1
|
Shapiro JR, Simard N, Bolotin S, Watts TH. Fluorescent Cell Barcoding of Peripheral Blood Mononuclear Cells for High-Throughput Assessment of Vaccine-Induced T Cell Responses in Low-Volume Research Samples. Cytometry A 2025; 107:321-332. [PMID: 40202117 DOI: 10.1002/cyto.a.24933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
T cell responses are rarely measured in large-scale human vaccine studies due to the sample volumes required, as well as the logistical, technical, and financial challenges associated with available assays. Fluorescent cell barcoding has been proposed in other contexts to allow for more high-throughput flow cytometry-based assays. Here, we aimed to expand on existing barcoding approaches to develop a reagent and sample-sparing assay for in-depth assessment of T cell responses to vaccine antigens. By using various concentrations of two fixable viability dyes in a matrix format, up to 25 samples that were pooled and acquired together could be successfully deconvoluted based on their unique fluorescent signature. This fluorescent cell barcoding approach was then combined with extracellular and intracellular staining to identify functional (i.e., producing at least one cytokine) and polyfunctional (i.e., producing multiple cytokines) T cells in response to vaccine antigen stimulation. As a proof-of-concept, we plated just 200,000 peripheral blood mononuclear cells (PBMC) per condition, and by staining and acquiring only two pooled samples, we were able to detect rare antigen-specific T cell responses in eight donors to four stimulants each. The frequencies of antigen-induced cytokine-positive cells detected in barcoded samples with 200,000 input PBMC were strongly correlated with those detected in non-barcoded samples from the same donors with 1 million input PBMC, demonstrating the validity of this approach. In conclusion, by reducing the number of PBMC needed by five-fold, and the volume of staining reagents needed by 25-fold, this assay has widespread potential applications to human vaccine studies.
Collapse
Affiliation(s)
- Janna R Shapiro
- Department of Immunology, Temerty Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
- The Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada
| | - Nathalie Simard
- Department of Immunology, Temerty Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| | - Shelly Bolotin
- The Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, Temerty Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
- The Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Lázár-Molnár E, Peterson LK. Clinical utility of the lymphocyte proliferation assay, an in vitro functional readout of the adaptive immune response. J Immunol Methods 2025; 537:113819. [PMID: 39855541 DOI: 10.1016/j.jim.2025.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/15/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Despite great advancements in the discovery of genetic variants underlying inborn errors of immunity, functional assessment of the immunological profile of patients in routine clinical practice remains challenging. The lymphocyte proliferation assay using 3H-thymidine incorporation has been the gold standard for decades for functional evaluation of T cells in the clinical laboratory, however, recently developed flow cytometric methods allowing for single cell analysis provide non-radioactive alternatives. Understanding the technical and analytical challenges of test development, validation and maintenance is essential for correct interpretation and test utilization, to assure appropriate and timely patient care. This review will discuss the technological aspects, validation and clinical utilization of in vitro lymphocyte proliferation assays performed in the clinical immunology laboratory, providing a diagnostic readout for T lymphocyte function, an essential hallmark of a functional cellular immune response, and allowing for the detection of impaired responses such as in patients with functional T cell defects.
Collapse
Affiliation(s)
- Eszter Lázár-Molnár
- ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Lisa K Peterson
- ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Shapiro JR, Corrado M, Perry J, Watts TH, Bolotin S. The contributions of T cell-mediated immunity to protection from vaccine-preventable diseases: A primer. Hum Vaccin Immunother 2024; 20:2395679. [PMID: 39205626 PMCID: PMC11364080 DOI: 10.1080/21645515.2024.2395679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
In the face of the ever-present burden of emerging and reemerging infectious diseases, there is a growing need to comprehensively assess individual- and population-level immunity to vaccine-preventable diseases (VPDs). Many of these efforts, however, focus exclusively on antibody-mediated immunity, ignoring the role of T cells. Aimed at clinicians, public health practioners, and others who play central roles in human vaccine research but do not have formal training in immunology, we review how vaccines against infectious diseases elicit T cell responses, what types of vaccines elicit T cell responses, and how T cell responses are measured. We then use examples to demonstrate six ways that T cells contribute to protection from VPD, including directly mediating protection, enabling antibody responses, reducing disease severity, increasing cross-reactivity, improving durability, and protecting special populations. We conclude with a discussion of challenges and solutions to more widespread consideration of T cell responses in clinical vaccinology.
Collapse
Affiliation(s)
- Janna R. Shapiro
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mario Corrado
- Division of General Internal Medicine, University of Toronto, Toronto, ON, Canada
| | - Julie Perry
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tania H. Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shelly Bolotin
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Protection, Public Health Ontario, Toronto, ON, Canada
| |
Collapse
|
4
|
Francis ER, Vu J, Perez CO, Sun C. Vaccinations in patients with chronic lymphocytic leukemia. Semin Hematol 2024; 61:131-138. [PMID: 38302313 PMCID: PMC11162341 DOI: 10.1053/j.seminhematol.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by immune dysfunction resulting in heightened susceptibility to infections and elevated rates of morbidity and mortality. A key strategy to mitigate infection-related complications has been immunization against common pathogens. However, the immunocompromised status of CLL patients poses challenges in eliciting an adequate humoral and cellular immune response to vaccination. Most CLL-directed therapy disproportionately impairs humoral immunity. Vaccine responsiveness also depends on the phase and type of immune response triggered by immunization. In this review, we discuss the immune dysfunction, vaccine responsiveness, and considerations for optimizing vaccine response in patients with CLL.
Collapse
Affiliation(s)
| | - Jennifer Vu
- Rosalind Franklin University of Medicine and Science, Chicago Medical School
| | | | - Clare Sun
- National Institutes of Health, National Heart, Lung, and Blood Institute.
| |
Collapse
|
5
|
Svitek N, Taracha ELN, Saya R, Awino E, Nene V, Steinaa L. Analysis of the Cellular Immune Responses to Vaccines. Methods Mol Biol 2022; 2465:283-301. [PMID: 35118627 DOI: 10.1007/978-1-0716-2168-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flow cytometry, enzyme-linked immunospot (ELISpot), and cellular cytotoxicity assays are powerful tools for studying the cellular immune response toward intracellular pathogens and vaccines in livestock species. Lymphocytes from immunized animals can be purified using Ficoll-Paque density gradient centrifugation and evaluated for their antigen specificity or reactivity toward a vaccine. Here, we describe staining of bovine lymphocytes with peptide (p)-MHC class I tetramers and antibodies specific toward cellular activation markers for evaluation by multiparametric flow cytometry, as well as interferon (IFN)-γ ELISpot and cytotoxicity using chromium (51Cr) release assays. A small component on the use of immunoinformatics for fine-tuning the identification of a minimal CTL epitope is included, and a newly developed and simple assay to measure TCR avidity.
Collapse
Affiliation(s)
- Nicholas Svitek
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
| | | | - Rosemary Saya
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
| | - Elias Awino
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
| | - Vish Nene
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya.
| |
Collapse
|
6
|
Baldwin J, Piplani S, Sakala IG, Honda-Okubo Y, Li L, Petrovsky N. Rapid development of analytical methods for evaluating pandemic vaccines: a COVID-19 perspective. Bioanalysis 2021; 13:1805-1826. [PMID: 34645288 PMCID: PMC8516068 DOI: 10.4155/bio-2021-0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccines are key in charting a path out of the COVID-19 pandemic. However, development of new vaccines is highly dependent on availability of analytical methods for their design and evaluation. This paper highlights the challenges presented in having to rapidly develop vaccine analytical tools during an ongoing pandemic, including the need to address progressive virus mutation and adaptation which can render initial assays unreliable or redundant. It also discusses the potential of new computational modeling techniques to model and analyze key viral proteins and their attributes to assist vaccine production and assay design. It then reviews the current range of analytical tools available for COVID-19 vaccine application, ranging from in vitro assays for immunogen characterization to assays to measure vaccine responses in vivo. Finally, it provides a future perspective for COVID-19 vaccine analytical tools and attempts to predict how the field might evolve over the next 5-10 years.
Collapse
Affiliation(s)
- Jeremy Baldwin
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Lei Li
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| |
Collapse
|
7
|
Copaescu A, Choshi P, Pedretti S, Mouhtouris E, Peter J, Trubiano JA. Dose Dependent Antimicrobial Cellular Cytotoxicity-Implications for ex vivo Diagnostics. Front Pharmacol 2021; 12:640012. [PMID: 34447304 PMCID: PMC8383281 DOI: 10.3389/fphar.2021.640012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction:Ex vivo and in vitro diagnostics, such as interferon-γ (IFN-γ) release enzyme linked ImmunoSpot (ELISpot) and flow cytometry, are increasingly employed in the research and diagnostic setting for severe T-cell mediated hypersensitivity. Despite an increasing use of IFN-γ release ELISpot for drug causality assessment and utilization of a range of antimicrobial concentrations ex vivo, data regarding antimicrobial-associated cellular cytotoxicity and implications for assay performance remain scarcely described in the literature. Using the measurement of lactate dehydrogenase (LDH) and the 7-AAD cell viability staining, we aimed via an exploratory study, to determine the maximal antimicrobial concentrations required to preserve cell viability for commonly implicated antimicrobials in severe T-cell mediated hypersensitivity. Method: After an 18-h incubation of patient peripheral blood monocytes (PBMCs) and antimicrobials at varying drug concentrations, the cell cytotoxicity was measured in two ways. A colorimetric based assay that detects LDH activity and by flow cytometry using the 7-AAD cell viability staining. We used the PBMCs collected from three healthy control participants with no known history of adverse drug reaction and two patients with a rifampicin-associated drug reaction with eosinophilia and systemic symptoms (DRESS), confirmed on IFN-γ ELISpot assay. The PBMCs were stimulated for the investigated drugs at the previously published drug maximum concentration (Cmax), and concentrations 10- and 100-fold above. Results: In a human immunodeficiency virus (HIV) negative and a positive rifampicin-associated DRESS with positive ex vivo IFN-γ ELISpot assay, use of 10- and 100-fold Cmax drug concentrations decreased spot forming units/million cells by 32–100%, and this corresponded to cell cytotoxicity of more than 40 and 20% using an LDH assay and 7-AAD cell viability staining, respectively. The other antimicrobials (ceftriaxone, flucloxacillin, piperacillin/tazobactam, and isoniazid) tested in healthy controls showed similar dose-dependent increased cytotoxicity using the LDH assay, but cytotoxicity remained lower than 40% for all Cmax and 10-fold Cmax drug concentrations except flucloxacillin. All 100-fold Cmax concentrations resulted in cell death >40% (median 57%), except for isoniazid. 7-AAD cell viability staining also confirmed an increase in lymphocyte death in PBMCs incubated with 10-fold and 100-fold above Cmax for ceftriaxone, and flucloxacillin; however, piperacillin/tazobactam and isoniazid indicated no differences in percentages of viable lymphocytes across concentrations tested. Conclusion: The LDH cytotoxicity and 7-AAD cell viability staining techniques both demonstrate increased cell death corresponding to a loss in ELISpot sensitivity, with use of higher antimicrobial drug concentrations for ex vivo diagnostic IFN-γ ELISpot assays. For all the antimicrobials evaluated, the use of Cmax and 10-fold Cmax concentrations impacts cell viability and potentially affects ELISpot performance. These findings inform future approaches for ex vivo diagnostics such as IFN-γ release ELISpot.
Collapse
Affiliation(s)
- Ana Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Phuti Choshi
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Effie Mouhtouris
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Jonathan Peter
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa.,Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC, Australia.,The National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
9
|
Moita D, Nunes-Cabaço H, Mendes AM, Prudêncio M. A guide to investigating immune responses elicited by whole-sporozoite pre-erythrocytic vaccines against malaria. FEBS J 2021; 289:3335-3359. [PMID: 33993649 DOI: 10.1111/febs.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
In the last few decades, considerable efforts have been made toward the development of efficient vaccines against malaria. Whole-sporozoite (Wsp) vaccines, which induce efficient immune responses against the pre-erythrocytic (PE) stages (sporozoites and liver forms) of Plasmodium parasites, the causative agents of malaria, are among the most promising immunization strategies tested until present. Several Wsp PE vaccination approaches are currently under evaluation in the clinic, including radiation- or genetically-attenuated Plasmodium sporozoites, live parasites combined with chemoprophylaxis, or genetically modified rodent Plasmodium parasites. In addition to the assessment of their protective efficacy, clinical trials of Wsp PE vaccine candidates inevitably involve the thorough investigation of the immune responses elicited by vaccination, as well as the identification of correlates of protection. Here, we review the main methodologies employed to dissect the humoral and cellular immune responses observed in the context of Wsp PE vaccine clinical trials and discuss future strategies to further deepen the knowledge generated by these studies, providing a toolbox for the in-depth analysis of vaccine-induced immunogenicity.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Lim KP, Zainal NS. Monitoring T Cells Responses Mounted by Therapeutic Cancer Vaccines. Front Mol Biosci 2021; 8:623475. [PMID: 33937323 PMCID: PMC8082312 DOI: 10.3389/fmolb.2021.623475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
With the regulatory approval of Provenge and Talimogene laherparepvec (T-VEC) for the treatment of metastatic prostate cancer and advanced melanoma respectively, and other promising clinical trials outcomes, cancer vaccine is gaining prominence as a cancer therapeutic agent. Cancer vaccine works to induce T cell priming, expansion, and infiltration resulting in antigen-specific cytotoxicity. Such an approach that can drive cytotoxicity within the tumor could complement the success of checkpoint inhibitors as tumors shown to have high immune cell infiltration are those that would respond well to these antibodies. With the advancements in cancer vaccine, methods to monitor and understand how cancer vaccines modify the immune milieu is under rapid development. This includes using ELISpot and intracellular staining to detect cytokine secretion by activated T cells; tetramer and CyTOF to quantitate the level of antigen specific T cells; proliferation and cell killing assay to detect the expansion of T cell and specific killing activity. More recently, T cell profiling has provided unprecedented detail on immune cell subsets and providing clues to the mechanism involved in immune activation. Here, we reviewed cancer vaccines currently in clinical trials and highlight available techniques in monitoring the clinical response in patients.
Collapse
Affiliation(s)
- Kue Peng Lim
- Cancer Immunology and Immunotherapy Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Nur Syafinaz Zainal
- Cancer Immunology and Immunotherapy Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
11
|
Zvyagin IV, Tsvetkov VO, Chudakov DM, Shugay M. An overview of immunoinformatics approaches and databases linking T cell receptor repertoires to their antigen specificity. Immunogenetics 2019; 72:77-84. [PMID: 31741011 DOI: 10.1007/s00251-019-01139-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Recent advances in molecular and bioinformatic methods have greatly improved our ability to study the formation of an adaptive immune response towards foreign pathogens, self-antigens, and cancer neoantigens. T cell receptors (TCR) are the key players in this process that recognize peptides presented by major histocompatibility complex (MHC). Owing to the huge diversity of both TCR sequence variants and peptides they recognize, accumulation and complex analysis of large amounts of TCR-antigen specificity data is required for understanding the structure and features of adaptive immune responses towards pathogens, vaccines, cancer, as well as autoimmune responses. In the present review, we summarize recent efforts on gathering and interpreting TCR-antigen specificity data and outline the critical role of tighter integration with other immunoinformatics data sources that include epitope MHC restriction, TCR repertoire structure models, and TCR/peptide/MHC structural data. We suggest that such integration can lead to the ability to accurately annotate individual TCR repertoires, efficiently estimate epitope and neoantigen immunogenicity, and ultimately, in silico identify TCRs specific to yet unstudied antigens and predict self-peptides related to autoimmunity.
Collapse
Affiliation(s)
- Ivan V Zvyagin
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vasily O Tsvetkov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M Chudakov
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail Shugay
- Pirogov Russian Medical State University, Moscow, Russia.
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
12
|
Prime-Boost Immunizations with DNA, Modified Vaccinia Virus Ankara, and Protein-Based Vaccines Elicit Robust HIV-1 Tier 2 Neutralizing Antibodies against the CAP256 Superinfecting Virus. J Virol 2019; 93:JVI.02155-18. [PMID: 30760570 PMCID: PMC6450106 DOI: 10.1128/jvi.02155-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
A vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCE A vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.
Collapse
|
13
|
Multivariate profiling of African green monkey and rhesus macaque T lymphocytes. Sci Rep 2019; 9:4834. [PMID: 30886198 PMCID: PMC6423277 DOI: 10.1038/s41598-019-41209-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
The complexity of immune responses limits the usefulness of univariate methods in answering complex immunology questions. To demonstrate the utility of a multivariate approach, we employ such approach to compare T cells of African green monkeys (AGMs) and rhesus macaques (RMs). Among the most prominent distinguishing features we found were lower CD3 and higher CD28 surface expression in AGMs compared to RMs. After in vitro stimulation, a larger proportion of AGM T cells secreted cytokines, especially those producing more than one cytokine (i.e. multifunctional cells). To find out whether multifunctional responses associate with protection in other species, we compared T cells of cynomolgus macaques (CMs) infected with wild-type Simian Immunodeficiency Virus (SIV) to those of CMs infected (vaccinated) with a replication-defective virus. Wild-type SIV infection in macaques leads to simian Acquired Immunodeficiency Syndrome (AIDS), which does not happen in animals previously vaccinated with a replication-defective virus. Interestingly, after in vitro stimulation, multifunctional cells were more abundant among T cells of vaccinated CMs. Our results propose T-cell multifunctionality as a potentially useful marker of immunity, although additional verification is needed. Finally, we hope our multivariate model and its associated validation methods will inform future studies in the field of immunology.
Collapse
|
14
|
Bowyer G, Rampling T, Powlson J, Morter R, Wright D, Hill AVS, Ewer KJ. Activation-induced Markers Detect Vaccine-Specific CD4⁺ T Cell Responses Not Measured by Assays Conventionally Used in Clinical Trials. Vaccines (Basel) 2018; 6:vaccines6030050. [PMID: 30065162 PMCID: PMC6161310 DOI: 10.3390/vaccines6030050] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
Immunogenicity of T cell-inducing vaccines, such as viral vectors or DNA vaccines and Bacillus Calmette-Guérin (BCG), are frequently assessed by cytokine-based approaches. While these are sensitive methods that have shown correlates of protection in various vaccine studies, they only identify a small proportion of the vaccine-specific T cell response. Responses to vaccination are likely to be heterogeneous, particularly when comparing prime and boost or assessing vaccine performance across diverse populations. Activation-induced markers (AIM) can provide a broader view of the total antigen-specific T cell response to enable a more comprehensive evaluation of vaccine immunogenicity. We tested an AIM assay for the detection of vaccine-specific CD4+ and CD8+ T cell responses in healthy UK adults vaccinated with viral vectored Ebola vaccine candidates, ChAd3-EBO-Z and MVA-EBO-Z. We used the markers, CD25, CD134 (OX40), CD274 (PDL1), and CD107a, to sensitively identify vaccine-responsive T cells. We compared the use of OX40+CD25+ and OX40+PDL1+ in CD4+ T cells and OX40+CD25+ and CD25+CD107a+ in CD8+ T cells for their sensitivity, specificity, and associations with other measures of vaccine immunogenicity. We show that activation-induced markers can be used as an additional method of demonstrating vaccine immunogenicity, providing a broader picture of the global T cell response to vaccination.
Collapse
Affiliation(s)
- Georgina Bowyer
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - Tommy Rampling
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | | | - Richard Morter
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
15
|
Flaxman A, Ewer KJ. Methods for Measuring T-Cell Memory to Vaccination: From Mouse to Man. Vaccines (Basel) 2018; 6:E43. [PMID: 30037078 PMCID: PMC6161152 DOI: 10.3390/vaccines6030043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022] Open
Abstract
The development of effective vaccines continues to be a key goal for public health bodies, governments, funding bodies and pharmaceutical companies. With new vaccines such as Shingrix targeting Shingles and Bexsero for Meningitis B, licensed in recent years, today's population can be protected from more infectious diseases than ever before. Despite this, we are yet to license vaccines for some of the deadliest endemic diseases affecting children, such as malaria. In addition, the threat of epidemics caused by emerging pathogens is very real as exemplified by the 2014⁻2016 Ebola outbreak. Most licensed vaccines provide efficacy through humoral immunity and correlates of protection often quantify neutralising antibody titre. The role of T-cells in vaccine efficacy is less well understood and more complex to quantify. Defining T-cell responses which afford protection also remains a challenge, although more sophisticated assays for assessing cell-mediated immunity with the potential for higher throughput and scalability are now available and warrant review. Here we discuss the benefits of multiparameter cytokine analysis and omics approaches compared with flow cytometric and ELISpot assays. We also review technical challenges unique to clinical trial studies, including assay validation across laboratories and availability of sample type. Measuring T-cell immunogenicity alongside humoral responses provides information on the breadth of immune responses induced by vaccination. Accurately enumerating and phenotyping T-cell immunogenicity to vaccination is key for the determination of immune correlates of protection. However, identifying such T-cell parameters remains challenging without a clear understanding of the immunological mechanisms by which a T-cell-mediated response induces protection.
Collapse
Affiliation(s)
- Amy Flaxman
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | - Katie J Ewer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
16
|
Wilcox CR, Jones CE. Beyond Passive Immunity: Is There Priming of the Fetal Immune System Following Vaccination in Pregnancy and What Are the Potential Clinical Implications? Front Immunol 2018; 9:1548. [PMID: 30061881 PMCID: PMC6054988 DOI: 10.3389/fimmu.2018.01548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Infection is responsible for over half a million neonatal deaths worldwide every year, and vaccination in pregnancy is becoming increasingly recognized as an important strategy for the protection of young infants. Increasing evidence suggests that exposure to maternal infection in utero may "prime" the developing immune system, even in the absence of infant infection. It is also possible that in utero priming may occur following maternal vaccination, with antigen-specific cellular immune responses detectable in utero and at birth. However, this remains a topic of some controversy. This review focuses on the evidence for in utero priming and the clinical implications for vaccination in pregnancy, considering whether in utero priming following vaccination could provide protection independent of antibody-mediated passive immunity, the possible effects of vaccination on subsequent infant vaccinations, their potential "non-specific" effects, and how the design and timing of vaccination might affect prenatal priming. Looking forward, we describe other possible options for quantifying antigen-specific cellular responses, including MHC tetramers, novel proliferation and cytokine-based assays, and animal models. Together, these may help us address future research questions and establish more robust evidence of fetal immune system priming.
Collapse
Affiliation(s)
- Christopher R. Wilcox
- NIHR Clinical Research Facility, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Christine E. Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
17
|
New Technologies for Vaccine Development: Harnessing the Power of Human Immunology. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Pye R, Patchett A, McLennan E, Thomson R, Carver S, Fox S, Pemberton D, Kreiss A, Baz Morelli A, Silva A, Pearse MJ, Corcoran LM, Belov K, Hogg CJ, Woods GM, Lyons AB. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release. Front Immunol 2018. [PMID: 29515577 PMCID: PMC5826075 DOI: 10.3389/fimmu.2018.00259] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti-DFTD immunization trials was remarkable, especially as DFTD is hallmarked by its immune evasion mechanisms. Microsatellite analyzes of MHC revealed that some MHC-I microsatellites correlated to stronger immune responses. These trials signify the first step in the long-term objective of releasing devils with immunity to DFTD into the wild.
Collapse
Affiliation(s)
- Ruth Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Amanda Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Elspeth McLennan
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Russell Thomson
- Centre for Research in Mathematics, School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, Australia
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Hobart, TAS, Australia
| | - David Pemberton
- Save the Tasmanian Devil Program, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Hobart, TAS, Australia
| | - Alexandre Kreiss
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Anabel Silva
- CSL Ltd., Bio21 Institute, Melbourne, VIC, Australia
| | | | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Belov
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Carolyn J Hogg
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
19
|
Lima-Junior JDC, Morgado FN, Conceição-Silva F. How Can Elispot Add Information to Improve Knowledge on Tropical Diseases? Cells 2017; 6:cells6040031. [PMID: 28961208 PMCID: PMC5755491 DOI: 10.3390/cells6040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023] Open
Abstract
Elispot has been used as an important tool for detecting immune cells' products and functions and has facilitated the understanding of host-pathogen interaction. Despite the incredible diversity of possibilities, two main approaches have been developed: the immunopathogenesis and diagnosis/prognosis of infectious diseases as well as cancer research. Much has been described on the topics of allergy, autoimmune diseases, and HIV-Aids, however, Elispot can also be applied to other infectious diseases, mainly leishmaniasis, malaria, some viruses, helminths and mycosis usually classified as tropical diseases. The comprehension of the function, concentration and diversity of the immune response in the infectious disease is pointed out as crucial to the development of infection or disease in humans and animals. In this review we will describe the knowledge already obtained using Elispot as a method for accessing the profile of immune response as well as the recent advances in information about host-pathogen interaction in order to better understand the clinical outcome of a group of tropical and neglected diseases.
Collapse
Affiliation(s)
- Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-5° andar, sala 509, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fátima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
T-cell assays confirm immunogenicity of tungsten-induced erythropoietin aggregates associated with pure red cell aplasia. Blood Adv 2017; 1:367-379. [PMID: 29296951 DOI: 10.1182/bloodadvances.2016001842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
Immunogenicity of biotherapeutics and the elicitation of anti-drug antibodies are a key concern for their efficacy, pharmacokinetics, and safety. A particularly severe consequence of immunogenicity of a biotherapeutic is the rare development of antibody-mediated pure red cell aplasia (PRCA) in anemic patients treated with aggregated forms of recombinant human erythropoietin (rhEPO). Here, we investigated in vitro T-cell responses to experimentally heat-induced rhEPO aggregates, and to tungsten-induced rhEPO aggregates in clinical lots associated with rhEPO-neutralizing antibodies and PRCA. Heat-stressed rhEPO elicited T-cell responses only in blood obtained from healthy individuals identified as responders, whereas nonstressed rhEPO overall did not induce reactions neither in responders nor nonresponders. Tungsten-induced rhEPO aggregates in clinical lots associated with rhEPO-neutralizing antibodies and PRCA could induce in vitro T-cell responses in blood obtained from healthy donors, in contrast to rhEPO from low tungsten syringes. Importantly, ex vivo T-cell recall responses of patients treated with rhEPO without PRCA showed no T-cell responses, whereas T cells of a patient who developed PRCA after treatment with a clinical batch with elevated levels of tungsten and rhEPO aggregates showed a clear response to rhEPO from that clinical batch. To our knowledge, this is the first time that T-cell assays confirm the root cause of increased rhEPO immunogenicity associated with PRCA.
Collapse
|
21
|
Gastelum-Aviña P, Lares-Villa F, Espitia C, Valenzuela O, Robles-Zepeda R, Velazquez C, Garibay-Escobar A. A rapid alternative method to evaluate T-cell hybridoma activation using an improved cytokine (IL-2) secretion assay. J Immunol Methods 2016; 438:42-50. [PMID: 27592266 DOI: 10.1016/j.jim.2016.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 11/15/2022]
Abstract
T-cell hybridoma assays have been widely used for the in vitro study of antigen processing and presentation because they represent an unlimited source of cells and they bypass the difficulty of maintaining T-cell clones in culture. One of the most widely used methods to assess hybridoma activation is measurement of CTLL-2 cell proliferation, which is dependent on IL-2. However, continuous culture of this cell line results in a loss of sensitivity, and significant interassay variability can occur. Therefore, our goal was to develop a method to assess T-cell hybridoma activation that was fast and sensitive with low variability based on the IL-2 secretion assay. The assay used flow cytometry detection and employed the hen egg lysozyme (HEL)-specific 3A9 hybridoma as a model. The original murine IL-2 secretion assay protocol from Miltenyi Biotec® was tested and modified; the conjugated capture antibody (anti-CD45-anti-IL-2) was added together with the stimulus at the beginning of the antigen presentation assay instead of after antigenic stimulation. With this modification, the percentage of detectable CD4+IL-2+ cells following HEL stimulation rose from 4.5% with the original protocol (0.8% without stimulus) to 94.1% (0.8% without stimulus) with the newly proposed method under the conditions evaluated in this study. This modification allowed us to evaluate the activation of hybridomas directly and more rapidly (~18h) than the reference method that assayed CTLL-2 cell proliferation using the MTT reduction assay (~48h). In conclusion, the proposed method offered a rapid alternative for screening T-cell hybridomas and evaluating their antigen-specific activation.
Collapse
Affiliation(s)
- Paola Gastelum-Aviña
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de febrero 818 sur., Cd. Obregón, Sonora 85000, Mexico; Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de febrero 818 sur., Cd. Obregón, Sonora 85000, Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Mexico D.F. 04510, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Ramon Robles-Zepeda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Carlos Velazquez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, Mexico.
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
22
|
Svitek N, Taracha ELN, Saya R, Awino E, Nene V, Steinaa L. Analysis of the Cellular Immune Responses to Vaccines. Methods Mol Biol 2016; 1349:247-262. [PMID: 26458841 DOI: 10.1007/978-1-4939-3008-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Flow cytometry, enzyme-linked immunospot (ELISpot) and cellular cytotoxicity assays are powerful tools for studying the cellular immune response towards intracellular pathogens and vaccines in livestock species. Lymphocytes from immunized animals can be purified using Ficoll-Paque density gradient centrifugation and evaluated for their antigen specificity or reactivity towards a vaccine. Here, we describe staining of bovine lymphocytes with peptide (p)-MHC class I tetramers and antibodies specific towards cellular activation markers for evaluation by multiparametric flow cytometry, as well as interferon (IFN)-γ ELISpot and cytotoxicity using chromium ((51)Cr) release assays. A small component on the use of immunoinformatics for fine-tuning the identification of a minimal CTL epitope is included.
Collapse
Affiliation(s)
- Nicholas Svitek
- Vaccine Biosciences, International Livestock Research Institute, Att: Lucilla Steinaa, Vaccine Biosciences, 30709, 00100, Nairobi, Kenya
| | - Evans L N Taracha
- Vaccine Biosciences, International Livestock Research Institute, Att: Lucilla Steinaa, Vaccine Biosciences, 30709, 00100, Nairobi, Kenya
| | - Rosemary Saya
- Vaccine Biosciences, International Livestock Research Institute, Att: Lucilla Steinaa, Vaccine Biosciences, 30709, 00100, Nairobi, Kenya
| | - Elias Awino
- Vaccine Biosciences, International Livestock Research Institute, Att: Lucilla Steinaa, Vaccine Biosciences, 30709, 00100, Nairobi, Kenya
| | - Vishvanath Nene
- Vaccine Biosciences, International Livestock Research Institute, Att: Lucilla Steinaa, Vaccine Biosciences, 30709, 00100, Nairobi, Kenya
| | - Lucilla Steinaa
- Vaccine Biosciences, International Livestock Research Institute, Att: Lucilla Steinaa, Vaccine Biosciences, 30709, 00100, Nairobi, Kenya.
| |
Collapse
|
23
|
Rothman AL, Currier JR, Friberg HL, Mathew A. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine 2015; 33:7083-90. [PMID: 26458801 DOI: 10.1016/j.vaccine.2015.09.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022]
Abstract
Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.
Collapse
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| | - Jeffrey R Currier
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Heather L Friberg
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Anuja Mathew
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| |
Collapse
|
24
|
Agadjanyan MG, Petrovsky N, Ghochikyan A. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease. Alzheimers Dement 2015; 11:1246-59. [PMID: 26192465 DOI: 10.1016/j.jalz.2015.06.1884] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
Traditional vaccination against infectious diseases relies on generation of cellular and humoral immune responses that act to protect the host from overt disease even though they do not induce sterilizing immunity. More recently, attempts have been made with mixed success to generate therapeutic vaccines against a wide range of noninfectious diseases including neurodegenerative disorders. After the exciting first report of successful vaccine prevention of progression of an Alzheimer's disease (AD) animal model in 1999, various epitope-based vaccines targeting amyloid beta (Aβ) have proceeded to human clinical trials, with varied results. More recently, AD vaccines based on tau protein have advanced into clinical testing too. This review seeks to put perspective to the mixed results obtained so far in clinical trials of AD vaccines and discusses the many pitfalls and misconceptions encountered on the path to a successful AD vaccine, including better standardization of immunologic efficacy measures of antibodies, immunogenicity of platform/carrier and adjuvants.
Collapse
Affiliation(s)
- Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, South Australia; Flinders Medical Centre and Flinders University, Adelaide, South Australia
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
25
|
Reguzova AY, Karpenko LI, Mechetina LV, Belyakov IM. Peptide-MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development. Expert Rev Vaccines 2014; 14:69-84. [PMID: 25373312 DOI: 10.1586/14760584.2015.962520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of MHC multimers allows precise and direct detecting and analyzing of antigen-specific T-cell populations and provides new opportunities to characterize T-cell responses in humans and animals. MHC-multimers enable us to enumerate specific T-cells targeting to viral, tumor and vaccine antigens with exceptional sensitivity and specificity. In the field of HIV/SIV immunology, this technique provides valuable information about the frequencies of HIV- and SIV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in different tissues and sites of infection, AIDS progression, and pathogenesis. Peptide-MHC multimer technology remains a very sensitive tool in detecting virus-specific T -cells for evaluation of the immunogenicity of vaccines against HIV-1 in preclinical trials. Moreover, it helps to understand how immune responses are formed following vaccination in the dynamics from priming point until T-cell memory is matured. Here we review a diversity of peptide-MHC class I multimer applications for fundamental immunological studies in different aspects of HIV/SIV infection and vaccine development.
Collapse
Affiliation(s)
- Alena Y Reguzova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
26
|
Neimert-Andersson T, Binnmyr J, Enoksson M, Langebäck J, Zettergren L, Hällgren AC, Franzén H, Lind Enoksson S, Lafolie P, Lindberg A, Al-Tawil N, Andersson M, Singer P, Grönlund H, Gafvelin G. Evaluation of safety and efficacy as an adjuvant for the chitosan-based vaccine delivery vehicle ViscoGel in a single-blind randomised Phase I/IIa clinical trial. Vaccine 2014; 32:5967-74. [DOI: 10.1016/j.vaccine.2014.08.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/30/2022]
|