1
|
Zinnecker T, Reichl U, Genzel Y. Innovations in cell culture-based influenza vaccine manufacturing - from static cultures to high cell density cultivations. Hum Vaccin Immunother 2024; 20:2373521. [PMID: 39007904 PMCID: PMC11253887 DOI: 10.1080/21645515.2024.2373521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Influenza remains a serious global health concern, causing significant morbidity and mortality each year. Vaccination is crucial to mitigate its impact, but requires rapid and efficient manufacturing strategies to handle timing and supply. Traditionally relying on egg-based production, the field has witnessed a paradigm shift toward cell culture-based methods offering enhanced flexibility, scalability, and process safety. This review provides a concise overview of available cell substrates and technological advancements. We summarize crucial steps toward process intensification - from roller bottle production to dynamic cultures on carriers and from suspension cultures in batch mode to high cell density perfusion using various cell retention devices. Moreover, we compare single-use and conventional systems and address challenges including defective interfering particles. Taken together, we describe the current state-of-the-art in cell culture-based influenza virus production to sustainably meet vaccine demands, guarantee a timely supply, and keep up with the challenges of seasonal epidemics and global pandemics.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
2
|
Zinnecker T, Badri N, Araujo D, Thiele K, Reichl U, Genzel Y. From single-cell cloning to high-yield influenza virus production - implementing advanced technologies in vaccine process development. Eng Life Sci 2024; 24:2300245. [PMID: 38584687 PMCID: PMC10991716 DOI: 10.1002/elsc.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Innovations in viral vaccine manufacturing are crucial for pandemic preparedness and to meet ever-rising global demands. For influenza, however, production still mainly relies on technologies established decades ago. Although modern production shifts from egg-based towards cell culture technologies, the full potential has not yet been fully exploited. Here, we evaluate whether implementation of state-of-the-art technologies for cell culture-based recombinant protein production are capable to challenge outdated approaches in viral vaccine process development. For this, a fully automated single-cell cloning strategy was established to generate monoclonal suspension Madin-Darby canine kidney (MDCK) cells. Among selected cell clones, we could observe distinct metabolic and growth characteristics, with C59 reaching a maximum viable cell concentration of 17.3 × 106 cells/mL and low doubling times in batch mode. Screening for virus production using a panel of human vaccine-relevant influenza A and B viruses in an ambr15 system revealed high titers with yields competing or even outperforming available MDCK cell lines. With C113, we achieved cell-specific virus yields of up to 25,000 virions/cell, making this cell clone highly attractive for vaccine production. Finally, we confirmed process performance at a 50-fold higher working volume. In summary, we present a scalable and powerful approach for accelerated development of high-yield influenza virus production in chemically defined medium starting from a single cell.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | | | - Diogo Araujo
- Sartorius Stedim Biotech S.A.Aubagne CedexFrance
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Bioprocess EngineeringOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| |
Collapse
|
3
|
Göbel S, Jaén KE, Dorn M, Neumeyer V, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Process intensification strategies toward cell culture-based high-yield production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:2639-2657. [PMID: 36779302 DOI: 10.1002/bit.28353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Marie Dorn
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Process and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Victoria Neumeyer
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
4
|
Tingaud V, Bordes C, Al Mouazen E, Cogné C, Bolzinger MA, Lawton P. Experimental studies from shake flasks to 3 L stirred tank bioreactor of nutrients and oxygen supply conditions to improve the growth of the avian cell line DuckCelt®-T17. J Biol Eng 2023; 17:31. [PMID: 37095522 PMCID: PMC10127095 DOI: 10.1186/s13036-023-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND To produce viral vaccines, avian cell lines are interesting alternatives to replace the egg-derived processes for viruses that do not grow well on mammalian cells. The avian suspension cell line DuckCelt®-T17 was previously studied and investigated to produce a live attenuated metapneumovirus (hMPV)/respiratory syncytial virus (RSV) and influenza virus vaccines. However, a better understanding of its culture process is necessary for an efficient production of viral particles in bioreactors. RESULTS The growth and metabolic requirements of the avian cell line DuckCelt®-T17 were investigated to improve its cultivation parameters. Several nutrient supplementation strategies were studied in shake flasks highlighting the interest of (i) replacing L-glutamine by glutamax as main nutrient or (ii) adding these two nutrients in the serum-free growth medium in a fed-batch strategy. The scale-up in a 3 L bioreactor was successful for these types of strategies confirming their efficiencies in improving the cells' growth and viability. Moreover, a perfusion feasibility test allowed to achieve up to ~ 3 times the maximum number of viable cells obtained with the batch or fed-batch strategies. Finally, a strong oxygen supply - 50% dO2 - had a deleterious effect on DuckCelt®-T17 viability, certainly because of the greater hydrodynamic stress imposed. CONCLUSIONS The culture process using glutamax supplementation with a batch or a fed-batch strategy was successfully scaled-up to 3 L bioreactor. In addition, perfusion appeared as a very promising culture process for subsequent continuous virus harvesting.
Collapse
Affiliation(s)
- Valentine Tingaud
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claire Bordes
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Eyad Al Mouazen
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claudia Cogné
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Marie-Alexandrine Bolzinger
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Philippe Lawton
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France.
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, ISPB, 8 avenue Rockefeller, Lyon, 69373, CEDEX 08, France.
| |
Collapse
|
5
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
6
|
Cho HK, Kang YM, Sagong M, Kim J, Kim H, An S, Lee YJ, Kang HM. Protection of SPF Chickens by H9N2 Y439 and G1 Lineage Vaccine against Homologous and Heterologous Viruses. Vaccines (Basel) 2023; 11:vaccines11030538. [PMID: 36992122 DOI: 10.3390/vaccines11030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Prior to the identification of low pathogenic avian influenza H9N2 viruses belonging to the Y280 lineage in 2020, Y439 lineage viruses had been circulating in the Republic of Korea since 1996. Here, we developed a whole inactivated vaccine (vac564) by multiple passage of Y439 lineage viruses and then evaluated immunogenicity and protective efficacy in specific-pathogen-free chickens. We found that LBM564 could be produced at high yield in eggs (108.4EID50/0.1 mL; 1024 hemagglutinin units) and was immunogenic (8.0 ± 1.2 log2) in chickens. The vaccine showed 100% inhibition of virus in the cecal tonsil with no viral shedding detected in either oropharyngeal or cloacal swabs after challenge with homologous virus. However, it did not induce effective protection against challenge with heterologous virus. An imported commercial G1 lineage vaccine inhibited viral replication against Y280 and Y439 lineage viruses in major tissues, although viral shedding in oropharyngeal and cloacal swabs was observed up until 5 dpi after exposure to both challenge viruses. These results suggest that a single vaccination with vac564 could elicit immune responses, showing it to be capable of protecting chickens against the Y439 lineage virus. Thus, our results suggest the need to prepare suitable vaccines for use against newly emerging and re-emerging H9N2 viruses.
Collapse
Affiliation(s)
- Hyun-Kyu Cho
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Yong-Myung Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Juhun Kim
- Bioapp Institute, 394 Jigok-ro, Pohang-si 37668, Republic of Korea
| | - Hyunjun Kim
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Sungjun An
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyun-Mi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
7
|
Saengchoowong S, Nimsamer P, Khongnomnan K, Poomipak W, Praianantathavorn K, Rattanaburi S, Poovorawan Y, Zhang Q, Payungporn S. Enhancing the yield of seasonal influenza viruses through manipulation of microRNAs in Madin-Darby canine kidney cells. Exp Biol Med (Maywood) 2022; 247:1335-1349. [PMID: 35666095 PMCID: PMC9442458 DOI: 10.1177/15353702221098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/15/2022] [Indexed: 02/03/2023] Open
Abstract
Annual influenza vaccine is recommended to reduce the occurrence of seasonal influenza and its complications. Thus far, Madin-Darby canine kidney (MDCK) cell line has been used to manufacture cell-based influenza vaccines. Even though host microRNAs may facilitate viral replication, the interaction between MDCK cells-derived microRNAs and seasonal influenza viruses has been less frequently investigated. Therefore, this study highlighted microRNA profiles of MDCK cells to increase the yield of seasonal influenza virus production by manipulating cellular microRNAs. MDCK cells were infected with influenza A or B virus at a multiplicity of infection (MOI) of 0.01, and microRNA collections were then subjected to MiSeq (Illumina) Sequencing. The validated profiles revealed that cfa-miR-340, cfa-miR-146b, cfa-miR-197, and cfa-miR-215 were the most frequently upregulated microRNAs. The effect of candidate microRNA inhibition and overexpression on viral replication was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). The hybridization pattern between candidate miRNAs and viral genes was performed using miRBase and RNAhybrid web-based programs. Moreover, the predicted microRNA-binding sites were validated by a 3'-UTR reporter assay. The results indicated that cfa-miR-146b could directly target the PB1 gene of A/pH1N1 and the PA gene of B/Yamagata. Furthermore, cfa-miR-215 could silence the PB1 gene of A/pH1N1 and the PB1 gene of B/Victoria. However, the PB2 gene of the A/H3N2 virus was silenced by cfa-miR-197. In addition, the HA and NA sequences of influenza viruses harvested from the cell cultures treated with microRNA inhibitors were analyzed. The sequencing results revealed no difference in the antigenic HA and NA sequences between viruses isolated from the cells treated with microRNA inhibitors and the parental viruses. In conclusion, these findings suggested that MDCK cell-derived microRNAs target viral genes in a strain-specific manner for suppressing viral replication. Conversely, the use of such microRNA inhibitors may facilitate the production of influenza viruses.
Collapse
Affiliation(s)
- Suthat Saengchoowong
- Joint Chulalongkorn
University-University of Liverpool Doctoral Program in Biomedical Sciences and
Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
- Faculty of Veterinary Medicine and
Applied Zoology, HRH Princess Chulabhorn College of Medical Science, Chulabhorn
Royal Academy, Bangkok 10210, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Kritsada Khongnomnan
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Kesmanee Praianantathavorn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Somruthai Rattanaburi
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical
Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Qibo Zhang
- Department of Clinical Infection,
Microbiology and Immunology, Institute of Infection, Veterinary and Ecological
Sciences, University of Liverpool, Liverpool L69 7BE, UK
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| |
Collapse
|
8
|
Wang J, Yu X, Zhao S, Zhang N, Lin Z, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Construction of a peacock immortalized fibroblast cell line for avian virus production. Poult Sci 2022; 101:102147. [PMID: 36191515 PMCID: PMC9529503 DOI: 10.1016/j.psj.2022.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian-derived MDCK cells are the most widely used for avian virus vaccine production at present. The use of heterologous cell systems for avian virus preparation may cause security risks. An avian cell line is available for avian virus vaccines urgently needed. In this study, a peacock immortalized fibroblast cell line that is suitable for avian virus vaccine production was generated. The primary peacock fibroblast cells were prepared, and the immortal cells PEF-1 were obtained by transferring hTERT into the primary cells and screening with G418. The PEF-1 has high cell viability and expresses exogenous TERT protein. More importantly, the virus replication ability was stronger in PEF-1 than in MDCK cells as evaluated by virus fluorescence and TCID50, after being infected with NDV-GFP, VSV-GFP, and AIV. In conclusion, the peacock immortalized PEF cells are expected to be used for the production of peacock and other avian virus vaccines.
Collapse
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Xiangyu Yu
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Shurui Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Nian Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Zhenyu Lin
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China.
| |
Collapse
|
9
|
Göbel S, Kortum F, Chavez KJ, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Cell-line screening and process development for a fusogenic oncolytic virus in small-scale suspension cultures. Appl Microbiol Biotechnol 2022; 106:4945-4961. [PMID: 35767011 PMCID: PMC9329169 DOI: 10.1007/s00253-022-12027-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Abstract
Oncolytic viruses (OVs) represent a novel class of immunotherapeutics under development for the treatment of cancers. OVs that express a cognate or transgenic fusion protein is particularly promising as their enhanced intratumoral spread via syncytia formation can be a potent mechanism for tumor lysis and induction of antitumor immune responses. Rapid and efficient fusion of infected cells results in cell death before high titers are reached. Although this is an attractive safety feature, it also presents unique challenges for large-scale clinical-grade manufacture of OVs. Here we evaluate the use of four different suspension cell lines for the production of a novel fusogenic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV). The candidate cell lines were screened for growth, metabolism, and virus productivity. Permissivity was evaluated based on extracellular infectious virus titers and cell-specific virus yields (CSVYs). For additional process optimizations, virus adaptation and multiplicity of infection (MOI) screenings were performed and confirmed in a 1 L bioreactor. BHK-21 and HEK293SF cells infected at concentrations of 2 × 106 cells/mL were identified as promising candidates for rVSV-NDV production, leading to infectious titers of 3.0 × 108 TCID50/mL and 7.5 × 107 TCID50/mL, and CSVYs of 153 and 9, respectively. Compared to the AGE1.CR.pIX reference produced in adherent cultures, oncolytic potency was not affected by production in suspension cultures and possibly even increased in cultures of HEK293SF and AGE1.CR.pIX. Our study describes promising suspension cell-based processes for efficient large-scale manufacturing of rVSV-NDV. Key points • Cell contact-dependent oncolytic virus (OV) replicates in suspension cells. • Oncolytic potency is not encompassed during suspension cultivation. • Media composition, cell line, and MOI are critical process parameters for OV production. • The designed process is scalable and shows great promise for manufacturing clinical-grade material. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12027-5.
Collapse
Affiliation(s)
- Sven Göbel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Fabian Kortum
- Department of Internal Medicine II, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Karim Jaén Chavez
- Department of Internal Medicine II, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Str. 8, 13086, Berlin, Germany
| | - Volker Sandig
- ProBioGen AG, Herbert-Bayer-Str. 8, 13086, Berlin, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
10
|
Bissinger T, Wu Y, Marichal-Gallardo P, Riedel D, Liu X, Genzel Y, Tan WS, Reichl U. Towards integrated production of an influenza A vaccine candidate with MDCK suspension cells. Biotechnol Bioeng 2021; 118:3996-4013. [PMID: 34219217 DOI: 10.1002/bit.27876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Seasonal influenza epidemics occur both in northern and southern hemispheres every year. Despite the differences in influenza virus surface antigens and virulence of seasonal subtypes, manufacturers are well-adapted to respond to this periodical vaccine demand. Due to decades of influenza virus research, the development of new influenza vaccines is relatively straight forward. In similarity with the ongoing coronavirus disease 2019 pandemic, vaccine manufacturing is a major bottleneck for a rapid supply of the billions of doses required worldwide. In particular, egg-based vaccine production would be difficult to schedule and shortages of other egg-based vaccines with high demands also have to be anticipated. Cell culture-based production systems enable the manufacturing of large amounts of vaccines within a short time frame and expand significantly our options to respond to pandemics and emerging viral diseases. In this study, we present an integrated process for the production of inactivated influenza A virus vaccines based on a Madin-Darby Canine Kidney (MDCK) suspension cell line cultivated in a chemically defined medium. Very high titers of 3.6 log10 (HAU/100 µl) were achieved using fast-growing MDCK cells at concentrations up to 9.5 × 106 cells/ml infected with influenza A/PR/8/34 H1N1 virus in 1 L stirred tank bioreactors. A combination of membrane-based steric-exclusion chromatography followed by pseudo-affinity chromatography with a sulfated cellulose membrane adsorber enabled full recovery for the virus capture step and up to 80% recovery for the virus polishing step. Purified virus particles showed a homogenous size distribution with a mean diameter of 80 nm. Based on a monovalent dose of 15 µg hemagglutinin (single-radial immunodiffusion assay), the level of total protein and host cell DNA was 58 µg and 10 ng, respectively. Furthermore, all process steps can be fully scaled up to industrial quantities for commercial manufacturing of either seasonal or pandemic influenza virus vaccines. Fast production of up to 300 vaccine doses per liter within 4-5 days makes this process competitive not only to other cell-based processes but to egg-based processes as well.
Collapse
Affiliation(s)
- Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yixiao Wu
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pavel Marichal-Gallardo
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Shanghai, China
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai BioEngine Sci-Tech Co., Shanghai, China
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair of Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Pech S, Rehberg M, Janke R, Benndorf D, Genzel Y, Muth T, Sickmann A, Rapp E, Reichl U. Tracking changes in adaptation to suspension growth for MDCK cells: cell growth correlates with levels of metabolites, enzymes and proteins. Appl Microbiol Biotechnol 2021; 105:1861-1874. [PMID: 33582836 PMCID: PMC7907048 DOI: 10.1007/s00253-021-11150-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Abstract Adaptations of animal cells to growth in suspension culture concern in particular viral vaccine production, where very specific aspects of virus-host cell interaction need to be taken into account to achieve high cell specific yields and overall process productivity. So far, the complexity of alterations on the metabolism, enzyme, and proteome level required for adaptation is only poorly understood. In this study, for the first time, we combined several complex analytical approaches with the aim to track cellular changes on different levels and to unravel interconnections and correlations. Therefore, a Madin-Darby canine kidney (MDCK) suspension cell line, adapted earlier to growth in suspension, was cultivated in a 1-L bioreactor. Cell concentrations and cell volumes, extracellular metabolite concentrations, and intracellular enzyme activities were determined. The experimental data set was used as the input for a segregated growth model that was already applied to describe the growth dynamics of the parental adherent cell line. In addition, the cellular proteome was analyzed by liquid chromatography coupled to tandem mass spectrometry using a label-free protein quantification method to unravel altered cellular processes for the suspension and the adherent cell line. Four regulatory mechanisms were identified as a response of the adaptation of adherent MDCK cells to growth in suspension. These regulatory mechanisms were linked to the proteins caveolin, cadherin-1, and pirin. Combining cell, metabolite, enzyme, and protein measurements with mathematical modeling generated a more holistic view on cellular processes involved in the adaptation of an adherent cell line to suspension growth. Key points • Less and more efficient glucose utilization for suspension cell growth • Concerted alteration of metabolic enzyme activity and protein expression • Protein candidates to interfere glycolytic activity in MDCK cells Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11150-z.
Collapse
Affiliation(s)
- Sabine Pech
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Rehberg
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert Janke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Thilo Muth
- Section S.3 eScience, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,glyxera GmbH, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
12
|
Wu Y, Bissinger T, Genzel Y, Liu X, Reichl U, Tan WS. High cell density perfusion process for high yield of influenza A virus production using MDCK suspension cells. Appl Microbiol Biotechnol 2021; 105:1421-1434. [PMID: 33515287 PMCID: PMC7847233 DOI: 10.1007/s00253-020-11050-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
Similar to the recent COVID-19 pandemic, influenza A virus poses a constant threat to the global community. For the treatment of flu disease, both antivirals and vaccines are available with vaccines the most effective and safest approach. In order to overcome limitations in egg-based vaccine manufacturing, cell culture-based processes have been established. While this production method avoids egg-associated risks in face of pandemics, process intensification using animal suspension cells in high cell density perfusion cultures should allow to further increase manufacturing capacities worldwide. In this work, we demonstrate the development of a perfusion process using Madin-Darby canine kidney (MDCK) suspension cells for influenza A (H1N1) virus production from scale-down shake flask cultivations to laboratory scale stirred tank bioreactors. Shake flask cultivations using semi-perfusion mode enabled high-yield virus harvests (4.25 log10(HAU/100 μL)) from MDCK cells grown up to 41 × 106 cells/mL. Scale-up to bioreactors with an alternating tangential flow (ATF) perfusion system required optimization of pH control and implementation of a temperature shift during the infection phase. Use of a capacitance probe for on-line perfusion control allowed to minimize medium consumption. This contributed to a better process control and a more economical performance while maintaining a maximum virus titer of 4.37 log10(HAU/100 μL) and an infectious virus titer of 1.83 × 1010 virions/mL. Overall, this study clearly demonstrates recent advances in cell culture-based perfusion processes for next-generation high-yield influenza vaccine manufacturing for pandemic preparedness. KEY POINTS: • First MDCK suspension cell-based perfusion process for IAV produciton was established. • "Cell density effect" was overcome and process was intensified by reduction of medium use and automated process control. • The process achieved cell density over 40 × 106 cells/mL and virus yield over 4.37 log10(HAU/100 μL).
Collapse
Affiliation(s)
- Yixiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Thomas Bissinger
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Xuping Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai BioEngine Sci-Tech Co., Ltd, 781 Cailun Road, Shanghai, 201203, China.
| | - Udo Reichl
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Universitaetsplatz 2, 39106, Magdeburg, Germany
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Wu Y, Jia H, Lai H, Liu X, Tan WS. Highly efficient production of an influenza H9N2 vaccine using MDCK suspension cells. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe use of H9N2 subtype avian influenza vaccines is an effective approach for the control of the virus spread among the poultry, and for the upgrading of vaccine manufacturing, cell culture-based production platform could overcome the limitations of conventional egg-based platform and alternate it. The development of serum-free suspension cell culture could allow even higher virus productivity, where a suspension cell line with good performance and proper culture strategies are required. In this work, an adherent Mardin–Darby canine kidney (MDCK) cell line was adapted to suspension growth to cell concentration up to 12 × 106 cells/mL in a serum-free medium in batch cultures. Subsequently, the H9N2 influenza virus propagation in this MDCK cell line was evaluated with the optimization of infection conditions in terms of MOI and cell concentration for infection. Furthermore, various feed strategies were tested in the infection phase for improved virus titer and a maximum hemagglutinin titer of 13 log2 (HAU/50 μL) was obtained using the 1:2 medium dilution strategy. The evaluation of MDCK cell growth and H9N2 virus production in bioreactors with optimized operating conditions showed comparable cell performance and virus yield compared to shake flasks, with a high cell-specific virus yield above 13,000 virions/cell. With the purified H9N2 virus harvested from the bioreactors, the MDCK cell-derived vaccine was able to induce high titers of neutralizing antibodies in chickens. Overall, the results demonstrate the promising application of the highly efficient MDCK cell-based production platform for the avian influenza vaccine manufacturing.
Collapse
|
14
|
Vorovitch MF, Grishina KG, Volok VP, Chernokhaeva LL, Grishin KV, Karganova GG, Ishmukhametov AA. Evervac: phase I/II study of immunogenicity and safety of a new adjuvant-free TBE vaccine cultivated in Vero cell culture. Hum Vaccin Immunother 2020; 16:2123-2130. [PMID: 32429733 PMCID: PMC7553679 DOI: 10.1080/21645515.2020.1757990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Approximately 10,000 cases of tick-borne encephalitis (TBE), a serious disease of the central nervous system caused by tick-borne encephalitis virus (TBEV), are registered worldwide every year. Vaccination against TBE remains the most essential measure of preventing the disease. Unlike available TBE vaccines, a new inactivated lyophilized candidate vaccine Evervac is produced in Vero continuous cell culture and its final formulation does not include aluminum-based adjuvants. To study the safety and immunogenicity of Evervac, healthy adults 18-60 y of age were immunized twice at 30-d intervals. The study was single-blind, randomized, comparative, controlled, and was conducted in TBE-endemic areas. The commercial lyophilized vaccine TBE-Moscow was used as a comparison treatment. The subjects were observed for incidence, severity, and duration of adverse reactions. It was shown that the severity of local and systemic reactions in the Evervac vaccine group was mild to moderate. There were no significant differences in the incidence of adverse reactions between the Evervac and TBE-Moscow vaccine groups. Immunization with Evervac produced a significant increase in geometric mean titer (GMT) of anti-TBEV antibodies in both initially seronegative and seropositive recipients. The seroconversion rate for the initially seronegative recipients was 69% (GMT = 1:214) after the first dose and reached 100% after the second dose. In these parameters, there were no significant differences between the study and control vaccine groups. Thus, the adjuvant-free Vero-based vaccine Evervac was well tolerated, had low reactogenicity, induced a pronounced immune response, and was overall non-inferior to the commercial adjuvanted TBE vaccine used as a control.
Collapse
Affiliation(s)
- Mikhail F. Vorovitch
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Karina G. Grishina
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Viktor P. Volok
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Liubov L. Chernokhaeva
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Konstantin V. Grishin
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aidar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
15
|
Nie J, Sun Y, Peng F, Han F, Yang Y, Liu X, Liu C, Li Y, Bai Z. Pseudorabies virus production using a serum-free medium in fixed-bed bioreactors with low cell inoculum density. Biotechnol Lett 2020; 42:2551-2560. [PMID: 32816175 DOI: 10.1007/s10529-020-02987-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
Fixed-bed bioreactors packed with macrocarriers show great potential to be used for vaccine process development and large-scale production due to distinguishing features of low shear force, high cell adhering surface area, and easy replacement of culture media in situ. As an initial step of utilizing this type of bioreactors for Pseudorabies virus production (PRV) by African green monkey kidney (Vero) cells, we developed a tube-fixed-bed bioreactor in the previous study, which represents a scale-down model for further process optimization. By using this scale-down model, here we evaluated impacts of two strategies (use of serum-free medium and low cell inoculum density) on PRV production, which have benefits of simplifying downstream process and reducing risk of contamination. We first compared Vero cell cultures with different media, bioreactors and inoculum densities, and conclude that cell growth with serum-free medium is comparable to that with serum-containing medium in tube-fixed-bed bioreactor, and low inoculum density supports cell growth only in this bioreactor. Next, we applied serum-free medium and low inoculum cell density for PRV production. By optimization of time of infection (TOI), multiplicity of infection (MOI) and the harvesting strategy, we obtained total amount of virus particles ~ 9 log10 TCID50 at 5 days post-infection (dpi) in the tube-fixed-bed bioreactor. This process was then scaled up by 25-fold to a Xcell 1-L fixed-bed bioreactor, which yields totally virus particles of 10.5 log10 TCID50, corresponding to ~ 3 × 105 doses of vaccine. The process studied in this work holds promise to be developed as a generic platform for the production of vaccines for animal and human health.
Collapse
Affiliation(s)
- Jianqi Nie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Sun
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Feng Peng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Fei Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Coronel J, Gränicher G, Sandig V, Noll T, Genzel Y, Reichl U. Application of an Inclined Settler for Cell Culture-Based Influenza A Virus Production in Perfusion Mode. Front Bioeng Biotechnol 2020; 8:672. [PMID: 32714908 PMCID: PMC7343718 DOI: 10.3389/fbioe.2020.00672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses have been successfully propagated using a variety of animal cell lines in batch, fed-batch, and perfusion culture. For suspension cells, most studies reported on membrane-based cell retention devices typically leading to an accumulation of viruses in the bioreactor in perfusion mode. Aiming at continuous virus harvesting for improved productivities, an inclined settler was evaluated for influenza A virus (IAV) production using the avian suspension cell line AGE1.CR.pIX. Inclined settlers present many advantages as they are scalable, robust, and comply with cGMP regulations, e.g., for recombinant protein manufacturing. Perfusion rates up to 3000 L/day have been reported. In our study, successful growth of AGE1.CR.pIX cells up to 50 × 106 cells/mL and a cell retention efficiency exceeding 96% were obtained with the settler cooled to room temperature. No virus retention was observed. A total of 5.4-6.5 × 1013 virions were produced while a control experiment with an ATF system equaled to 1.9 × 1013 virions. For infection at 25 × 106 cells/mL, cell-specific virus yields up to 3474 virions/cell were obtained, about 5-fold higher than for an ATF based cultivation performed as a control (723 virions/cell). Trypsin activity was shown to have a large impact on cell growth dynamics after infection following the cell retention device, especially at a cell concentration of 50 × 106 cells/mL. Further control experiments performed with an acoustic settler showed that virus production was improved with a heat exchanger of the inclined settler operated at 27°C. In summary, cell culture-based production of viruses in perfusion mode with an inclined settler and continuous harvesting can drastically increase IAV yields and possibly the yield of other viruses. To our knowledge, this is the first report to show the potential of this device for viral vaccine production.
Collapse
Affiliation(s)
- Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
17
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
18
|
Bissinger T, Fritsch J, Mihut A, Wu Y, Liu X, Genzel Y, Tan WS, Reichl U. Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production. Vaccine 2019; 37:7003-7010. [DOI: 10.1016/j.vaccine.2019.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
19
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
20
|
Are we prepared for the next influenza pandemic? Lessons from modelling different preparedness policies against four pandemic scenarios. J Theor Biol 2019; 481:223-232. [PMID: 31059716 DOI: 10.1016/j.jtbi.2019.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 11/21/2022]
Abstract
In the event of a novel influenza strain that is markedly different to the current strains circulating in humans, the population have little/no immunity and infection spreads quickly causing a global pandemic. Over the past century, there have been four major influenza pandemics: the 1918 pandemic ("Spanish Flu"), the 1957-58 pandemic (the "Asian Flu"), the 1967-68 pandemic (the "Hong Kong Flu") and the 2009 pandemic (the "Swine flu"). To inform planning against future pandemics, this paper investigates how different is the net-present value of employing pre-purchase and responsive- purchased vaccine programmes in presence and absence of anti-viral drugs to scenarios that resemble these historic influenza pandemics. Using the existing literature and in discussions with policy decision makers in the UK, we first characterised the four past influenza pandemics by their transmissibility and infection-severity. For these combinations of parameters, we then projected the net-present value of employing pre-purchase vaccine (PPV) and responsive-purchase vaccine (RPV) programmes in presence and absence of anti-viral drugs. To differentiate between PPV and RPV policies, we changed the vaccine effectiveness value and the time to when the vaccine is first available. Our results are "heat-map" graphs displaying the benefits of different strategies in pandemic scenarios that resemble historic influenza pandemics. Our results suggest that immunisation with either PPV or RPV in presence of a stockpile of effective antiviral drugs, does not have positive net-present value for all of the pandemic scenarios considered. In contrast, in the absence of effective antivirals, both PPV and RPV policies have positive net-present value across all the pandemic scenarios. Moreover, in all considered circumstances, vaccination was most beneficial if started sufficiently early and covered sufficiently large number of people. When comparing the two vaccine programmes, the RPV policy allowed a longer timeframe and lower coverage to attain the same benefit as the PPV policy. Our findings suggest that responsive-purchase vaccination policy has a bigger window of positive net-present value when employed against each of the historic influenza pandemic strains but needs to be rapidly available to maximise benefit. This is important for future planning as it suggests that future preparedness policies may wish to consider utilising timely (i.e. responsive-purchased) vaccines against emerging influenza pandemics.
Collapse
|
21
|
Gränicher G, Coronel J, Pralow A, Marichal-Gallardo P, Wolff M, Rapp E, Karlas A, Sandig V, Genzel Y, Reichl U. Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBG.PK2.1. Vaccine 2019; 37:7019-7028. [PMID: 31005427 DOI: 10.1016/j.vaccine.2019.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency. Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Michael Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | | | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
22
|
Nikolay A, Léon A, Schwamborn K, Genzel Y, Reichl U. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Appl Microbiol Biotechnol 2018; 102:8725-8737. [PMID: 30091043 PMCID: PMC6153634 DOI: 10.1007/s00253-018-9275-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
A live-attenuated, human vaccine against mosquito-borne yellow fever virus has been available since the 1930s. The vaccine provides long-lasting immunity and consistent mass vaccination campaigns counter viral spread. However, traditional egg-based vaccine manufacturing requires about 12 months and vaccine supplies are chronically close to shortages. In particular, for urban outbreaks, vaccine demand can be covered rarely by global stockpiling. Thus, there is an urgent need for an improved vaccine production platform, ideally transferable to other flaviviruses including Zika virus. Here, we present a proof-of-concept study regarding cell culture-based yellow fever virus 17D (YFV) and wild-type Zika virus (ZIKV) production using duck embryo-derived EB66® cells. Based on comprehensive studies in shake flasks, 1-L bioreactor systems were operated with scalable hollow fiber-based tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) perfusion systems for process intensification. EB66® cells grew in chemically defined medium to cell concentrations of 1.6 × 108 cells/mL. Infection studies with EB66®-adapted virus led to maximum YFV titers of 7.3 × 108 PFU/mL, which corresponds to about 10 million vaccine doses for the bioreactor harvest. For ZIKV, titers of 1.0 × 1010 PFU/mL were achieved. Processes were automated successfully using a capacitance probe to control perfusion rates based on on-line measured cell concentrations. The use of cryo-bags for direct inoculation of production bioreactors facilitates pre-culture preparation contributing to improved process robustness. In conclusion, this platform is a powerful option for next generation cell culture-based flavivirus vaccine manufacturing.
Collapse
Affiliation(s)
- Alexander Nikolay
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Arnaud Léon
- Valneva SE, 6 rue Alain Bombard, 44800, Saint-Herblain, France
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
23
|
Melinek BJ, Dessoy S, Wright B, Bracewell DG, Mukhopadhyay TK. Ultra scale-down approaches to study the centrifugal harvest for viral vaccine production. Biotechnol Bioeng 2018; 115:1226-1238. [PMID: 29315484 DOI: 10.1002/bit.26546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
Large scale continuous cell-line cultures promise greater reproducibility and efficacy for the production of influenza vaccines, and adenovirus for gene therapy. This paper seeks to use an existing validated ultra scale-down tool, which is designed to mimic the commercial scale process environment using only milliliters of material, to provide some initial insight into the performance of the harvest step for these processes. The performance of industrial scale centrifugation and subsequent downstream process units is significantly affected by shear. The properties of these cells, in particular their shear sensitivity, may be changed considerably by production of a viral product, but literature on this is limited to date. In addition, the scale-down tool used here has not previously been applied to the clarification of virus production processes. The results indicate that virus infected cells do not actually show any increase in sensitivity to shear, and may indeed become less shear sensitive, in a similar manner to that previously observed in old or dead cell cultures. Clarification may be most significantly dependent on the virus release mechanism, with the budding influenza virus producing a much greater decrease in clarification than the lytic, non-enveloped adenovirus. A good match was also demonstrated to the industrial scale performance in terms of clarification, protein release, and impurity profile.
Collapse
Affiliation(s)
- Beatrice J Melinek
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | | | - Bernice Wright
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | - Dan G Bracewell
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| |
Collapse
|
24
|
Wasik MA, Eichwald L, Genzel Y, Reichl U. Cell culture-based production of defective interfering particles for influenza antiviral therapy. Appl Microbiol Biotechnol 2017; 102:1167-1177. [PMID: 29204901 PMCID: PMC5778153 DOI: 10.1007/s00253-017-8660-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
Abstract
Defective interfering particles (DIPs) lack an essential portion of the virus genome, but retain signals for replication and packaging, and therefore, interfere with standard virus (STV) replication. Due to this property, DIPs can be potential antivirals. The influenza A virus DIP DI244, generated during propagation in chicken eggs, has been previously described as a potential candidate for influenza antiviral therapy. As a cell culture-based manufacturing process would be more suitable to fulfill large-scale production needs of an antiviral and enables full process control in closed systems, we investigated options to produce DI244 in the avian cell line AGE1.CR.pIX in chemically defined suspension culture. With a DI244 fraction of 55.8% compared to STV, the highest DI244 yield obtained from 50 million cells was 4.6 × 109 vRNA copies/mL at 12 h post infection. However, other defective genomes were also detected. Since these additionally produced defective particles are non-infectious, they might be still useful in antiviral therapies. In case they would interfere with quality of the final product, we examined the impact of virus seeds and selected process parameters on DI244 yield and contamination level with other defective particles. With a DI244 fraction of 5.5%, the yield obtained was 1.7 × 108 vRNA copies/mL but now without additional defective genomes. Although the DI244 yield might be decreased in this case, such controlled manufacturing conditions are not available in chicken eggs. Overall, the application of these findings can support design and optimization of a cell culture-based production process for DIPs to be used as antivirals.
Collapse
Affiliation(s)
- Milena A Wasik
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| | - Luca Eichwald
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
25
|
Chen W, Zhong Y, Su R, Qi H, Deng W, Sun Y, Ma T, Wang X, Yu H, Wang X, Li Z. N-glycan profiles in H9N2 avian influenza viruses from chicken eggs and human embryonic lung fibroblast cells. J Virol Methods 2017; 249:10-20. [PMID: 28797655 DOI: 10.1016/j.jviromet.2017.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/29/2017] [Accepted: 08/03/2017] [Indexed: 01/05/2023]
Abstract
N-glycosylation can affect the host specificity, virulence and infectivity of influenza A viruses (IAVs). In this study, the distribution and evolution of N-glycosylation sites in the hemagglutinin (HA) and neuraminidase (NA) of H9N2 virus were explored using phylogenetic analysis. Then, one strain of the H9N2 subtypes was proliferated in the embryonated chicken eggs (ECE) and human embryonic lung fibroblast cells (MRC-5) system. The proliferated viral N-glycan profiles were analyzed by a glycomic method that combined the lectin microarray and MALDI-TOF/TOF-MS. As a result, HA and NA of H9N2 viruses prossess six and five highly conserved N-glycosylation sites, respectively. Sixteen lectins (e.g., MAL-II, SNA and UEA-I) had increased expression levels of the glycan structures in the MRC-5 compared with the ECE system; however, 6 lectins (e.g., PHA-E, PSA and DSA) had contrasting results. Eleven glycans from the ECE system and 13 glycans from the MRC-5 system were identified. Our results showed that the Fucα-1,6GlcNAc(core fucose) structure was increased, and pentaantennary N-glycans were only observed in the ECE system. The SAα2-3/6Gal structures were highly expressed and Fucα1-2Galβ1-4GlcNAc structures were only observed in the MRC-5 system. We conclude that the existing SAα2-3/6Gal sialoglycans make the offspring of the H9N2 virus prefer entially attach to each other, which decreases the virulence. Alterations in the glycosylation sites for the evolution and role of IAVs have been widely described; however, little is known about the exact glycan structures for the same influenza strain from different hosts. Our findings may provide a novel way for further discussing the molecular mechanism of the viral transmission and virulence associated with viral glycosylation in avian and human hosts as well as vital information for designing a vaccine against influenza and other human viruses.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Rui Su
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Huicai Qi
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Weina Deng
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yu Sun
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xilong Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiurong Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China,.
| |
Collapse
|
26
|
Wang H, Guo S, Li Z, Xu X, Shao Z, Song G. Suspension culture process for H9N2 avian influenza virus (strain Re-2). Arch Virol 2017; 162:3051-3059. [DOI: 10.1007/s00705-017-3460-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/20/2017] [Indexed: 01/18/2023]
|
27
|
Yi E, Oh J, Giao NQ, Oh S, Park SH. Enhanced production of enveloped viruses in BST-2-deficient cell lines. Biotechnol Bioeng 2017; 114:2289-2297. [PMID: 28498621 DOI: 10.1002/bit.26338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 05/07/2017] [Indexed: 11/09/2022]
Abstract
Despite all the advantages that cell-cultured influenza vaccines have over egg-based influenza vaccines, the inferior productivity of cell-culture systems is a major drawback that must be addressed. BST-2 (tetherin) is a host restriction factor which inhibits budding-out of various enveloped viruses from infected host cells. We developed BST-2-deficient MDCK and Vero cell lines to increase influenza virus release in cell culture. BST-2 gene knock-out resulted in increased release of viral particles into the culture medium, by at least 2-fold and up to 50-fold compared to release from wild-type counterpart cells depending on cell line and virus type. The effect was not influenza virus/MDCK/Vero-specific, but was also present in a broad range of host cells and virus families; we observed similar results in murine, human, canine, and monkey cell lines with viruses including MHV-68 (Herpesviridae), influenza A virus (Orthomyxoviridae), porcine epidemic diarrhea virus (Coronaviridae), and vaccinia virus (Poxviridae). Our results suggest that the elimination of BST-2 expression in virus-producing cell lines can enhance the production of viral vaccines. Biotechnol. Bioeng.2017;114: 2289-2297. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eunbi Yi
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,ImmunoMax Co., Ltd, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Jinsoo Oh
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ngoc Q Giao
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soohwan Oh
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Se-Ho Park
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
28
|
Wang C, Liu P, Luo J, Ding H, Gao Y, Sun L, Luo F, Liu X, He H. Geldanamycin Reduces Acute Respiratory Distress Syndrome and Promotes the Survival of Mice Infected with the Highly Virulent H5N1 Influenza Virus. Front Cell Infect Microbiol 2017; 7:267. [PMID: 28664154 PMCID: PMC5471324 DOI: 10.3389/fcimb.2017.00267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 06/02/2017] [Indexed: 11/13/2022] Open
Abstract
Infections with lethal influenza viruses lead to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), which may be related to the activation of the host's immune system. Here, in our study, male C57BL/6 mice were infected with 10 LD50 of the H5N1 influenza virus and treated with geldanamycin or oseltamivir 2 h after infection. Lung injury was assessed by histopathology on days 4 and 7. The viral load was quantified by measuring the NP gene expression level on days 2, 4, and 7. Levels of cytokines and chemokines in bronchoalveolar lavage fluids and inflammatory cells were analyzed at different time points. Geldanamycin administration prolonged survival in mice and dramatically reduced lung injury and pulmonary inflammatory compared with other mice. Viral loads in geldanamycin-treated mice also significantly reduced compared with non-treated mice, but not to the extent as the oseltamivir-treated mice. Furthermore, the geldanamycin treatment markedly reduced the production of major proinflammatory cytokines and chemokines and attenuated the infiltration and activation of immune cells, but it did not alter the generation of virus-neutralizing antibodies. In conclusion, geldanamycin plays an important role in attenuating virus infection-induced ALI/ARDS by reducing the host's inflammatory responses and may provide an important reference for clinical treatments.
Collapse
Affiliation(s)
- Chengmin Wang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Pengpeng Liu
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Jing Luo
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Hua Ding
- Department of Infectious Diseases, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Yan Gao
- Department of Infectious Diseases, Peking University People's HospitalBeijing, China
| | - Lei Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholm, Sweden
| | - Fubing Luo
- Beijing Center for Animal Disease ControlBeijing, China
| | - Xiaodong Liu
- Beijing Center for Animal Disease ControlBeijing, China
| | - Hongxuan He
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
29
|
Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Vaccine 2017; 36:3101-3111. [PMID: 28571695 DOI: 10.1016/j.vaccine.2017.03.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/17/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×106cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9.05 log TCID50/ml for A/Panama/2007/99 influenza H3N2. Porcine strains were also greatly rescued with titres from 4 to 7 log TCID50/ml depending of the subtypes. Interestingly, viral kinetics showed maximal titers reached at 24h post-infection for most of the strains, allowing early harvest time (Time Of Harvest: TOH). The B strains present specific production kinetics with a delay of 24h before reaching the maximal viral particle release. Process optimization on H1N1 2009 human pandemic strain allowed identifying best operating conditions for production (MOI, trypsin concentration, cell density at infection) allowing improving the production level by 2 log. Our results suggest that the DuckCelt®-T17 cell line is a very promising platform for industrial production of influenza viruses and particularly for avian viral strains.
Collapse
|
30
|
Tombari W, ElBehi I, Amouna F, Ghram A. Variability of tropism and replicative capacity of two naturally occurring influenza A H9N2 viruses in cell cultures from different tissues. Avian Pathol 2017; 45:212-20. [PMID: 26813086 DOI: 10.1080/03079457.2016.1143086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Studies carried out on cell permissivity are of great interest to understand virus replication and pathogenicity. We described the results of a comparative analysis of replication efficiency of two naturally occurring influenza A H9N2 variants isolated from poultry and wild birds, differing by only two substitutions Q226L and T384N, in the receptor-binding site of haemagglutinin and the 380 loop region of NA proteins, respectively. Considering the overall growth of both viruses, lung cultures ensured the most efficient growth of TUN12L226N384 strain with titres up to 10(9) TCID50/ml whereas small intestine culture was highly susceptible to the TUN51Q226T384 virus reaching a titre of 10(6) TCID50/ml. The lowest replication was shown in liver cells. The addition of trypsin was essential for the replication of either virus in primary fibroblasts, but it had a marginal positive effect on virus replication in the four other culture types with maximum titres of 10(8) TCID50/ml. This means that in chicken, the proteolytic activation of the H9N2 viruses with the cleavage motif RSSR may be mediated by other endoproteases than trypsin. Further investigations should concentrate on the production of the appropriate set of viruses by a reverse genetics approach and the examination of cellular protease expression in chicken tissues. This would lead to a more complete understanding of the tropism of low-pathogenic Influenza A viruses.
Collapse
Affiliation(s)
- Wafa Tombari
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| | - Imen ElBehi
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| | - Faten Amouna
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| | - Abdeljelil Ghram
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| |
Collapse
|
31
|
Farzaneh M, Hassani SN, Mozdziak P, Baharvand H. Avian embryos and related cell lines: A convenient platform for recombinant proteins and vaccine production. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/25/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Paul Mozdziak
- Graduate Physiology Program; Campus Box 7608/321 Scott Hall; Raleigh NC USA
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; Tehran Iran
| |
Collapse
|
32
|
Liu CC, Wu SC, Wu SR, Lin HY, Guo MS, Yung-Chih Hu A, Chow YH, Chiang JR, Shieh DB, Chong P. Enhancing enterovirus A71 vaccine production yield by microcarrier profusion bioreactor culture. Vaccine 2017; 36:3134-3139. [PMID: 28274636 DOI: 10.1016/j.vaccine.2017.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/17/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Hand, foot and mouth diseases (HFMD) are mainly caused by Enterovirus A71 (EV-A71) infections. Clinical trials in Asia conducted with formalin-inactivated EV-A71 vaccine candidates produced from serum-free Vero cell culture using either roller bottle or cell factory technology, are found to be safe and highly efficacious. To increase vaccine yields and reduce the production costs, the bioprocess improvement for EV-A71 vaccine manufacturing is currently being investigated. The parameters that could affect and enhance the production yields of EV-A71 virus growth in the microcarrier bioreactor were investigated. The medium replacement culture strategy included a multi-harvested semi-batch process and perfusion technology and was found to increase the production yields more than 7-14 folds. Based on the western blot and cryo-EM analyses of the EV-A71 virus particles produced from either the multi-harvested semi-batch (MHSBC) or perfusion cultures were found to be similar to those virus particles obtained from the single batch culture. Mouse immunogenicity studies indicate that the EV-A71 vaccine candidates produced from the perfusion culture have similar potency to those obtained from single batch bioprocess. The physical structures of the EV-A71 particles revealed by the cryo-EM analysis were found to be spherical capsid particles. These results provide feasible technical bioprocesses for increasing virus yields and the scale up of EV-A71 vaccine manufacturing using the bioreactor cell culture methods.
Collapse
Affiliation(s)
- Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Suh-Chin Wu
- Institute of Biotechnology, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Yu Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Meng-Shin Guo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Jen-Ron Chiang
- Vaccine Center, Centers for Disease Control, Taipei, Taiwan
| | - Dar-Bin Shieh
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Dürr R, Müller T, Duvigneau S, Kienle A. An efficient approximate moment method for multi-dimensional population balance models – Application to virus replication in multi-cellular systems. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Nogales A, Martínez-Sobrido L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int J Mol Sci 2016; 18:E20. [PMID: 28025504 PMCID: PMC5297655 DOI: 10.3390/ijms18010020] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
35
|
Feng L, Tang Y, Wu P, Chu X, Wang W, Hou J. H9 subtype influenza vaccine in MDCK single-cell suspension culture with stable expression of TMPRSS2: Generation and efficacy evaluation. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Lei Feng
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| | - Yinghua Tang
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| | - Peipei Wu
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| | - Xuan Chu
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
| | - Weifeng Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
| | - Jibo Hou
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| |
Collapse
|
36
|
Zahoor MA, Khurshid M, Qureshi R, Naz A, Shahid M. Cell culture-based viral vaccines: current status and future prospects. Future Virol 2016. [DOI: 10.2217/fvl-2016-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell culture-based viral vaccines are used globally to immunize humans against infections. The cell culture is continuous process of developing substrates for the safe production of viral vaccines. However, increased global demand and strict safety rules for novel vaccines to control and eradicate viral diseases have forced researchers and manufacturers toward cell culture-based vaccines. The choice of cell substrate is a critical step that cannot be generalized for every vaccine formulation, therefore, manufacturers intend to optimize the required processes for particular applications. The recently established cell lines, innovative bioreactor concepts and cultivation schemes are necessary to increase the potential of vaccine production. In this review, we have focused on current cell culture-based viral vaccines and their future prospects.
Collapse
Affiliation(s)
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Qureshi
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Aneeqa Naz
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
37
|
Hegde NR. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum Vaccin Immunother 2016; 11:1223-34. [PMID: 25875691 DOI: 10.1080/21645515.2015.1016666] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The traditional platform of using embryonated chicken eggs for the production of influenza vaccines has several drawbacks including the inability to meet the volume of required doses in the case of widespread epidemics and pandemics. Cell culture platforms have therefore been explored in the last 2 decades, and have attracted further attention following the H1N1 pandemic outbreak. This platform, while not the most economical for large-scale production, has several advantages, and can supplement the vaccine requirement when needed. Recent developments in production technologies have contributed greatly to fine-tuning this platform. In combination with other technologies such as live attenuated and recombinant protein or virus-like particle vaccines, and different adjuvants and delivery systems, cell culture-based influenza vaccine platform can be used both for production of seasonal vaccine, and to mitigate vaccine shortages in pandemic situations.
Collapse
Affiliation(s)
- Nagendra R Hegde
- a Ella Foundation; Genome Valley; Turkapally , Shameerpet Mandal , Hyderabad , India
| |
Collapse
|
38
|
Bachmann M, Breitwieser T, Lipps C, Wirth D, Jordan I, Reichl U, Frensing T. Impaired antiviral response of adenovirus-transformed cell lines supports virus replication. J Gen Virol 2016; 97:293-298. [PMID: 26647282 DOI: 10.1099/jgv.0.000361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Activation of the innate immune response represents one of the most important cellular mechanisms to limit virus replication and spread in cell culture. Here, we examined the effect of adenoviral gene expression on the antiviral response in adenovirus-transformed cell lines; HEK293, HEK293SF and AGE1.HN. We demonstrate that the expression of the early region protein 1A in these cell lines impairs their ability to activate antiviral genes by the IFN pathway. This property may help in the isolation of newly emerging viruses and the propagation of interferon-sensitive virus strains.
Collapse
Affiliation(s)
- Mandy Bachmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Theresa Breitwieser
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Christoph Lipps
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestrasse 54, 13086 Berlin, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Timo Frensing
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
39
|
Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nat Commun 2015; 6:8938. [PMID: 26586423 PMCID: PMC4673863 DOI: 10.1038/ncomms9938] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023] Open
Abstract
Biochemical reactions are subject to stochastic fluctuations that can give rise to cell-to-cell variability. Yet, how this variability affects viral infections, which themselves involve noisy reactions, remains largely elusive. Here we present single-cell experiments and stochastic simulations that reveal a large heterogeneity between influenza A virus (IAV)-infected cells. In particular, experimental data show that progeny virus titres range from 1 to 970 plaque-forming units and intracellular viral RNA (vRNA) levels span three orders of magnitude. Moreover, the segmentation of IAV genomes seems to increase the susceptibility of their replication to noise, since the level of different genome segments can vary substantially within a cell. In addition, simulations suggest that the abortion of virus entry and random degradation of vRNAs can result in a large fraction of non-productive cells after single-hit infection. These results challenge current beliefs that cell population measurements and deterministic simulations are an accurate representation of viral infections.
Collapse
Affiliation(s)
- Frank S. Heldt
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Sascha Y. Kupke
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Sebastian Dorl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Timo Frensing
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
40
|
Huang D, Peng WJ, Ye Q, Liu XP, Zhao L, Fan L, Xia-Hou K, Jia HJ, Luo J, Zhou LT, Li BB, Wang SL, Xu WT, Chen Z, Tan WS. Serum-Free Suspension Culture of MDCK Cells for Production of Influenza H1N1 Vaccines. PLoS One 2015; 10:e0141686. [PMID: 26540170 PMCID: PMC4634975 DOI: 10.1371/journal.pone.0141686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 10/12/2015] [Indexed: 01/03/2023] Open
Abstract
Development of serum-free suspension cell culture processes is very important for influenza vaccine production. Previously, we developed a MDCK suspension cell line in a serum-free medium. In the present study, the growth kinetics of suspension MDCK cells and influenza virus production in the serum-free medium were investigated, in comparison with those of adherent MDCK cells in both serum-containing and serum-free medium. It was found that the serum-free medium supported the stable subculture and growth of both adherent and suspension cells. In batch culture, for both cell lines, the growth kinetics in the serum-free medium was comparable with those in the serum-containing medium and a commercialized serum-free medium. In the serum-free medium, peak viable cell density (VCD), haemagglutinin (HA) and median tissue culture infective dose (TCID50) titers of the two cell lines reached 4.51×106 cells/mL, 2.94Log10(HAU/50 μL) and 8.49Log10(virions/mL), and 5.97×106 cells/mL, 3.88Log10(HAU/50 μL), and 10.34Log10(virions/mL), respectively. While virus yield of adherent cells in the serum-free medium was similar to that in the serum-containing medium, suspension culture in the serum-free medium showed a higher virus yield than adherent cells in the serum-containing medium and suspension cells in the commercialized serum-free medium. However, the percentage of infectious viruses was lower for suspension culture in the serum-free medium. These results demonstrate the great potential of this suspension MDCK cell line in serum-free medium for influenza vaccine production and further improvements are warranted.
Collapse
Affiliation(s)
- Ding Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Juan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Ping Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- * E-mail: (X-PL); (W-ST)
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Xia-Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Han-Jing Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Luo
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Lin-Ting Zhou
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Bei-Bei Li
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Shi-Lei Wang
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Wen-Ting Xu
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Ze Chen
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- * E-mail: (X-PL); (W-ST)
| |
Collapse
|
41
|
Kluge S, Benndorf D, Genzel Y, Scharfenberg K, Rapp E, Reichl U. Monitoring changes in proteome during stepwise adaptation of a MDCK cell line from adherence to growth in suspension. Vaccine 2015; 33:4269-80. [DOI: 10.1016/j.vaccine.2015.02.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 11/16/2022]
|
42
|
Aubrit F, Perugi F, Léon A, Guéhenneux F, Champion-Arnaud P, Lahmar M, Schwamborn K. Cell substrates for the production of viral vaccines. Vaccine 2015; 33:5905-12. [PMID: 26187258 DOI: 10.1016/j.vaccine.2015.06.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022]
Abstract
Vaccines have been used for centuries to protect people and animals against infectious diseases. For vaccine production, it has become evident that cell culture technology can be considered as a key milestone and has been the result of decades of progress. The development and implementation of cell substrates have permitted massive and safe production of viral vaccines. The demand in new vaccines against emerging viral diseases, the increasing vaccine production volumes, and the stringent safety rules for manufacturing have made cell substrates mandatory viral vaccine producer factories. In this review, we focus on cell substrates for the production of vaccines against human viral diseases. Depending on the nature of the vaccine, choice of the cell substrate is critical. Each manufacturer intending to develop a new vaccine candidate should assess several cell substrates during the early development phase in order to select the most convenient for the application. First, as vaccine safety is quite naturally a central concern of Regulatory Agencies, the cell substrate has to answer the regulatory rules stringency. In addition, the cell substrate has to be competitive in terms of viral-specific production yields and manufacturing costs. No cell substrate, even the so-called "designer" cell lines, is able to fulfil all the requested criteria for all viral vaccines. Therefore, the availability of a variety of cell substrates for vaccine production is essential because it improves the chance to successfully respond to the current and future needs of vaccines linked to new emerging or re-emerging infectious diseases (e.g. pandemic flu, Ebola, and Chikungunya outbreaks).
Collapse
Affiliation(s)
- Françoise Aubrit
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Fabien Perugi
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Arnaud Léon
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Fabienne Guéhenneux
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Patrick Champion-Arnaud
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Mehdi Lahmar
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Klaus Schwamborn
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| |
Collapse
|
43
|
Carvajal-Yepes M, Sporer KRB, Carter JL, Colvin CJ, Coussens PM. Enhanced production of human influenza virus in PBS-12SF cells with a reduced interferon response. Hum Vaccin Immunother 2015; 11:2296-304. [PMID: 26090991 DOI: 10.1080/21645515.2015.1016677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Influenza is one of the most important infectious diseases in humans. The best way to prevent severe illness caused by influenza infection is vaccination. Cell culture-derived influenza vaccines are being considered in addition to the widely used egg-based system in order to support the increasing seasonal demand and to be prepared in case of a pandemic. Cell culture based systems offer increased safety, capacity, and flexibility with reduced downstream processing relative to embryonated eggs. We have previously reported a chick embryo cell line, termed PBS-12SF, that supports replication of human and avian influenza A viruses to high titers (>10(7) PFU/ml) without the need for exogenous proteases or serum proteins. Viral infections in cells are limited by the Interferon (IFN) response typified by production of type I IFNs that bind to the IFNα/β receptor and activate an antiviral state. In this study, we investigated how neutralizing the interferon (IFN) response in PBS-12SF cells, via shRNA-mediated knock-down of IFNAR1 mRNA expression, affects influenza virus production. We were successful in knocking down ∼90% of IFNAR1 protein expression by this method, resulting in a significant decrease in the response to recombinant chIFNα stimulation in PBS-12SF cells as shown by a reduction in expression of interferon-responsive genes when compared to control cells. Additionally; IFNAR1-knock-down cells displayed enhanced viral HA production and released more virus into cell culture supernatants than parental PBS-12SF cells.
Collapse
Affiliation(s)
- Monica Carvajal-Yepes
- a Molecular Pathogenesis Laboratory; Department of Animal Science; Michigan State University ; East Lansing , MI USA
| | | | | | | | | |
Collapse
|
44
|
Production of canine adenovirus type 2 in serum-free suspension cultures of MDCK cells. Appl Microbiol Biotechnol 2015; 99:7059-68. [DOI: 10.1007/s00253-015-6636-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/19/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
45
|
Momose H, Mizukami T, Kuramitsu M, Takizawa K, Masumi A, Araki K, Furuhata K, Yamaguchi K, Hamaguchi I. Establishment of a new quality control and vaccine safety test for influenza vaccines and adjuvants using gene expression profiling. PLoS One 2015; 10:e0124392. [PMID: 25909814 PMCID: PMC4409070 DOI: 10.1371/journal.pone.0124392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/13/2015] [Indexed: 01/04/2023] Open
Abstract
We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine.
Collapse
Affiliation(s)
- Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kazuya Takizawa
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Atsuko Masumi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kumiko Araki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kazunari Yamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Establishment of MDCK Stable Cell Lines Expressing TMPRSS2 and MSPL and Their Applications in Propagating Influenza Vaccine Viruses in Absence of Exogenous Trypsin. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:402628. [PMID: 25918647 PMCID: PMC4396729 DOI: 10.1155/2015/402628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 12/30/2022]
Abstract
We established two Madin-Darby canine kidney (MDCK) cell lines stably expressing human airway transmembrane protease: transmembrane protease, serine 2 (TMPRSS2) and mosaic serine protease large form (MSPL) which support multicycle growth of two H5 highly pathogenic avian influenza viruses (HPAIV) recombinant vaccines (Re-5 and Re-6) and an H9 avian influenza virus (AIV) recombinant vaccine (Re-9) in the absence of trypsin. Data showed that the cell lines stably expressed TMPRSS2 and MSPL after 20 serial passages. Both MDCK-TMPRSS2 and MDCK-MSPL could proteolytically cleave the HA of Re-5, Re-6, and Re-9 and supported high-titer growth of the vaccine without exogenous trypsin. Re-5, Re-6, and Re-9 efficiently infected and replicated within MDCK-TMPRSS2 and MDCK-MSPL cells and viral titer were comparable to the virus grown in MDCK cells with TPCK-trypsin. Thus, our results indicate a potential application for these cell lines in cell-based influenza vaccine production and may serve as a useful tool for HA proteolytic cleavage-related studies.
Collapse
|
47
|
Zhang H, Han Q, Ping X, Li L, Chang C, Chen Z, Shu Y, Xu K, Sun B. A single NS2 mutation of K86R promotes PR8 vaccine donor virus growth in Vero cells. Virology 2015; 482:32-40. [PMID: 25817403 DOI: 10.1016/j.virol.2015.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/30/2014] [Accepted: 03/02/2015] [Indexed: 02/05/2023]
Abstract
Vaccination is the most effective way to prevent and control infection by influenza viruses, and a cell-culture-based vaccine production system is preferred as the future choice for the large-scale production of influenza vaccines. As one of the WHO-recommended cell lines for producing influenza vaccines, Vero cells do not efficiently support the growth of the current influenza A virus vaccine donor strain, the A/Puerto Rico/8/1934 (PR8) virus. In this study, a single mutation of K86R in the NS2 protein can sufficiently render the high-yielding property to the PR8 virus in Vero cells. Further analysis showed that the later steps in the virus replication cycle were accelerated by NS2(K86R) mutation, which may relate to an enhanced interaction between NS2(K86R) and the components of host factor F1Fo-ATPase, FoB and F1β. Because the NS2(K86R) mutation does not increase PR8 virulence in either mice or embryonated eggs, the PR8-NS2(K86R) virus could serve as a promising vaccine donor strain in Vero cells.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Qinglin Han
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Xianqiang Ping
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China; Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Li Li
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Chong Chang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Yuelong Shu
- Chinese Center for Disease Control and Prevention, Yingxin Street 100, Xuanwu District, Beijing 100052, China
| | - Ke Xu
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China.
| | - Bing Sun
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China; State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China.
| |
Collapse
|
48
|
Current and emerging cell culture manufacturing technologies for influenza vaccines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:504831. [PMID: 25815321 PMCID: PMC4359798 DOI: 10.1155/2015/504831] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/16/2015] [Indexed: 01/08/2023]
Abstract
Annually, influenza virus infects millions of people worldwide. Vaccination programs against seasonal influenza infections require the production of hundreds of million doses within a very short period of time. The influenza vaccine is currently produced using a technology developed in the 1940s that relies on replicating the virus in embryonated hens' eggs. The monovalent viral preparation is inactivated and purified before being formulated in trivalent or tetravalent influenza vaccines. The production process has depended on a continuous supply of eggs. In the case of pandemic outbreaks, this mode of production might be problematic because of a possible drastic reduction in the egg supply and the low flexibility of the manufacturing process resulting in a lack of supply of the required vaccine doses in a timely fashion. Novel production systems using mammalian or insect cell cultures have emerged to overcome the limitations of the egg-based production system. These industrially well-established production systems have been primarily selected for a faster and more flexible response to pandemic threats. Here, we review the most important cell culture manufacturing processes that have been developed in recent years for mass production of influenza vaccines.
Collapse
|
49
|
Abstract
Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000-6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems--microcarrier/microcarrier-clump cultures using stirred-tank reactors--for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes.
Collapse
|
50
|
Ren Z, Lu Z, Wang L, Huo Z, Cui J, Zheng T, Dai Q, Chen C, Qin M, Chen M, Yang R. Rapid production of a H9N2 influenza vaccine from MDCK cells for protecting chicken against influenza virus infection. Appl Microbiol Biotechnol 2015; 99:2999-3013. [DOI: 10.1007/s00253-015-6406-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/10/2015] [Accepted: 01/14/2015] [Indexed: 01/17/2023]
|