1
|
Chen JF, Guo SJ, He B, Zheng W, Jiang WJ, Yuan Z, Xiang Y, Peng C, Xiong W, Shi JY. Advances of dual inhibitors based on ALK for the treatment of cancer. Bioorg Chem 2025; 159:108417. [PMID: 40168884 DOI: 10.1016/j.bioorg.2025.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Anaplastic lymphoma kinase (ALK), which encodes a highly conserved receptor tyrosine kinase (RTK), is important for the development and progression of many tumors, especially non-small cell lung cancer (NSCLC). Currently, third-generation ALK inhibitors are used to treat ALK-mutant NSCLC, but the rapid emergence of resistance during treatment greatly limits their efficacy in clinic. In comparison to single-target inhibitors, ALK dual inhibitors offer the benefits of reducing the emergence of drug resistance, improving treatment efficacy, and optimizing pharmacokinetic features due to the synergistic function of ALK and other associated targets involved in tumor progression. Therefore, we outline the development of ALK dual inhibitors, highlight their design approaches and structure-activity relationship (SAR), and offer insights into new challenges and potential future directions in this area.
Collapse
Affiliation(s)
- Jin-Feng Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731. China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shu-Jin Guo
- Department of Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Wen-Jie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Xiong
- Department of urology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Jian-You Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
2
|
Sokolova A, Joshi V, Chittoory H, Walsh M, Lim M, Kutasovic JR, Ferguson K, Simpson PT, Lakhani SR, McCart Reed AE. ROS1 immunohistochemistry as a potential predictive biomarker for ROS1-targeted therapy in breast cancer: impact of antibody clone selection. Histopathology 2025. [PMID: 40356444 DOI: 10.1111/his.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
AIMS Invasive lobular carcinoma (ILC) may show targetable vulnerabilities secondary to the characteristic loss of the cell adhesion protein E-cadherin. Specifically, a synthetic lethal interaction was identified between E-cadherin loss and ROS1 inhibition. Several clinical trials are currently under way to assess the efficacy of ROS1 inhibitors in ILC; however, ROS1 expression has not been confirmed in ILC tumours and ROS1 has not been validated as a biomarker in the breast cancer setting. This study aimed to (i) examine ROS1 expression in a large cohort of breast cancer cases and (ii) investigate the biology and clinical significance of ROS1 positivity in breast cancer. METHODS AND RESULTS ROS1 immunohistochemistry was performed on a large cohort of ILC (n = 274) and invasive carcinoma of no special type (NST; n = 431) cases with extensive clinicopathological data. The staining performance of four ROS1 antibody clones was compared. There was marked variation in ROS1 status according to antibody clone. D4D6 and SP384 were negative in almost all breast cancer cases, whereas EP282 and EPMGHR2 were positive in 37 and 47% of ILC cases, and 49 and 74% of NST cases, respectively. Only data from clones D4D6 and SP384 were highly concordant, while EP282 and EPMGHR2 were positive in distinct breast cancer subtypes. CONCLUSIONS Assessment of ROS1 status in breast cancer appears to be highly antibody clone-dependent. ROS1 antibody clone selection will be an important consideration in the design of clinical trials investigating the clinical validity of ROS1 as a predictive biomarker in breast cancer.
Collapse
Affiliation(s)
- Anna Sokolova
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Sullivan and Nicolaides Pathology, Brisbane, Queensland, Australia
| | - Vaibhavi Joshi
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Haarika Chittoory
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Walsh
- Sullivan and Nicolaides Pathology, Brisbane, Queensland, Australia
| | - Malcolm Lim
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jamie R Kutasovic
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kaltin Ferguson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter T Simpson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sunil R Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Amy E McCart Reed
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Desilets A, Repetto M, Yang SR, Drilon A. Targeting ROS1 rearrangements in non-small cell lung cancer: Current insights and future directions. Cancer 2025; 131 Suppl 1:e35784. [PMID: 40171848 DOI: 10.1002/cncr.35784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 04/04/2025]
Abstract
ROS1 rearrangements define a molecular subset of non-small cell lung cancer (NSCLC) by accounting for 1%-2% of cases. Targeted therapy with ROS1 tyrosine kinase inhibitors (TKIs) has significantly improved the outcomes for these patients. First-generation inhibitors, such as crizotinib and entrectinib, have demonstrated impressive efficacy, with objective response rates exceeding 60%-70%. However, the emergence of resistance mechanisms, including solvent-front mutations such as ROS1 G2032R, and limited blood-brain barrier penetration have limited the long-term efficacy of early-generation agents. Next-generation TKIs, including lorlatinib, taletrectinib, and repotrectinib, have been developed to overcome these challenges. These agents show enhanced central nervous system (CNS) penetration and activity against on-target ROS1 resistance mutations. Repotrectinib, a potent, CNS-penetrant ROS1 inhibitor, has demonstrated superior activity in both TKI-naive and -resistant tumors, including those harboring the G2032R mutation. Zidesamtinib, a highly selective next-generation ROS1 inhibitor, further addresses TRK-mediated off-target neurological toxicities seen with prior agents, and is poised to offer improved tolerability. Ongoing research is focused on optimizing sequencing strategies for ROS1 inhibitors and exploring combination approaches to prevent or overcome resistance. In addition, the development of novel diagnostic tools, including RNA-based next-generation sequencing, has enhanced the detection of functional ROS1 fusions by ensuring that patients with actionable mutations receive appropriate targeted therapies. These advances highlight the evolving landscape of treatment for ROS1-positive NSCLC, with the aim of maximizing long-term survival and quality of life.
Collapse
Affiliation(s)
- Antoine Desilets
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matteo Repetto
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Soo-Ryum Yang
- Diagnostic Molecular Pathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexander Drilon
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
4
|
Jacome MA, Wu Q, Chen J, Mohamed ZS, Mokhtari S, Piña Y, Etame AB. Molecular Underpinnings of Brain Metastases. Int J Mol Sci 2025; 26:2307. [PMID: 40076927 PMCID: PMC11900073 DOI: 10.3390/ijms26052307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Brain metastases are the most commonly diagnosed type of central nervous system tumor, yet the mechanisms of their occurrence are still widely unknown. Lung cancer, breast cancer, and melanoma are the most common etiologies, but renal and colorectal cancers have also been described as metastasizing to the brain. Regardless of their origin, there are common mechanisms for progression to all types of brain metastases, such as the creation of a suitable tumor microenvironment in the brain, priming of tumor cells, adaptations to survive spreading in lymphatic and blood vessels, and development of mechanisms to penetrate the blood-brain barrier. However, there are complex genetic and molecular interactions that are specific to every type of primary tumor, making the understanding of the metastatic progression of tumors to the brain a challenging field of study. In this review, we aim to summarize current knowledge on the pathophysiology of brain metastases, from specific genetic characteristics of commonly metastatic tumors to the molecular and cellular mechanisms involved in progression to the central nervous system. We also briefly discuss current challenges in targeted therapies for brain metastases and how there is still a gap in knowledge that needs to be overcome to improve patient outcomes.
Collapse
Affiliation(s)
- Maria A. Jacome
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.); (S.M.); (Y.P.)
| | - Jianan Chen
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.); (S.M.); (Y.P.)
| | | | - Sepideh Mokhtari
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.); (S.M.); (Y.P.)
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.); (S.M.); (Y.P.)
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.); (S.M.); (Y.P.)
| |
Collapse
|
5
|
Morin C, Mazières J. [Lung cancers with rare oncogenic drivers: RET, ROS-1, MET, HER2 and BRAF]. Bull Cancer 2025; 112:3S117-3S126. [PMID: 40155071 DOI: 10.1016/s0007-4551(25)00165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
In non-small cell lung cancer, the presence of an oncogenic driver is frequently documented. Advances in molecular biology have enabled the identification of so-called rare oncogenic addictions, with an incidence of less than 5%, such as ROS-1 and RET rearrangements, and MET, BRAF and HER2 mutations. Targeted therapies have shown strong tumor responses with a better tolerance profile compared to chemotherapy. Consequently, targeted therapies have revolutionized the therapeutic landscape, particularly as immune checkpoint inhibitors are often ineffective in the presence of an oncogenic driver. To ensure optimal management in the era of personalized medicine, it is recommended to screen for oncogenic addictions, including rare ones, at diagnosis. In this review, we discuss the targeted therapies available in France and the promising future molecules for managing rare oncogenic drivers. Targeted therapies have already proven their efficacy as first-line treatments for ROS-1 and RET alterations, and as second-line treatments for MET and BRAF mutations.
Collapse
Affiliation(s)
- Clara Morin
- Service de pneumologie, hôpital Larrey, CHU de Toulouse, Toulouse, France; Université Paul-Sabatier, Toulouse, France; Centre de recherche de cancérologie de Toulouse (CRCT), Inserm, Toulouse, France.
| | - Julien Mazières
- Service de pneumologie, hôpital Larrey, CHU de Toulouse, Toulouse, France; Université Paul-Sabatier, Toulouse, France; Centre de recherche de cancérologie de Toulouse (CRCT), Inserm, Toulouse, France
| |
Collapse
|
6
|
Mourlanette J, Rousseau-Bussac G, Mallah S, Guisier F, Zalcman G, Veillon R, Audigier-Valette C, Roa M, Nicolle I, Doubre H, Cloarec N, Lamy R, Morel H, Curcio H, Lagrange A, Schott R, Sabatini M, Toffart AC, Pinsolle J, Bennouna J, Chouaid C, Mazieres J. Compassionate Access to Brigatinib for Patients with Non-small-cell Lung Cancer Harboring a ROS1 Rearrangement: Results from the BRIGAROS Study. Target Oncol 2025; 20:311-317. [PMID: 40080277 PMCID: PMC11933156 DOI: 10.1007/s11523-025-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND ROS1 chromosomic rearrangement is a rare oncogenic driver, and patients with this rearrangement benefit from specific targeted treatments in the first-line setting. However, therapeutic options are limited in pretreated patients. Brigatinib is a validated drug for ALK rearrangements, and also has an in vitro activity against ROS1. In vivo efficacy is also suggested in some clinical series. OBJECTIVE We aimed to specifically study brigatinib in patients with pretreated advanced non-small-cell lung cancer (NSCLC). METHODS We retrospectively collected data from 20 centers in France. Brigatinib was delivered through a compassionate use program in France between 2018 and 2020. The primary endpoint was progression-free survival. Secondary endpoints were the objective response rate, overall survival, and tolerance. RESULTS Twenty-five patients treated with brigatinib were included in our study. All patients were pretreated, and all of them previously received crizotinib. Median progression-free survival was 3.8 months (95% confidence interval 2.8-7.1). The objective response rate was 32%, with a disease control rate of 48%. Three patients had a prolonged response of more than 18 months at the end of data collection. We did not identify factors predictive of prolonged response. There were no grade 4 or 5 toxicities. CONCLUSION Brigatinib may represent an interesting therapeutic option for patients who have progressed after standard treatments.
Collapse
Affiliation(s)
- Jean Mourlanette
- Pulmonology Department, Hôpital Larrey, CHU Toulouse, Chemin de Pouvourville, 31400, Toulouse, France
| | | | - Siham Mallah
- Pulmonology Department, Hôpital Larrey, CHU Toulouse, Chemin de Pouvourville, 31400, Toulouse, France
| | - Florian Guisier
- Centre Hospitalier Universitaire Charles Nicolle, Rouen, France
| | | | - Rémi Veillon
- Centre Hospitalier Universitaire Haut Leveque, Bordeaux, France
| | | | - Magali Roa
- Centre Hospitalier Intercommunal de Fréjus Saint Raphael, Fréjus, France
| | | | | | | | - Régine Lamy
- Groupe Hospitalier Bretagne Sud-Lorient, Lorient, France
| | - Hugues Morel
- Centre Hospitalier Régional d'Orléans, Orléans, France
| | | | | | - Roland Schott
- Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | | | | | | | | | | | - Julien Mazieres
- Pulmonology Department, Hôpital Larrey, CHU Toulouse, Chemin de Pouvourville, 31400, Toulouse, France.
| |
Collapse
|
7
|
Huang X, Xu S, An Y, Lv X, Tian L, Xu S, Wang L, Zhu W. Revealing 5-(3,5-difluorobenzyl)-1H-indazole as the active pharmacophore of ALK/ROS1 dual inhibitors through theoretical calculations and biological activity evaluations. Bioorg Chem 2025; 154:108014. [PMID: 39642755 DOI: 10.1016/j.bioorg.2024.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Anaplastic lymphoma kinase (ALK) and tyrosine protein kinase (ROS1) are recognized as driver genes in lung cancer, with dual inhibition of both targets offering a promising approach to enhance therapeutic outcomes in non-small cell lung cancer (NSCLC). Although numerous ALK/ROS1 inhibitors have received FDA approval, detailed research into the essential active structural motifs within these inhibitors remains limited. Addressing this gap, the current study employed computer-aided drug design (CADD) methodologies, incorporating bioisosteric and conformational similarity principles to design and synthesize 31 dual-target 2-morpholinobenzamide derivatives. These derivatives each include the 5-(3,5-difluorobenzyl)-1H-indazole, 4-benzylmorpholine, and thiophene moieties. Based on docking binding energies, we proposed that 5-(3,5-difluorobenzyl)-1H-indazole may represent a key pharmacophore for ALK/ROS1 activity. Subsequent kinase and cellular assays validated this hypothesis, with compound X4 exhibiting optimal inhibitory activity against both ALK and ROS1 kinases and lung cancer cell lines, achieving IC50 values of 0.512 µM (ALK), 0.766 µM (ROS1) and 0.034 ± 0.002 µM (H2228). In vitro antitumor assays demonstrated dose-dependent induction of apoptosis in H2228 cells by X4. Western blot (WB) analysis further confirmed that X4 effectively suppresses the expression of p-ALK and p-ERK. Importantly, X4 exhibited high specificity in targeting ALK and ROS1 across a range of kinases. In an H2228 xenograft model, X4 achieved a tumor inhibition rate of 54.71 %, underscoring its considerable potential in ALK/ROS1 inhibition.
Collapse
Affiliation(s)
- Xiaoling Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Yufeng An
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Xinya Lv
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lulu Tian
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
8
|
Yang J, Wu Y, Zhu Q, Qu X, Ou H, Liu H, Wei Y, Ge D, Lu C, Jiang B, Song X. Discovery of a first-in-class protein degrader for the c-ros oncogene 1 (ROS1). Bioorg Chem 2024; 150:107590. [PMID: 38955003 DOI: 10.1016/j.bioorg.2024.107590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
The c-ros oncogene 1 (ROS1), an oncogenic driver, is known to induce non-small cell lung cancer (NSCLC) when overactivated, particularly through the formation of fusion proteins. Traditional targeted therapies focus on inhibiting ROS1 activity with ROS 1 inhibitors to manage cancer progression. However, a new strategy involving the design of protein degraders offers a more potent approach by completely degrading ROS1 fusion oncoproteins, thereby effectively blocking their kinase activity and enhancing anti-tumour potential. Utilizing PROteolysis-TArgeting Chimera (PROTAC) technology and informed by molecular docking and rational design, we report the first ROS1-specific PROTAC, SIAIS039. This degrader effectively targets multiple ROS1 fusion oncoproteins (CD74-ROS1, SDC4-ROS1 and SLC34A2-ROS1) in engineered Ba/F3 cells and HCC78 cells, demonstrating anti-tumour effects against ROS1 fusion-driven cancer cells. It suppresses cell proliferation, induces cell cycle arrest, and apoptosis, and inhibits clonogenicity. The anti-tumour efficacy of SIAIS039 surpasses two approved drugs, crizotinib and entrectinib, and matches that of the top inhibitors, including lorlatinib and taletrectinib. Mechanistic studies confirm that the degradation induced by 039 requires the participation of ROS1 ligands and E3 ubiquitin ligases, and involves the proteasome and ubiquitination. In addition, 039 exhibited excellent oral bioavailability in a mouse xenograft model, highlighting its potential for clinical application. In conclusion, our study presents a promising and novel therapeutic strategy for ROS1 fusion-positive NSCLC by targeting ROS1 fusion oncoproteins for degradation, laying the foundation for the development of further PROTAC and offering hope for patients with ROS1 fusion-positive NSCLC.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Yifan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojuan Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongyue Ou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yongqi Wei
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
9
|
Alrouji M, Yasmin S, Alhumaydhi FA, Sharaf SE, Shahwan M, Shamsi A. ROS1 kinase inhibition reimagined: identifying repurposed drug via virtual screening and molecular dynamics simulations for cancer therapeutics. Front Chem 2024; 12:1392650. [PMID: 39136033 PMCID: PMC11317403 DOI: 10.3389/fchem.2024.1392650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Precision medicine has revolutionized modern cancer therapeutic management by targeting specific molecular aberrations responsible for the onset and progression of tumorigenesis. ROS proto-oncogene 1 (ROS1) is a receptor tyrosine kinase (RTK) that can induce tumorigenesis through various signaling pathways, such as cell proliferation, survival, migration, and metastasis. It has emerged as a promising therapeutic target in various cancer types. However, there is very limited availability of specific ROS1 inhibitors for therapeutic purposes. Exploring repurposed drugs for rapid and effective treatment is a useful approach. In this study, we utilized an integrated approach of virtual screening and molecular dynamics (MD) simulations of repurposing existing drugs for ROS1 kinase inhibition. Using a curated library of 3648 FDA-approved drugs, virtual screening identified drugs capable of binding to ROS1 kinase domain. The results unveil two hits, Midostaurin and Alectinib with favorable binding profiles and stable interactions with the active site residues of ROS1. These hits were subjected to stability assessment through all-atom MD simulations for 200 ns. MD results showed that Midostaurin and Alectinib were stable with ROS1. Taken together, the study showed a rational framework for the selection of repurposed Midostaurin and Alectinib with ROS1 inhibitory potential for therapeutic management after further validation.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
10
|
Liu M, Zhu D. Two cases of inflammatory myofibroblastic tumor treated with targeted drugs: A case report. Medicine (Baltimore) 2024; 103:e38136. [PMID: 38787978 PMCID: PMC11124583 DOI: 10.1097/md.0000000000038136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Inflammatory myofibroblastic tumor (IMT) is a rare invasive soft tissue tumor. Many IMTs are positive for anaplastic lymphoma kinase (ALK) with ALK gene fusion; other gene mutations have also been reported, which indicates a key role for genetic testing and the development of target therapy to optimize treatment strategies. PATIENT CONCERNS We report 2 patients who obtained clinical benefits following targeted treatment with ensartinib. DIAGNOSIS The first patient was diagnosed as IMT, with TFG-ROS1 fusion gene mutation. The second patient was IMT harboring the ALK-STRN fusion gene mutation. INTERVENTIONS We performed gene testing for these 2 patients. According to the test result, both patients received ensartinib 225 mg QD as targeted therapy for a 30-day cycle. OUTCOMES The first patient achieved partial remission and maintained a stable state for 14.7 months. The second patient was treated for 10 months and reached complete remission after 5 months and is currently still benefiting from treatment. Treatment-related side effects were mild in both patients. CONCLUSION Our cases provided some new insights and approaches for the clinical diagnosis and treatment of IMT.
Collapse
Affiliation(s)
- Mengyao Liu
- Rare Tumors Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dongyuan Zhu
- Rare Tumors Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
11
|
Liang H, Xu Y, Zhao J, Chen M, Wang M. Hippo pathway in non-small cell lung cancer: mechanisms, potential targets, and biomarkers. Cancer Gene Ther 2024; 31:652-666. [PMID: 38499647 PMCID: PMC11101353 DOI: 10.1038/s41417-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the primary contributor to cancer-related deaths globally, and non-small cell lung cancer (NSCLC) constitutes around 85% of all lung cancer cases. Recently, the emergence of targeted therapy and immunotherapy revolutionized the treatment of NSCLC and greatly improved patients' survival. However, drug resistance is inevitable, and extensive research has demonstrated that the Hippo pathway plays a crucial role in the development of drug resistance in NSCLC. The Hippo pathway is a highly conserved signaling pathway that is essential for various biological processes, including organ development, maintenance of epithelial balance, tissue regeneration, wound healing, and immune regulation. This pathway exerts its effects through two key transcription factors, namely Yes-associated protein (YAP) and transcriptional co-activator PDZ-binding motif (TAZ). They regulate gene expression by interacting with the transcriptional-enhanced associate domain (TEAD) family. In recent years, this pathway has been extensively studied in NSCLC. The review summarizes a comprehensive overview of the involvement of this pathway in NSCLC, and discusses the mechanisms of drug resistance, potential targets, and biomarkers associated with this pathway in NSCLC.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Ou SHI, Hagopian GG, Zhang SS, Nagasaka M. Comprehensive Review of ROS1 Tyrosine Kinase Inhibitors-Classified by Structural Designs and Mutation Spectrum (Solvent Front Mutation [G2032R] and Central β-Sheet 6 [Cβ6] Mutation [L2086F]). J Thorac Oncol 2024; 19:706-718. [PMID: 38070596 DOI: 10.1016/j.jtho.2023.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Despite ROS1 fusion-positive NSCLC accounting for approximately 1% to 2% of NSCLC, there is a long list of ROS1 tyrosine kinase inhibitors (TKIs) being developed in addition to three approved ROS1 TKIs, crizotinib, entrectinib and repotrectinib. Here, we categorized ROS1 TKIs by their structures (cyclic versus noncyclic) and inhibitory abilities (active against solvent front mutation G2032R or central β-sheet #6 [Cβ6] mutation L2086F) and summarized their reported clinical activity in order to provide a dashboard on how to use these ROS1 TKIs in various clinical situations. In addition, the less known Cβ6 mutation ROS1 L2086F confer resistances to next-generation ROS1 TKIs (repotrectinib, taletrectinib, and potentially NVL-520) that can be overcome by cabozantinib as documented in published patient reports and potentially by certain L-shaped type I ROS1 TKIs including ceritinib and gilteritinib, which is approved as a FLT3 inhibitor for relapsed refractory FLT3+ acute myeloid leukemia but have published preclinical activites against ROS1 (and ALK). Future clinical trials should investigate cabozantinib and gilteritinib to repurpose them as ROS1 TKIs that can target ROS1 L2086F Cβ6 mutation.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- Department of Medicine, University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California.
| | - Garo G Hagopian
- Department of Medicine, University of California Irvine School of Medicine, Orange, California
| | - Shannon S Zhang
- Department of Medicine, University of California Irvine School of Medicine, Orange, California
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
13
|
Khan MS, Altwaijry N, Al-Bagmi MS, Alafaleq NO, Alokail MS, Shahwan M, Shamsi A. Structure-guided identification of potent inhibitors of ROS1 kinase for therapeutic development against non-small cell lung cancer. J Biomol Struct Dyn 2024; 42:3837-3847. [PMID: 37254309 DOI: 10.1080/07391102.2023.2217450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Proto-oncogene tyrosine-protein kinase ROS (ROS1) is a member of the sevenless receptor, which affects epithelial cell differentiation and is highly expressed in a variety of tumor cells. The elevated expression and dysfunction of ROS1 have been involved in various malignancies, such as non-small cell lung cancer (NSCLC), stomach cancer, ovarian, breast cancer, cholangiocarcinoma, colorectal cancer, adenosarcoma, oesophageal cancer, etc. ROS1 has been postulated as a potential drug target in anticancer therapeutics. In this study, we carried out a virtual screening of phytochemicals against ROS1 to identify its potential inhibitors. The virtual screening process was performed on the ROS1 structure, where two phytochemicals, Helioscopinolide C and Taiwanin C, were identified. These compounds resulted from filters like Lipinski rule of five, PAINS filter, binding affinities values, and all-atom molecular dynamics (MD) simulations followed by principal component analysis (PCA) and essential dynamics. The findings of this study highlight the role of ROS1 in multiple physiological candidates and its therapeutic targeting using phytochemicals. This study suggests Helioscopinolide C and Taiwanin C as potential compounds for therapeutic development targeting ROS1-associated non-small cell lung cancer for clinical applications. Further in vitro and in vivo experiments are required to validate these findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Moneera Saud Al-Bagmi
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
14
|
Terrones M, Deben C, Rodrigues-Fortes F, Schepers A, de Beeck KO, Van Camp G, Vandeweyer G. CRISPR/Cas9-edited ROS1 + non-small cell lung cancer cell lines highlight differential drug sensitivity in 2D vs 3D cultures while reflecting established resistance profiles. J Transl Med 2024; 22:234. [PMID: 38433235 PMCID: PMC10910754 DOI: 10.1186/s12967-024-04988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.
Collapse
Affiliation(s)
- Marc Terrones
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Christophe Deben
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Felicia Rodrigues-Fortes
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
15
|
Steeghs EM, Groen HJ, Schuuring E, Aarts MJ, Damhuis RA, Voorham QJ, consortium PATH, Ligtenberg MJ, Grünberg K. Mutation-tailored treatment selection in non-small cell lung cancer patients in daily clinical practice. Lung Cancer 2022; 167:87-97. [DOI: 10.1016/j.lungcan.2022.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
|
16
|
Liu M, Dai J, Wei M, Pan Q, Zhu W. An updated patent review of small-molecule ROS1 kinase inhibitors (2015-2021). Expert Opin Ther Pat 2022; 32:713-729. [PMID: 35343863 DOI: 10.1080/13543776.2022.2058872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION : C-ros oncogene 1 (ROS1) is the sole member of the ROS1 receptor tyrosine kinase (ROS1-RTK) family, which is involved in the formation of non-small cell lung cancer (NSCLC), gastric adenocarcinoma, colorectal cancer and other malignant tumors. At present, only crizotinib was approved for the treatment of advanced ROS1-positive NSCLC, and there have been reports of ROS1 mutations resulting in drug resistance. Consequently, it is necessary to develop new generations of inhibitors to overcome the existing problems. AREAS COVERED This review summarizes the inhibitors with ROS1 inhibitory activity which are undergoing clinical trials and recent advances in patented ROS1 small molecular inhibitors from 2015 to 2021. EXPERT OPINION ROS1 rearrangements have been found in approximately 1%-2% of patients with NSCLC. Since the approval of crizotinib as multi-targeted ALK/MET/ROS1 kinase inhibitor for ALK-mutated NSCLC therapy, the researchers are focusing on ROS1-mutated tumors, especially NSCLC. However, drug-resistant mutations have already been found in clinical application. Therefore, it is still urgent to develop new generation of ROS1 inhibitors.
Collapse
Affiliation(s)
- Meng Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jintian Dai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Mudan Wei
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| |
Collapse
|
17
|
Wang L, Zhai Q, Lu Q, Lee K, Zheng Q, Hong R, Wang S. Clinical genomic profiling to identify actionable alterations for very early relapsed triple-negative breast cancer patients in the Chinese population. Ann Med 2021; 53:1358-1369. [PMID: 34396843 PMCID: PMC8381897 DOI: 10.1080/07853890.2021.1966086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents about 19% of all breast cancer cases in the Chinese population. Lack of targeted therapy contributes to the poorer outcomes compared with other breast cancer subtypes. Comprehensive genomic profiling helps to explore the clinically relevant genomic alterations (CRGAs) and potential therapeutic targets in very-early-relapsed TNBC patients. METHODS Formalin-fixed paraffin-embedded (FFPE) tumour tissue specimens from 23 patients with very-early-relapsed TNBC and 13 patients with disease-free survival (DFS) more than 36 months were tested by FoundationOne CDx (F1CDx) in 324 genes and select gene rearrangements, along with genomic signatures including microsatellite instability (MSI) and tumour mutational burden (TMB). RESULTS In total, 137 CRGAs were detected in the 23 very-early-relapsed TNBC patients, averaging six alterations per sample. The mean TMB was 4 Muts/Mb, which was higher than that in non-recurrence patients, and is statistically significant. The top-ranked altered genes were TP53 (83%), PTEN (35%), RB1 (30%), PIK3CA (26%) and BRCA1 (22%). RB1 mutation carriers had shorter DFS. Notably, 100% of these patients had at least one CRGA, and 87% of patients had at least one actionable alteration. In pathway analysis, patients who carried a mutation in the cell cycle pathway were more likely to experience very early recurrence. Strikingly, we detected one patient with ERBB2 amplification and one patient with ERBB2 exon20 insertion, both of which were missed by immunohistochemistry (IHC). We also detected novel alterations of ROS1-EPHA7 fusion for the first time, which has not been reported in breast cancer before. CONCLUSIONS The comprehensive genomic profiling can identify novel treatment targets and address the limited options in TNBC patients. Therefore, incorporating F1CDx into TNBC may shed light on novel therapeutic opportunities for these very-early-relapsed TNBC patients.
Collapse
Affiliation(s)
- Liye Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qinglian Zhai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qianyi Lu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Kaping Lee
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qiufan Zheng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| |
Collapse
|
18
|
Zhu VW, Ou SHI. Ensartinib (X-396), an Approved ALK Inhibitor, Falls Out as a Clinically Relevant ROS1 Inhibitor. J Thorac Oncol 2021; 16:1778-1781. [PMID: 34715999 DOI: 10.1016/j.jtho.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Viola W Zhu
- Division of Hematology-Medical Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California
| | - Sai-Hong Ignatius Ou
- Division of Hematology-Medical Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California.
| |
Collapse
|
19
|
Li W, Sparidans RW, Lebre MC, Beijnen JH, Schinkel AH. ABCB1 and ABCG2 Control Brain Accumulation and Intestinal Disposition of the Novel ROS1/TRK/ALK Inhibitor Repotrectinib, While OATP1A/1B, ABCG2, and CYP3A Limit Its Oral Availability. Pharmaceutics 2021; 13:pharmaceutics13111761. [PMID: 34834176 PMCID: PMC8619046 DOI: 10.3390/pharmaceutics13111761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Repotrectinib shows high activity against ROS1/TRK/ALK fusion-positive cancers in preclinical studies. We explored the roles of multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporter(s), and the CYP3A complex in pharmacokinetics and tissue distribution of repotrectinib in genetically modified mouse models. In vitro, human ABCB1 and ABCG2, and mouse Abcg2 efficiently transported repotrectinib with efflux transport ratios of 13.5, 5.6, and 40, respectively. Oral repotrectinib (10 mg/kg) showed higher plasma exposures in Abcg2-deficient mouse strains. Brain-to-plasma ratios were increased in Abcb1a/1b−/− (4.1-fold) and Abcb1a/1b;Abcg2−/− (14.2-fold) compared to wild-type mice, but not in single Abcg2−/− mice. Small intestinal content recovery of repotrectinib was decreased 4.9-fold in Abcb1a/1b−/− and 13.6-fold in Abcb1a/1b;Abcg2−/− mice. Intriguingly, Abcb1a/1b;Abcg2−/− mice displayed transient, mild, likely CNS-localized toxicity. Oatp1a/1b deficiency caused a 2.3-fold increased oral availability and corresponding decrease in liver distribution of repotrectinib. In Cyp3a−/− mice, repotrectinib plasma AUC0–h was 2.3-fold increased, and subsequently reduced 2.0-fold in humanized CYP3A4 transgenic mice. Collectively, Abcb1 and Abcg2 restrict repotrectinib brain accumulation and possibly toxicity, and control its intestinal disposition. Abcg2 also limits repotrectinib oral availability. Oatp1a/1b mediates repotrectinib liver uptake, thus reducing its systemic exposure. Systemic exposure of repotrectinib is also substantially limited by CYP3A activity. These insights may be useful to optimize the therapeutic application of repotrectinib.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
| | - Rolf W. Sparidans
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands;
| | - Maria C. Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
| | - Jos H. Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
- Division of Pharmacoepidemiology & Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alfred H. Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
- Alfred H. Schinkel, Schinkel Group, Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-512-2046; Fax: +31-20-512-1792
| |
Collapse
|
20
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
21
|
Xu L, Chen X, Huo H, Liu Y, Yang X, Gu D, Yuan M, Zhang M, Chen R, Wang J, Zheng Z. Case Report: Detection of Double ROS1 Translocations, SDC4-ROS1 and ROS1-GK, in a Lung Adenocarcinoma Patient and Response to Crizotinib. Front Med (Lausanne) 2021; 8:649177. [PMID: 34616749 PMCID: PMC8488083 DOI: 10.3389/fmed.2021.649177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
ROS1 rearrangement, identified in ~2% of non-small cell lung cancer (NSCLC), has defined a distinctive molecular subtype. Patients with ROS1 fusion have been shown to be highly sensitive to treatment with crizotinib. However, the efficacy of crizotinib in NSCLC patients with double ROS1 fusions remains to be elucidated. Here, we report a 40-year-old male diagnosed with stage IIIA lung adenocarcinoma. Two ROS1 fusions [SDC4-ROS1 (EX2:EX32) and ROS1-GK (EX31:EX13)] were detected simultaneously in tumor tissue of this patient by next-generation sequencing. Crizotinib was administered, and the patient showed a partial response in lung lesions. Nevertheless, a brain lesion was found at 8 months after treatment. The slightly short duration of response may be related to the presence of ROS1-GK rearrangement. This case proved that patients with SDC4-ROS1 and ROS1-GK fusions may be sensitive to crizotinib, but short progression-free survival of this case showed that the presence of ROS1-GK rearrangement may affect the efficacy of crizotinib. A large-scale investigation on the efficacy of ROS1 inhibitors in patients with complex ROS1 fusions should be conducted in the future.
Collapse
Affiliation(s)
- Long Xu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxia Chen
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hong Huo
- Department of Nephrology, The Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing, China
| | - Yongye Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaodan Yang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | | | | | - Min Zhang
- Geneplus-Beijing, Beijing, China
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | - Jiayin Wang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
22
|
Zhang Y, Zhang X, Zhang R, Xu Q, Yang H, Lizaso A, Xu C, Liu J, Wang W, Ou SHI, Zhang J, Song Z, Yang N. Clinical and molecular factors that impact the efficacy of first-line crizotinib in ROS1-rearranged non-small-cell lung cancer: a large multicenter retrospective study. BMC Med 2021; 19:206. [PMID: 34511132 PMCID: PMC8436549 DOI: 10.1186/s12916-021-02082-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND ROS1-rearranged lung cancers benefit from first-line crizotinib therapy; however, clinical and molecular factors that could affect crizotinib efficacy in ROS1-rearranged lung cancers are not yet well-elucidated. Our retrospective study aimed to compare the efficacy of chemotherapy and crizotinib in the first-line treatment of ROS1-rearranged advanced lung cancer and evaluate various clinical and molecular factors that might impact crizotinib efficacy in real-world practice. METHODS Treatment responses, survival outcomes, and patterns of disease progression were analyzed for 235 patients with locally advanced to advanced disease who received first-line chemotherapy (n = 67) or crizotinib (n = 168). RESULTS The overall response rate was 85.7% (144/168) for first-line crizotinib and 41.8% (28/67) for chemotherapy. Patients treated with first-line crizotinib (n = 168) had significantly longer median progression-free survival (PFS) than chemotherapy (n = 67) (18.0 months vs. 7.0 months, p < 0.001). Patients harboring single CD74-ROS1 (n = 90) had significantly shorter median PFS with crizotinib than those harboring non-CD74 ROS1 fusions (n = 69) (17.0 months vs. 21.0 months; p = 0.008). Patients with baseline brain metastasis (n = 45) had a significantly shorter PFS on first-line crizotinib than those without brain metastasis (n = 123) (16.0 months vs. 22.0 months; p = 0.03). At progression, intracranial-only progression (n = 40), with or without baseline CNS metastasis, was associated with longer median PFS than those with extracranial-only progression (n = 64) (19.0 months vs. 13.0 months, p < 0.001). TP53 mutations were the most common concomitant mutation, detected in 13.1% (7/54) of patients with CD74-ROS1 fusions, and 18.8% (6/32) with non-CD74 ROS1 fusions. Patients with concomitant TP53 mutations (n=13) had significantly shorter PFS than those who had wild-type TP53 (n = 81) (6.5 months vs. 21.0 months; p < 0.001). PFS was significantly shorter for the patients who harbored concomitant driver mutations (n = 9) (11.0 months vs 24.0 months; p = 0.0167) or concomitant tumor suppressor genes (i.e., TP53, RB1, or PTEN) (n = 25) (9.5 months vs 24.0 months; p < 0.001) as compared to patients without concomitant mutations (n = 58). CONCLUSION Our results demonstrate that baseline brain metastatic status and various molecular factors could contribute to distinct clinical outcomes from first-line crizotinib therapy of patients with ROS1-rearranged lung cancer. CLINICAL TRIALS REGISTRATION CORE, NCT03646994.
Collapse
Affiliation(s)
- Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China. .,Graduate School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xiangyu Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Haiyan Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | | | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jun Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenxian Wang
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
| | - Jiexia Zhang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Department of Medicine, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
| | - Zhengbo Song
- Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA.
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China. .,Graduate School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
23
|
Li Z, Liu F, Wu S, Ding S, Chen Y, Liu J. Research progress on the drug resistance of ALK kinase inhibitors. Curr Med Chem 2021; 29:2456-2475. [PMID: 34365942 DOI: 10.2174/0929867328666210806120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fusion and rearrangement of the ALK gene of anaplastic lymphoma kinase is an important cause of a variety of cancers, including non-small cell lung cancer (NSCLC) and anaplastic large cell lymphoma (ALCL). Since crizotinib first came out, many ALK inhibitors have come out one after another, but the fatal flaw in each generation of ALK inhibitors is the body's resistance to drugs. Therefore, how to solve the problem of drug resistance has become an important bottleneck in the application and development of ALK inhibitors. This article briefly introduces the drug resistance of ALK inhibitors and the modified forms of ALK inhibitors, which provide a theoretical basis for solving the drug resistance of ALK inhibitors and the development of a new generation of ALK kinase inhibitors. METHOD We use relevant databases to query relevant literature, and then screen and select based on the relevance and cutting edge of the content. We then summarize and analyze appropriate articles, integrate and classify relevant studies, and finally write articles based on topics. RESULT This article starts with the problem of ALK resistance, first introduces the composition of ALK kinase, and then introduces the problem of resistance of ALK kinase inhibitors. Later, the structural modification to overcome ALK resistance was introduced, and finally, the method to overcome ALK resistance was introduced. CONCLUSION This article summarizes the resistance pathways of ALK kinase inhibitors, and integrates the efforts made to overcome the structural modification of ALK resistance problems, and hopes to provide some inspiration for the development of the next generation of ALK kinase inhibitors.
Collapse
Affiliation(s)
- Zhen Li
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Fang Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 10036. China
| |
Collapse
|
24
|
Xia ZJ, Ji YC, Sun DQ, Peng X, Gao YL, Fang YF, Zhao XD, Wang WB, Ding J, Geng MY, Ai J. SAF-189s, a potent new-generation ROS1 inhibitor, is active against crizotinib-resistant ROS1 mutant-driven tumors. Acta Pharmacol Sin 2021; 42:998-1004. [PMID: 32918045 PMCID: PMC8149715 DOI: 10.1038/s41401-020-00513-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
The ROS1 fusion kinase is an attractive antitumor target. Though with significant clinical efficacy, the well-known first-generation ROS1 inhibitor (ROS1i) crizotinib inevitably developed acquired resistance due to secondary point mutations in the ROS1 kinase. Novel ROS1is effective against mutations conferring secondary crizotinib resistance, especially G2032R, are urgently needed. In the present study, we evaluated the antitumor efficacy of SAF-189s, the new-generation ROS1/ALK inhibitor, against ROS1 fusion wild-type and crizotinib-resistant mutants. We showed that SAF-189s potently inhibited ROS1 kinase and its known acquired clinically resistant mutants, including the highly resistant G2032R mutant. SAF-189s displayed subnanomolar to nanomolar IC50 values against ROS1 wild-type and mutant kinase activity and a selectivity vs. other 288 protein kinases tested. SAF-189s blocked cellular ROS1 signaling, and in turn potently inhibited the cell proliferation in HCC78 cells and BaF3 cells expressing ROS1 fusion wild-type and resistance mutants. In nude mice bearing BaF3/CD74-ROS1 or BaF3/CD74-ROS1G2032R xenografts, oral administration of SAF-189s dose dependently suppressed the growth of both ROS1 wild-type- and G2032R mutant-driven tumors. In a patient-derived xenograft model of SDC4-ROS1 fusion NSCLC, oral administration of SAF-189s (20 mg/kg every day) induced tumor regression and exhibited notable prolonged and durable efficacy. In addition, SAF-189s was more potent than crizotinib and comparable to lorlatinib, the most advanced ROS1i known against the ROS1G2032R. Collectively, these results suggest the promising potential of SAF-189s for the treatment of patients with the ROS1 fusion G2032R mutation who relapse on crizotinib. It is now recruiting both crizotinib-relapsed and naive ROS1-positive NSCLC patients in a multicenter phase II trial (ClinicalTrials.gov Identifier: NCT04237805).
Collapse
Affiliation(s)
- Zong-Jun Xia
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yin-Chun Ji
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Qiao Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xia Peng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Lei Gao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Fen Fang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Wei-Bo Wang
- Fochon Pharmaceuticals Ltd, Chongqing, 401123, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Yu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Ai
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Ji X, Xie H, Zhu R, Chen B, Jiang S, Luo J. Different clinical features between patients with ROS1-positive and ALK-positive advanced non-small cell lung cancer. J Int Med Res 2021; 49:300060521993643. [PMID: 33583243 PMCID: PMC7890737 DOI: 10.1177/0300060521993643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To compare the baseline clinical characteristics between patients with ROS1-positive and ALK-positive advanced non-small cell lung cancer (NSCLC), and the correlations of these subtypes with the distribution of metastases. Methods We compared the clinical characteristics and imaging features of patients with ROS1-positive and ALK-positive NSCLC using statistical methods. Results Data for 232 patients were analyzed. Compared with ALK-positive NSCLC, ROS1-positive NSCLC was more likely to occur in women (71% vs 53%), and primary lesions ≤3 cm were more common in patients with ROS1-positive compared with ALK-positive NSCLC (58% vs 37%). There was no significant difference in the distribution of metastases between the two groups. Subgroup analysis within the ROS1-positive group showed that, compared with primary lesions >3 cm, primary lesions ≤3 cm were more likely to present as peripheral tumors (72% vs 43%) and more likely to exhibit non-solid density (44% vs 4%). Conclusions Although ROS1-positive and ALK-positive NSCLCs show similar clinical features, the differences may help clinicians to identify patients requiring further genotyping at initial diagnosis.
Collapse
Affiliation(s)
- Xianxiu Ji
- Department of Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Huikang Xie
- Department of Pathology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Ren Zhu
- Department of Medical administration, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Bin Chen
- Department of Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Sen Jiang
- Department of Radiology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Jie Luo
- Department of Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
26
|
Guo M, Zuo D, Zhao T, Li X, Cao J, Qiu Y, Wei S, Zhai X. Structure-based optimization identified novel furyl-containing 2,4-diarylaminopyrimidine analogues as ALK/ROS1 dual inhibitors with anti-mutation effects. Eur J Med Chem 2021; 214:113259. [PMID: 33581554 DOI: 10.1016/j.ejmech.2021.113259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Aiming to develop ALK/ROS1 dual inhibitors overcoming ceritinib-resistant G1202R mutant, a dedicated structure-guided modification campaign was conducted based on ALK co-crystal structures. Twenty eight diarylaminopyrimidine (DAAP) analogues possessing furan or tetrahydrofuran group were designed and synthesized, among which compound 16 bearing (dimethylamino)methyl)furan-2-yl)methyl)thio fragment was identified. Compound 16 exhibited significant cytotoxicity on ALK-positive Karpas299 and H2228 cells with IC50 values of 20 nM and 110 nM. Meanwhile, compound 16 turned out as the most potent entity superior to ceritinib with IC50 values of 2.8, 2.6, 3.8 and 2.3 nM against ALKWT, ALKL1196M, ALKG1202R and ROS1WT, respectively. Subsequently, western blot assay showed that compound 16 significantly suppressed ALK and its downstream protein expression in a dose-dependent manner. Alternatively, the Hoechst 33258 and AO/EB staining assays illustrated that compound 16 could induce H2228 cell apoptosis. Ultimately, the binding models of compound 16 with ALKWT, ALKG1202R as well as ROS1 clearly presented the essential interactions within the active site. Together, compound 16 was validated as a promising ALK/ROS1 dual inhibitor for ALKG1202R mutation correlated tumors.
Collapse
Affiliation(s)
- Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianming Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiangyu Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jianshuang Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuxuan Qiu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shangfei Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
27
|
Vanajothi R, Vedagiri H, Al-Ansari MM, Al-Humaid LA, Kumpati P. Pharmacophore based virtual screening, molecular docking and molecular dynamic simulation studies for finding ROS1 kinase inhibitors as potential drug molecules. J Biomol Struct Dyn 2020; 40:3385-3399. [PMID: 33200682 DOI: 10.1080/07391102.2020.1847195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proto-oncogene receptor tyrosine kinase ROS-1 is one of the clinically important biomarker and plays a crucial role in regulation of a number of cellular functions including cell proliferation, migration and angiogenesis. Recently, inhibition of ROS1 kinase has proven to be a promising target of anticancer drugs for non-small cell lung cancer (NSCLC). The very few compounds have been used as potent drug molecules so far and the selective ROS1 inhibitors are relatively rare. Besides the currently available drugs such as Crizotinib and PF-06463922 are becoming sensitive due to mutations in the ROS1 protein. To curtail the problem of the resistant, present study was designed to identify the potent inhibitors against ROS1. Three different screening approaches such as structure based, Atom-based and pharmacophore based screening were carried out against commercially available databases and the retrieved best hits were further evaluated by Lipinski's filter. Thereafter the lead molecule was subjected to pocket specific docking with ROS1. The results show that, total of 9 molecules (3 from each screening) has good docking score (with range of -9.288 to -12.49 Kcal/Mol) and binding interactions within the active site of ROS1. In order to analyze the stability of the ligand- protein complexes, molecular dynamics simulation was performed. Thus, these identified potential lead molecules with good binding score and binding affinity with ROS1 may act as the potent ROS1 inhibitor, and that are worth considering for further experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Tamil Nadu, India
| | | | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Premkumar Kumpati
- Department of Biomedical Science, Bharathidasan University, Tamil Nadu, India
| |
Collapse
|
28
|
Fragment-based modification of 2,4-diarylaminopyrimidine derivatives as ALK and ROS1 dual inhibitors to overcome secondary mutants. Bioorg Med Chem 2020; 28:115719. [PMID: 33069075 DOI: 10.1016/j.bmc.2020.115719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 11/23/2022]
Abstract
In order to explore novel ALK and ROS1 dual inhibitors capable of overcoming crizotinib-resistant mutants, two series of 2,4-diarylaminopyrimidine derivatives were designed, synthesized and evaluated for their in vitro cytotoxic activity. In this work, we retained the 2,4-diarylaminopyrimidine scaffold and derivatize the DAAP scaffold with sulfonyl and acrylamide moieties to extend the structure-activity relationship (SAR) study. To our delight, some compounds exhibited excellent inhibitory activity with a double-digit nanomolar level in MTT assay. Four compounds were selected for enzymic assays further, the results led to the identification of a potent ALK and ROS1 dual inhibitor X-17, with IC50 values of 3.7 nM, 2.3 nM, 8.9 nM and 1.9 nM against ALK, ALKL1196M, ALKG1202R and ROS1, respectively. Ultimately, the molecular docking studies on X-17 clearly disclosed reasonable and optimal binding interactions with ALK.
Collapse
|
29
|
Abstract
ROS1-rearranged non-small cell lung cancer (NSCLC) makes up approximately 1% to 2% of all NSCLC, is oncogenically driven by a constitutively activated ROS1 kinase paired with certain fusion partners, and can be detected by several different assays. These patients are initially treated with tyrosine kinase inhibitors (TKIs), which target the activated ROS1 kinase. Eventually these tumors develop resistance to initial TKI treatment through secondary kinase mutations that block TKI binding or activation of bypass signaling pathways, which subvert ROS1 as the driver of the malignancy. Investigation of several TKIs that have shown efficacy in secondary resistant patients is underway.
Collapse
|
30
|
Vuong HG, Nguyen TQ, Nguyen HC, Nguyen PT, Ho ATN, Hassell L. Efficacy and Safety of Crizotinib in the Treatment of Advanced Non-Small-Cell Lung Cancer with ROS1 Rearrangement or MET Alteration: A Systematic Review and Meta-Analysis. Target Oncol 2020; 15:589-598. [PMID: 32865687 DOI: 10.1007/s11523-020-00745-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Crizotinib has been approved for the treatment of non-small-cell lung cancer (NSCLC) with ROS proto-oncogene 1 (ROS1) gene fusion. This drug has also been granted breakthrough designation for NSCLCs with MET exon 14 alterations. OBJECTIVE This systematic review and meta-analysis aimed to investigate the efficacy and safety of crizotinib in patients with these diseases. METHODS We searched PubMed and Web of Science for relevant studies. Meta-analysis of proportions was conducted to calculate the pooled rate of complete response, partial response, stable disease, progressive disease, disease control rate (DCR), objective response rate (ORR), and drug adverse effects (AEs) of crizotinib in NSCLCs with ROS1 rearrangement or MET alterations. RESULTS A total of 20 studies were included for meta-analysis. Among patients with ROS1-positive NSCLC, crizotinib exhibited a pooled DCR of 93.2% (95% confidence interval [CI] 90.8-95.5) and a pooled ORR of 77.4% (95% CI 72.8-82.1). The median progression-free survival (PFS) and overall survival (OS) of patients in this group was 14.5 and 32.6 months, respectively. For NSCLC with MET alterations, crizotinib was associated with a lower efficacy (DCR 78.9% [95% CI 70.3-87.4] and ORR 40.6% [95% CI 28.3-53.0]). The median PFS was 5.2 months, and median OS was 12.7 months. The most common drug AEs were vision impairment (43.7%), edema (42.9%), and fatigue (40.1%). CONCLUSION Our study highlighted and confirmed the efficacy of crizotinib in patients with NSCLC with ROS1 or MET genetic alterations. Crizotinib had remarkable effects on advanced NSCLC with ROS1 fusion, as previously reported. However, the role of this targeted therapy in MET-altered NSCLC remains investigational.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, Oklahoma University of Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Thu Quynh Nguyen
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - Hoang Cong Nguyen
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - Phuoc Truong Nguyen
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - An Thi Nhat Ho
- Department of Pulmonary and Critical Care Medicine, Saint Louis University, St. Louis, MO, 63104, USA
| | - Lewis Hassell
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
31
|
Emerging pathways for precision medicine in management of cholangiocarcinoma. Surg Oncol 2020; 35:47-55. [PMID: 32827952 DOI: 10.1016/j.suronc.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common biliary tract malignancy with a dismal prognosis. Surgical resection with a negative microscopic margin offers the only hope for long-term survival. However, the majority of patients present with advanced disease not amenable to curative resection, mainly due to late presentation and aggressive nature of the disease. Unfortunately, due to the heterogeneous nature of CCA as well as limitations of available chemotherapy medications, traditional chemotherapy regimens offer limited survival benefit. Recent advances in genomic studies and next-generation sequencing techniques have assisted in better understanding of cholangiocarcinogenesis and identification of potential aberrant signaling pathways. Targeting the specific genomic abnormalities via novel molecular therapies has opened a new avenue in management of CCA with encouraging results in preclinical studies and early clinical trials. In this review, we present emerging therapies for precision medicine in CCA.
Collapse
|
32
|
Sankar K, Gadgeel SM, Qin A. Molecular therapeutic targets in non-small cell lung cancer. Expert Rev Anticancer Ther 2020; 20:647-661. [PMID: 32580596 DOI: 10.1080/14737140.2020.1787156] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Several targetable genetic alterations have been identified in non-small cell lung cancers (NSCLC) and drugs targeting these alterations have been approved for the management of advanced NSCLC patients. Driver mutations with emerging clinical trial data include EGFR exon 20 insertion mutations, MET amplification, KRAS G12 C point mutations, RET rearrangements, HER2 amplification and mutations, and FGFR amplification and translocations. AREAS COVERED We reviewed English-language articles indexed in Medline and PubMed up to the 1st of June 2020. In addition, the proceedings of major conferences were reviewed for relevant abstracts. We report data published regarding targeted therapies which are currently approved and for those which are emerging in advanced or metastatic NSCLC. EXPERT REVIEW While these drugs have been shown to be efficacious and tolerable, resistance almost always develops. Though next-generation tyrosine kinase inhibitors (TKIs) have been developed, the appropriate sequencing of these drugs is not clear. Evaluating combination therapies to prevent or delay the onset of resistance and understanding mechanisms of resistance are critical areas of emerging research.
Collapse
Affiliation(s)
| | | | - Angel Qin
- University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
33
|
Li J, Liu L, Zhang Q, Huang Y, Zhang Y, Gan X, Liu S, Yue Z, Wei Y. A novel TJP1-ROS1 fusion in malignant peripheral nerve sheath tumor responding to crizotinib: A case report. Medicine (Baltimore) 2020; 99:e20725. [PMID: 32590748 PMCID: PMC7328986 DOI: 10.1097/md.0000000000020725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Malignant peripheral nerve sheath tumor (MPNST) is a rare sarcoma. Owing to the lack of specific histological criteria, immunohistochemical, and molecular diagnostic markers, several differential diagnoses must be considered. Advances in molecular testing can provide significant insights for management of rare tumor. PATIENT CONCERNS The patient was a 50-year-old man with a history of lumpectomy on the right back 30 years ago. He felt a stabbing pain at the right iliac fossa and went to the local hospital. DIAGNOSIS By immunohistochemistry, the tumor cells stained positively for S-100 (focal +), CD34 (strong +++) and Ki-67 (20%), and negatively for smooth muscle actin, pan-cytokeratin, neurofilament, pan-cytokeratin-L, GFAP, CD31, STAT6, ERG, myogenin, and MyoD1. Combined with the histopathology and immunohistochemistry results, our initial diagnosis was solitary fibrous tumor (SFT) or MPNST. The tissue biopsy was sent for next-generation sequencing. neurofibromatosis type 1 Q1395Hfs*22 somatic mutation, neurofibromatosis type 1 D483Tfs*15 germline mutation, and amplifications of BTK, MDM2, ATF1, BMPR1A, EBHA2, GNA13, PTPN11, RAD52, RPTOR, and SOX9, as well as TJP1-ROS1 fusion, CDKN2A-IL1RAPL2 fusion and CDKN2A/UBAP1 rearrangement were identified. Given that NAB2-STAT6 fusion, a specific biomarker of SFT, was not identified in our patient's tumor, the SFT was excluded by through genetic testing results. Therefore, our finally diagnosis was a MPNST by 2 or more pathologists. INTERVENTIONS AND OUTCOMES Subsequently, the patient received crizotinib therapy for 2 months and showed stable disease. However, after crizotinib continued treatment for 4 months, the patient's disease progressed. Soon after, the patient stopped crizotinib treatment and died in home. LESSONS To our knowledge, this is the first report of the TJP1-ROS1 fusion, which expands the list of gene fusions and highlights new targets for targeted therapy. Also, our case underlines the value of multi-gene panel next-generation sequencing for diagnosis of MPNST.
Collapse
Affiliation(s)
| | - Lingxiang Liu
- Department of Medical Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yu L, Wei M, Li F. Longitudinal Analysis of Gene Expression Changes During Cervical Carcinogenesis Reveals Potential Therapeutic Targets. Evol Bioinform Online 2020; 16:1176934320920574. [PMID: 32489245 PMCID: PMC7241206 DOI: 10.1177/1176934320920574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
Despite advances in the treatment of cervical cancer (CC), the prognosis of patients with CC remains to be improved. This study aimed to explore candidate gene targets for CC. CC datasets were downloaded from the Gene Expression Omnibus database. Genes with similar expression trends in varying steps of CC development were clustered using Short Time-series Expression Miner (STEM) software. Gene functions were then analyzed using the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Protein interactions among genes of interest were predicted, followed by drug-target genes and prognosis-associated genes. The expressions of the predicted genes were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Red and green profiles with upward and downward gene expressions, respectively, were screened using STEM software. Genes with increased expression were significantly enriched in DNA replication, cell-cycle-related biological processes, and the p53 signaling pathway. Based on the predicted results of the Drug-Gene Interaction database, 17 drug-gene interaction pairs, including 3 red profile genes (TOP2A, RRM2, and POLA1) and 16 drugs, were obtained. The Cancer Genome Atlas data analysis showed that high POLA1 expression was significantly correlated with prolonged survival, indicating that POLA1 is protective against CC. RT-qPCR and Western blotting showed that the expressions of TOP2A, RRM2, and POLA1 gradually increased in the multistep process of CC. TOP2A, RRM2, and POLA1 may be targets for the treatment of CC. However, many studies are needed to validate our findings.
Collapse
Affiliation(s)
- Lijun Yu
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meiyan Wei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fengyan Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Li W, Perpinioti N, Schinkel AH, Beijnen JH, Sparidans RW. Bioanalytical assay for the new-generation ROS1/TRK/ALK inhibitor repotrectinib in mouse plasma and tissue homogenate using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144:122098. [DOI: 10.1016/j.jchromb.2020.122098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
|
36
|
Harada G, Gongora ABL, da Costa CM, Santini FC. TRK Inhibitors in Non-Small Cell Lung Cancer. Curr Treat Options Oncol 2020; 21:39. [DOI: 10.1007/s11864-020-00741-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Riccardo F, Barutello G, Petito A, Tarone L, Conti L, Arigoni M, Musiu C, Izzo S, Volante M, Longo DL, Merighi IF, Papotti M, Cavallo F, Quaglino E. Immunization against ROS1 by DNA Electroporation Impairs K-Ras-Driven Lung Adenocarcinomas . Vaccines (Basel) 2020; 8:vaccines8020166. [PMID: 32268572 PMCID: PMC7349290 DOI: 10.3390/vaccines8020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide. Despite the introduction of tyrosine kinase inhibitors and immunotherapeutic approaches, there is still an urgent need for novel strategies to improve patient survival. ROS1, a tyrosine kinase receptor endowed with oncoantigen features, is activated by chromosomal rearrangement or overexpression in NSCLC and in several tumor histotypes. In this work, we have exploited transgenic mice harboring the activated K-Ras oncogene (K-RasG12D) that spontaneously develop metastatic NSCLC as a preclinical model to test the efficacy of ROS1 immune targeting. Indeed, qPCR and immunohistochemical analyses revealed ROS1 overexpression in the autochthonous primary tumors and extrathoracic metastases developed by K-RasG12D mice and in a derived transplantable cell line. As proof of concept, we have evaluated the effects of the intramuscular electroporation (electrovaccination) of plasmids coding for mouse- and human-ROS1 on the progression of these NSCLC models. A significant increase in survival was observed in ROS1-electrovaccinated mice challenged with the transplantable cell line. It is worth noting that tumors were completely rejected, and immune memory was achieved, albeit only in a few mice. Most importantly, ROS1 electrovaccination was also found to be effective in slowing the development of autochthonous NSCLC in K-RasG12D mice.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Angela Petito
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Chiara Musiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Stefania Izzo
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Marco Volante
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), 10126 Torino, Italy;
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Mauro Papotti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| |
Collapse
|
38
|
Lung Carcinoma. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
39
|
Wang J, Wei S, Li T, Xing L, Cao M, Jiang N, Guo M, Zuo D, Zhai X. Structure-based design of 2,4-diaminopyrimidine derivatives bearing a pyrrolyl group as ALK and ROS1 inhibitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj05980f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twenty-eight 2,4-diaminopyrimidine derivatives (9a–9n and 10a–10n) bearing a pyrrolyl moiety were designed and synthesized based on the co-crystal structure of ceritinib with ALKwt protein and compound 10d bearing sulfonamide (R1) and 4-methylpiperazinyl (R2) moiety was of great promising.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Shangfei Wei
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Tong Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Lingyun Xing
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Meng Cao
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Daiying Zuo
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|
40
|
Spagnuolo A, Muto M, Monaco F, Colantuoni G, Gridelli C. The optional approach of oncogene-addicted non-small cell lung cancer with brain metastases in the new generation targeted therapies era. Transl Lung Cancer Res 2019; 8:1134-1151. [PMID: 32010591 PMCID: PMC6976372 DOI: 10.21037/tlcr.2019.12.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
In recent years, the study of the molecular characteristics of non-small cell lung cancer (NSCLC) has highlighted a specific role of some genes that represent important therapeutic targets, including epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS-1) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF). Patients with oncogene-addicted cancer benefit more from therapy with tyrosine kinase inhibitors (TKIs) than from chemotherapy. The brain is a preferred site for tumor spread in these patients. In addition, given greater control of extracranial disease and prolonged survival, the brain is often the first site of progression. Therefore, there is great interest in therapeutic approaches that optimize the control of intracranial disease associated with systemic drugs that, by penetrating the blood-brain barrier (BBB), may improve local control. On the latter, radiotherapy provides excellent efficacy but following the results of clinical trials with new brain penetrant drugs, the question of how and especially when to perform brain radiotherapy in patients with oncogene-addicted NSCLC remains open. Prospective studies may indicate which patients are most likely to benefit from combined use or in what sequence they will undergo systemic and radiotherapy treatment. Due to the heterogeneity of patients and the introduction of new generation TKIs, a multidisciplinary assessment for the best management of therapies in NSCLC patients with molecular driver alterations and brain metastases (BM) is required.
Collapse
Affiliation(s)
- Alessia Spagnuolo
- Division of Medical Oncology, ‘S. G. Moscati’ Hospital, Avellino, Italy
| | - Matteo Muto
- Division of Radiotherapy, ‘S. G. Moscati’ Hospital, Avellino, Italy
| | - Fabio Monaco
- Division of Radiation Protection, ‘S. G. Moscati’ Hospital, Avellino, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, ‘S. G. Moscati’ Hospital, Avellino, Italy
| |
Collapse
|
41
|
Liu S, Jiang Y, Yan R, Li Z, Wan S, Zhang T, Wu X, Hou J, Zhu Z, Tian Y, Zhang J. Design, synthesis and biological evaluations of 2-amino-4-(1-piperidine) pyridine derivatives as novel anti crizotinib-resistant ALK/ROS1 dual inhibitors. Eur J Med Chem 2019; 179:358-375. [PMID: 31260890 DOI: 10.1016/j.ejmech.2019.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
ALK and ROS1 kinases have become promising therapeutic targets since Crizotinib was used to treat non-small-cell lung cancer clinically. Aiming to explore new potent inhibitors, a series of 2-amino-4-(1-piperidine) pyridine derivatives that stabilized a novel DFG-shifted conformation in the kinase domain of ALK were designed and synthesized on the base of lead compound A. Biological evaluation highlighted that most of these new compounds could also potently inhibit ROS1 kinase, leading to the promising inhibitors against both ROS1 and ALK. Among them, the representative compound 2e stood out potent anti-proliferative activity against ALK-addicted H3122 and ROS1-addicted HCC78 cell lines (IC50 = 6.27 μM and 10.71 μM, respectively), which were comparable to that of Crizotinib. Moreover, 2e showed impressive enzyme activity against clinically Crizotinib-resistant ALKL1196M with an IC50 value of 41.3 nM, which was about 2-fold more potent than that of Crizotinib. 2e also showed potent inhibitory activity in about 6-fold superior to Crizotinib (IC50: 104.7 nM vs. 643.5 nM) in Ba/F3 cell line harboring ROS1G2032R. Furthermore, molecular modeling disclosed that all the representative inhibitors could dock into the active site of ALK and ROS1, which gave a probable explanation of anti Crizotinib-resistant mutants. These results indicated that our work has established a path forward for the generation of anti Crizotinib-resistant ALK/ROS1 dual inhibitors.
Collapse
Affiliation(s)
- Siming Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Ying Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Ruohong Yan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Tingting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaoyun Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Ju Hou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhengguang Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
42
|
Lei H, Jiang N, Miao X, Xing L, Guo M, Liu Y, Xu H, Gong P, Zuo D, Zhai X. Discovery of novel mutant-combating ALK and ROS1 dual inhibitors bearing imidazolidin-2-one moiety with reasonable PK properties. Eur J Med Chem 2019; 171:297-309. [DOI: 10.1016/j.ejmech.2019.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|
43
|
Ou SHI, Zhu VW. CNS metastasis in ROS1+ NSCLC: An urgent call to action, to understand, and to overcome. Lung Cancer 2019; 130:201-207. [DOI: 10.1016/j.lungcan.2019.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023]
|
44
|
Russo U, Sabatino V, Nizzoli R, Tiseo M, Cappabianca S, Reginelli A, Carrafiello G, Brunese L, De Filippo M. Transthoracic computed tomography-guided lung biopsy in the new era of personalized medicine. Future Oncol 2019; 15:1125-1134. [PMID: 30880466 DOI: 10.2217/fon-2018-0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Computed tomography-guided lung biopsy is a valid and safe procedure for characterizing pulmonary nodules. In the past years, this technique has been mainly used to confirm the malignant nature of undetermined pulmonary lesions; however, today its role has been completely renewed. With the advent of target therapy and immunotherapy, it has arisen for lung cancer, in inoperable patients, the necessity to obtain adequate bioptical material to perform a correct molecular characterization of the lesion. Moreover, the possibility of acquired drug-resistance mechanisms makes it necessary in some cases to rebiopsy these lesions over time. For these reasons, it is likely that the request of computed tomography-guided lung biopsy will increase in the future, therefore every radiologist should be confident with its most important aspects.
Collapse
Affiliation(s)
- Umberto Russo
- Department of Medicine & Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Via Gramsci 14, Parma, Italy
| | - Vittorio Sabatino
- Department of Medicine & Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Via Gramsci 14, Parma, Italy
| | - Rita Nizzoli
- Medical Oncology Unit, University of Parma, Maggiore Hospital, Via Gramsci 14, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University of Parma, Maggiore Hospital, Via Gramsci 14, Parma, Italy
| | - Salvatore Cappabianca
- Department of Radiology & Radiotherapy, University of Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Alfonso Reginelli
- Department of Radiology & Radiotherapy, University of Campania 'Luigi Vanvitelli', Napoli, Italy
| | | | - Luca Brunese
- Department of Medicine & Health Sciences, University of Molise, Campobasso, Italy
| | - Massimo De Filippo
- Department of Medicine & Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Via Gramsci 14, Parma, Italy
| |
Collapse
|
45
|
Hegde A, Hong DS, Behrang A, Ali SM, Juckett L, Meric-Bernstam F, Subbiah V. Activity of Brigatinib in Crizotinib and Ceritinib-Resistant ROS1- Rearranged Non-Small-Cell Lung Cancer. JCO Precis Oncol 2019; 3. [PMID: 32775947 DOI: 10.1200/po.18.00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Aparna Hegde
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - David S Hong
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amini Behrang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Vivek Subbiah
- University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
46
|
Patil T, Smith DE, Bunn PA, Aisner DL, Le AT, Hancock M, Purcell WT, Bowles DW, Camidge DR, Doebele RC. The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non-Small Cell Lung Cancer and Rate of Central Nervous System Progression on Crizotinib. J Thorac Oncol 2018; 13:1717-1726. [PMID: 29981925 PMCID: PMC6204290 DOI: 10.1016/j.jtho.2018.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Central nervous system (CNS) metastases in lung cancer are a frequent cause of morbidity and mortality. There are conflicting data on the incidence of CNS metastases in stage IV ROS1-positive NSCLC and the rate of CNS progression during crizotinib therapy. METHODS A retrospective review of 579 patients with stage IV NSCLC between June 2008 and December 2017 was performed. Brain metastases and oncogene status (ROS1, ALK receptor tyrosine kinase gene [ALK], EGFR, KRAS, BRAF, and others) were recorded. We measured progression-free survival and time to CNS progression in ROS1-positive and ALK-positive patients who were taking crizotinib. RESULTS We identified 33 ROS1-positive and 115 ALK-positive patients with stage IV NSCLC. The incidences of brain metastases for treatment-naive, stage IV ROS1-positive and ALK-positive NSCLC were 36% (12 of 33) and 34% (39 of 115), respectively. There were no statistically significant differences in incidence of brain metastases across ROS1, ALK, EGFR, KRAS, BRAF, or other mutations. Complete survival data were available for 19 ROS1-positive and 83 ALK-positive patients. The median progression-free survival times for ROS1-positive and ALK-positive patients were 11 and 8 months, respectively (p = 0.304). The CNS was the first and sole site of progression in 47% of ROS1-positive (nine of 19) and 33% of ALK-positive (28 of 83) patients, with no statistically significant differences between these groups (p = 0.610). CONCLUSIONS Brain metastases are common in treatment-naive stage IV ROS1-positive NSCLC, though the incidence does not differ from that in other oncogene cohorts. The CNS is a common first site of progression in ROS1-positive patients who are taking crizotinib. This study reinforces the importance of developing CNS-penetrant tyrosine kinase inhibitors for patients with ROS1-positive NSCLC.
Collapse
Affiliation(s)
- Tejas Patil
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Derek E Smith
- Department of Pediatrics, Cancer Center Biostatistics Core, University of Colorado and Children's Hospital Colorado, Aurora, Colorado
| | - Paul A Bunn
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anh T Le
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Mark Hancock
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - William T Purcell
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel W Bowles
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - D Ross Camidge
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Robert C Doebele
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
47
|
Dual potent ALK and ROS1 inhibitors combating drug-resistant mutants: Synthesis and biological evaluation of aminopyridine-containing diarylaminopyrimidine derivatives. Eur J Med Chem 2018; 158:322-333. [DOI: 10.1016/j.ejmech.2018.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
|
48
|
Kato Y, Ninomiya K, Ohashi K, Tomida S, Makimoto G, Watanabe H, Kudo K, Matsumoto S, Umemura S, Goto K, Ichihara E, Ninomiya T, Kubo T, Sato A, Hotta K, Tabata M, Toyooka S, Maeda Y, Kiura K. Combined effect of cabozantinib and gefitinib in crizotinib-resistant lung tumors harboring ROS1 fusions. Cancer Sci 2018; 109:3149-3158. [PMID: 30053332 PMCID: PMC6172052 DOI: 10.1111/cas.13752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
The ROS1 tyrosine kinase inhibitor (TKI) crizotinib has shown dramatic effects in patients with non‐small cell lung cancer (NSCLC) harboring ROS1 fusion genes. However, patients inevitably develop resistance to this agent. Therefore, a new treatment strategy is required for lung tumors with ROS1 fusion genes. In the present study, lung cancer cell lines, HCC78 harboring SLC34A2‐ROS1 and ABC‐20 harboring CD74‐ROS1, were used as cell line‐based resistance models. Crizotinib‐resistant HCC78R cells were established from HCC78. We comprehensively screened the resistant cells using a phosphor‐receptor tyrosine kinase array and RNA sequence analysis by next‐generation sequencing. HCC78R cells showed upregulation of HB‐EGF and activation of epidermal growth factor receptor (EGFR) phosphorylation and the EGFR signaling pathway. Recombinant HB‐EGF or EGF rendered HCC78 cells or ABC‐20 cells resistant to crizotinib. RNA sequence analysis by next‐generation sequencing revealed the upregulation of AXL in HCC78R cells. HCC78R cells showed marked sensitivity to EGFR‐TKI or anti‐EGFR antibody treatment in vitro. Combinations of an AXL inhibitor, cabozantinib or gilteritinib, and an EGFR‐TKI were more effective against HCC78R cells than monotherapy with an EGFR‐TKI or AXL inhibitor. The combination of cabozantinib and gefitinib effectively inhibited the growth of HCC78R tumors in an in vivo xenograft model of NOG mice. The results of this study indicated that HB‐EGF/EGFR and AXL play roles in crizotinib resistance in lung cancers harboring ROS1 fusions. The combination of cabozantinib and EGFR‐TKI may represent a useful alternative treatment strategy for patients with advanced NSCLC harboring ROS1 fusion genes.
Collapse
Affiliation(s)
- Yuka Kato
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Shuta Tomida
- Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Go Makimoto
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromi Watanabe
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichiro Kudo
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Eiki Ichihara
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Takashi Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Akiko Sato
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan.,Center for Innovative Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
49
|
Evolution strategy of ROS1 kinase inhibitors for use in cancer therapy. Future Med Chem 2018; 10:1705-1720. [DOI: 10.4155/fmc-2018-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The abnormal expression of c-ros oncogene1 receptor tyrosine kinase (ROS1) has been identified as clinically actionable oncogenic driver in non-small-cell lung cancer. Since crizotinib was approved by the US FDA for the treatment of advanced ROS1-positive non-small-cell lung cancer, ROS1 kinase has become a promising therapeutic target. Under the guidance of some advanced computer-assisted technologies, such as structure-based drug design, homology modeling and lipophilic efficiency parameters, several potent and selective inhibitors against wild-type and mutant ROS1 were designed and synthesized. In this article, we will review a series of scaffolds targeting ROS1 kinase from the hit-to-drug evolution strategies of their representative compounds and it is hoped that these design strategies would facilitate medicinal chemists to optimize the process of drug design.
Collapse
|
50
|
Ahmadzada T, Kao S, Reid G, Boyer M, Mahar A, Cooper WA. An Update on Predictive Biomarkers for Treatment Selection in Non-Small Cell Lung Cancer. J Clin Med 2018; 7:E153. [PMID: 29914100 PMCID: PMC6025105 DOI: 10.3390/jcm7060153] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
It is now widely established that management of lung cancer is much more complex and cannot be centered on the binary classification of small-cell versus non-small cell lung cancer (NSCLC). Lung cancer is now recognized as a highly heterogeneous disease that develops from genetic mutations and gene expression patterns, which initiate uncontrolled cellular growth, proliferation and progression, as well as immune evasion. Accurate biomarker assessment to determine the mutational status of driver mutations such as EGFR, ALK and ROS1, which can be targeted by specific tyrosine kinase inhibitors, is now essential for treatment decision making in advanced stage NSCLC and has shifted the treatment paradigm of NSCLC to more individualized therapy. Rapid advancements in immunotherapeutic approaches to NSCLC treatment have been paralleled by development of a range of potential predictive biomarkers that can enrich for patient response, including PD-L1 expression and tumor mutational burden. Here, we review the key biomarkers that help predict response to treatment options in NSCLC patients.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
| | - Steven Kao
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Chris O'Brien Lifehouse, Sydney 2050, Australia.
- Asbestos Diseases Research Institute (ADRI), Sydney 2139, Australia.
| | - Glen Reid
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Asbestos Diseases Research Institute (ADRI), Sydney 2139, Australia.
| | - Michael Boyer
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Chris O'Brien Lifehouse, Sydney 2050, Australia.
| | - Annabelle Mahar
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney 2050, Australia.
- School of Medicine, Western Sydney University, Sydney 2560, Australia.
| | - Wendy A Cooper
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney 2050, Australia.
- School of Medicine, Western Sydney University, Sydney 2560, Australia.
| |
Collapse
|