1
|
Baruta G, Flannigan KL, Alston L, Thorne A, Zhang H, De Buck J, Colarusso P, Hirota SA. Mycobacterium avium subspecies paratuberculosis targets M cells in enteroid-derived monolayers through interactions with β1 integrins. Am J Physiol Gastrointest Liver Physiol 2025; 328:G482-G501. [PMID: 40112014 DOI: 10.1152/ajpgi.00250.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025]
Abstract
Paratuberculosis is an infectious disease caused by the bacterium, Mycobacterium avium subspecies paratuberculosis (MAP). MAP infection of ruminants triggers progressive wasting disease characterized by granulomatous lymphadenitis, enteritis, and severe intestinal pathology that often requires early culling of the animal. The resulting economic burden is significant, and MAP exposure in the workplace constitutes a significant zoonotic risk. Although it has been established that the MAP propagates within resident immune cells, less is known about how it traverses the epithelium. It is currently thought that MAP infects the small intestinal epithelium by targeting both enterocytes and M cells, with a potential tropism for the latter. In the current study, we developed and validated an enteroid-based in vitro assay containing functional M cells to identify the target cells for MAP's entry. Upon exposure to MAP, the bacteria were detected within both enterocytes and M cells; however, quantitative image analysis revealed significant tropism for the latter. Complementary studies using the Caco-2/Raji-B coculture system provided similar results. Since other mycobacteria have been shown to initiate cell attachment and entry by using a fibronectin-bridging process, we tested whether these interactions were involved in MAP's targeting of M cells. We found that MAP's M cell tropism was enhanced by fibronectin and that this effect was abolished when monolayers were pretreated with an integrin-blocking peptide. Our data demonstrate that MAP preferentially targets M cells and that this involves a fibronectin-bridging process. Furthermore, our study supports the utility of M cell-containing enteroids to study host-pathogen interaction at the intestinal epithelium.NEW & NOTEWORTHY We developed and validated a novel enteroid-based in vitro infection model with functional M cells and incorporated leading-edge imaging approaches to determine how MAP interacts with the intestinal epithelium. Using this model, we found that MAP preferentially enters M cells and that this process is enhanced by fibronectin opsonization and interactions with M cell-associated b1 integrins-the so-called fibronectin bridging mechanism that is used by other Mycobacterium to mediate cell attachment and entry.
Collapse
Affiliation(s)
- Grace Baruta
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Thorne
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hong Zhang
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Matthews MC, Cooke DM, Kerr TJ, Loxton AG, Warren RM, Ghielmetti G, Streicher EM, Witte CS, Miller MA, Goosen WJ. Evidence of Mycobacterium bovis DNA in shared water sources at livestock-wildlife-human interfaces in KwaZulu-Natal, South Africa. Front Vet Sci 2025; 12:1483162. [PMID: 40093619 PMCID: PMC11907651 DOI: 10.3389/fvets.2025.1483162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) including Mycobacterium bovis (M. bovis), which primarily affects animal hosts; however, it is also capable of causing zoonotic infections in humans. Direct contact with infected animals or their products is the primary mode of transmission. However, recent research suggests that M. bovis can be shed into the environment, potentially playing an under-recognized role in the pathogen' spread. Further investigation into indirect transmission of M. bovis, employing a One Health approach, is necessary to evaluate its epidemiological significance. However, current methods are not optimized for identifying M. bovis in complex environmental samples. Nevertheless, in a recent study, a combination of molecular techniques, including next-generation sequencing (NGS), was able to detect M. bovis DNA in the environment to investigate epidemiological questions. The aim of this study was, therefore, to apply a combination of culture-independent methods, such as targeted NGS (tNGS), to detect pathogenic mycobacteria, including M. bovis, in water sources located in a rural area of KwaZulu-Natal (KZN), South Africa. This area was selected based on the high burden of MTBC in human and animal populations. Water samples from 63 sites were screened for MTBC DNA by extracting DNA and performing hsp65 PCR amplification, followed by Sanger amplicon sequencing (SAS). Sequences were compared to the National Centre for Biotechnology Information (NCBI) database for genus or species-level identification. Samples confirmed to contain mycobacterial DNA underwent multiple PCRs (hsp65, rpoB, and MAC hsp65) and sequencing with Oxford Nanopore Technologies (ONT) tNGS. The ONT tNGS consensus sequences were compared to a curated in-house database to identify mycobacteria to genus, species, or species complex (e.g., MTBC) level for each sample site. Additional screening for MTBC DNA was performed using the GeneXpert® MTB/RIF Ultra (GXU) qPCR assay. Based on GXU, hsp65 SAS, and ONT tNGS results, MTBC DNA was present in 12 of the 63 sites. The presence of M. bovis DNA was confirmed at 4 of the 12 sites using downstream polymerase chain reaction (PCR)-based methods. However, further studies are required to determine if environmental M. bovis is viable. These results support further investigation into the role that shared water sources may play in TB epidemiology.
Collapse
Affiliation(s)
- Megan C Matthews
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Deborah M Cooke
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J Kerr
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Giovanni Ghielmetti
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| | - Elizabeth M Streicher
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carmel S Witte
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
3
|
Asgari N, Ghaemi EA, Tavasoli S, Aghaei M, Nikoo HR, Zamani S. Exploring the association between Mycobacterium avium subspecies paratuberculosis infection and rheumatoid arthritis: an immunological perspective. Arthritis Res Ther 2025; 27:36. [PMID: 39985098 PMCID: PMC11844085 DOI: 10.1186/s13075-025-03501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Mycobacterium avium subspecies Paratuberculosis (MAP) is a bacterium known to cause Johne's disease in ruminants and has been implicated in several autoimmune diseases. This study aimed to investigate the potential association between MAP infection and Rheumatoid Arthritis (RA). METHODS A total of 119 patients with RA and 120 healthy controls (HCs) were enrolled in the study. The participants were outpatient attendees at a rheumatology specialist's clinic, selected according to the 2010 ACR/EULAR Classification Criteria for RA. Their serum samples were analyzed for antibodies against two peptides, MAP_402718-32 and IRF5424-434, using an indirect enzyme-linked immunosorbent assay (ELISA). RESULTS A significant difference was found in the levels of anti-MAP antibodies between RA patients and HCs. RA patients were more likely to have anti-MAP_402718-32 antibodies (44.5%) vs. 10.8% in HCs. Among RA patients, treatment group patients had more antibodies (51.6%) against MAP_402718-32 than no-treatment group patients (36.4%), but this difference was not statistically significant. The antigen IRF5424-434 showed the highest antibody seroreactivity, being present in a higher percentage of RA patients (60.5%) compared to HCs (8.3%). This difference was statistically significant. There was a moderate correlation between IRF5424-434 and its MAP_402718-32 homolog. CONCLUSIONS The study findings suggest that anti-MAP antibodies are more prevalent in RA patients compared to healthy controls, potentially implicating MAP in the development of RA. The strong immunological response to the antigen IRF5424-434 warrants further investigation. Although the difference in antibody levels between previously diagnosed and newly diagnosed RA patients was not statistically significant, the overall higher prevalence of these antibodies in the RA cohort supports the hypothesis of MAP's involvement.
Collapse
Affiliation(s)
- Negar Asgari
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezzat Allah Ghaemi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Samaneh Tavasoli
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Aghaei
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Samin Zamani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
4
|
Liu M, Williams C, Hyland SN, Vasconcelos MP, Carnahan BR, Putnik R, Ratna S, Grimes CL. Evaluation and Comparison of Candida albicans vs Mammalian 6-O-Phospho-Kinases: Substrate Specificity and Applications. Biochemistry 2025; 64:26-31. [PMID: 39661445 PMCID: PMC11716661 DOI: 10.1021/acs.biochem.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Sensing of peptidoglycan fragments is essential for inducing downstream signaling in both mammalian and fungal systems. The hexokinases NagK and Hxk1 are crucial enzymes for the phosphorylation of peptidoglycan molecules in order to activate specific cellular responses; however, biochemical characterization of their enzymatic specificity and efficiency has yet to be investigated in depth. Here a mass spectrometry enzymatic screen was implemented to assess substrate specificity, and an ATP coupled assay provided the quantitative kinetic profiles of these two homologous, eukaryotic enzymes. The data show, that while homologous, NagK and Hxk1 have vastly different substrate profiles. NagK accepts a variety of different peptidoglycan-based substrates albeit with reduced efficiency but are still valuable as a tool in large scale chemoenzymatic settings. Conversely, Hxk1 has a smaller substrate scope but can turnover these alternative substrates at similar levels to its natural substrate. These results allow for deeper understanding into the biosynthetic machinery responsible for essential cellular processes including UDP-GlcNAc regulation and immune recognition events in the cell.
Collapse
Affiliation(s)
- Min Liu
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Caroline Williams
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Marina P. Vasconcelos
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Bella R. Carnahan
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Rachel Putnik
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Sushanta Ratna
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Graham DY, Naser SA, Borody T, Hebzda Z, Sarles H, Levenson S, Hardi R, Arłukowicz T, Svorcan P, Fathi R, Bibliowicz A, Anderson P, McLean P, Fehrmann C, Harris MS, Zhao S, Kalfus IN. Randomized, Double-Blind, Placebo-Controlled Study of Anti-Mycobacterial Therapy (RHB-104) in Active Crohn's Disease. Antibiotics (Basel) 2024; 13:694. [PMID: 39199994 PMCID: PMC11350828 DOI: 10.3390/antibiotics13080694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
This study, conducted between 4 October 2013, and 30 November 2018, tested the hypothesis that triple antimicrobial therapy, targeting Mycobacterium avium subspecies paratuberculosis (MAP), long considered a putative cause, would favorably affect Crohn's disease. A double-blind multicenter study of adults with active Crohn's disease, (i.e., Crohn's Disease Activity Index [CDAI] 220-450 plus C-reactive protein ≥ 1.0 mg/dL, fecal calprotectin (FCP) >162.9 µg/g stool, or recent endoscopic or radiographic confirmation of active disease) receiving concomitant standard-of-care Crohn's disease treatment (Clinicaltrials.gov: NCT01951326) were stratified by anti-tumor necrosis factor use and randomized (1:1) to anti-MAP RHB-104 (clarithromycin 95 mg, rifabutin 45 mg, and clofazimine 10 mg per capsule) (n = 166), resulting in clarithromycin 950 mg/day, rifabutin 450 mg/day, and clofazimine 100 mg/day, or placebo (n = 165) for up to 52 weeks. A greater proportion of RHB-104 versus placebo-treated patients met the primary endpoint-remission (i.e., CDAI < 150)-at week 26 (36.7% [61/166] vs. 22.4% [37/165], respectively; 95% CI for difference: 4.6, 24.0, p = 0.0048; chi-square test). Clinical response (reduction of CDAI by ≥100 points from baseline) at week 26 (first secondary endpoint) was also higher among the patients treated with RHB-104 (73/166 [44.0%]) compared with placebo (50/165 [30.3%]; 95% CI for difference: 3.4, 24.0, p = 0.0116), and it remained higher at week 52 among the patients treated with RHB-104 (59/166 [35.5%] vs. (35/165 [21.2%] for placebo; 95% CI for difference: 4.7, 23.9, p = 0.0042). A statistically significantly greater decline in FCP (another prospective efficacy endpoint) was also observed in RHB-104-treated patients, compared with placebo, at weeks 12, 26, and 52. The rates of serious adverse events were similar between groups (RHB-104: 18.7%; placebo: 18.8%). No patient died during the study. Antimicrobial therapy directed against MAP resulted in significantly greater improvement in clinical and laboratory (FCP) measures of active Crohn's disease.
Collapse
Affiliation(s)
- David Y. Graham
- Departments of Medicine, Molecular Virology, and Microbiology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, USA
| | - Saleh A. Naser
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Thomas Borody
- Center for Digestive Diseases, Sydney 2046, Australia;
| | - Zbigniew Hebzda
- Specjalistyczne Centrum Medyczne Unimedica, 31-271 Krakow, Poland;
| | - Harry Sarles
- Digestive Health Associates of Texas (DHAT) Research Institute, Garland, TX 75044, USA;
| | - Scott Levenson
- Digestive Care Associates, Inc., San Carlos, CA 94070, USA;
| | - Robert Hardi
- Department of Gastroenterology, George Washington University Medical School, Washington, DC 20052, USA;
| | - Tomasz Arłukowicz
- Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Petar Svorcan
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Reza Fathi
- RedHill Biopharma, Ltd., Tel Aviv 6473921, Israel; (R.F.); (A.B.); (P.A.)
| | - Aida Bibliowicz
- RedHill Biopharma, Ltd., Tel Aviv 6473921, Israel; (R.F.); (A.B.); (P.A.)
| | - Patricia Anderson
- RedHill Biopharma, Ltd., Tel Aviv 6473921, Israel; (R.F.); (A.B.); (P.A.)
| | - Patrick McLean
- RedHill Biopharma, Ltd., Tel Aviv 6473921, Israel; (R.F.); (A.B.); (P.A.)
| | | | | | | | | |
Collapse
|
6
|
Agrawal G, Borody TJ, Aitken JM. Mapping Crohn's Disease Pathogenesis with Mycobacterium paratuberculosis: A Hijacking by a Stealth Pathogen. Dig Dis Sci 2024; 69:2289-2303. [PMID: 38896362 DOI: 10.1007/s10620-024-08508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, King's College London, Franklin-Wilkins Building, London, SE1 9NH, UK.
- , Sydney, Australia.
| | | | | |
Collapse
|
7
|
Liu Y, Long M, Wang Y, Liang Z, Dong Y, Qu M, Ge X, Nan Y, Chen Y, Zhou X. Multicomponent Pathogen-Mimicking Nanoparticles Induce Intestinal Immune Responses against Paratuberculosis. ACS Biomater Sci Eng 2024; 10:3387-3400. [PMID: 38656158 DOI: 10.1021/acsbiomaterials.3c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.
Collapse
Affiliation(s)
- Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Zhengmin Liang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Mengjin Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xin Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yue Nan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yulan Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
8
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
9
|
Griss S, Knific T, Buzzell A, Carmo LP, Schüpbach-Regula G, Meylan M, Ocepek M, Thomann B. A scoping review on associations between paratuberculosis and productivity in cattle. Front Vet Sci 2024; 11:1352623. [PMID: 38756521 PMCID: PMC11097669 DOI: 10.3389/fvets.2024.1352623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Paratuberculosis (PTB), or Johne's disease, is a disease with worldwide distribution caused by Mycobacterium avium subsp. paratuberculosis (MAP) that leads to chronic enteritis, primarily in ruminants. Even subclinical infection significantly reduces the animals' performance, and consequences of the disease lead to high economic losses for the cattle industry. To estimate the economic burden of bovine PTB and to evaluate the benefits of a potential control program, accurate estimates of the production effects associated with the disease are required. Therefore, the aim of this scoping review was to provide a comprehensive overview of associations between MAP infection and production parameters in cattle. The studies were collected from three electronic databases. Of the total 1,605 identified studies, 1,432 did not meet the set criteria in the title and abstract screening and a further 106 were excluded during full-text review. Finally, data on 34 different production parameters were extracted from 67 publications. Results show that the magnitude of reported performance losses varies depending on several factors, such as the type of diagnostic test applied, disease status or number of lactations. Studies reported a reduction in milk yield, changes in milk quality (e.g., higher somatic cell count, lower amount of produced milk fat and protein), reduced fertility (e.g., prolonged calving interval and service period, higher abortion rate and calving difficulties), reduced weaning weight, slaughter weight and slaughter value, or a higher risk for mastitis. Results from the studies included in our review show a median decrease of milk yield per infected cow of -452 kg/lactation for raw and -405 kg/lactation for modeled data. Similarly, the amount of produced milk protein fell by a median of -14.41 kg/lactation for modeled data and the amount of produced milk fat by a median of -13.13 kg/lactation. The reviewed studies revealed a prolonged calving interval by around 30 days and a 1.5 to 3 times higher likeliness of culling per lactation in PTB positive animals. Results from this scoping review provide evidence-based inputs for the development of economic models aiming at the estimation of the costs and benefits associated with different disease control scenarios for PTB.
Collapse
Affiliation(s)
- Silja Griss
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tanja Knific
- Veterinary Faculty, Institute of Food Safety, Feed and Environment, University of Ljubljana, Ljubljana, Slovenia
| | - Anne Buzzell
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | | | | | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matjaž Ocepek
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Beat Thomann
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Talafha MM, Qasem A, Naser SA. Mycobacterium avium paratuberculosis Infection Suppresses Vitamin D Activation and Cathelicidin Production in Macrophages through Modulation of the TLR2-Dependent p38/MAPK-CYP27B1-VDR-CAMP Axis. Nutrients 2024; 16:1358. [PMID: 38732603 PMCID: PMC11085596 DOI: 10.3390/nu16091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Vitamin D plays a vital role in modulating both innate and adaptive immune systems. Therefore, vitamin D deficiency has been associated with higher levels of autoimmune response and increased susceptibility to infections. CYP27B1 encodes a member of the cytochrome P450 superfamily of enzymes. It is instrumental in the conversion of circulating vitamin D (calcifediol) to active vitamin D (calcitriol). This is a crucial step for macrophages to express Cathelicidin Anti-microbial Peptide (CAMP), an anti-bacterial factor released during the immune response. Our recent study indicated that a Crohn's disease (CD)-associated pathogen known as Mycobacterium avium paratuberculosis (MAP) decreases vitamin D activation in macrophages, thereby impeding cathelicidin production and MAP infection clearance. The mechanism by which MAP infection exerts these effects on the vitamin D metabolic axis remains elusive. METHODS We used two cell culture models of THP-1 macrophages and Caco-2 monolayers to establish the effects of MAP infection on the vitamin D metabolic axis. We also tested the effects of Calcifediol, Calcitriol, and SB203580 treatments on the relative expression of the vitamin D metabolic genes, oxidative stress biomarkers, and inflammatory cytokines profile. RESULTS In this study, we found that MAP infection interferes with vitamin D activation inside THP-1 macrophages by reducing levels of CYP27B1 and vitamin D receptor (VDR) gene expression via interaction with the TLR2-dependent p38/MAPK pathway. MAP infection exerts its effects in a time-dependent manner, with the maximal inhibition observed at 24 h post-infection. We also demonstrated the necessity to have toll-like receptor 2 (TLR2) for MAP infection to influence CYP27B1 and CAMP expression, as TLR2 gene knockdown resulted in an average increase of 7.78 ± 0.88 and 13.90 ± 3.5 folds in their expression, respectively. MAP infection also clearly decreased the levels of p38 phosphorylation and showed dependency on the p38/MAPK pathway to influence the expression of CYP27B1, VDR, and CAMP which was evident by the average fold increase of 1.93 ± 0.28, 1.86 ± 0.27, and 6.34 ± 0.51 in their expression, respectively, following p38 antagonism. Finally, we showed that calcitriol treatment and p38/MAPK blockade reduce cellular oxidative stress and inflammatory markers in Caco-2 monolayers following macrophage-mediated MAP infection. CONCLUSIONS This study characterized the primary mechanism by which MAP infection leads to diminished levels of active vitamin D and cathelicidin in CD patients, which may explain the exacerbated vitamin D deficiency state in these cases.
Collapse
Affiliation(s)
| | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (M.M.T.); (A.Q.)
| |
Collapse
|
11
|
Krawczyk A, Gosiewski T, Zapała B, Kowalska-Duplaga K, Salamon D. Alterations in intestinal Archaea composition in pediatric patients with Crohn's disease based on next-generation sequencing - a pilot study. Gut Microbes 2023; 15:2276806. [PMID: 37955638 PMCID: PMC10653639 DOI: 10.1080/19490976.2023.2276806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Intestinal dysbiosis can lead to the induction of systemic immune-mediated inflammatory diseases, such as Crohn's disease Although archaea are part of the commensal microbiota, they are still one of the least studied microorganisms. The aim of our study was the standardization of the optimal conditions and primers for sequencing of the gut archaeome using Next Generation Sequencing, and evaluation of the differences between the composition of archaea in patients and healthy volunteers, as well as analysis of the changes that occur in the archaeome of patients depending on disease activity. Newly diagnosed patients were characterized by similar archeal profiles at every taxonomic level as in healthy individuals (the dominance of Methanobacteria at the class level, and Methanobrevibacter at the genus level). In turn, in patients previously diagnosed with Crohn's disease (both in active and remission phase), an increased prevalence of Thermoplasmata, Thermoprotei, Halobacteria (at the class level), and Halococcus, Methanospaera or Picrophilus (at the genus level) were observed. Furthermore, we have found a significant correlation between the patient's parameters and the individual class or species of Archaea. Our study confirms changes in archaeal composition in pediatric patients with Crohn's disease, however, only in long-standing disease. At the beginning of the disease, the archeal profile is similar to that of healthy people. However, in the chronic form of the disease, significant differences in the composition of archaeome begin to appear. It seems that some archaea may be a good indicator of the chronicity and activity of Crohn's disease.
Collapse
Affiliation(s)
- A. Krawczyk
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - T. Gosiewski
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - B. Zapała
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Krakow, Poland
- Jagiellonian University Hospital in Krakow, Krakow, Poland
| | - K. Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition,Jagiellonian University Medical College, Krakow, Poland
| | - D. Salamon
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
12
|
Horan L, Mee JF, Field NL, Walsh SW, Valldecabres A. Farmers' knowledge of Johne's disease and opinions of the Irish Johne's Control Programme: results of an online survey answered mostly by young farmers. Ir Vet J 2023; 76:31. [PMID: 37858259 PMCID: PMC10588086 DOI: 10.1186/s13620-023-00260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
A voluntary control programme for Johne's disease, the Irish Johne's Control Programme (IJCP) has been implemented in Ireland since 2017. The objective of this observational study was to assess Irish beef and dairy farmers' Johne's disease knowledge, implemented management practices and IJCP opinions. A questionnaire open to dairy and beef farmers was distributed via social media and email. In total 126 responses were used for this study; these responses came from mostly young farmers (18-25 years old) and represent a small proportion of the total number of dairy and beef farmers in Ireland whose average age is 55.Most respondents claimed to know what Johne's disease was (73%; 92/126) and associated the disease to loss of body condition (68%; 78/114) and diarrhoea (59%; 67/114). Twenty-eight respondents (mostly dairy farmers; 22/28) reported positive cases in their premises. And 38% reported to implement management practices to prevent Johne's disease transmission within or into their herd (i.e. management of milk for calf consumption and isolation of Johne's test-positive or newly purchased stock; 47/124).Eighteen percent (22/125) of respondents were, at the time of questionnaire or previously, members of the IJCP. The main benefits reported by some of the participating farmers were identification of positive cases (29%; 4/14), and management of milk for calf consumption (21%; 3/14). While the main disadvantage was inaccurate testing methods (50%; 10/20). The main reasons reported for the lack of participation in the IJCP were not being aware of the programme (52%; 53/102) and not having a Johne's disease problem on the farm (48%; 49/102).In conclusion, this study suggests that while young farmers are aware of Johne's disease, their participation in the IJCP is limited and could benefit from further promotion. Studies representing the wider farming community in Ireland are warranted to gather non-biased input and contribute to Johne's disease control in Ireland.
Collapse
Affiliation(s)
- Louise Horan
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - Niamh L Field
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - Siobhán W Walsh
- Department of Land Sciences, South East Technological University, Cork Road Campus, Waterford, Co. Waterford, X91 K0EK, Ireland
| | - Ainhoa Valldecabres
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland.
| |
Collapse
|
13
|
Ha S, Kang S, Jung M, Kim SB, Lee HG, Park HT, Lee JH, Choi KC, Park J, Kim UH, Yoo HS. Comparison of blood parameters according to fecal detection of Mycobacterium avium subspecies paratuberculosis in subclinically infected Holstein cattle. J Vet Sci 2023; 24:e70. [PMID: 38031649 PMCID: PMC10556293 DOI: 10.4142/jvs.23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic and progressive granulomatous enteritis and economic losses in dairy cattle in subclinical stages. Subclinical infection in cattle can be detected using serum MAP antibody enzyme-linked immunosorbent assay (ELISA) and fecal polymerase chain reaction (PCR) tests. OBJECTIVES To investigate the differences in blood parameters, according to the detection of MAP using serum antibody ELISA and fecal PCR tests. METHODS We divided 33 subclinically infected adult cattle into three groups: seronegative and fecal-positive (SNFP, n = 5), seropositive and fecal-negative (SPFN, n = 10), and seropositive and fecal-positive (SPFP, n = 18). Hematological and serum biochemical analyses were performed. RESULTS Although the cows were clinically healthy without any manifestations, the SNFP and SPFP groups had higher platelet counts, mean platelet volumes, plateletcrit, lactate dehydrogenase levels, lactate levels, and calcium levels but lower mean corpuscular volume concentration than the SPFN group (p < 0.017). The red blood cell count, hematocrit, monocyte count, glucose level, and calprotectin level were different according to the detection method (p < 0.05). The SNFP and SPFP groups had higher red blood cell counts, hematocrit and calprotectin levels, but lower monocyte counts and glucose levels than the SPFN group, although there were no significant differences (p > 0.017). CONCLUSIONS The cows with fecal-positive MAP status had different blood parameters from those with fecal-negative MAP status, although they were subclinically infected. These findings provide new insights into understanding the mechanism of MAP infection in subclinically infected cattle.
Collapse
Affiliation(s)
- Seungmin Ha
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Seogjin Kang
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Mooyoung Jung
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Sang Bum Kim
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Han Gyu Lee
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jun Ho Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ki Choon Choi
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Ui-Hyung Kim
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
14
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
15
|
Mintz MJ, Lukin DJ. Mycobacterium avium subspecies paratuberculosis (MAP) and Crohn's disease: the debate continues. Transl Gastroenterol Hepatol 2023; 8:28. [PMID: 37601744 PMCID: PMC10432229 DOI: 10.21037/tgh-23-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Crohn's disease (CD) in humans and Johne's disease (JD) in ruminants share numerous clinical and pathologic similarities. As Mycobacteria avium subspecies paratuberculosis (MAP) is known to fulfill Koch's postulates as the cause of JD, there has been considerable debate over the past century about whether MAP also plays a role in CD. With recent advances in MAP identification techniques, we can now demonstrate a higher presence of MAP in CD patients compared to the general population. However, it remains unclear if MAP is playing a bystander role or is directly pathogenic in these patients. Studies have shown that there may be an immune response targeting MAP in these patients, which may underlie a pathologic role in CD. Clinical studies have yielded conflicting results as to whether anti-MAP therapy improves clinical outcomes in CD, leading to the lack of its inclusion within evidence-based clinical guidelines. Additionally, many of these studies have been small case series, with only a few randomized controlled trials published to date. In this article, we will discuss the historical context of MAP in CD, review clinical and laboratory data surrounding detection of MAP and possible pathogenesis in human disease, and suggest future directions which may finally provide some clarity to this debate.
Collapse
Affiliation(s)
- Michael J. Mintz
- Division of Gastroenterology and Hepatology, New York Presbyterian Hospital-Weill, Cornell Medicine, New York, NY, USA
| | - Dana J. Lukin
- Division of Gastroenterology and Hepatology, New York Presbyterian Hospital-Weill, Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, New York Presbyterian Hospital-Weill, Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Role of Toll-Like Receptor 4 in Mycobacterium avium subsp. paratuberculosis Infection of Bovine Mammary Epithelial (MAC-T) Cells In Vitro. Microbiol Spectr 2023:e0439322. [PMID: 36912627 PMCID: PMC10100370 DOI: 10.1128/spectrum.04393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Toll-like receptor 4 (TLR4) encodes an innate immune cell pattern-recognition receptor implicated in the recognition of Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease in ruminants. Polymorphisms in TLR4 have been associated with susceptibility to MAP infection. In this study, a previously developed TLR4 knockout (TLR4KO) bovine mammary epithelial (MAC-T) cell line and wild-type MAC-T cells (WT) were infected with live MAP for 72 h to identify potential immunoregulatory miRNAs, inflammatory genes, and cytokines/chemokines impacted by MAP infection in the presence/absence of TLR4. Cytokines/chemokines production in culture supernatants was measured by multiplexing immunoassay. Total RNA was extracted from the remaining MAC-T cells, and quantitative PCR was performed to determine the expression of inflammatory genes and selected bovine miRNAs. Results showed that the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), CXCL8, CXCL10, CCL4, and CCL3 were significantly induced in WT MAC-T cells during MAP infection. However, TLR4KO MAC-T cells had greater secretion of CCL3, IL-6, vascular endothelial growth factor (VEGF-α), and TNF-α and decreased secretion of CXCL10 and CCL2. Moreover, the expression of inflammatory genes was induced in TLR4KO cells. The expression of miRNAs (miR133b, miR-92a, and miR-184) was increased in WT MAC-T cells post-MAP infection; however, there was no significant induction of these miRNAs in TLR4KO cells, which suggests they are involved in regulating the innate immune response to MAP infection. Target gene function analysis further suggests that miR-92a may be involved in TLR and interleukin signaling and miR-133b and miR-184 may be involved in other signaling pathways. These findings support the involvement of TLR4 in the regulation of innate immune response to MAP. IMPORTANCE Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent for paratuberculosis or Johne's disease (JD) in ruminants, a disease clinically very similar to Crohn's disease in humans. Polymorphisms in the bovine Toll-like receptor genes (TLR1, TLR2, and TLR4) have been shown to affect MAP recognition and host innate immune response and have been associated with increased susceptibility of cattle to paratuberculosis. Our results demonstrated that knocking out the TLR4 gene in bovine MAC-T cells enhanced inflammation in response to MAP. These findings show divergent roles for TLR4 in Escherichia coli lipopolysaccharide and mycobacterial infections, and this may have important consequences for the treatment of these inflammatory diseases and for genetic selection to improve disease resistance. It advances our understanding of the role of TLR4 in the context of MAP infection.
Collapse
|
17
|
Pierce ES, Jindal C, Choi YM, Efird JT. The evidence for Mycobacterium avium subspecies paratuberculosis (MAP) as a cause of nonsolar uveal melanoma: a narrative review. Transl Cancer Res 2023; 12:398-412. [PMID: 36915598 PMCID: PMC10007888 DOI: 10.21037/tcr-22-2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Background and Objective Animal microorganisms have been proposed as a cause of human cancers associated with farming, agricultural occupation or residence, and related downstream exposures. Several studies have described uveal melanoma (UvM) as a farming-associated cancer. A possible suspect is the animal microorganism Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of paratuberculosis in dairy cows. This microbe is transmitted to humans through various means, including contact with animal faeces, contaminated dust and soil, organic fertilizers, and as workers in slaughterhouses/animal processing facilities. The objective of the current manuscript was to examine the putative association between Mycobacterium avium sub-species paratuberculosis and non-solar UvM. Methods Online data sources (PubMed, Scopus, Cochrane Library, and Google) published in English between 1980 to present were searched for key words pertaining to MAP exposure, farming-related occupations and activities, and locations with or in the vicinity of dairy cattle. Key Content and Findings While higher than expected rates of eye cancer have been suggested among dairy farmers, with MAP being ubiquitous in their environment, the involvement of MAP in the aetiology of non-solar UvMs (which account for ~97% of UvM cases) remains uncertain. Conclusions Alternative explanations exist and future cause-and-effect research is needed to answer this hypothesis. A precautionary approach to exposure continues to be a prudent strategy.
Collapse
Affiliation(s)
| | | | | | - Jimmy T. Efird
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- VA Cooperative Studies Program Coordinating Center, Boston, MA, USA
| |
Collapse
|
18
|
Molecular and serological survey of paratuberculosis in cattle in selected districts of Western Uganda. BMC Vet Res 2022; 18:438. [PMID: 36517817 PMCID: PMC9749330 DOI: 10.1186/s12917-022-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Knowledge of Mycobacterium avium subsp. paratuberculosis (MAP) herd infection status is important to plan appropriate control and prevention strategies for Paratuberculosis (PTB); however, in Uganda MAP infection status of most herds is unknown. This study aimed at determining the MAP infection status of cattle herds and the associated risk factors for MAP infection in six western districts of Uganda. The survey covered a total of 93 herds where faecal and blood samples were collected from 1814 cattle. A Recombinase Polymerase Amplification (RPA) and an antibody-based (ELISA) assays were used to test for the presence of MAP DNA in faeces and MAP antibodies in serum, respectively. The apparent cow-level prevalence of MAP infection was 3.2 and 2.7% using ELISA and RPA respectively and the true cow-level prevalence using ELISA and RPA was 4.9 and 3% respectively. A herd-level prevalence of 43% (ELISA) and 40.8% (RPA) and a within-herd prevalence of 3.8 ± 2.1% based on ELISA were obtained. Among the risk factors investigated, long dry spells were significantly associated with high MAP infection (p < 0.05). These results indicate that MAP is actively present in most areas where surveillance was carried out. This poses a serious threat to the livestock industry and potentially to public health as MAP is highly suspected to play a role in the pathogenesis of several diseases in humans. Other areas of the country are to be surveyed as well in order to establish full data on MAP infection status to enable interventions for the control and prevention of the disease.
Collapse
|
19
|
Camilo SLO, Fritzen JTT, de Pádua Pereira U, Mota RA, Alfieri AA, Lisbôa JAN. Presence of antibodies against Mycobacterium avium subspecies paratuberculosis in Brazilian high-producing dairy herds. Braz J Microbiol 2022; 53:2241-2249. [PMID: 36251154 PMCID: PMC9679111 DOI: 10.1007/s42770-022-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023] Open
Abstract
This study aimed to determine the presence of antibodies against Mycobacterium avium subspecies paratuberculosis (MAP) in high-producing dairy cows, the presence of the pathogen in the feces, and the risk factors associated with the disease. Blood and fecal samples were collected from 708 dairy cows over 2 years from 54 herds located in five municipalities of Paraná, Brazil. The serum samples were evaluated for the presence of antibodies against MAP using enzyme-linked immunosorbent assay (ELISA). Fecal samples from 100 cows (69 seropositive and 31 seronegative) were assessed using real-time PCR (qPCR) for IS900 of MAP. The herd prevalence of antibodies against MAP was 61.1% (33/54; 95% CI 46.88-74.08), ranging from 12.5 to 80% across the municipalities, and the prevalence in the animals was 9.8% (69/708; 95% CI 7.77-12.15); it ranged from 0 to 87.5% per herd. Only one of the 69 (1.45%) fecal samples from the seropositive cows was positive for the qPCR. The factors associated with the occurrence of paratuberculosis in herds were the use of compost barn system and the type of bed, whereas only the type of bed was associated with the infection of cows. The only risk factor (OR = 2.45; 95% CI 1.03-5.85) associated with the occurrence of paratuberculosis was the introduction of animals purchased from other dairy farms. The prevalence of active infection was low; however, our results demonstrate the presence of MAP in high-producing dairy herds in Paraná state, Brazil.
Collapse
Affiliation(s)
| | | | - Ulisses de Pádua Pereira
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Rinaldo Aparecido Mota
- Department of Preventive Veterinary Medicine, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Amauri Alcindo Alfieri
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Júlio Augusto Naylor Lisbôa
- Departament of Veterinary Clinics, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
- National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
20
|
Moezzi MS, Derakhshandeh A, Hemmatzadeh F. Immunoinformatics analysis of candidate proteins for controlling bovine paratuberculosis. PLoS One 2022; 17:e0277751. [PMID: 36409703 PMCID: PMC9678287 DOI: 10.1371/journal.pone.0277751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Paratuberculosis is debilitating chronic enteritis usually characterized by diarrhea, decreased milk production, and progressive cachexia. Mycobacterium avium subspecies paratuberculosis (MAP) causes significant economic losses by affecting dairy herds globally. Development of protective vaccines is considered as one of the most effective controlling measures for MAP infections. In the current study, hydrophilic parts of MAP2191 and FAP-P proteins as two vaccine candidates were analyzed using immunoinformatics approaches. METHODS After selecting the most hydrophilic parts of MAP2191 and FAP-P, helper and cytotoxic T-cell epitopes of ht-MAP2191 and ht-FAP-P were identified. The immunogenic, toxicity and physicochemical properties were assessed. Secondary structures of these proteins were predicted, and their tertiary structures were modeled, refined, and validated. Linear and conformational epitopes of corresponding B-cells were recognized. Then ht-MAP2191 and ht-FAP-P epitopes were employed for molecular docking simulations. RESULTS The results indicated that ht-MAP2191 and ht-FAP-P were immunogenic, non-allergenic, and non-toxic and possess potent T-cell and B-cell epitopes. Eventually, these protein constructs were docked favorably against TLR4. CONCLUSION According to the findings, ht-MAP2191 and ht-FAP-P could be effective protein-based vaccine candidates for paratuberculosis. It should be noted that to examine their efficacy, further in vitro and in vivo experiments are underway.
Collapse
Affiliation(s)
- Maryam Sadat Moezzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- * E-mail:
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Taylor EN, Beckmann M, Hewinson G, Rooke D, Sinclair LA, Mur LAJ. Metabolomic changes in lactating multiparous naturally MAP-infected Holstein-Friesian dairy cows suggest changes in mitochondrial energy pathways. Res Vet Sci 2022; 152:354-363. [PMID: 36108548 DOI: 10.1016/j.rvsc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative organism of Johne's Disease, a chronic intestinal infection of ruminants. Infected cows begin shedding MAP within the asymptomatic, subclinical stage of infection before clinical signs, such as weight loss, diarrhoea and reduced milk yields develop within the clinical stages of disease. Herein, we examine the milk metabolomic profiles of naturally MAP-infected Holstein-Friesian cows. The study used biobanked milk samples which were collected 73.4 ± 3.79 (early lactation) and 143 ± 3.79 (mean ± SE) (mid-lactation) days post-calving from 5 MAP-infected and 5 control multiparous cows. The milk metabolome was assessed using flow infusion electrospray high-resolution mass spectrometry (FIE-HRMS) for sensitive, non-targeted metabolite fingerprinting. Metabolite fingerprinting assessments using partial least squares discriminate analyses (PLS-DA) indicated that lactation stage was a larger source of variation than MAP status. Examining each lactation stage separately for changes associated to MAP-infection status identified 45 metabolites, 33 in early lactation and 12 in mid-lactation, but only 6 metabolites were targeted in both stages of lactation. Pathway enrichment analysis suggested that MAP affected the malate-aspartate shuffle during early lactation. Pearson's correlation analysis indicated relationships between milk lactose concentrations in mid-lactation and 6 metabolites that were tentatively linked to MAP-infection status. The targeted metabolites were suggestive of wider changes in the bioenergetic metabolism that appear to be an acceleration of the effects of progressing lactation in healthy cows. Additionally, milk lactose concentrations suggest that MAP reduces the availability of lactose derivatives.
Collapse
Affiliation(s)
| | | | - G Hewinson
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion, UK
| | - D Rooke
- ProTEM Services Ltd, West Sussex, UK
| | - L A Sinclair
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, UK
| | - L A J Mur
- Aberystwyth University, Ceredigion, UK.
| |
Collapse
|
22
|
Sato M, Fujii K, Takagi H, Shibuya I, Oka D, Yamaya N, Hagita H, Matsumoto M, Inagaki K. Antibacterial and Immunosuppressive Effects of OPS-2071, a Candidate Therapy for Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:3993-4007. [PMID: 34463880 DOI: 10.1007/s10620-021-07237-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract. Although many types of drug are used, clinical outcomes are still unsatisfactory. Previous studies have suggested that intestinal bacteria are involved in the pathogenesis of IBD. Accordingly, in an IBD model we evaluated the therapeutic effects of OPS-2071, a low-absorption quinolone antibacterial agent indicated for intestinal infection, and investigated its mechanism of action. METHODS The therapeutic effects of OPS-2071 and comparison therapies were evaluated using naive CD4 + T cell-transfer IBD model mice. In vitro inhibition of LPS-induced TNF-α production and inhibitory effects on T cell responses stimulated using anti-CD3/CD28 antibody-loaded beads were evaluated using mouse splenocytes and human peripheral blood mononuclear cells. In addition, in vitro activities against bacteria implicated in IBD pathogenesis were tested. RESULTS OPS-2071 dose-dependently decreased both colonic weight/length ratio and the colitis histological score as compared with the vehicle group. The therapeutic effect of OPS-2071 was equivalent to that of anti-IL-12/23 (p40) antibody. In vitro, OPS-2071 suppressed TNF-α production induced by LPS stimulation and T cell responses in a dose-dependent manner. At high concentrations, these effects were comparable to those of existing immunosuppressive agents, such as prednisolone, in both mouse and human cells. OPS-2071 also showed antibacterial activity against IBD-related bacteria. CONCLUSIONS Our results suggest that OPS-2071 had both immunosuppressive and antibacterial effects. This dual effect makes OPS-2071 a unique and promising candidate for IBD.
Collapse
Affiliation(s)
- Masayoshi Sato
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Kazuyuki Fujii
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Hiroko Takagi
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan.
| | - Isao Shibuya
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Daisuke Oka
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Naomitsu Yamaya
- Department of Drug Metabolism and Pharmacokinetics, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Hiraku Hagita
- Department of Drug Metabolism and Pharmacokinetics, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Makoto Matsumoto
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd, Shinagawa Grand Central Tower, 2-16-4 Konan, Minato-ku, Tokyo, 108-8242, Japan
| | - Katsuya Inagaki
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| |
Collapse
|
23
|
Borody TJ, Dolai S, Gunaratne AW, Clancy RL. Targeting the microbiome in Crohn's disease. Expert Rev Clin Immunol 2022; 18:873-877. [PMID: 35731859 DOI: 10.1080/1744666x.2022.2093186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Thomas J Borody
- Research Department, Centre for Digestive Diseases, Five Dock, Australia
| | - Sibasish Dolai
- Research Department, Centre for Digestive Diseases, Five Dock, Australia
| | - Anoja W Gunaratne
- Research Department, Centre for Digestive Diseases, Five Dock, Australia
| | - Robert L Clancy
- Research Department, Centre for Digestive Diseases, Five Dock, Australia
| |
Collapse
|
24
|
Louis TJ, Qasem A, Naser SA. Attenuation of Excess TNF-α Release in Crohn’s Disease by Silencing of iRHOMs 1/2 and the Restoration of TGF-β Mediated Immunosuppression Through Modulation of TACE Trafficking. Front Immunol 2022; 13:887830. [PMID: 35585977 PMCID: PMC9108260 DOI: 10.3389/fimmu.2022.887830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
TNFα converting enzyme (TACE) is a transmembrane metalloprotease that sheds an assortment of signaling receptors, cytokines, growth factors, and pro-inflammatory mediators. In Crohn’s disease (CD), TACE activity is upregulated, resulting in a marked increase of TNFα secretion and inflammation. Although treatment of CD with TNFα monoclonal antibodies is beneficial, many patients are at risk for acquiring opportunistic infections, and the treatment efficacy of TNFα monoclonal antibodies typically decreases over time. This study investigated an alternative approach for mitigating TNFα release by knocking down TACE membrane translocation in macrophages via inhibitory rhomboid proteins 1 and 2 (iRHOMs 1/2) siRNA treatment. First we measured TGFβRII shedding in ex vivo plasma samples collected from CD patients and healthy control subjects (N=40 per group). Then, we measured TGFβRII shedding and the expression and production of TGFβ ligand, TNFα, IL-6, IL-1β, IL-10, and total versus membranous TACE in vitro with THP-1 derived macrophage infected with Mycobacterium avium subspecies paratuberculosis (MAP), a highly studied CD-related pathogen. We determined that TGFβRII shedding was significantly higher in CD patients compared to healthy controls [515.52 ± 54.23 pg/mL vs 310.81 ± 43.16 pg/mL, respectively], and MAP-infected CD plasma samples had significantly more TGFβRII shedding (601.83 ± 49.56 pg/mL) than MAP-negative CD samples (430.37 ± 45.73 pg/mL). Moreover, we also determined that TACE production; TGFβ ligand expression and production; and TGFβRII shedding were also higher in MAP-infected THP-1 macrophages. Nevertheless, once we transfected the MAP infected macrophages with iRHOM siRNA, TACE production and membrane localization were significantly decreased, resulting in a significant decrease in TGFβRII shedding; an increase in Smad3 phosphorylation; a decrease in the expression and production of pro-inflammatory cytokines; and a decrease in the expression and production of stricture-associated factor, plasminogen activator inhibitor-1 (PAI-1). Our data clearly demonstrates that the regression of TACE trafficking, via iRHOM 1/2 silencing, significantly reduces the release of TNFα and restores the immunosuppressive capabilities of TGFβ signaling, which ultimately reverses inflammatory tissue damage. Accordingly, this study may provide a framework for the creation of newer, safer therapeutic options designed to treat inflammatory autoimmune diseases such as CD and rheumatoid arthritis.
Collapse
|
25
|
Ahamad N, Gupta S, Parashar D. Using Omics to Study Leprosy, Tuberculosis, and Other Mycobacterial Diseases. Front Cell Infect Microbiol 2022; 12:792617. [PMID: 35281437 PMCID: PMC8908319 DOI: 10.3389/fcimb.2022.792617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mycobacteria are members of the Actinomycetales order, and they are classified into one family, Mycobacteriaceae. More than 20 mycobacterial species cause disease in humans. The Mycobacterium group, called the Mycobacterium tuberculosis complex (MTBC), has nine closely related species that cause tuberculosis in animals and humans. TB can be detected worldwide and one-fourth of the world's population is contaminated with tuberculosis. According to the WHO, about two million dies from it, and more than nine million people are newly infected with TB each year. Mycobacterium tuberculosis (M. tuberculosis) is the most potential causative agent of tuberculosis and prompts enormous mortality and morbidity worldwide due to the incompletely understood pathogenesis of human tuberculosis. Moreover, modern diagnostic approaches for human tuberculosis are inefficient and have many lacks, while MTBC species can modulate host immune response and escape host immune attacks to sustain in the human body. "Multi-omics" strategies such as genomics, transcriptomics, proteomics, metabolomics, and deep sequencing technologies could be a comprehensive strategy to investigate the pathogenesis of mycobacterial species in humans and offer significant discovery to find out biomarkers at the early stage of disease in the host. Thus, in this review, we attempt to understand an overview of the mission of "omics" approaches in mycobacterial pathogenesis, including tuberculosis, leprosy, and other mycobacterial diseases.
Collapse
Affiliation(s)
- Naseem Ahamad
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
26
|
Ibeagha-Awemu EM, Bissonnette N, Do DN, Dudemaine PL, Wang M, Facciuolo A, Griebel P. Regionally Distinct Immune and Metabolic Transcriptional Responses in the Bovine Small Intestine and Draining Lymph Nodes During a Subclinical Mycobacterium avium subsp. paratuberculosis Infection. Front Immunol 2022; 12:760931. [PMID: 34975852 PMCID: PMC8714790 DOI: 10.3389/fimmu.2021.760931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative infectious agent of Johne’s disease (JD), an incurable granulomatous enteritis affecting domestic livestock and other ruminants around the world. Chronic MAP infections usually begin in calves with MAP uptake by Peyer’s patches (PP) located in the jejunum (JE) and ileum (IL). Determining host responses at these intestinal sites can provide a more complete understanding of how MAP manipulates the local microenvironment to support its long-term survival. We selected naturally infected (MAPinf, n=4) and naive (MAPneg, n=3) cows and transcriptionally profiled the JE and IL regions of the small intestine and draining mesenteric lymph nodes (LN). Differentially expressed (DE) genes associated with MAP infection were identified in the IL (585), JE (218), jejunum lymph node (JELN) (205), and ileum lymph node (ILLN) (117). Three DE genes (CD14, LOC616364 and ENSBTAG00000027033) were common to all MAPinf versus MAPneg tissues. Functional enrichment analysis revealed immune/disease related biological processes gene ontology (GO) terms and pathways predominated in IL tissue, indicative of an activated immune response state. Enriched GO terms and pathways in JE revealed a distinct set of host responses from those detected in IL. Regional differences were also identified between the mesenteric LNs draining each intestinal site. More down-regulated genes (52%) and fewer immune/disease pathways (n=5) were found in the ILLN compared to a higher number of up-regulated DE genes (56%) and enriched immune/disease pathways (n=13) in the JELN. Immunohistochemical staining validated myeloid cell transcriptional changes with increased CD172-positive myeloid cells in IL and JE tissues and draining LNs of MAPinf versus MAPneg cows. Several genes, GO terms, and pathways related to metabolism were significantly DE in IL and JE, but to a lesser extent (comparatively fewer enriched metabolic GO terms and pathways) in JELN suggesting distinct regional metabolic changes in IL compared to JE and JELN in response to MAP infection. These unique tissue- and regional-specific differences provides novel insight into the dichotomy in host responses to MAP infection that occur throughout the small intestine and mesenteric LN of chronically MAP infected cows.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Duy N Do
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Szilagyi A. Relationships between Western Non Communicable Diseases and Geographic Pattern Modifiers Based on Latitude and Lactase Distributions. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Hemati Z, Meletis E, Derakhshandeh A, Haghkhah M, Kostoulas P, Singh SV, Chaubey KK, Gupta S. Application of Bayesian modeling for diagnostic assays of Mycobacterium avium subsp. paratuberculosis in sheep and goats flocks. BMC Vet Res 2022; 18:47. [PMID: 35042530 PMCID: PMC8764775 DOI: 10.1186/s12917-022-03141-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to screen the sera of goats and sheep from flocks suspected of Mycobacterium avium subsp. paratuberculosis (MAP) infection by a newly standardized Mce-truncated ELISA (Mt-ELISA) kit for the detection of antibodies against MAP. Four diagnostic applied tests were evaluated including Indigenous plate-ELISA (IP-ELISA), Mt-ELISA, fecal Polymerase Chain Reaction (f-PCR) and fecal culture (FC). Materials and methods Assuming the absence of a gold standard, latent-class models in a Bayesian framework were used to estimate the diagnostic accuracy of the four tests for MAP. Results Mt-ELISA had higher Sensitivity (Se) in sheep (posterior median: 0.68 (95% Probability Interval (PI): 0.43–0.95), while IP-ELISA recorded the highest Se in goats as 0.83 (95% PI, 0.61–0.97). The f-PCR Se estimate slightly differed between species [sheep 0.36 (0.19–0.58), goats 0.19 (0.08–0.35)], while the Se of FC was similar between species [sheep 0.29 (0.15–0.51), goats 0.27 (0.13–0.45)]. The specificity estimates for all tests were high, close to unity, and similar between species. Conclusion Overall, the results showed that the Mt-ELISA method can be used for MAP detection in small ruminants’ flocks. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03141-7.
Collapse
|
29
|
Ibeagha-Awemu EM, Bissonnette N, Bhattarai S, Wang M, Dudemaine PL, McKay S, Zhao X. Whole Genome Methylation Analysis Reveals Role of DNA Methylation in Cow's Ileal and Ileal Lymph Node Responses to Mycobacterium avium subsp. paratuberculosis Infection. Front Genet 2021; 12:797490. [PMID: 34992636 PMCID: PMC8724574 DOI: 10.3389/fgene.2021.797490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Johne's Disease (JD), caused by Mycobacterium avium subsp paratuberculosis (MAP), is an incurable disease of ruminants and other animal species and is characterized by an imbalance of gut immunity. The role of MAP infection on the epigenetic modeling of gut immunity during the progression of JD is still unknown. This study investigated the DNA methylation patterns in ileal (IL) and ileal lymph node (ILLN) tissues from cows diagnosed with persistent subclinical MAP infection over a one to 4 years period. DNA samples from IL and ILLN tissues from cows negative (MAPneg) (n = 3) or positive for MAP infection (MAPinf) (n = 4) were subjected to whole genome bisulfite sequencing. A total of 11,263 and 62,459 differentially methylated cytosines (DMCs), and 1259 and 8086 differentially methylated regions (DMRs) (FDR<0.1) were found between MAPinf and MAPneg IL and ILLN tissues, respectively. The DMRs were found on 394 genes (denoted DMR genes) in the IL and on 1305 genes in the ILLN. DMR genes with hypermethylated promoters/5'UTR [3 (IL) and 88 (ILLN)] or hypomethylated promoters/5'UTR [10 (IL) and 25 (ILLN)] and having multiple functions including response to stimulus/immune response (BLK, BTC, CCL21, AVPR1A, CHRNG, GABRA4, TDGF1), cellular processes (H2AC20, TEX101, GLA, NCKAP5L, RBM27, SLC18A1, H2AC20BARHL2, NLGN3, SUV39H1, GABRA4, PPA1, UBE2D2) and metabolic processes (GSTO2, H2AC20, SUV39H1, PPA1, UBE2D2) are potential DNA methylation candidate genes of MAP infection. The ILLN DMR genes were enriched for more biological process (BP) gene ontology (GO) terms (n = 374), most of which were related to cellular processes (27.6%), biological regulation (16.6%), metabolic processes (15.4%) and response to stimulus/immune response (8.2%) compared to 75 BP GO terms (related to cellular processes, metabolic processes and transport, and system development) enriched for IL DMR genes. ILLN DMR genes were enriched for more pathways (n = 47) including 13 disease pathways compared with 36 enriched pathways, including 7 disease/immune pathways for IL DMR genes. In conclusion, the results show tissue specific responses to MAP infection with more epigenetic changes (DMCs and DMRs) in the ILLN than in the IL tissue, suggesting that the ILLN and immune processes were more responsive to regulation by methylation of DNA relative to IL tissue. Our data is the first to demonstrate a potential role for DNA methylation in the pathogenesis of MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Suraj Bhattarai
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Stephanie McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-Be-Bellevue, QC, Canada
| |
Collapse
|
30
|
An Embedded Multiscale Modelling to Guide Control and Elimination of Paratuberculosis in Ruminants. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9919700. [PMID: 34868347 PMCID: PMC8642023 DOI: 10.1155/2021/9919700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
In recent years, multiscale modelling approach has begun to receive an overwhelming appreciation as an appropriate technique to characterize the complexity of infectious disease systems. In this study, we develop an embedded multiscale model of paratuberculosis in ruminants at host level that integrates the within-host scale and the between-host. A key feature of embedded multiscale models developed at host level of organization of an infectious disease system is that the within-host scale and the between-host scale influence each other in a reciprocal (i.e., both) way through superinfection, that is, through repeated infection before the host recovers from the initial infectious episode. This key feature is demonstrated in this study through a multiscale model of paratuberculosis in ruminants. The results of this study, through numerical analysis of the multiscale model, show that superinfection influences the dynamics of paratuberculosis only at the start of the infection, while the MAP bacteria replication continuously influences paratuberculosis dynamics throughout the infection until the host recovers from the initial infectious episode. This is largely because the replication of MAP bacteria at the within-host scale sustains the dynamics of paratuberculosis at this scale domain. We further use the embedded multiscale model developed in this study to evaluate the comparative effectiveness of paratuberculosis health interventions that influence the disease dynamics at different scales from efficacy data.
Collapse
|
31
|
Choi SW, Kim S, Park HT, Park HE, Choi JS, Yoo HS. MicroRNA profiling in bovine serum according to the stage of Mycobacterium avium subsp. paratuberculosis infection. PLoS One 2021; 16:e0259539. [PMID: 34735546 PMCID: PMC8568169 DOI: 10.1371/journal.pone.0259539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), and it causes diarrhea and weakness in cattle. During a long subclinical stage, infected animals without clinical signs shed pathogens through feces. For this reason, the diagnosis of JD during the subclinical stage is very important. Circulating miRNAs are attracting attention as useful biomarkers in various veterinary diseases because of their expression changes depending on the state of the disease. Based on current knowledge, circulating miRNAs extracted from bovine serum were used to develop a diagnostic tool for JD. In this study, the animals were divided into 4 groups according to fecal shedding, the presence of antibodies, and clinical signs. Gene expression was analyzed by performing miRNA sequencing for each group, and it was identified that the miRNA expression changed more as the MAP infection progressed. The eight miRNAs that were differentially expressed in all infected groups were selected as biomarker candidates based on their significant differences compared to the control group. These biomarker candidates were validated by qRT-PCR. Considering the sequencing data, two upregulated miRNAs and two downregulated miRNAs showed the same trend in the validation results. Network analysis was also conducted and the results showed that mRNAs (IL-10, TGF-β1) associated with regulatory T cells were predicted to be activated in the subclinical stage. Taken together, our data suggest that two miRNAs (bta-miR-374b, bta-miR-2887) may play major roles in the immune response to MAP infection during the subclinical stage.
Collapse
Affiliation(s)
- Sung-Woon Choi
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Eui Park
- Department of Microbiology, Research Institute of Life Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Soo Choi
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Sababoglu E, Turutoglu H. Comparison of interferon-gamma, neopterin, interleukin-10 and antibody levels in sheep with and without Mycobacterium avium subspecies paratuberculosis. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Linares R, Francés R, Gutiérrez A, Juanola O. Bacterial Translocation as Inflammatory Driver in Crohn's Disease. Front Cell Dev Biol 2021; 9:703310. [PMID: 34557484 PMCID: PMC8452966 DOI: 10.3389/fcell.2021.703310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract responsible for intestinal lesions. The multifactorial etiology attributed to CD includes a combination of environmental and host susceptibility factors, which result in an impaired host–microbe gut interaction. Bacterial overgrowth and dysbiosis, increased intestinal barrier permeability, and altered inflammatory responses in patients with CD have been described in the past. Those events explain the pathogenesis of luminal translocation of bacteria or its products into the blood, a frequent event in CD, which, in turn, favors a sustained inflammatory response in these patients. In this review, we navigate through the interaction between bacterial antigen translocation, permeability of the intestinal barrier, immunologic response of the host, and genetic predisposition as a combined effect on the inflammatory response observed in CD. Several lines of evidence support that translocation of bacterial products leads to uncontrolled inflammation in CD patients, and as a matter of fact, the presence of gut bacterial genomic fragments at a systemic level constitutes a marker for increased risk of relapse among CD patients. Also, the significant percentage of CD patients who lose response to biologic therapies may be influenced by the translocation of bacterial products, which are well-known drivers of proinflammatory cytokine production by host immune cells. Further mechanistic studies evaluating cellular and humoral immune responses, gut microbiota alterations, and genetic predisposition will help clinicians to better control and personalize the management of CD patients in the future.
Collapse
Affiliation(s)
- Raquel Linares
- Hepatic and Intestinal Immunobiology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Ana Gutiérrez
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
| | - Oriol Juanola
- Translational Research Laboratory, Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Universitá della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
34
|
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG, Karrow NA. Johne's Disease in Dairy Cattle: An Immunogenetic Perspective. Front Vet Sci 2021; 8:718987. [PMID: 34513975 PMCID: PMC8426623 DOI: 10.3389/fvets.2021.718987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
35
|
Association of Fungi and Archaea of the Gut Microbiota with Crohn's Disease in Pediatric Patients-Pilot Study. Pathogens 2021; 10:pathogens10091119. [PMID: 34578152 PMCID: PMC8468012 DOI: 10.3390/pathogens10091119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 01/10/2023] Open
Abstract
The composition of bacteria is often altered in Crohn’s disease (CD), but its connection to the disease is not fully understood. Gut archaea and fungi have recently been suggested to play a role as well. In our study, the presence and number of selected species of fungi and archaea in pediatric patients with CD and healthy controls were evaluated. Stool samples were collected from children with active CD (n = 54), non-active CD (n = 37) and control subjects (n = 33). The prevalence and the number of selected microorganisms were assessed by real-time PCR. The prevalence of Candida tropicalis was significantly increased in active CD compared to non-active CD and the control group (p = 0.011 and p = 0.036, respectively). The number of Malassezia spp. cells was significantly lower in patients with active CD compared to the control group, but in non-active CD, a significant increase was observed (p = 0.005 and p = 0.020, respectively). There were no statistically significant differences in the colonization by archaea. The obtained results indicate possible correlations with the course of the CD; however, further studies of the entire archeobiome and the mycobiome are necessary in order to receive a complete picture.
Collapse
|
36
|
Bhattarai A, Kowalczyk W, Tran TN. A literature review on large intestinal hyperelastic constitutive modeling. Clin Biomech (Bristol, Avon) 2021; 88:105445. [PMID: 34416632 DOI: 10.1016/j.clinbiomech.2021.105445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Impacts, traumas and strokes are spontaneously life-threatening, but chronic symptoms strangle patient every day. Colorectal tissue mechanics in such chronic situations not only regulates the physio-psychological well-being of the patient, but also confirms the level of comfort and post-operative clinical outcomes. Numerous uniaxial and multiaxial tensile experiments on healthy and affected samples have evidenced significant differences in tissue mechanical behavior and strong colorectal anisotropy across each layer in thickness direction and along the length. Furthermore, this study reviewed various forms of passive constitutive models for the highly fibrous colorectal tissue ranging from the simplest linearly elastic and the conventional isotropic hyperelastic to the most sophisticated second harmonic generation image based anisotropic mathematical formulation. Under large deformation, the isotropic description of tissue mechanics is unequivocally ineffective which demands a microstructural based tissue definition. Therefore, the information collected in this review paper would present the current state-of-the-art in colorectal biomechanics and profoundly serve as updated computational resources to develop a sophisticated characterization of colorectal tissues.
Collapse
Affiliation(s)
- Aroj Bhattarai
- Department of Orthopaedic Surgery, University of Saarland, Germany
| | | | - Thanh Ngoc Tran
- Department of Orthopaedic Surgery, University of Saarland, Germany.
| |
Collapse
|
37
|
Jain M, Kumar A, Polavarapu R, Gupta S, Aseri GK, Sharma D, Sohal JS. Development of rELISA using novel markers for the diagnosis of paratuberculosis. J Immunol Methods 2021; 497:113105. [PMID: 34298067 DOI: 10.1016/j.jim.2021.113105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
Paratuberculosis is one of the complex livestock infections whose control has largely been hampered due to the lack of efficacious diagnostics. Present study optimized plate ELISA assay for the diagnosis and screening of paratuberculosis using recombinant secretory proteins. Five secretory antigens (2677c, 3547c, 4308c, 1693c, and 2168c) were produced in the recombinant system using the E. coli host and used for the optimization of the assay. These proteins were selected because of their prior proven specificity and antigenicity as humoral immunity markers. The assay was first optimized using traditional ELISA reader and then the performance was evaluated using a handheld ELISA reader. Findings were identical in both traditional ELISA reader as well as handheld ELISA reader. Optimized ELISA was found reproducible using different batches of the recombinant antigens as well as in terms of the inter and intra assay %CV values. The present ELISA has a sensitivity and specificity of 91.6% and 100%, respectively. Also, rELISA revealed AUCROC and Youden index J of 0.95 and 0.91, respectively. In conclusion, assay conditions of MAP-recombinant protein-based ELISA were optimized and the optimized ELISA ODs can be read using portable handheld ELISA reader. Thereby, opening a future window to develop assay for onsite testing.
Collapse
Affiliation(s)
- Mukta Jain
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Amit Kumar
- Department of Immunology & Defense Mechanism, Sardar Vallabh Bhai Patel University of Agriculture & Technology (SVPUAT), Modipurum, Meerut 250 110, India
| | - Rathnagiri Polavarapu
- Genomix Molecular Diagnostics (P) Ltd, 5-36/207 Prasanthnagar, Kukatpally, Hyderabad 500 072, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, 17 KM Stone, NH-2, Post- Chaumuhan, Mathura, U.P. 281 406, India
| | - G K Aseri
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Deepansh Sharma
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Jagdip Singh Sohal
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India.
| |
Collapse
|
38
|
Shandilya UK, Sharma A, Mallikarjunappa S, Guo J, Mao Y, Meade KG, Karrow NA. CRISPR-Cas9-mediated knockout of TLR4 modulates Mycobacterium avium ssp. paratuberculosis cell lysate-induced inflammation in bovine mammary epithelial cells. J Dairy Sci 2021; 104:11135-11146. [PMID: 34253365 DOI: 10.3168/jds.2021-20305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognition receptor involved in the recognition of microbial pathogens and host alarmins. Ligation to TLR4 initiates a signaling cascade that leads to inflammation. Polymorphisms in bovine TLR4 have been associated with Mycobacterium avium ssp. paratuberculosis (MAP) susceptibility and resistance, the cause of Johne's disease, and milk somatic cell score, a biomarker of mastitis. Although the contribution of TLR4 to recognition of bacterial lipopolysaccharide (LPS) has been well characterized, its role in MAP recognition is less certain. Clustered regularly interspaced short palindromic repeats-Cas9 mediated gene editing was performed to generate TLR4 knockout (KO) mammary epithelial cells to determine if TLR4 expression is involved in the initiation of the host inflammatory response to MAP cell lysate (5 and 10 µg/mL) and Escherichia coli LPS (5 µg/mL). The absence of TLR4 in KO cells resulted in enhanced expression of key inflammatory genes (TNFA and IL6), anti-inflammatory genes (IL10 and SOCS3), and supernatant cytokine and chemokine levels (TNF-α, IL-6, IL-10, CCL3) in response to the MAP cell lysate (10 µg/mL). However, in response to LPS, the KO cells showed reduced expression of key inflammatory genes (TNFA, IL1A, IL1B, and IL6) and supernatant cytokine levels (TNF-α, IL-6, CCL2, IL-8) as compared with unedited cells. Overall, these results confirm that TLR4 is essential for eliciting inflammation in response to LPS; however, exacerbated gene and protein expression in TLR4 KO cells in response to MAP cell lysate suggests a different mechanism of infection and host response for MAP, at least in terms of how it interacts with TLR4. These novel findings show potential divergent roles for TLR4 in mycobacterial infections, and this may have important consequences for the therapeutic control of inflammation in cattle.
Collapse
Affiliation(s)
- Umesh K Shandilya
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - A Sharma
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - S Mallikarjunappa
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - J Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Y Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - K G Meade
- Animal and Bioscience Research Department, Teagasc, Grange, Co. Meath, Ireland, C15 PW93; School of Agriculture and Food Science, University College Dublin, Ireland, D04 V1W8
| | - N A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada.
| |
Collapse
|
39
|
Park HT, Park WB, Kim S, Lim JS, Nah G, Yoo HS. Revealing immune responses in the Mycobacterium avium subsp. paratuberculosis-infected THP-1 cells using single cell RNA-sequencing. PLoS One 2021; 16:e0254194. [PMID: 34214113 PMCID: PMC8253428 DOI: 10.1371/journal.pone.0254194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s disease, which is a chronic and debilitating disease in ruminants. MAP is also considered to be a possible cause of Crohn’s disease in humans. However, few studies have focused on the interactions between MAP and human macrophages to elucidate the pathogenesis of Crohn’s disease. We sought to determine the initial responses of human THP-1 cells against MAP infection using single-cell RNA-seq analysis. Clustering analysis showed that THP-1 cells were divided into seven different clusters in response to phorbol-12-myristate-13-acetate (PMA) treatment. The characteristics of each cluster were investigated by identifying cluster-specific marker genes. From the results, we found that classically differentiated cells express CD14, CD36, and TLR2, and that this cell type showed the most active responses against MAP infection. The responses included the expression of proinflammatory cytokines and chemokines such as CCL4, CCL3, IL1B, IL8, and CCL20. In addition, the Mreg cell type, a novel cell type differentiated from THP-1 cells, was discovered. Thus, it is suggested that different cell types arise even when the same cell line is treated under the same conditions. Overall, analyzing gene expression patterns via scRNA-seq classification allows a more detailed observation of the response to infection by each cell type.
Collapse
Affiliation(s)
- Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Woo Bin Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jong-Sung Lim
- Genome Analysis Center, National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Gyoungju Nah
- Genome Analysis Center, National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
40
|
Hashimoto-Hill S, Alenghat T. Inflammation-Associated Microbiota Composition Across Domestic Animals. Front Genet 2021; 12:649599. [PMID: 34239536 PMCID: PMC8257562 DOI: 10.3389/fgene.2021.649599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Domestic animals represent important resources for understanding shared mechanisms underlying complex natural diseases that arise due to both genetic and environmental factors. Intestinal inflammation, particularly inflammatory bowel disease (IBD), is a significant health challenge in humans and domestic animals. While the etiology of IBD is multifactorial, imbalance of symbiotic gut microbiota has been hypothesized to play a central role in disease pathophysiology. Advances in genomic sequencing and analytical pipelines have enabled researchers to decipher the composition of the intestinal microbiota during health and in the context of naturally occurring diseases. This review compiles microbiome genomic data across domestic species and highlights a common occurrence of gut microbiome dysbiosis during idiopathic intestinal inflammation in multiple species, including dogs, cats, horses, cows, and pigs. Current microbiome data obtained from animals with intestinal inflammation are mostly limited to taxonomical analyses in association with broad clinical phenotype. In general, a pathogen or pathosymbiont were not detected. Rather, functional potential of the altered microbiota has been suggested to be one of the key etiologic factors. Among the domestic species studied, canine analyses are currently the most advanced with incorporation of functional profiling of microbiota. Canine IBD parallels features of the disease in humans, thus canines represent a strong natural model for human IBD. While deeper analyses of metagenomic data, coupled with host molecular analyses are needed, comparative studies across domestic species can reveal shared microbial alterations and regulatory mechanisms that will improve our understanding of intestinal inflammation in both animals and humans.
Collapse
Affiliation(s)
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
41
|
Matthews C, Cotter PD, O’ Mahony J. MAP, Johne's disease and the microbiome; current knowledge and future considerations. Anim Microbiome 2021; 3:34. [PMID: 33962690 PMCID: PMC8105914 DOI: 10.1186/s42523-021-00089-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease in ruminants. As an infectious disease that causes reduced milk yields, effects fertility and, eventually, the loss of the animal, it is a huge financial burden for associated industries. Efforts to control MAP infection and Johne's disease are complicated due to difficulties of diagnosis in the early stages of infection and challenges relating to the specificity and sensitivity of current testing methods. The methods that are available contribute to widely used test and cull strategies, vaccination programmes also in place in some countries. Next generation sequencing technologies have opened up new avenues for the discovery of novel biomarkers for disease prediction within MAP genomes and within ruminant microbiomes. Controlling Johne's disease in herds can lead to improved animal health and welfare, in turn leading to increased productivity. With current climate change bills, such as the European Green Deal, targeting livestock production systems for more sustainable practices, managing animal health is now more important than ever before. This review provides an overview of the current knowledge on genomics and detection of MAP as it pertains to Johne's disease.
Collapse
Affiliation(s)
- Chloe Matthews
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Jim O’ Mahony
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
| |
Collapse
|
42
|
Bersch K, DeMeester KE, Zagani R, Chen S, Wodzanowski KA, Liu S, Mashayekh S, Reinecker HC, Grimes CL. Bacterial Peptidoglycan Fragments Differentially Regulate Innate Immune Signaling. ACS CENTRAL SCIENCE 2021; 7:688-696. [PMID: 34056099 PMCID: PMC8155477 DOI: 10.1021/acscentsci.1c00200] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 05/07/2023]
Abstract
The human innate immune system responds to both pathogen and commensal bacteria at the molecular level using bacterial peptidoglycan (PG) recognition elements. Traditionally, synthetic and commercially accessible PG monosaccharide units known as muramyl dipeptide (MDP) and N-glycolyl MDP (ng-MDP) have been used to probe the mechanism of innate immune activation of pattern recognition receptors, such as NOD-like receptors. However, bacterial PG is a dynamic and complex structure, with various chemical modifications and trimming mechanisms that result in the production of disaccharide-containing elements. These molecules pose as attractive targets for immunostimulatory screening; however, studies are limited because of their synthetic accessibility. Inspired by disaccharide-containing compounds produced from the gut microbe Lactobacillus acidophilus, a robust and scalable chemical synthesis of PG-based disaccharide ligands was implemented. Together with a monosaccharide PG library, compounds were screened for their ability to stimulate proinflammatory genes in bone-marrow-derived macrophages. The data reveal distinct gene induction patterns for monosaccharide and disaccharide PG units, suggesting that PG innate immune signaling is more complex than a one activator-one pathway program, as biologically relevant fragments induce transcriptional programs to different degrees. These disaccharide molecules will serve as critical immunostimulatory tools to more precisely define specialized innate immune regulatory mechanisms that distinguish between commensal and pathogenic bacteria residing in the microbiome.
Collapse
Affiliation(s)
- Klare
L. Bersch
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kristen E. DeMeester
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Rachid Zagani
- Department
of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory
Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shuyuan Chen
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Kimberly A. Wodzanowski
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Shuzhen Liu
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Siavash Mashayekh
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Hans-Christian Reinecker
- Department
of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory
Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
43
|
Evolutionary genomic and bacteria GWAS analysis of Mycobacterium avium subsp. paratuberculosis and dairy cattle Johne's disease phenotypes. Appl Environ Microbiol 2021; 87:AEM.02570-20. [PMID: 33547057 PMCID: PMC8091108 DOI: 10.1128/aem.02570-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle. The Regional Dairy Quality Management Alliance (RDQMA) project is a multistate research program involving MAP isolates taken from three intensively studied commercial dairy farms in the northeastern United States, which emphasized longitudinal data collection of both MAP isolates and animal health in three regional dairy herds for a period of about 7 years. This paper reports the results of a pan-GWAS analysis involving 318 MAP isolates and dairy cow Johne's disease phenotypes, taken from these three farms. Based on our highly curated accessory gene count the pan-GWAS analysis identified several MAP genes associated with bovine Johne's disease phenotypes scored from these three farms, with some of the genes having functions suggestive of possible cause/effect relationships to these phenotypes. This paper reports a pan-genomic comparative analysis between MAP and Mycobacterium tuberculosis, assessing functional Gene Ontology category enrichments between these taxa. Finally, we also provide a population genomic perspective on the effectiveness of herd isolation, involving closed dairy farms, in preventing MAP inter-farm cross infection on a micro-geographic scale.IMPORTANCE Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle, and enormous economic consequences for the dairy industry. Understanding which genes in this bacterium are correlated with key disease phenotypes can lead to functional experiments targeting these genes and ultimately lead to improved control strategies. This study represents a rare example of a prolonged longitudinal study of dairy cattle where the disease was measured and the bacteria were isolated from the same cows. The genome sequences of over 300 MAP isolates were analyzed for genes that were correlated with a wide range of Johne's disease phenotypes. A number of genes were identified that were significantly associated with several aspects of the disease and suggestive of further experimental follow-up.
Collapse
|
44
|
Yaman Y, Aymaz R, Keleş M, Bay V, Hatipoğlu E, Kaptan C, Başkurt A, Yilmaz O, Heaton MP. Evaluation of CD109, PCP4 and SEMA3D genes for their association with Ovine Johne's disease in Turkish sheep. Anim Biotechnol 2021; 32:519-525. [PMID: 33612073 DOI: 10.1080/10495398.2021.1887880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Johne's disease is a chronic, contagious, zoonotic disease that affects numerous species including livestock and sometimes humans. The disease is globally distributed in sheep populations and caused by Mycobacterium avium Subsp. paratuberculosis (MAP). A previous genome-wide association study identified single nucleotide polymorphism (SNP) markers associated with OJD serostatus in CD109, PCP4, and SEMA3D genes. Our aim was to evaluate the same markers for association with OJD seroprevalence in Turkish sheep in a retrospective matched case-control study. The serological status for OJD in 1801 sheep was determined for four native and four composite breeds from three research flocks. One hundred eleven matched case-control pairs were constructed according to breed type and age from 1750 comingled ewes reared in the same environment. A Single Nucleotide Primer Extension (SNuPE) assay was designed to genotype PCP4-Intron 1, PCP4-3'UTR, SEMA3D, CD109-intron 2 and CD109-intron 8 markers and a McNemar's test was performed on the matched pairs. An association with these five markers was not detected with the OJD serostatus in Turkish sheep (power of detection, 0.95; odds ratio >3; McNemar's p < .05). Thus, a wider search may be needed to identify any major underlying genetic risk factors for OJD in Turkish sheep.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Biometry and Genetics, Sheep Breeding and Research Institute, Bandirma, Balikesir, Turkey
| | - Ramazan Aymaz
- Department of Biometry and Genetics, Sheep Breeding and Research Institute, Bandirma, Balikesir, Turkey
| | - Murat Keleş
- Department of Biometry and Genetics, Sheep Breeding and Research Institute, Bandirma, Balikesir, Turkey
| | - Veysel Bay
- Department of Biometry and Genetics, Sheep Breeding and Research Institute, Bandirma, Balikesir, Turkey
| | - Ecem Hatipoğlu
- Department of Biometry and Genetics, Sheep Breeding and Research Institute, Bandirma, Balikesir, Turkey
| | - Cüneyt Kaptan
- Department of Biometry and Genetics, Sheep Breeding and Research Institute, Bandirma, Balikesir, Turkey
| | - Atilla Başkurt
- Department of Biometry and Genetics, Sheep Breeding and Research Institute, Bandirma, Balikesir, Turkey
| | - Onur Yilmaz
- Department of Animal Science, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Michael P Heaton
- Department of Genetics, U.S. Meat Animal Research Center, USDA, ARS, Clay Center, NE, USA
| |
Collapse
|
45
|
Abdissa K, Ruangkiattikul N, Ahrend W, Nerlich A, Beineke A, Laarmann K, Janze N, Lobermeyer U, Suwandi A, Falk C, Schleicher U, Weiss S, Bogdan C, Goethe R. Relevance of inducible nitric oxide synthase for immune control of Mycobacterium avium subspecies paratuberculosis infection in mice. Virulence 2021; 11:465-481. [PMID: 32408806 PMCID: PMC7239028 DOI: 10.1080/21505594.2020.1763055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne’s disease (JD), an incurable chronic intestinal bowel disease in ruminants. JD occurs worldwide and causes enormous economic burden in dairy industry. Research on JD pathobiology is hampered by its complexity which cannot completely be mimicked by small animal models. As a model the mouse allows dissecting some pathogenicity features of MAP. However, for unknown reasons MAP exhibits reduced growth in granulomas of infected mice compared to other Mycobacterium avium subspecies. Here, we characterized immune reactions of MAP-infected C57BL/6 mice. After infection, mice appeared fully immunocompetent. A strong antigen-specific T cell response was elicited indicated by IFNγ production of splenic T cells re-stimulated with MAP antigens. Function of splenic dendritic cells and proliferation of adoptively transferred antigen-specific CD4+ T cells was unaltered. Isolated splenic myeloid cells from infected mice revealed that MAP resides in CD11b+ macrophages. Importantly, sorted CD11b+CD11c− cells expressed high level of type 2 nitric oxide synthase (NOS2) but only low levels of pro- and anti-inflammatory cytokines. Correspondingly, MAP-infected MAC2 expressing myeloid cells in spleen and liver granuloma displayed strong expression of NOS2. In livers of infected Nos2−/−mice higher bacterial loads, more granuloma and larger areas of tissue damage were observed 5 weeks post infection compared to wild type mice. In vitro, MAP was sensitive to NO released by a NO-donor. Thus, a strong T cell response and concomitant NOS2/NO activity appears to control MAP infection, but allows development of chronicity and pathogen persistence. A similar mechanism might explain persistence of MAP in ruminants.
Collapse
Affiliation(s)
- Ketema Abdissa
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Wiebke Ahrend
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Nerlich
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nina Janze
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrike Lobermeyer
- Mouse Pathology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Abdulhadi Suwandi
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
46
|
Melrose E, Kim DSL. Unintended Self-Inoculation with Bovine Paratuberculosis Vaccine Causing Granulomatous Dermatitis Positive for Acid-Fast Bacilli. J Agromedicine 2021; 26:389-392. [PMID: 33461427 DOI: 10.1080/1059924x.2020.1825246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mycobacterium paratuberculosis causes Johne's disease in cattle, a chronic granulomatous enteritis for which a killed vaccine is commercially available. We present a case of a veterinarian who had an unintended needle-stick with injection of vaccine material. He developed a granulomatous dermatitis with acid-fast bacilli identified on pathology of affected tissue. It is important for health-care providers who care for patients at risk for unintended vaccine exposure to be aware of the possible sequelae after exposure and provide appropriate treatment based on the severity of the injury and subsequent tissue response.
Collapse
Affiliation(s)
- Ellen Melrose
- Department of Dermatology, Marshfield Clinic Health System, Marshfield, WI, USA
| | - David Seung Lae Kim
- Department of Pathology, Marshfield Clinic Health System, Marshfield, WI, USA
| |
Collapse
|
47
|
van der Sloot KWJ, Voskuil MD, Blokzijl T, Dinkla A, Ravesloot L, Visschedijk MC, van Dullemen HM, Festen EAM, Alizadeh BZ, van Leer-Buter C, Weersma RK, van Goor H, Koets AP, Dijkstra G. Isotype-specific Antibody Responses to Mycobacterium avium paratuberculosis Antigens Are Associated With the Use of Biologic Therapy in Inflammatory Bowel Disease. J Crohns Colitis 2020; 15:1253-1263. [PMID: 33378524 PMCID: PMC8496491 DOI: 10.1093/ecco-jcc/jjaa263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of Mycobacterium avium paratuberculosis [MAP] in inflammatory bowel disease [IBD], especially Crohn's disease [CD] is controversial due conflicting results and lack of reproducibility and standardised tests. The current study focuses on the role of MAP in disease progression and genetic susceptibility, as MAP is likely one of many factors involved in the complex pathogenesis of IBD, potentially affecting a subgroup depending on genetic susceptibility. METHODS Serum from 812 patients was evaluated with seven immunoglobulin [Ig] isotype-specific serology tests assessing humoral response to three different MAP antigens. For each of these in total 21 tests, the intra-assay and inter-assay coefficients were used to evaluate test accuracy. Reliable assays were subsequently analysed in relation to disease characteristics and need for biologic therapy/surgery. Genome-wide genotyping was available for all participants. Genetic determinants of humoral response to MAP antigens were evaluated using genome-wide association analysis and polygenic risk scores [PRS]. RESULTS High IgA or IgM response to MAP2609 was associated with increased use of biologic therapy in CD and ulcerative colitis [UC] [odds ratios 2.69; 95% confidence interval 1.44-5.01; and 2.60, 1.46-4.64, respectively]. No associations were seen for risk of surgery [p-values > 0.29]. We could not identify genetic determinants nor polygenic risk scores for MAP response with genome-wide significance. CONCLUSIONS Extensive assays for serological response to MAP were evaluated using stringent criteria for reliability. Increased IgA and IgM response to MAP antigens was seen in patients exposed to biologic therapy, but no genetic determinants underlying this humoral response were found.
Collapse
Affiliation(s)
- Kimberley W J van der Sloot
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands,Department of Epidemiology, University of Groningen and University Medical
Center Groningen, Groningen, The Netherlands,Corresponding author: Kimberley W. J. van der Sloot, Department of
Gastroenterology and Hepatology, University of Groningen, University Medical Center
Groningen, PO Box 30.001, 9700RB Groningen, The Netherlands. Tel.: +31 50 361 61 61;
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands,Department of Genetics, University of Groningen and University Medical Center
Groningen, Groningen, The
Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands
| | - Annemieke Dinkla
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary
Research, Lelystad, The
Netherlands
| | - Lars Ravesloot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary
Research, Lelystad, The
Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands
| | - Hendrik M van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands,Department of Genetics, University of Groningen and University Medical Center
Groningen, Groningen, The
Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen and University Medical
Center Groningen, Groningen, The Netherlands
| | - Coretta van Leer-Buter
- Department of Medical Microbiology, University of Groningen and University
Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology, University of Groningen and University Medical Center
Groningen, Groningen, The
Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary
Research, Lelystad, The
Netherlands,Department of Population Health Sciences, Faculty of Veterinary Medicine,
Utrecht University, Utrecht, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and
University Medical Center, Groningen, The Netherlands
| |
Collapse
|
48
|
Gupta SK, Parlane NA, Luo D, Rehm BHA, Heiser A, Buddle BM, Wedlock DN. Self-assembled particulate vaccine elicits strong immune responses and reduces Mycobacterium avium subsp. paratuberculosis infection in mice. Sci Rep 2020; 10:22289. [PMID: 33339863 PMCID: PMC7749150 DOI: 10.1038/s41598-020-79407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhoea, weight loss, and eventual death in ruminants. Commercially available vaccines provide only partial protection against MAP infection and can compromise the use of bovine tuberculosis diagnostic tests. Here, we report the development of a protein-particle-based vaccine containing MAP antigens Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786 as a fusion ('MAP fusion protein particle'). The fusion antigen displayed on protein particles was identified using mass spectrometry. Surface exposure and accessibility of the fusion antigen was confirmed by flow cytometry and ELISA. The MAP fusion protein particle vaccine induced strong antigen-specific T-cell immune responses in mice, as indicated by increased cytokine (IFN-γ and IL-17A) and costimulatory signals (CD40 and CD86) in these animals. Following MAP-challenge, a significant reduction in bacterial burden was observed in multiple organs of the mice vaccinated with the MAP fusion protein particle vaccine compared with the PBS group. The reduction in severity of MAP infection conferred by the MAP fusion protein particle vaccine was similar to that of Silirum and recombinant protein vaccines. Overall, the results provide evidence that MAP antigens can be engineered as a protein particulate vaccine capable of inducing immunity against MAP infection. This utility offers an attractive platform for production of low-cost particulate vaccines against other intracellular pathogens.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - Natalie A Parlane
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Dongwen Luo
- Bioinformatics and Statistics, AgResearch, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Southport, Australia
| | - Axel Heiser
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Bryce M Buddle
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - D Neil Wedlock
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
49
|
Ceres KM, Schukken YH, Gröhn YT. Characterizing infectious disease progression through discrete states using hidden Markov models. PLoS One 2020; 15:e0242683. [PMID: 33216809 PMCID: PMC7678993 DOI: 10.1371/journal.pone.0242683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/08/2020] [Indexed: 11/18/2022] Open
Abstract
Infectious disease management relies on accurate characterization of disease progression so that transmission can be prevented. Slowly progressing infectious diseases can be difficult to characterize because of a latency period between the time an individual is infected and when they show clinical signs of disease. The introduction of Mycobacterium avium ssp. paratuberculosis (MAP), the cause of Johne’s disease, onto a dairy farm could be undetected by farmers for years before any animal shows clinical signs of disease. In this time period infected animals may shed thousands of colony forming units. Parameterizing trajectories through disease states from infection to clinical disease can help farmers to develop control programs based on targeting individual disease state, potentially reducing both transmission and production losses due to disease. We suspect that there are two distinct progression pathways; one where animals progress to a high-shedding disease state, and another where animals maintain a low-level of shedding without clinical disease. We fit continuous-time hidden Markov models to multi-year longitudinal fecal sampling data from three US dairy farms, and estimated model parameters using a modified Baum-Welch expectation maximization algorithm. Using posterior decoding, we observed two distinct shedding patterns: cows that had observations associated with a high-shedding disease state, and cows that did not. This model framework can be employed prospectively to determine which cows are likely to progress to clinical disease and may be applied to characterize disease progression of other slowly progressing infectious diseases.
Collapse
Affiliation(s)
- Kristina M. Ceres
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Ynte H. Schukken
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
50
|
Behavior of Mycobacterium avium paratuberculosis in Lighvan cheese tracked by propidium monoazide qPCR and culture. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|