e.g., against HIV) and cancer (e.g., against breast cancer) therapies, interventions controlling cardiovascular diseases, and development of new and optimized vaccines (e.g., HPV vaccine). However, despite this substantial progress and the achievements of the last century, humans still suffer considerably from diseases, especially from infectious diseases. Thus, almost one-fourth of all deaths worldwide are caused directly or indirectly by infectious agents. Although vaccination has led to the control of many diseases, including smallpox, diphtheria, and tetanus, emerging diseases are still not completely contained. Furthermore, pathogens such as Bordetella pertussis undergo alterations making adaptation of the respective vaccine necessary. Moreover, insufficient implementation of vaccination campaigns leads to re-emergence of diseases which were believed to be already under control (e.g., poliomyelitis). Therefore, novel vaccination strategies need to be developed in order to meet the current challenges including lack of compliance, safety issues, and logistic constraints. In this context, mucosal and transdermal approaches constitute promising noninvasive vaccination strategies able to match these demands.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Blair Prochnow
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Braunschweig, Germany.,Department of Pharmacy, Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
4
|
Morales JO, Fathe KR, Brunaugh A, Ferrati S, Li S, Montenegro-Nicolini M, Mousavikhamene Z, McConville JT, Prausnitz MR, Smyth HDC. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes. AAPS JOURNAL 2017; 19:652-668. [DOI: 10.1208/s12248-017-0054-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
|
5
|
Bagley K, Xu R, Ota-Setlik A, Egan M, Schwartz J, Fouts T. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses. Hum Vaccin Immunother 2016; 11:2228-40. [PMID: 26042527 PMCID: PMC4635876 DOI: 10.1080/21645515.2015.1026498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action.
Collapse
|
6
|
Haedersdal M, Erlendsson AM, Paasch U, Anderson RR. Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery: A critical review from basics to current clinical status. J Am Acad Dermatol 2016; 74:981-1004. [DOI: 10.1016/j.jaad.2015.12.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/27/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
|
7
|
Transcutaneous Immunization Using Nano-sized Drug Carriers. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
8
|
Comparative Adjuvant Effects of Type II Heat-Labile Enterotoxins in Combination with Two Different Candidate Ricin Toxin Vaccine Antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1285-93. [PMID: 26491037 DOI: 10.1128/cvi.00402-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Type II heat-labile enterotoxins (HLTs) constitute a promising set of adjuvants that have been shown to enhance humoral and cellular immune responses when coadministered with an array of different proteins, including several pathogen-associated antigens. However, the adjuvant activities of the four best-studied HLTs, LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc, have never been compared side by side. We therefore conducted immunization studies in which LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc were coadministered by the intradermal route to mice with two clinically relevant protein subunit vaccine antigens derived from the enzymatic A subunit (RTA) of ricin toxin, RiVax and RVEc. The HLTs were tested with low and high doses of antigen and were assessed for their abilities to stimulate antigen-specific serum IgG titers, ricin toxin-neutralizing activity (TNA), and protective immunity. We found that all four HLTs tested were effective adjuvants when coadministered with RiVax or RVEc. LT-IIa was of particular interest because as little as 0.03 μg when coadministered with RiVax or RVEc proved effective at augmenting ricin toxin-specific serum antibody titers with nominal evidence of local inflammation. Collectively, these results justify the need for further studies into the mechanism(s) underlying LT-IIa adjuvant activity, with the long-term goal of evaluating LT-IIa's activity in humans.
Collapse
|
9
|
Abstract
Needle free injection technology (NFIT)is an extremely broad concept which include a wide range of drug delivery systems that drive drugs through the skin using any of the forces as Lorentz, Shock waves, pressure by gas or electrophoresis which propels the drug through the skin, virtually nullifying the use of hypodermic needle. This technology is not only touted to be beneficial for the pharma industry but developing world too find it highly useful in mass immunization programmes, bypassing the chances of needle stick injuries and avoiding other complications including those arising due to multiple use of single needle. The NFIT devices can be classified based on their working, type of load, mechanism of drug delivery and site of delivery. To administer a stable, safe and an effective dose through NFIT, the sterility, shelf life and viscosity of drug are the main components which should be taken care of. Technically superior needle-free injection systems are able to administer highly viscous drug products which cannot be administered by traditional needle and syringe systems, further adding to the usefulness of the technology. NFIT devices can be manufactured in a variety of ways; however the widely employed procedure to manufacture it is by injection molding technique. There are many variants of this technology which are being marketed, such as Bioject(®) ZetaJetTM, Vitajet 3, Tev-Tropin(®) and so on. Larger investment has been made in developing this technology with several devices already being available in the market post FDA clearance and a great market worldwide.
Collapse
Affiliation(s)
- Ansh Dev Ravi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - D Sadhna
- Department of Drug Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - D Nagpaal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - L Chawla
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Aghazadeh-Habashi A, Yang Y, Tang K, Lőbenberg R, Doschak MR. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures. Drug Deliv Transl Res 2015; 5:540-51. [DOI: 10.1007/s13346-015-0257-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Gómez-Duarte OG. [Acute diarrheal disease caused by enteropathogenic Escherichia coli in Colombia]. Rev Chilena Infectol 2015; 31:577-86. [PMID: 25491457 DOI: 10.4067/s0716-10182014000500010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023] Open
Abstract
Intestinal Escherichia coli pathogens are leading causes of acute diarrheal disease in children less than 5 years in Latin America, Africa and Asia and a leading cause of death in children living in poorest communities in Africa and South East Asia. Studies on the role of E. coli pathogens in childhood diarrhea in Colombia and other countries in Latin America are limited due to the lack of detection assays in clinical laboratories at the main urban medical centers. Recent studies report that enterotoxigenic E. coli is the most common E. coli pathogens associated with diarrhea in children less than 5 years of age. Other E. coli pathotypes have been detected in children with diarrhea including enteropathogenic, enteroaggregative, shiga-toxin producing and diffusely adherent E. coli. It was also found that meat and vegetables at retail stores are contaminated with Shiga-toxin producing E. coli and enteroaggregative E. coli, suggesting that food products are involved in transmission and infection of the susceptible host. More studies are necessary to evaluate the mechanisms of transmission, the impact on the epidemiology of diarrheal disease, and management strategies and prevention of these pathogens affecting the pediatric population in Colombia.
Collapse
|
12
|
Dormitzer P, Tsai T, Del Giudice G. New technologies for influenza vaccines. Hum Vaccin Immunother 2014; 8:45-58. [DOI: 10.4161/hv.8.1.18859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
Simultaneous exposure to Escherichia coli heat-labile and heat-stable enterotoxins increases fluid secretion and alters cyclic nucleotide and cytokine production by intestinal epithelial cells. Infect Immun 2014; 82:5308-16. [PMID: 25287923 DOI: 10.1128/iai.02496-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant cause of diarrheal disease and death, especially in children in developing countries. ETEC causes disease by colonizing the small intestine and producing heat-labile toxin (LT), heat-stable toxin (ST), or both LT and ST (LT+ST). The majority of ETEC strains produce both ST and LT. Despite the prevalence of LT+ST-producing organisms, few studies have examined the physiologic or immunologic consequences of simultaneous exposure to these two potent enterotoxins. In the current report, we demonstrate that when LT and ST are both present, they increase water movement into the intestinal lumen over and above the levels observed with either toxin alone. As expected, cultured intestinal epithelial cells increased their expression of intracellular cyclic GMP (cGMP) when treated with ST and their expression of intracellular cyclic AMP (cAMP) when treated with LT. When both toxins were present, cGMP levels but not cAMP levels were synergistically elevated compared with the levels of expression caused by the corresponding single-toxin treatment. Our data also demonstrate that the levels of inflammatory cytokines produced by intestinal epithelial cells in response to LT are significantly reduced in animals exposed to both enterotoxins. These findings suggest that there may be complex differences between the epithelial cell intoxication and, potentially, secretory outcomes induced by ETEC strains expressing LT+ST compared with strains that express LT or ST only. Our results also reveal a novel mechanism wherein ST production may reduce the hosts' ability to mount an effective innate or adaptive immune response to infecting organisms.
Collapse
|
14
|
Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine 2014; 32:1856-62. [PMID: 24530146 DOI: 10.1016/j.vaccine.2014.01.076] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/14/2014] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
While therapeutic drugs are routinely self-administered by patients, there is little precedent for self-vaccination. Convenient self-vaccination may expand vaccination coverage and reduce administration costs. Microneedle patches are in development for many vaccines, but no reports exist on usability or acceptability. We hypothesized that naïve patients could apply patches and that self-administered patches would improve stated intent to receive an influenza vaccine. We conducted a randomized, repeated measures study with 91 venue-recruited adults. To simulate vaccination, subjects received placebo microneedle patches given three times by self-administration and once by the investigator, as well as an intramuscular injection of saline. Seventy participants inserted patches with thumb pressure alone and the remainder used snap-based devices that closed shut at a certain force. Usability was assessed by skin staining and acceptability was measured with an adaptive-choice analysis. The best usability was seen with the snap device, with users inserting a median value of 93-96% of microneedles over three repetitions. When a self-administered microneedle patch was offered, intent to vaccinate increased from 44% to 65% (CI: 55-74%). The majority of those intending vaccination would prefer to self-vaccinate: 64% (CI: 51-75%). There were no serious adverse events associated with use of microneedle patches. The findings from this initial study indicate that microneedle patches for self-vaccination against influenza are usable and may lead to improved vaccination coverage.
Collapse
Affiliation(s)
- James J Norman
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 315 Ferst Drive, Atlanta, GA 30332, USA.
| | - Jaya M Arya
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 315 Ferst Drive, Atlanta, GA 30332, USA.
| | - Maxine A McClain
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 315 Ferst Drive, Atlanta, GA 30332, USA.
| | - Paula M Frew
- Emory University, School of Medicine, Division of Infectious Diseases, 1364 Clifton Road, Atlanta, GA 30322, USA; Emory University, Rollins School of Public Health, Department of Behavioral Sciences & Health Education, 1518 Clifton Road, Atlanta, GA 30332, USA.
| | - Martin I Meltzer
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | - Mark R Prausnitz
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 315 Ferst Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
DeMuth PC, Li AV, Abbink P, Liu J, Li H, Stanley KA, Smith KM, Lavine CL, Seaman MS, Kramer JA, Miller AD, Abraham W, Suh H, Elkhader J, Hammond PT, Barouch DH, Irvine DJ. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat Biotechnol 2013; 31:1082-5. [PMID: 24316643 PMCID: PMC4011140 DOI: 10.1038/nbt.2759] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter C DeMuth
- 1] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [2] Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mishra DK, Dhote V, Mishra PK. Transdermal immunization: biological framework and translational perspectives. Expert Opin Drug Deliv 2013; 10:183-200. [PMID: 23256860 DOI: 10.1517/17425247.2013.746660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The renaissance in drug delivery research during the past decade led to several new approaches toward vaccine development. Transdermal immunization (TI) is a promising modality with both practical and immunological merits. Compared with conventional routes of administration, this needle-free delivery approach with ability to target the rich immunologically milieu of the skin provides a dual-edged benefit. It not only elicits an effective immune response in both systemic and mucosal compartments but has the potential to make vaccine delivery more equitable, safer and efficient. AREAS COVERED Over the years, numerous studies have explored physical, chemical and nanocarrier-based strategies to develop vaccines using this attractive route of delivery. The review provides insight into the various facets including research at interface that might drive novel basic scientific ideas to translational outcomes. EXPERT OPINION As we continue to develop TI as a vaccine delivery method, it is important to consider the practical application of this method and device strategies that best fit the public health needs. In the authors' view, nanoengineering-based approaches holds a great promise to overcome the associated challenges in TI and might help to translate early laboratory successes into the development of effective clinical prophylactics.
Collapse
Affiliation(s)
- Dinesh Kumar Mishra
- Guru Ghasidas Central University, SLT Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Bilaspur (CG) 495009, India.
| | | | | |
Collapse
|
17
|
Ramadan S, Guo L, Li Y, Yan B, Lu W. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3143-50. [PMID: 22829400 PMCID: PMC3485307 DOI: 10.1002/smll.201200783] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Indexed: 05/15/2023]
Abstract
A photothermal ablation-enhanced transdermal drug delivery methodology is developed based on hollow copper sulfide nanoparticles (HCuSNPs) with intense photothermal coupling effects. Application of nanosecond-pulsed near-infrared laser allows rapid heating of the nanoparticles and instantaneous heat conduction. This provides very short periods of time but extremely high temperatures in local regions, with focused thermal ablation of the stratum corneum. The depth of skin perforations can be controlled by adjusting the laser power. Skin disruption by HCuSNP-mediated photothermal ablation significantly increases the permeability of human growth hormone. This technique offers compelling opportunities for macromolecular drug and vaccine delivery.
Collapse
|
18
|
Novotny LA, Clements JD, Bakaletz LO. Kinetic analysis and evaluation of the mechanisms involved in the resolution of experimental nontypeable Haemophilus influenzae-induced otitis media after transcutaneous immunization. Vaccine 2012; 31:3417-26. [PMID: 23092856 DOI: 10.1016/j.vaccine.2012.10.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/31/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023]
Abstract
Transcutaneous immunization (TCI) is a simple and needle-free method with which to induce protective immune responses. Using a chinchilla model of nontypeable Haemophilus influenzae (NTHI)-induced otitis media (OM), we examined the efficacy afforded by TCI with a novel chimeric immunogen called 'chimV4' which targets two critical adhesins expressed by NTHI, outer membrane protein P5 and the majority subunit of NTHI Type IV pilus, PilA. Experimental OM was first established in cohorts of animals, and then TCI performed via a therapeutic immunization regime by rubbing vaccine formulations on hydrated pinnae. The kinetics of resolution of established experimental disease was evaluated by clinically-relevant assessments of OM, bacterial culture of planktonic and adherent NTHI within the middle ear and gross examination of the relative amount of NTHI mucosal biofilms within the middle ear space. Within seven days after primary TCI, a significant reduction in the signs of OM, significantly fewer NTHI adherent to the middle ear mucosa and significant resolution of mucosal biofilms was detected in animals that received chimV4+ the adjuvant LT(R192G-L211A), compared to animals administered LT(R192G-L211A) alone or saline by TCI (p<0.05) with eradication of NTHI within an additional seven days. The mechanism for rapid disease resolution involved efflux of activated dermal dendritic cells from the pinnae after TCI, secretion of factors chemotactic for CD4(+) T-cells, induction of polyfunctional IFNγ- and IL-17-producing CD4(+) T-cells and secretion of host defense peptide within the middle ear. These data support TCI as a therapeutic intervention against experimental NTHI-induced OM and begin to elucidate the host response to immunization by this noninvasive regimen.
Collapse
Affiliation(s)
- Laura A Novotny
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis and The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205, United States
| | | | | |
Collapse
|
19
|
A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J Control Release 2012; 161:10-7. [DOI: 10.1016/j.jconrel.2012.01.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 01/21/2012] [Indexed: 11/24/2022]
|
20
|
Seid RC, Look JL, Ruiz C, Frolov V, Flyer D, Schafer J, Ellingsworth L. Transcutaneous immunization with Intercell's vaccine delivery system. Vaccine 2012; 30:4349-54. [DOI: 10.1016/j.vaccine.2011.09.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/15/2011] [Accepted: 09/23/2011] [Indexed: 11/27/2022]
|
21
|
|
22
|
Hirschberg H, van Kuijk S, Loch J, Jiskoot W, Bouwstra J, Kersten G, Amorij JP. A combined approach of vesicle formulations and microneedle arrays for transcutaneous immunization against hepatitis B virus. Eur J Pharm Sci 2012; 46:1-7. [PMID: 22330147 DOI: 10.1016/j.ejps.2012.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/28/2012] [Accepted: 01/29/2012] [Indexed: 11/28/2022]
Abstract
In the search for an optimal approach for the transcutaneous immunization (TCI) of hepatitis B surface antigen (HBsAg), two vesicle formulations, L595 vesicles (composed of sucrose-laurate ester and octaoxyethylene-laurate ester) and sPC vesicles (composed of soybean-phosphatidylcholine and Span-80) were prepared and characterized in vitro and in vivo. HBsAg was associated to the vesicles, resulting in sPC-HBsAg vesicles (±170nm) with 79% HBsAg association and L595-HBsAg vesicles (±75nm) with only 29% HBsAg association. The vesicles induced in mice via TCI an antibody response only when the skin was pretreated with microneedles. This response was improved by the adjuvant cholera toxin. The sPC-HBsAg vesicle formulations showed to be the most immunogenic for TCI, which was related to the higher degree of HBsAg association.
Collapse
Affiliation(s)
- Hoang Hirschberg
- Unit Vaccinology, National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Newcastle disease virus expressing human immunodeficiency virus type 1 envelope glycoprotein induces strong mucosal and serum antibody responses in Guinea pigs. J Virol 2011; 85:10529-41. [PMID: 21849467 DOI: 10.1128/jvi.05050-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.
Collapse
|
24
|
Li N, Peng LH, Chen X, Nakagawa S, Gao JQ. Transcutaneous vaccines: Novel advances in technology and delivery for overcoming the barriers. Vaccine 2011; 29:6179-90. [DOI: 10.1016/j.vaccine.2011.06.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 12/17/2022]
|
25
|
Adjuvant activity of the catalytic A1 domain of cholera toxin for retroviral antigens delivered by GeneGun. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:922-30. [PMID: 21508173 DOI: 10.1128/cvi.05019-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.
Collapse
|
26
|
Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release 2011; 149:242-9. [PMID: 21047538 PMCID: PMC3040254 DOI: 10.1016/j.jconrel.2010.10.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 11/16/2022]
Abstract
Hypodermic needles cause pain and bleeding, produce biohazardous sharp waste and require trained personnel. To address these issues, we introduce separable arrowhead microneedles that rapidly and painlessly deliver drugs and vaccines to the skin. These needles are featured by micron-size sharp tips mounted on blunt shafts. Upon insertion in the skin, the sharp-tipped polymer arrowheads encapsulating drug separate from their metal shafts and remain embedded in the skin for subsequent dissolution and drug release. The blunt metal shafts can then be discarded. Due to rapid separation of the arrowhead tips from the shafts within seconds, administration using arrowhead microneedles can be carried out rapidly, while drug release kinetics can be independently controlled based on separable arrowhead formulation. Thus, drug and vaccine delivery using arrowhead microneedles are designed to offer a quick, convenient, safe and potentially self-administered method of drug delivery as an alternative to hypodermic needles.
Collapse
Affiliation(s)
- Leonard Y. Chu
- Wallace Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark R. Prausnitz
- Wallace Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
27
|
Cristillo AD, Ferrari MG, Hudacik L, Lewis B, Galmin L, Bowen B, Thompson D, Petrovsky N, Markham P, Pal R. Induction of mucosal and systemic antibody and T-cell responses following prime-boost immunization with novel adjuvanted human immunodeficiency virus-1-vaccine formulations. J Gen Virol 2011; 92:128-40. [PMID: 21169215 PMCID: PMC3052530 DOI: 10.1099/vir.0.023242-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/08/2010] [Indexed: 11/28/2022] Open
Abstract
As sexual transmission of human immunodeficiency virus-1 (HIV-1) occurs via the mucosa, an ideal HIV-1 vaccine should induce both mucosal and systemic immunity. We therefore sought to evaluate the induction of mucosal responses using a DNA env prime-gp120 protein boost approach in which sequential nasal and parenteral protein administration was performed with two novel carbohydrate-based adjuvants. These adjuvants, Advax-M and Advax-P, were specifically designed for mucosal and systemic immune enhancement, respectively. Murine intranasal immunization with gp120/Advax-M adjuvant elicited gp120-specific IgA in serum and mucosal secretions that was markedly enhanced by DNA priming. Boosting of DNA-primed mice with gp120/Advax-M and gp120/Advax-P by sequential intranasal and intramuscular immunization, or vice versa, elicited persistent mucosal gp120-specific IgA, systemic IgG and memory T- and B-cell responses. Induction of homologous, but not heterologous, neutralizing activity was noted in the sera of all immunized groups. While confirmation of efficacy is required in challenge studies using non-human primates, these results suggest that the combination of DNA priming with sequential nasal and parenteral protein boosting, with appropriate mucosal and systemic adjuvants, could generate strong mucosal and systemic immunity and may block HIV-1 mucosal transmission and infection.
Collapse
Affiliation(s)
- Anthony D. Cristillo
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - Maria Grazia Ferrari
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - Lauren Hudacik
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - Brad Lewis
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - Lindsey Galmin
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - Britany Bowen
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - DeVon Thompson
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | | | - Phillip Markham
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - Ranajit Pal
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| |
Collapse
|
28
|
Matsuo K, Ishii Y, Quan YS, Kamiyama F, Mukai Y, Yoshioka Y, Okada N, Nakagawa S. Transcutaneous vaccination using a hydrogel patch induces effective immune responses to tetanus and diphtheria toxoid in hairless rat. J Control Release 2011; 149:15-20. [DOI: 10.1016/j.jconrel.2010.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/09/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
|
29
|
Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome? J Control Release 2010; 148:266-82. [DOI: 10.1016/j.jconrel.2010.09.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/13/2010] [Indexed: 01/09/2023]
|
30
|
Amorij JP, Hinrichs WL, Frijlink HW, Wilschut JC, Huckriede A. Needle-free influenza vaccination. THE LANCET. INFECTIOUS DISEASES 2010; 10:699-711. [PMID: 20883966 DOI: 10.1016/s1473-3099(10)70157-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccination is the cornerstone of influenza control in epidemic and pandemic situations. Influenza vaccines are typically given by intramuscular injection. However, needle-free vaccinations could offer several distinct advantages over intramuscular injections: they are pain-free, easier to distribute, and easier to give to patients, and their use could reduce vaccination costs. Moreover, vaccine delivery via the respiratory tract, alimentary tract, or skin might elicit mucosal immune responses at the site of virus entry and better cellular immunity, thus improving effectiveness. Although various needle-free vaccination methods for influenza have shown preclinical promise, few have progressed to clinical trials-only live attenuated intranasal vaccines have received approval, and only in some countries. Further clinical investigation is needed to help realise the potential of needle-free vaccination for influenza.
Collapse
Affiliation(s)
- Jean-Pierre Amorij
- Department of Pharmaceutical Technology and Biopharmacy, University of Gröningen, Netherlands
| | | | | | | | | |
Collapse
|
31
|
Combadière B, Vogt A, Mahé B, Costagliola D, Hadam S, Bonduelle O, Sterry W, Staszewski S, Schaefer H, van der Werf S, Katlama C, Autran B, Blume-Peytavi U. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One 2010; 5:e10818. [PMID: 20520820 PMCID: PMC2877091 DOI: 10.1371/journal.pone.0010818] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 03/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. METHODS AND FINDINGS We chose the inactivated influenza vaccine - a conventional licensed tetanus/influenza (TETAGRIP) vaccine - to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. CONCLUSIONS This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role. TRIAL REGISTRATION Clinicaltrials.gov NCT00261001.
Collapse
Affiliation(s)
- Behazine Combadière
- Institut National de Santé et de Recherche Médicale, INSERM U945, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release 2010; 142:187-95. [PMID: 19840825 PMCID: PMC2823933 DOI: 10.1016/j.jconrel.2009.10.013] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/18/2009] [Accepted: 10/09/2009] [Indexed: 12/18/2022]
Abstract
Microneedle patches coated with solid-state influenza vaccine have been developed to improve vaccine efficacy and patient coverage. However, dip coating microneedles with influenza vaccine can reduce antigen activity. In this study, we sought to determine the experimental factors and mechanistic pathways by which inactivated influenza vaccine can lose activity, as well as develop and assess improved microneedle coating formulations that protect the antigen from activity loss. After coating microneedles using a standard vaccine formulation, the stability of influenza vaccine was reduced to just 2%, as measured by hemagglutination activity. The presence of carboxymethylcellulose, which was added to increase viscosity of the coating formulation, was shown to contribute to vaccine activity loss. After screening a panel of candidate stabilizers, the addition of trehalose to the coating formulation was found to protect the antigen and retain 48-82% antigen activity for all three major strains of seasonal influenza: H1N1, H3N2 and B. Influenza vaccine coated in this way also exhibited thermal stability, such that activity loss was independent of temperature over the range of 4-37 degrees C for 24h. Dynamic light scattering measurements showed that antigen activity loss was associated with virus particle aggregation, and that stabilization using trehalose largely blocked this aggregation. Finally, microneedles using an optimized vaccine coating formulation were applied to the skin to vaccinate mice. Microneedle vaccination induced robust systemic and functional antibodies and provided complete protection against lethal challenge infection similar to conventional intramuscular injection. Overall, these results show that antigen activity loss during microneedle coating can be largely prevented through optimized formulation and that stabilized microneedle patches can be used for effective vaccination.
Collapse
Affiliation(s)
- Yeu-Chun Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Fu-Shi Quan
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard W. Compans
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sang-Moo Kang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
33
|
Abstract
The skin has been investigated as a site for vaccine delivery only since the late 1990s. However, much has been discovered about the cell populations that reside in the skin, their active role in immune responses, and the fate of trans- cutaneously applied antigens. Transcutaneous immunization (TCI) is a safe, effective means of inducing immune responses against a number of pathogens. One of the most notable benefits of TCI is the induction of immune responses in both systemic and mucosal compartments. This chapter focuses on the transport of antigen into and beyond intact skin, the cutaneous sentinel cell populations that play a role in TCI, and the types of mucosal immune responses that have been generated. A number of in vivo studies in murine models have provided information about the broad responses induced by TCI. Cellular and humoral responses and protection against challenge have been noted in the gastrointestinal, reproductive, and respiratory tracts. Clinical trials have demonstrated the benefits of this vaccine delivery route in humans. As with other routes of immunization, the type of vaccine formulation and choice of adjuvant may be critical for achieving appropriate responses and can be tailored to activate specific immune-responsive cells in the skin to increase the efficacy of TCI against mucosal pathogens.
Collapse
|
34
|
Safety and immunogenicity of an influenza vaccine A/H5N1 (A/Vietnam/1194/2004) when coadministered with a heat-labile enterotoxin (LT) adjuvant patch. Vaccine 2009; 27 Suppl 6:G60-6. [DOI: 10.1016/j.vaccine.2009.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Karande P, Arora A, Pham TK, Stevens D, Wojicki A, Mitragotri S. Transcutaneous immunization using common chemicals. J Control Release 2009; 138:134-40. [PMID: 19426770 DOI: 10.1016/j.jconrel.2009.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 04/30/2009] [Accepted: 05/01/2009] [Indexed: 11/28/2022]
Abstract
Transcutaneous immunization, topical application of vaccines on skin, provides several advantages over needle based immunization. However, simple topical application of vaccines does not generate sufficient immune response due to limited transport of vaccines across the stratum corneum of skin. Here we report that chemicals used in common skin products can enhance the immunogenicity of topically applied antigens. Six hundred formulations of commonly used chemicals were screened systematically for their potency (delivery of antigen) in vitro. A selected subset of these formulations was subsequently tested for their adjuvanticity (activation of immune response) in vitro. Lead formulations were tested in vivo for their ability to generate antibody titers against topically applied ovalbumin, a model antigen. Lead formulations were significantly more effective in generating anti-ovalbumin IgG titers. Our results demonstrate that chemical formulations can be successfully used to deliver antigens and that such formulations can be rationally designed by combinatorial screening of individual chemical components.
Collapse
Affiliation(s)
- Pankaj Karande
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | | | | | | | | | | |
Collapse
|
36
|
Ding Z, Van Riet E, Romeijn S, Kersten GFA, Jiskoot W, Bouwstra JA. Immune modulation by adjuvants combined with diphtheria toxoid administered topically in BALB/c mice after microneedle array pretreatment. Pharm Res 2009; 26:1635-43. [PMID: 19326190 PMCID: PMC2689355 DOI: 10.1007/s11095-009-9874-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 03/10/2009] [Indexed: 01/08/2023]
Abstract
Purpose In this study, modulation of the immune response against diphtheria toxoid (DT) by various adjuvants in transcutaneous immunization (TCI) with microneedle array pretreatment was investigated. Methods TCI was performed on BALB/c mice with or without microneedle array pretreatment using DT as a model antigen co-administrated with lipopolysaccharide (LPS), Quil A, CpG oligo deoxynucleotide (CpG) or cholera toxin (CT) as adjuvant. The immunogenicity was evaluated by measuring serum IgG subtype titers and neutralizing antibody titers. Results TCI with microneedle array pretreatment resulted in a 1,000-fold increase of DT-specific serum IgG levels as compared to TCI. The immune response was further improved by co-administration of adjuvants, showing a progressive increase in serum IgG titers when adjuvanted with LPS, Quil A, CpG and CT. IgG titers of the CT-adjuvanted group reached levels comparable to those obtained after DT-alum subcutaneous injection. The IgG1/IgG2a ratio of DT-specific antibodies decreased in the following sequence: plain DT, Quil A, CT and CpG, suggesting that the immune response was skewed towards the Th1 direction. Conclusions The potency and the quality of the immune response against DT administered by microneedle array mediated TCI can be modulated by co-administration of adjuvants.
Collapse
Affiliation(s)
- Z. Ding
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- State Key Laboratory of Pharmaceutical Biotechnology, Biochemistry Department, Nanjing University, 210093 Nanjing, People’s Republic of China
| | - E. Van Riet
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - S. Romeijn
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - G. F. A. Kersten
- Department of Research and Development, Netherlands Vaccine Institute, 3720 BA Bilthoven, The Netherlands
| | - W. Jiskoot
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - J. A. Bouwstra
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
37
|
Abstract
Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine.
Collapse
Affiliation(s)
- Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, USA.
| | | |
Collapse
|
38
|
Mikszta JA, Laurent PE. Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. Expert Rev Vaccines 2008; 7:1329-39. [PMID: 18980537 DOI: 10.1586/14760584.7.9.1329] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin has long been recognized as an attractive target for vaccine administration. A number of clinical studies have tested the epidermal and dermal routes of delivery using a variety of vaccines over the years. In many cases, cutaneous administration has been associated with immunological benefits, such as the induction of greater immune responses compared with those elicited by conventional routes of delivery. Furthermore, there is a growing body of evidence to suggest that such benefits may be particularly important for certain higher-risk populations, such as the elderly, the immunocompromised and cancer patients. Despite the potential advantages of vaccination via the skin, results have sometimes been conflicting and the full benefits of this approach have not been fully realized, partly due to the lack of delivery devices that accurately and reproducibly administer vaccines to the skin. The 5-year outlook, however, appears quite promising as new cutaneous delivery systems advance through clinical trials and become available for more widespread clinical and commercial use.
Collapse
Affiliation(s)
- John A Mikszta
- BD Technologies, 21 Davis Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
39
|
Abstract
Children who travel are at risk of developing the same illnesses that affect adult travelers. Treatment, etiology and actual risk of TD in children are not well defined. Prevention and self-treatment of TD should be discussed in great detail during pre-travel counseling. This includes information and instructions on various preventive measures as well as when to use medications and the potential adverse effects associated with these medications. A TD that is mild can be managed effectively by appropriate use of oral rehydration solutions. Families should be advised to carry ORS packets and start treatment in children as soon as the diarrhea begins. Self treatment with antibiotics such as azithromycin may be considered in children if diarrhea is moderate to severe. Caregivers should contact local health authorities if there is no improvement especially after self treatment with antibiotics.
Collapse
Affiliation(s)
- Jocelyn Y Ang
- Carman and Ann Adams Department of Pediatrics, Wayne State University , Detroit, MI 48201, USA
| | | |
Collapse
|
40
|
Abstract
Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine.
Collapse
Affiliation(s)
- Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, USA.
| | | |
Collapse
|
41
|
Frech SA, Dupont HL, Bourgeois AL, McKenzie R, Belkind-Gerson J, Figueroa JF, Okhuysen PC, Guerrero NH, Martinez-Sandoval FG, Meléndez-Romero JH, Jiang ZD, Asturias EJ, Halpern J, Torres OR, Hoffman AS, Villar CP, Kassem RN, Flyer DC, Andersen BH, Kazempour K, Breisch SA, Glenn GM. Use of a patch containing heat-labile toxin from Escherichia coli against travellers' diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet 2008; 371:2019-25. [PMID: 18554712 DOI: 10.1016/s0140-6736(08)60839-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a major cause of travellers' diarrhoea. We investigated the rate of diarrhoea attacks, safety, and feasibility of a vaccine containing heat-labile enterotoxin (LT) from ETEC delivered to the skin by patch in travellers to Mexico and Guatemala. METHODS In this phase II study, healthy adults (aged 18-64 years) who planned to travel to Mexico or Guatemala and had access to a US regional vaccination centre were eligible. A centralised randomisation code was used for allocation, which was masked to participants and site staff. Primary endpoints were to investigate the field rate of ETEC diarrhoea, and to assess the safety of heat-labile toxins from E coli (LT) delivered via patch. Secondary endpoints included vaccine efficacy against travellers' diarrhoea and ETEC. Participants were vaccinated before travel, with two patches given 2-3 weeks apart. Patches contained either 37.5 mug of LT or placebo. Participants tracked stool output on diary cards in country and provided samples for pathogen identification if diarrhoea occurred. Diarrhoea was graded by the number of loose stools in 24 h: mild (three), moderate (four or five), and severe (at least six). Analysis was per protocol. The trial is registered with ClinicalTrials.gov, number NCT00516659. FINDINGS Recruitment closed after 201 participants were assigned patches. 178 individuals received two vaccinations and travelled and 170 were analysed. 24 (22%) of 111 placebo recipients had diarrhoea, of whom 11 (10%) had ETEC diarrhoea. The vaccine was safe and immunogenic. The 59 LT-patch recipients were protected against moderate-to-severe diarrhoea (protective efficacy [PE] 75%, p=0.0070) and severe diarrhoea (PE 84%, p=0.0332). LT-patch recipients who became ill had shorter episodes of diarrhoea (0.5 days vs 2.1 days, p=0.0006) with fewer loose stools (3.7 vs 10.5, p<0.0001) than placebo. INTERPRETATION Travellers' diarrhoea is a common ailment, with ETEC diarrhoea illness occurring in 10% of cases. The vaccine patch is safe and feasible, with benefits to the rate and severity of travellers' diarrhoea.
Collapse
|
42
|
Transcutaneous immunization with cross-reacting material CRM(197) of diphtheria toxin boosts functional antibody levels in mice primed parenterally with adsorbed diphtheria toxoid vaccine. Infect Immun 2008; 76:1766-73. [PMID: 18227167 DOI: 10.1128/iai.00797-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transcutaneous immunization (TCI) capitalizes on the accessibility and immunocompetence of the skin, elicits protective immunity, simplifies vaccine delivery, and may be particularly advantageous when frequent boosting is required. In this study we examined the potential of TCI to boost preexisting immune responses to diphtheria in mice. The cross-reacting material (CRM(197)) of diphtheria toxin was used as the boosting antigen and was administered alone or together with either one of two commonly used mucosal adjuvants, cholera toxin (CT) and a partially detoxified mutant of heat-labile enterotoxin of Escherichia coli (LTR72). We report that TCI with CRM(197) significantly boosted preexisting immune responses elicited after parenteral priming with aluminum hydroxide-adsorbed diphtheria toxoid (DTxd) vaccine. In the presence of LTR72 as an adjuvant, toxin-neutralizing antibody titers were significantly higher than those elicited by CRM(197) alone and were comparable to the functional antibody levels induced after parenteral booster immunization with the adsorbed DTxd vaccine. Time course study showed that high levels of toxin-neutralizing antibodies persisted for at least 14 weeks after the transcutaneous boost. In addition, TCI resulted in a vigorous antigen-specific proliferative response in all groups of mice boosted with the CRM(197) protein. These findings highlight the promising prospect of using booster administrations of CRM(197) via the transcutaneous route to establish good herd immunity against diphtheria.
Collapse
|