1
|
Abreo Medina ADP, Shi M, Wang Y, Wang Z, Huang K, Liu Y. Exploring Extracellular Vesicles: A Novel Approach in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2717-2731. [PMID: 39846785 DOI: 10.1021/acs.jafc.4c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication. An imbalance in the gut microbiota composition may contribute to the progression of NAFLD, making the gut-liver axis a promising target for therapeutic strategies. This review aims to provide a comprehensive overview of EVs in NAFLD. Additionally, exosome-like nanovesicles derived from plants (PELNs) and probiotics-derived extracellular vesicles (postbiotics) have demonstrated the potential to re-establish intestinal equilibrium and modulate gut microbiota, thus offering the potential to alleviate NAFLD via the gut-liver axis. Further research is needed using multiple omics approaches to comprehensively characterize the cargo including protein, metabolites, genetic material packaged, and biological activities of extracellular vesicles derived from diverse microbes and plants.
Collapse
Affiliation(s)
- Andrea Del Pilar Abreo Medina
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Chang CC, Huang HC, Hsu SJ, Pun CK, Chuang CL, Hou MC, Lee FY. Ezetimibe treatment reduces oxidized low-density lipoprotein in biliary cirrhotic rats. J Chin Med Assoc 2024; 87:463-470. [PMID: 38380910 DOI: 10.1097/jcma.0000000000001075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND In liver cirrhosis, chronic inflammation is associated with an increase in oxidative stress, and subsequently an increase in the concentration of oxidized low-density lipoprotein (ox-LDL). Ezetimibe is a lipid-lowering agent with anti-inflammation and anti-oxidative stress activities. This study aimed to investigate the effect of ezetimibe treatment on ox-LDL in cirrhotic rats. METHODS Biliary cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (BDL). Sham-operated rats served as surgical controls. Ezetimibe (10 mg/kg/d) or vehicle was administered in the sham-operated or BDL rats for 4 weeks, after which hemodynamic parameters, biochemistry data, and oxidative stress were evaluated. Plasma and intrahepatic ox-LDL levels were also examined, and hepatic proteins were analyzed to explore the mechanism of ezetimibe treatment. RESULTS The BDL rats had typical features of cirrhosis including jaundice, impaired liver function, hyperlipidemia, and elevated ox-LDL levels compared to the sham-operated rats. Ezetimibe treatment did not affect hemodynamics, liver biochemistry, or plasma lipid levels. However, it significantly reduced oxidative stress, plasma levels of ox-LDL, and tumor necrosis factor α. In addition, ezetimibe upregulated the hepatic protein expression of an ox-LDL scavenger (lectin-like ox-LDL rececptor-1), which resulted in reductions in intrahepatic ox-LDL and fat accumulation in the BDL rats. Nevertheless, ezetimibe treatment did not ameliorate hepatic inflammation or liver fibrosis. CONCLUSION Ezetimibe reduced plasma and intrahepatic ox-LDL levels in the cirrhotic rats. Furthermore, it ameliorated intrahepatic fat accumulation and oxidative stress. However, ezetimibe did not alleviate hepatic fibrosis or inflammation in the biliary cirrhotic rats.
Collapse
Affiliation(s)
- Ching-Chih Chang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chon-Kit Pun
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Terracciani F, Falcomatà A, Gallo P, Picardi A, Vespasiani-Gentilucci U. Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers. J Physiol Biochem 2023; 79:851-868. [PMID: 36472795 DOI: 10.1007/s13105-022-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.
Collapse
Affiliation(s)
- Francesca Terracciani
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Falcomatà
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo Gallo
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Antonio Picardi
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | | |
Collapse
|
4
|
Liu Z, Yuan J, Wen P, Guo X, Li K, Wang Y, Liu R, Guo Y, Li D. Effect of Lard or Plus Soybean Oil on Markers of Liver Function in Healthy Subjects: A Randomized Controlled-Feeding Trial. Foods 2023; 12:foods12091894. [PMID: 37174432 PMCID: PMC10178189 DOI: 10.3390/foods12091894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Humans have consumed lard for thousands of years, but in recent decades, it has become much less popular because it is regarded as saturated fat. Animal studies showed that lard plus soybean oil (blend oil) was more advantageous for liver health than using either oil alone. This study aims to assess the effects of blend oil on liver function markers in healthy subjects. The 345 healthy subjects were randomized into 3 isoenergetic diet groups with different edible oils (30 g/day) (soybean oil, lard, and blend oil (50% lard and 50% soybean oil)) for 12 weeks. The reductions in both aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were greater in the blend oil group than in the two other groups (p = 0.001 and <0.001 for the interaction between diet group and time, respectively). The reductions in AST and ALT in the blend oil group were more significant compared with those in the soybean oil group (p < 0.001) or lard group (p < 0.001). There were no significant differences in the other liver function markers between the groups. Thus, blend oil was beneficial for liver function markers such as AST and ALT compared with soybean oil and lard alone, which might help prevent non-alcoholic fatty liver disease in the healthy population.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Jihong Yuan
- No. 2 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ping Wen
- Supply Department, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiaofei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Kelei Li
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Yinpeng Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Ruirui Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Yanjun Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne 3800, Australia
| |
Collapse
|
5
|
Goldberg AR, Ferguson M, Pal S, Cohen R, Orlicky DJ, McCullough RL, Rutkowski JM, Burchill MA, Tamburini BAJ. Oxidized low density lipoprotein in the liver causes decreased permeability of liver lymphatic- but not liver sinusoidal-endothelial cells via VEGFR-3 regulation of VE-Cadherin. Front Physiol 2022; 13:1021038. [PMID: 36338478 PMCID: PMC9626955 DOI: 10.3389/fphys.2022.1021038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/05/2022] [Indexed: 01/27/2023] Open
Abstract
The lymphatic vasculature of the liver is vital for liver function as it maintains fluid and protein homeostasis and is important for immune cell transport to the lymph node. Chronic liver disease is associated with increased expression of inflammatory mediators including oxidized low-density lipoprotein (oxLDL). Intrahepatic levels of oxLDL are elevated in nonalcoholic fatty liver disease (NAFLD), chronic hepatitis C infection (HCV), alcohol-associated liver disease (ALD), and cholestatic liver diseases. To determine if liver lymphatic function is impaired in chronic liver diseases, in which increased oxLDL has been documented, we measured liver lymphatic function in murine models of NAFLD, ALD and primary sclerosing cholangitis (PSC). We found that Mdr2-/- (PSC), Lieber-DeCarli ethanol fed (ALD) and high fat and high cholesterol diet fed (NAFLD) mice all had a significant impairment in the ability to traffic FITC labeled dextran from the liver parenchyma to the liver draining lymph nodes. Utilizing an in vitro permeability assay, we found that oxLDL decreased the permeability of lymphatic endothelial cells (LEC)s, but not liver sinusoidal endothelial cells (LSEC)s. Here we demonstrate that LECs and LSECs differentially regulate SRC-family kinases, MAPK kinase and VE-Cadherin in response to oxLDL. Furthermore, Vascular Endothelial Growth Factor (VEGF)C or D (VEGFR-3 ligands) appear to regulate VE-Cadherin expression as well as decrease cellular permeability of LECs in vitro and in vivo after oxLDL treatment. These findings suggest that oxLDL acts to impede protein transport through the lymphatics through tightening of the cell-cell junctions. Importantly, engagement of VEGFR-3 by its ligands prevents VE-Cadherin upregulation and improves lymphatic permeability. These studies provide a potential therapeutic target to restore liver lymphatic function and improve liver function.
Collapse
Affiliation(s)
- Alyssa R. Goldberg
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & Nutrition. Children’s Hospital Colorado, Digestive Health Institute- Pediatric Liver Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Megan Ferguson
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sarit Pal
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rachel Cohen
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rebecca L. McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joseph M. Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Matthew A. Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Beth A. Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
6
|
Huang HC, Hsu SJ, Chang CC, Chuang CL, Hou MC, Lee FY. Effects of PCSK-9 Inhibition by Alirocumab Treatments on Biliary Cirrhotic Rats. Int J Mol Sci 2022; 23:ijms23137378. [PMID: 35806383 PMCID: PMC9267099 DOI: 10.3390/ijms23137378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Hyperlipidemia and oxidative stress with elevated oxidized low-density lipoprotein (ox-LDL) exacerbate hepatic inflammation and fibrosis. The plasma level of low-density lipoprotein (LDL) is controlled by proprotein convertase subtilisin/kexin 9 (PCSK9). Alirocumab is a monoclonal antibody that decreases LDL via inhibiting PCSK9 function. Apart from lipid-lowering effects, alirocumab exerts anti-inflammation, anti-angiogenesis and anti-oxidant effects. This study aims to investigate the impact of alirocumab treatment on common bile duct ligation (BDL)-induced biliary cirrhotic rats. After a 4-week treatment of alirocumab, the hemodynamic data, blood biochemistry, ox-LDL level, oxidative stress markers, severity of hepatic encephalopathy and abnormal angiogenesis of BDL rats were measured and compared to the control group. BDL rats presented cirrhotic pictures and elevated ammonia, total cholesterol, LDL and ox-LDL levels compared to the control group. Alirocumab decreased plasma levels of total cholesterol, LDL, and oxidative stress markers; however, it did not affect the hemodynamics, liver and renal biochemistry, and the plasma levels of ammonia and ox-LDL. The motor activities, portal-systemic collaterals and mesenteric vascular density were not significantly different between alirocumab-treated and control groups. In addition, it did not affect hepatic inflammation, intrahepatic angiogenesis, liver fibrosis and free cholesterol accumulation in the liver of BDL rats. In conclusion, PCSK9 inhibition by alirocumab treatment ameliorates hyperlipidemia and systemic oxidative stress in biliary cirrhotic rats. However, it does not affect the plasma level of ox-LDL, intrahepatic inflammation and fibrosis. In addition, PCSK9 inhibition has a neutral effect on abnormal angiogenesis and hepatic encephalopathy in biliary cirrhotic rats.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-C.H.); (S.-J.H.); (C.-L.C.); (M.-C.H.); (F.-Y.L.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-C.H.); (S.-J.H.); (C.-L.C.); (M.-C.H.); (F.-Y.L.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ching-Chih Chang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-C.H.); (S.-J.H.); (C.-L.C.); (M.-C.H.); (F.-Y.L.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-28753253; Fax: +886-2-28757809
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-C.H.); (S.-J.H.); (C.-L.C.); (M.-C.H.); (F.-Y.L.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-C.H.); (S.-J.H.); (C.-L.C.); (M.-C.H.); (F.-Y.L.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-C.H.); (S.-J.H.); (C.-L.C.); (M.-C.H.); (F.-Y.L.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
7
|
Wang Y, Liu Y. Gut-liver-axis: Barrier function of liver sinusoidal endothelial cell. J Gastroenterol Hepatol 2021; 36:2706-2714. [PMID: 33811372 DOI: 10.1111/jgh.15512] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/02/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Liver diseases are associated with the leaky gut via the gut-liver-axis. Previous studies have paid much attention to the effect of gut barrier damage. Notably, clinical observations and basic research reveal that the gut barrier damage seldom leads to liver injury independently but aggravates pre-existing liver diseases such as non-alcoholic fatty liver disease and drug-induced liver injury. These evidences suggest that there is a hepatic barrier in the gut-liver-axis, protecting the liver against gut-derived pathogenic factors. However, it has never been investigated which type of liver cell plays the role of hepatic barrier. Under physiological conditions, liver sinusoidal endothelial cell (LSEC) can take up and eliminate virus, bacteriophage, microbial products, and metabolic wastes. LSEC also keeps the homeostasis of liver immune environment via tolerance-inducing and anti-inflammatory functions. In contrast, under pathological conditions, the clearance function of LSEC is impaired, and LSEC turns into a pro-inflammatory pattern. Given its anatomical position and physiological functions, LSEC is proposed as the hepatic barrier in the gut-liver-axis. In this review, we aim to further understand the role of LSEC as the hepatic barrier. Future studies are warranted to seek effective treatments to improve LSEC health, which appears to be a promising approach to prevent gut-derived liver injury.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
8
|
Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother 2020; 131:110785. [PMID: 33152943 DOI: 10.1016/j.biopha.2020.110785] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, as it affects up to 30 % of adults in Western countries. Moreover, NAFLD is also considered an independent risk factor for cardiovascular diseases. Insulin resistance and inflammation have been identified as key factors in the pathophysiology of NAFLD. Although the mechanisms associated with the development of NAFLD remain to be fully elucidated, a complex interaction between adipokines and cytokines appear to play a crucial role in the development of this condition. Adiponectin is the most common adipokine known to be inversely linked with insulin resistance, lipid accumulation, inflammation and NAFLD. Consequently, the focus has been on the use of new therapies that may enhance hepatic expression of adiponectin downstream targets or increase the serum levels of adiponectin in the treatment NAFLD. While currently used therapies show limited efficacy in this aspect, accumulating evidence suggest that various dietary polyphenols may stimulate adiponectin levels, offering potential protection against the development of insulin resistance, inflammation and NAFLD as well as associated conditions of metabolic syndrome. As such, this review provides a better understanding of the role polyphenols play in modulating adiponectin signaling to protect against NAFLD. A brief discussion on the regulation of adiponectin during disease pathophysiology is also covered to underscore the potential protective effects of polyphenols against NAFLD. Some of the prominent polyphenols described in the manuscript include aspalathin, berberine, catechins, chlorogenic acid, curcumin, genistein, piperine, quercetin, and resveratrol.
Collapse
Affiliation(s)
- Samukelisiwe C Shabalala
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
9
|
Burchill MA, Finlon JM, Goldberg AR, Gillen AE, Dahms PA, McMahan RH, Tye A, Winter AB, Reisz JA, Bohrnsen E, Schafer JB, D'Alessandro A, Orlicky DJ, Kriss MS, Rosen HR, McCullough RL, Jirón Tamburini BA. Oxidized Low-Density Lipoprotein Drives Dysfunction of the Liver Lymphatic System. Cell Mol Gastroenterol Hepatol 2020; 11:573-595. [PMID: 32961356 PMCID: PMC7803659 DOI: 10.1016/j.jcmgh.2020.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS As the incidence of nonalcoholic steatohepatitis (NASH) continues to rise, understanding how normal liver functions are affected during disease is required before developing novel therapeutics which could reduce morbidity and mortality. However, very little is understood about how the transport of proteins and cells from the liver by the lymphatic vasculature is affected by inflammatory mediators or during disease. METHODS To answer these questions, we utilized a well-validated mouse model of NASH and exposure to highly oxidized low density lipoprotein (oxLDL). In addition to single cell sequencing, multiplexed immunofluorescence and metabolomic analysis of liver lymphatic endothelial cells (LEC)s we evaluated lymphatic permeability and transport both in vitro and in vivo. RESULTS Confirming similarities between human and mouse liver lymphatic vasculature in NASH, we found that the lymphatic vasculature expands as disease progresses and results in the downregulation of genes important to lymphatic identity and function. We also demonstrate, in mice with NASH, that fluorescein isothiocyanate (FITC) dextran does not accumulate in the liver draining lymph node upon intrahepatic injection, a defect that was rescued with therapeutic administration of the lymphatic growth factor, recombinant vascular endothelial growth factor C (rVEGFC). Similarly, exposure to oxLDL reduced the amount of FITC-dextran in the portal draining lymph node and through an LEC monolayer. We provide evidence that the mechanism by which oxLDL impacts lymphatic permeability is via a reduction in Prox1 expression which decreases lymphatic specific gene expression, impedes LEC metabolism and reorganizes the highly permeable lymphatic cell-cell junctions which are a defining feature of lymphatic capillaries. CONCLUSIONS We identify oxLDL as a major contributor to decreased lymphatic permeability in the liver, a change which is consistent with decreased protein homeostasis and increased inflammation during chronic liver disease.
Collapse
Affiliation(s)
- Matthew A Burchill
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; RNA Biosciences Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Jeffrey M Finlon
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alyssa R Goldberg
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Austin E Gillen
- RNA Biosciences Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Petra A Dahms
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel H McMahan
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anne Tye
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew B Winter
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric Bohrnsen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Johnathon B Schafer
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael S Kriss
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hugo R Rosen
- University of Southern California Keck School of Medicine, Los Angeles, California
| | - Rebecca L McCullough
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Beth A Jirón Tamburini
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; RNA Biosciences Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
10
|
Burchill MA, Goldberg AR, Tamburini BAJ. Emerging Roles for Lymphatics in Chronic Liver Disease. Front Physiol 2020; 10:1579. [PMID: 31992991 PMCID: PMC6971163 DOI: 10.3389/fphys.2019.01579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic liver disease (CLD) is a global health epidemic causing ∼2 million deaths annually worldwide. As the incidence of CLD is expected to rise over the next decade, understanding the cellular and molecular mediators of CLD is critical for developing novel therapeutics. Common characteristics of CLD include steatosis, inflammation, and cholesterol accumulation in the liver. While the lymphatic system in the liver has largely been overlooked, the liver lymphatics, as in other organs, are thought to play a critical role in maintaining normal hepatic function by assisting in the removal of protein, cholesterol, and immune infiltrate. Lymphatic growth, permeability, and/or hyperplasia in non-liver organs has been demonstrated to be caused by obesity or hypercholesterolemia in humans and animal models. While it is still unclear if changes in permeability occur in liver lymphatics, the lymphatics do expand in number and size in all disease etiologies tested. This is consistent with the lymphatic endothelial cells (LEC) upregulating proliferation specific genes, however, other transcriptional changes occur in liver LECs that are dependent on the inflammatory mediators that are specific to the disease etiology. Whether these changes induce lymphatic dysfunction or if they impact liver function has yet to be directly addressed. Here, we will review what is known about liver lymphatics in health and disease, what can be learned from recent work on the influence of obesity and hypercholesterolemia on the lymphatics in other organs, changes that occur in LECs in the liver during disease and outstanding questions in the field.
Collapse
Affiliation(s)
- Matthew A Burchill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| | - Alyssa R Goldberg
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States.,Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, United States
| | - Beth A Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| |
Collapse
|
11
|
Elvira-Torales LI, García-Alonso J, Periago-Castón MJ. Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review. Antioxidants (Basel) 2019; 8:antiox8070229. [PMID: 31330977 PMCID: PMC6681007 DOI: 10.3390/antiox8070229] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
The consumption of carotenoids has beneficial effects on health, reducing the risk of certain forms of cancer, cardiovascular diseases, and macular degeneration, among others. The mechanism of action of carotenoids has not been clearly identified; however, it has been associated with the antioxidant capacity of carotenoids, which acts against reactive oxygen species and inactivating free radicals, although it has also been shown that carotenoids modulate gene expression. Dietary carotenoids are absorbed and accumulated in the liver and other organs, where they exert their beneficial effects. In recent years, it has been described that the intake of carotenoids can significantly reduce the risk of suffering from liver diseases, such as non-alcoholic fatty liver disease (NAFLD). This disease is characterized by an imbalance in lipid metabolism producing the accumulation of fat in the hepatocyte, leading to lipoperoxidation, followed by oxidative stress and inflammation. In the first phases, the main treatment of NAFLD is to change the lifestyle, including dietary habits. In this sense, carotenoids have been shown to have a hepatoprotective effect due to their ability to reduce oxidative stress and regulate the lipid metabolism of hepatocytes by modulating certain genes. The objective of this review was to provide a description of the effects of dietary carotenoids from fruits and vegetables on liver health.
Collapse
Affiliation(s)
- Laura Inés Elvira-Torales
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain.
- Department of Food Engineering, Tierra Blanca Superior Technological Institute, Tierra Blanca 95180, Mexico.
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain
| | - María Jesús Periago-Castón
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain.
| |
Collapse
|
12
|
Ho CM, Ho SL, Jeng YM, Lai YS, Chen YH, Lu SC, Chen HL, Chang PY, Hu RH, Lee PH. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. JOURNAL OF INFLAMMATION-LONDON 2019; 16:7. [PMID: 30983887 PMCID: PMC6444889 DOI: 10.1186/s12950-019-0211-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Background Macrophages engulf oxidized-LDL (oxLDL) leading to accumulation of cellular cholesterol and formation of foam cells, which is a hallmark of atherosclerosis. Moreover, recent studies showed that accumulation of free cholesterol in macrophages leading to activation of NLRP3 inflammasome and production of interleukin-1β (IL-1β) has been linked to atherosclerosis-associated inflammation. However, it is not clear if cholesterol accumulation is associated with hepatic inflammation and fibrosis in the liver. In this study, we investigated the association of free cholesterol and oxLDL accumulation in portal vein with the inflammation, atherosclerosis, and fibrosis in human nonalcoholic fatty liver disease (NAFLD). Methods Serial sections derived from surgical specimens of NAFLD were stained with filipin and antibodies against IL-1β, CD68, α-smooth muscle actin (α-SMA), oxLDL and lectin-like oxLDL receptor-1 (LOX-1). Results We show that free cholesterol was colocalized with oxLDL in the wall of portal vein, and which was associated with lumen narrowing, plaque formation, endothelium deformation, and portal venous inflammation. The inflammation was evidenced by the colocalization of Kupffer cells and IL-1β and the expression of LOX-1. Notably, ruptured plaque was closely associated with portal venous inflammation. Moreover, free cholesterol and oxLDL accumulation in periportal and sinusoidal fibrosis, which was associated with regional stellate cell activation and chicken-wire fibrosis. Conclusion These findings reveal a direct association between cholesterol accumulation, portal venous inflammation and fibrosis in NAFLD. Electronic supplementary material The online version of this article (10.1186/s12950-019-0211-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng-Maw Ho
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan
| | - Shu-Li Ho
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan.,8Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Ming Jeng
- 3Department of Pathology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Sheng Lai
- 4Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, 1, Jen Ai Rd, Sec 1, Taipei, 100 Taiwan
| | - Ya-Hui Chen
- 2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan.,5Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Shao-Chun Lu
- 4Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, 1, Jen Ai Rd, Sec 1, Taipei, 100 Taiwan
| | - Hui-Ling Chen
- 2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan
| | - Po-Yuan Chang
- 6Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Rey-Heng Hu
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Po-Huang Lee
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,7Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Curcumin attenuates hepatic fibrosis and insulin resistance induced by bile duct ligation in rats. Br J Nutr 2018; 120:393-403. [PMID: 29880071 DOI: 10.1017/s0007114518001095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have strongly indicated the hepatoprotective effect of curcumin; however, the precise mechanisms are not well understood. This study aimed to determine the protective effect of curcumin on hepatic damage and hepatic insulin resistance in biliary duct ligated (BDL) fibrotic rat model. To accomplish this, male Wistar rats were divided into four groups (eight for each): sham group, BDL group, sham+Cur group and BDL+Cur group. The last two groups received curcumin at a dose of 100 mg/kg daily for 4 weeks. The mRNA/protein expression levels of Ras-related C3 botulinum toxin substrate 1 (Rac1), Rac1-GTP, dinucleotide phosphate oxidase 1 (NOX1), signal transducer and activator of transcription 3 (STAT3), suppressor of cytokine signalling 3 (SOCS3), insulin receptor substrate 1 (IRS1), extracellular signal-regulated kinase 1 (ERK1), specific protein 1 (Sp1) and hypoxia-inducible factor-1α (HIF-1α) were measured by real-time PCR and Western blotting, respectively. Fasting blood glucose, insulin and Leptin levels were determined and homoeostasis model assessment-estimated insulin resistance, as an index of insulin resistance, was calculated. Curcumin significantly attenuated liver injury and fibrosis, including amelioration of liver histological changes, reduction of hepatic enzymes, as well as decreased expression of liver fibrogenesis-associated variables, including Rac1, Rac1-GTP, NOX1, ERK1, HIF-1α and Sp1. Curcumin also attenuated leptin level and insulin resistance, which had increased in BDL rats (P<0·05). Furthermore, compared with the BDL group, we observed an increase in IRS1 and a decrease in SOCS3 and STAT3 expression in the curcumin-treated BDL group (P<0·05), indicating return of these parameters towards normalcy. In conclusion, Curcumin showed hepatoprotective activity against BDL-induced liver injury and hepatic insulin resistance by influencing the expression of some genes/proteins involved in these processes, and the results suggest that it can be used as a therapeutic option.
Collapse
|
14
|
Cheng S, Yang Y, Zhou Y, Xiang W, Yao H, Ma L. Influence of different concentrations of uric acid on oxidative stress in steatosis hepatocytes. Exp Ther Med 2018; 15:3659-3665. [PMID: 29545896 PMCID: PMC5840957 DOI: 10.3892/etm.2018.5855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The development of nonalcoholic fatty liver disease (NAFLD) is caused by the steatosis of hepatocytes, which induces oxidative stress (OS). Thus, OS has an important role in the development of NAFLD. In the present study, the L-02 hepatocyte cell line was used to develop a steatosis cell model. The best model was determined using an MTT assay and the triglyceride levels. Model cells were treated with high concentrations of uric acid (UA; 0, 5, 10, 20 and 30 mg/dl) for 24, 48, 72 and 96 h. Indicators of oxidation were then measured, which included total superoxide dismutase (SOD), malonaldehyde (MDA) and reduced glutathione (GSH), and the transcriptional and translational levels of SOD1 and γ-glutamate-cysteine ligase (γ-GCLC) were also determined. In addition, the intracellular levels of aspartate aminotransferase and alanine aminotransferase (ALT) were detected. The activity of SOD1 decreased over time and the result was supported by the results of western blotting. The transcriptional levels of SOD1 in model cells was significantly higher than untreated cells at 48 h. With the decreased levels of SOD1 and GSH, MDA increased in a time-dependent manner. The content of GSH decreased with time as well, which was also reflected in the results of western blotting. The transcriptional levels of γ-GCLC in all UA-treated groups were lower when compared with those observed in the model group. The activity of ALT tended to increase, depending on the duration of treatment. Treatment with 5 and 10 mg/dl UA had an antioxidative effect on the model cells, and 30 mg/dl UA treatment for 48 h increased OS in the cells.
Collapse
Affiliation(s)
- Shi Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yan Yang
- Department of Child Healthcare, People's Hospital (Children's Hospital) North Hospital, Urumqi, Xinjiang 830011, P.R. China
| | - Yong Zhou
- Department of Biology, School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wei Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Hua Yao
- Health Management Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
15
|
Ishida Y, Okamoto Y, Matsuoka Y, Tada A, Janprasit J, Yamato M, Morales NP, Yamada KI. Detection and inhibition of lipid-derived radicals in low-density lipoprotein. Free Radic Biol Med 2017; 113:487-493. [PMID: 29107744 DOI: 10.1016/j.freeradbiomed.2017.10.388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023]
Abstract
Oxidized low density lipoprotein (Ox-LDL) is implicated in a variety of oxidative diseases. To clarify the mechanisms involved and facilitate the investigation of therapeutics, we previously developed a detection method for lipid-derived radicals using the fluorescent probe 2,2,6-trimethyl-6-pentyl-4-(4-nitrobenzo[1,2,5]oxadiazol-7-ylamino)piperidine-1-oxyl (NBD-Pen). In this study, NBD-Pen was used to detect lipid-derived radicals in Ox-LDL from in vitro and in vivo samples using an iron overloaded mouse model. By following the timeline of lipid radical generation using this method, the iron overloaded mice could be successfully treated with the antioxidant Trolox, resulting in successful lowering of the plasma lipid peroxidation, aspartate transaminase and alanine transaminase levels. Furthermore, using a combination therapy of the chelating agent deferoxamine (DFX) and Trolox, liver injury and oxidative stress markers were also reduced in iron overloaded mice. The NBD-Pen method is highly sensitive as well as selective and is suitable for targeting minimally modified LDL compared with other existing methods.
Collapse
Affiliation(s)
- Yuma Ishida
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuka Okamoto
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuta Matsuoka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Arisa Tada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Jindaporn Janprasit
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Mayumi Yamato
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Noppawan Phumala Morales
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
16
|
Wang Q, Li ZX, Liu BW, He ZG, Liu C, Chen M, Liu SG, Wu WZ, Xiang HB. Altered expression of differential gene and lncRNA in the lower thoracic spinal cord on different time courses of experimental obstructive jaundice model accompanied with altered peripheral nociception in rats. Oncotarget 2017; 8:106098-106112. [PMID: 29285317 PMCID: PMC5739704 DOI: 10.18632/oncotarget.22532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022] Open
Abstract
The spinal origin of jaundice-induced altered peripheral nociceptive response poorly understood. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a jaundice model accompanied by altered peripheral nociceptive response, and then to analyze differential gene and lncRNA expression patterns in the lower thoracic spinal cord on different time courses after BDL operation by using high-throughput RNA sequencing. The differentially expressed genes (DEGs) identified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, followed by clustering analysis, Gene Ontology analysis and pathway analysis. As a result, a total of 2033 lncRNAs were differentially expressed 28d after BDL, in which 1545 probe sets were up-regulated and 488 probe sets were down-regulated, whereas a total of 2800 mRNAs were differentially expressed, in which 1548 probe sets were up-regulated and 1252 probe sets were down-regulated. The RNAseq data of select mRNAs and lncRNAs was validated by RT-qPCR. 28d after BDL, the expressions of lncRNA NONRATT002335 and NONRATT018085 were significantly up-regulated whereas the expression of lncRNA NONRATT025415, NONRATT025388 and NONRATT025409 was significantly down-regulated. 14d after BDL, the expressions of lncRNA NONRATT002335 and NONRATT018085 were significantly up-regulated; the expression of lncRNA NONRATT025415, NONRATT025388 and NONRATT025409 was significantly down-regulated. In conclusion, the present study showed that jaundice accompanied with decreased peripheral nociception involved in the changes of gene and lncRNA expression profiles in spinal cord. These findings extend current understanding of spinal mechanism for obstructive jaundice accompanied by decreased peripheral nociception.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Min Chen
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, P.R. China
| | - San-Guang Liu
- Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang, P.R. China
| | - Wei-Zhong Wu
- Department of General Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
17
|
Murillo AG, DiMarco DM, Fernandez ML. The Potential of Non-Provitamin A Carotenoids for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease. BIOLOGY 2016; 5:biology5040042. [PMID: 27834813 PMCID: PMC5192422 DOI: 10.3390/biology5040042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an obesity-associated spectrum of comorbidities defined by the presence of metabolic dysfunction, oxidative stress, inflammation, and fibrosis in the liver. If left untreated, NAFLD can progress to cirrhosis, liver failure, or hepatocellular carcinoma. NAFLD is recognized as the most common liver disease in the United States, affecting around 30% of the population. Identification of dietary components capable of reducing or preventing NAFLD is therefore essential to battle this condition. Dietary carotenoids including astaxanthin, lycopene, lutein, and zeaxanthin have been demonstrated to be potent antioxidants as well as to exhibit anti-inflammatory effects. Many studies report the protective effect(s) of these carotenoids against different conditions such as atherosclerosis, diabetic complications, age-related macular degeneration, and liver diseases. In this review, we will focus on the effects of these carotenoids in the prevention or reduction of NAFLD as seen in epidemiological observations and clinical trials, as well as the suggested mechanism of action derived from animal and cell studies.
Collapse
Affiliation(s)
- Ana Gabriela Murillo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Diana M DiMarco
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
18
|
Murillo AG, Aguilar D, Norris GH, DiMarco DM, Missimer A, Hu S, Smyth JA, Gannon S, Blesso CN, Luo Y, Fernandez ML. Compared with Powdered Lutein, a Lutein Nanoemulsion Increases Plasma and Liver Lutein, Protects against Hepatic Steatosis, and Affects Lipoprotein Metabolism in Guinea Pigs. J Nutr 2016; 146:1961-1969. [PMID: 27581580 DOI: 10.3945/jn.116.235374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It is not clear how oil-in-water nanoemulsions of lutein may affect bioavailability and consequently alter lipoprotein metabolism, oxidative stress, and inflammation. OBJECTIVE The bioavailability as well as effects of a powdered lutein (PL) and an oil-in-water lutein nanoemulsion (NANO; particle size: 254.2 nm; polydispersity index: 0.29; and ζ-potential: -65 mV) on metabolic variables in liver, plasma, and adipose tissue in a guinea pig model of hepatic steatosis were evaluated. METHODS Twenty-four 2-mo-old male Hartley guinea pigs, weighing 200-300 g (n = 8/group), were fed diets containing 0.25 g cholesterol/100 g to induce liver injury for the duration of the study. They were allocated to control (0 mg lutein), PL (3.5 mg/d), or NANO (3.5 mg/d) groups. After 6 wk, plasma, liver, and adipose tissue were collected for determination of lutein, plasma lipids, tissue cholesterol, and inflammatory cytokines. RESULTS The NANO group had 2-fold higher concentrations of lutein in plasma (P < 0.001) and 1.6-fold higher concentrations in liver (P < 0.001) than did the PL group, indicating greater bioavailability of this carotenoid. The NANO group also had 24% lower hepatic steatosis scores (P < 0.05), 31% lower hepatic cholesterol accumulation (P < 0.05), and 64% lower plasma alanine aminotransferase (P < 0.05) than did the control group. Hepatic oxidized LDL was 55% lower in both the PL and NANO groups than in the control group (P < 0.05). In plasma, the NANO group had 2-fold higher concentrations of LDL and HDL cholesterol as well as a 2-fold higher number of VLDL, LDL, and HDL particles than did the other 2 groups as evaluated by nuclear magnetic resonance. Furthermore, the NANO group had 15% higher concentrations of free cholesterol in adipose tissue, resulting in higher concentrations of inflammatory markers, than did the other 2 groups. CONCLUSIONS These results indicate that, although this lutein nanoemulsion exerted protective effects against hepatic steatosis, plasma lipoproteins and adipose tissue cholesterol were increased. These data suggest that the metabolic effects of this particular nanoemulsion might not be protective in all tissues in guinea pigs.
Collapse
Affiliation(s)
| | - David Aguilar
- Department of Athletic Training and Nutrition, Weber State University, Ogden, UT; and
| | | | | | | | - Siqi Hu
- Departments of Nutritional Sciences and
| | - Joan A Smyth
- Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| | | | | | | | | |
Collapse
|
19
|
Protective effect of rosuvastatin treatment by regulating oxidized low-density lipoprotein expression in a rat model of liver fibrosis. Biomed Rep 2016; 5:311-316. [PMID: 27588174 PMCID: PMC4998105 DOI: 10.3892/br.2016.722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/27/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to evaluate the protective effect of rosuvastatin treatment on the mechanism of oxidized low-density lipoprotein (Ox-LDL) in rats with liver fibrosis. In total, 72 male Sprague-Dawley rats were divided into 3 groups: 24 in the control group (A), 24 in the obstructive jaundice models group (B) and 24 in the rosuvastatin group (C). Each group was further divided into four subgroups for assessment at different time-points. The obstructive jaundice models were established and rosuvastatin was administered by gavage. Liver fibrosis indicators, Ox-LDL, malonaldehyde (MDA) and superoxide dismutase (SOD), were measured and liver pathological changes were observed at weeks 1, 2, 3 and 4 after model induction. In groups B and C, the rat models were successfully established, and there were significant changes in the expression of Ox-LDL and the three liver fibrosis indicators when compared to group A (P<0.01). However, the expression of Ox-LDL and the three liver fibrosis indicators in group C were decreased compared with group B (P<0.05), while SOD increased (P<0.05) and MDA decreased (P<0.05). The three liver fibrosis indicators were different in comparison to group B (P<0.05). Thus, there appeared to be an association between the expression of Ox-LDL and liver fibrosis. Treatment with rosuvastatin could regulate the expression of Ox-LDL and improve liver fibrosis in rat models with obstructive jaundice.
Collapse
|
20
|
Ampuero J, Ranchal I, Gallego-Durán R, Pareja MJ, Del Campo JA, Pastor-Ramírez H, Rico MC, Picón R, Pastor L, García-Monzón C, Andrade R, Romero-Gómez M. Oxidized low-density lipoprotein antibodies/high-density lipoprotein cholesterol ratio is linked to advanced non-alcoholic fatty liver disease lean patients. J Gastroenterol Hepatol 2016; 31:1611-8. [PMID: 26946071 DOI: 10.1111/jgh.13335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM A small but significant proportion of patients with normal body mass index show non-alcoholic fatty liver disease (NAFLD). Oxidized low-density lipoprotein (LDL) is a powerful immunogenic molecule, which causes oxidative stress and produces antibodies (oxLDL-ab). We aimed to analyze the role of oxLDL-ab on histological features in lean-NAFLD patients. METHODS Seventy-two biopsy-proven NAFLD patients were included. Lean patients showed body index mass of <30 kg/m(2) . Liver biopsies were assessed by one pathologist blinded to clinical data. Histological features were non-alcoholic steatohepatitis (NASH), steatosis, hepatocellular ballooning, and liver fibrosis. Metabolic and hepatic profiles were analyzed, and lipid-lowering medication was recorded. OxLDL-ab levels were measured by ELISA. OxLDL-ab-based lipid indexes analyzed: oxLDL-ab/total cholesterol ratio; oxLDL-ab/LDL-c ratio; oxLDL-ab/high-density lipoprotein cholesterol (HDL-c) ratio; and oxLDL-ab/oxLDL ratio. RESULTS Lean-NAFLD patients presented 26.5% (9/34) of NASH. OxLDL-ab/HDL-c ratio (r = 0.570; n = 34; P = 0.001) correlated with NAS score and was the only variable associated with NASH in the multivariate analysis [odds ratio, OR, 1.10 (95% confidence interval, CI: 1.01-1.21); P = 0.039]. Severe steatosis was present in 41.2% (14/34) of lean-NAFLD patients. OxLDL-ab/HDL-c ratio was higher in patients with grade-III steatosis (54.9 (37.3-124.6)) than those with grade II (37.1 (20.2-71.1)) and grade I (17.7 (13.1-22.8)) (P = 0.018). Hepatocellular ballooning was present in 20.6% (7/34) of lean-NAFLD patients, and OxLDL-ab/HDL-c ratio (OR 1.03 [95% CI: 1.01-1.05]; P = 0.050) was independently associated with histological features. OxLDL-ab/HDL-c ratio was higher in patients with advanced fibrosis (39.8 (22.9-121.6) vs 17.7 (13.9-30.9); P = 0.025), increasing gradually with the fibrosis stage (P = 0.042) and remained in the final multivariate model [OR 1.05 (95% CI: 1.00-1.11); P = 0.05]. However, in obese-NAFLD patients, oxLDL/HDL-c ratio was not associated with histological features. CONCLUSIONS Oxidized low-density lipoprotein antibodies/high-density lipoprotein cholesterol ratio could represent an interesting biomarker associated with NASH, hepatocellular ballooning, and liver fibrosis, in lean patients. OxLDL-ab/HDL-c could play an important role for distinguishing patients with and without NAFLD complications.
Collapse
Affiliation(s)
- Javier Ampuero
- Inter-Centre Unit of Digestive Diseases & CIBERehd. Virgen Macarena - Virgen del Rocío University Hospitals, University of Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | | | - Rocío Gallego-Durán
- Inter-Centre Unit of Digestive Diseases & CIBERehd. Virgen Macarena - Virgen del Rocío University Hospitals, University of Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | | | - Jose Antonio Del Campo
- Instituto de Biomedicina de Sevilla, Sevilla, Spain.,Valme University Hospital, Sevilla, Spain
| | - Helena Pastor-Ramírez
- Inter-Centre Unit of Digestive Diseases & CIBERehd. Virgen Macarena - Virgen del Rocío University Hospitals, University of Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - María Carmen Rico
- Inter-Centre Unit of Digestive Diseases & CIBERehd. Virgen Macarena - Virgen del Rocío University Hospitals, University of Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Rocío Picón
- Cardiology Unit, Valme University Hospital, Sevilla, Spain
| | - Luis Pastor
- Cardiology Unit, Valme University Hospital, Sevilla, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Department of Gastroenterology, Santa Cristina University Hospital, Madrid, Spain
| | - Raúl Andrade
- Unit for the Medical Management of Digestive Diseases & CIBERehd, Virgen de la Victoria University Hospital, Biomedical Research Institute of Málaga - IBIMA, Málaga, Spain
| | - Manuel Romero-Gómez
- Inter-Centre Unit of Digestive Diseases & CIBERehd. Virgen Macarena - Virgen del Rocío University Hospitals, University of Sevilla, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Sevilla, Spain.
| |
Collapse
|
21
|
Gadzhiyev JN, Tagiyev EG, Bagirov GS, Gadzhiyev NJ. [Serum and bile cytokines dynamics in patients with non-tumoral obstructive jaundice and suppurative cholangitis]. Khirurgiia (Mosk) 2016:15-20. [PMID: 27239909 DOI: 10.17116/hirurgia2016415-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM To study serum and bile cytokines dynamics in patients with non-tumoral obstructive jaundice and suppurative cholangitis. MATERIAL AND METHODS Comparative study of serum and bile cytokines in 49 operated patients with biliary pathology was performed. Patients were divided into 3 groups. The first group included 24 patients with acute calculous cholecystitis (ACCh), the second group consisted of 12 patients with chronic calculous cholecystitis (CCCh) and the third group included 13 patients with choledocholithiasis complicated by obstructive jaundice and suppurative cholangitis. RESULTS AND DISCUSSION All patients had increased level of TNF-α, IL-4 и IL-6. There was augmentation of biliary cytokines in patients with obstructive jaundice compared with those with acute and chronic calculous cholecystitis. In patients with obstructive jaundice and suppurative cholangitis the highest levels of cytokines were observed. Patients with obstructive jaundice (OJ), suppurative cholangitis (SCh) and chronic calculous cholecystitis had higher levels of cytokines in both blood and bile than in those with OJ, SCh and acute calculous cholecystitis that is explained by development of purulent inflammation on background of previous cytokines imbalance and chronic inflammation. In general, patients with acute calculous cholecystitis had higher levels of TNF-α and IL-6 in blood serum and IL-4 in bile. Patients with chronic calculous cholecystitis had higher concentration of TNF-α and IL-4 in bile and IL-6 - in blood serum. CONCLUSION Both forms of cholecystitis and their complications are associated with increased cytokines in serum and bile. The level of augmentation depends on the type of inflammation and complications. Comparative study of cytokines can be the most informative criterion to monitor the postoperative period.
Collapse
Affiliation(s)
- J N Gadzhiyev
- Azerbaijan Medical University, Baku, Republic of Azerbaijan
| | - E G Tagiyev
- Azerbaijan Medical University, Baku, Republic of Azerbaijan
| | - G S Bagirov
- Azerbaijan Medical University, Baku, Republic of Azerbaijan
| | - N J Gadzhiyev
- Azerbaijan Medical University, Baku, Republic of Azerbaijan
| |
Collapse
|
22
|
New Mechanism of Hepatic Fibrogenesis: Hepatitis C Virus Infection Induces Transforming Growth Factor β1 Production through Glucose-Regulated Protein 94. J Virol 2015; 90:3044-55. [PMID: 26719248 DOI: 10.1128/jvi.02976-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is one of the leading causes of chronic liver inflammatory disease (hepatitis), which often leads to more severe diseases, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. Liver fibrosis, in particular, is a major pathogenic consequence of HCV infection, and transforming growth factor β1 (TGF-β1) plays a key role in its pathogenesis. Several HCV proteins have been suggested to either augment or suppress the expression of TGF-β1 by HCV-infected cells. Here, we report that TGF-β1 levels are elevated in HCV-infected hepatocytes cultured in vitro and in liver tissue of HCV patients. Notably, the level of TGF-β1 in media from in vitro-cultured HCV-infected hepatocytes was high enough to activate primary hepatic stellate cells isolated from rats. This indicates that TGF-β1 secreted by HCV-infected hepatocytes is likely to play a key role in the liver fibrosis observed in HCV patients. Moreover, we showed that HCV E2 protein triggers the production of TGF-β1 by HCV-infected cells through overproduction of glucose-regulated protein 94 (GRP94). IMPORTANCE Hepatic fibrosis is a critical step in liver cirrhosis caused by hepatitis C virus infection. It is already known that immune cells, including Kupffer cells, mediate liver fibrosis. Recently, several papers have suggested that HCV-infected hepatocytes also significantly produce TGF-β1. Here, we provide the first examination of TGF-β1 levels in the hepatocytes of HCV patients. Using an HCV culture system, we showed that HCV infection increases TGF-β1 production in hepatocytes. Furthermore, we confirmed that the amount of TGF-β1 secreted by HCV-infected hepatocytes was sufficient to activate primary hepatic stellate cells. To understand the molecular basis of TGF-β1 production in HCV-infected hepatocytes, we used HCV replicons and various stable cell lines. Finally, we elucidated that HCV E2 triggered TGF-β1 secretion via GRP94 mediated NF-κB activation. This study contributes to the understanding of liver fibrosis by HCV and suggests a new potential target (GRP94) for blocking liver cirrhosis in HCV patients.
Collapse
|
23
|
Yu SP, Zhou XL. Treatment with rosuvastatin calcium improves liver fibrosis in a rat model of chronic obstructive jaundice. Shijie Huaren Xiaohua Zazhi 2012; 20:3564-3569. [DOI: 10.11569/wcjd.v20.i35.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of treatment with rosuvastatin calcium on expression of Ox-LDL and liver fibrosis in a rat model of chronic obstructive jaundice.
METHODS: Ninety Sprague-Dawley rats were randomly and equally divided into three groups: control group, and chronic obstructive jaundice group, and rosuvastatin calcium group. Each group was further divided into five subgroups for testing at different time points. Liver function was determined. Expression of Ox-LDL was tested by immunofluorescence, and liver fibrosis was assessed by radioimmunoassay. Pathological changes in liver tissue were observed by optical microscopy at weeks 1, 2, 3, 4, and 5 after model induction. Choledochoduodenostomy was performed at week 4.
RESULTS: Rats with chronic obstructive jaundice showed remarkable jaundice and obvious degeneration and hyperplasia of liver cells. There were also significant changes in expression of Ox-LDL and three liver fibrosis indicators. Jaundice slowly subsided after choledochoduodenostomy. Total bilirubin, expression of Ox-LDL and three liver fibrosis indicators differed significantly at different time points between the chronic obstructive jaundice group and rosuvastatin calcium group (all P < 0.05).
CONCLUSION: There was a significant relation between expression of Ox-LDL and liver fibrosis in rats with chronic obstructive jaundice. Treatment with rosuvastatin calcium could regulate the expression of Ox-LDL and improve liver fibrosis in rats with chronic obstructive jaundice.
Collapse
|
24
|
Hammad MA, Abdel-Bakky MS, Walker LA, Ashfaq MK. Tissue factor antisense deoxyoligonucleotide prevents monocrotaline/LPS hepatotoxicity in mice. J Appl Toxicol 2012; 33:774-83. [PMID: 22407844 DOI: 10.1002/jat.2728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 01/23/2023]
Abstract
Tissue factor (TF) is a membranous glycoprotein that functions as a receptor for coagulation factor VII/VIIa and activates the coagulation system when blood vessels or tissues are damaged. TF was upregulated in our monocrotaline (MCT)/lipopolysaccharide (LPS) hepatotoxicity model. We tested the hypothesis that TF-dependent fibrin deposition and lipid peroxidation in the form of oxidized low-density-lipoprotein (ox-LDL) accumulation contribute to liver inflammation induced by MCT/LPS in mice. In the present study, we blocked TF using antisense oligodeoxynucleotides against mouse TF (TF-ASO). TF-ASO (5.6 mg kg(-1) ) was given i.v. to ND4 male mice 30 min after administration of MCT (200 mg kg(-1) ) p.o. followed after 3.5 h by LPS i.p. (6 mg kg(-1) ). Blood alanine aminotransferase (ALT), TF, ox-LDL, platelets, hematocrit and keratinocyte-derived chemokine (KC) levels were evaluated in different treatment groups. Fibrin deposition and ox-LDL accumulation were also analyzed in the liver sections using immunofluorescent staining. The results showed that TF-ASO significantly restored blood ALT, hematocrit and KC levels, distorted after MCT/LPS co-treatment, as well as preventing the accumulation of ox-LDL and the deposition of fibrin in the liver tissues, and thereby inhibited liver injury caused by MCT/LPS. In a separate experiment, TF-ASO administration significantly prolonged animal survival. The current study demonstrates that TF is associated with MCT/LPS-induced liver injury. Administration of TF-ASO successfully prevented this type of liver injury.
Collapse
Affiliation(s)
- Mohamed A Hammad
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
25
|
Olteanu D, Filip A, Mureşan A, Nagy A, Tabaran F, Moldovan R, Decea N, Catoi C, Clichici S. The effects of chitosan and low dose dexamethasone on extrahepatic cholestasis after bile duct ligation in Wistar rats. ACTA ACUST UNITED AC 2012; 99:61-73. [DOI: 10.1556/aphysiol.99.2012.1.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Nakhjavani M, Mashayekh A, Khalilzadeh O, Asgarani F, Morteza A, Omidi M, Froutan H. Oxidized low-density lipoprotein is associated with viral load and disease activity in patients with chronic hepatitis C. Clin Res Hepatol Gastroenterol 2011; 35:111-6. [PMID: 21809486 DOI: 10.1016/j.clinre.2010.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The mechanisms of liver injury in chronic hepatitis C virus (HCV) infection are poorly understood. Recent evidence suggests that oxidative stress and lipid-peroxidation play a major role. The purpose of this study was to determine the serum level of oxidized low-density lipoprotein (ox-LDL), and evaluate its association with different clinically valuable parameters of liver disease in patients with chronic hepatitis C. METHODS Forty-five untreated chronic hepatitis C patients and 45 healthy adult volunteers, matched for age, sex and BMI, were enrolled. Blood samples were collected after 12 h of fasting, and serum bilirubin, albumin, liver aminotransferases, lipid profile, prothrombin time and ox-LDL were measured. Viral load of HCV was determined in patients. Liver biopsy was performed in patients and the stage of fibrosis and grade of necroinflammatory activity were determined. Healthy controls did not undergo liver biopsy. RESULTS Ox-LDL was significantly higher in HCV patients (42.54 ± 3.82 vs. 30.98 ± 1.66 μ/l, P < 0.01). Ox-LDL was significantly correlated to viral load (r = 0.457, P < 0.01), and grade of inflammation (r = 0.293, P < 0.05) in HCV patients. Ox-LDL was significantly higher in cirrhotic vs. noncirrhotic patients. No significant association was found between ox-LDL and Child-Pugh classification, serum albumin, liver enzymes, or prothrombin time. CONCLUSION This study provided new data from an in vivo setting which suggests the contribution of ox-LDL to HCV pathogenesis. Our results encourage further clinical studies to evaluate the potential diagnostic and therapeutic implications of ox-LDL in HCV patients.
Collapse
Affiliation(s)
- Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hammad MA, Abdel-Bakky MS, Walker LA, Ashfaq MK. Oxidized low-density lipoprotein and tissue factor are involved in monocrotaline/lipopolysaccharide-induced hepatotoxicity. Arch Toxicol 2011; 85:1079-89. [PMID: 21279329 DOI: 10.1007/s00204-011-0649-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/11/2011] [Indexed: 02/05/2023]
Abstract
These studies were aimed at characterizing an animal model of inflammation-induced hepatotoxicity that would mimic features of idiosyncratic liver toxicity observed in humans. An attempt was made to identify oxidative damage and the involvement of coagulation system in liver after monocrotaline (MCT) administration under the modest inflammatory condition induced by lipopolysaccharide (LPS) exposure. Mice were given MCT (200 mg/kg) or an equivalent volume of sterile saline (Veh.) po followed 4 h later by ip injection of LPS (6 mg/kg) or vehicle. Mice co-treated with MCT and LPS showed increased plasma alanine aminotransferase (ALT), decrease in platelet number, and a reduction in hematocrit. Accumulation of oxidized low-density lipoprotein (ox-LDL) was remarkably higher in the liver sections of mice co-treated with MCT and LPS compared to those given MCT or LPS alone. A similar trend was observed in the expression of CXCL16 receptor in the same liver sections. Elevated expression of tissue factor (TF) and fibrinogen was also observed in the liver sections of MCT/LPS co-treated mice. The in vitro results showed that incubation of HepG2 cells with CXCL16 antibody strongly diminished uptake of ox-LDL. Expression of ox-LDL, CXCL16, and TF represents an early event in the onset of hepatotoxicity induced by MCT/LPS; thus, it may contribute to our understanding of idiosyncratic liver injury and points to potential targets for protection or intervention.
Collapse
Affiliation(s)
- Mohamed A Hammad
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
28
|
Sorrentino P, Terracciano L, D'Angelo S, Ferbo U, Bracigliano A, Tarantino L, Perrella A, Perrella O, De Chiara G, Panico L, De Stefano N, Lepore M, Mariolina, Vecchione R. Oxidative stress and steatosis are cofactors of liver injury in primary biliary cirrhosis. J Gastroenterol 2010; 45:1053-62. [PMID: 20393861 DOI: 10.1007/s00535-010-0249-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/29/2010] [Indexed: 02/05/2023]
Abstract
BACKGROUND Factors responsible for the progression of primary biliary cirrhosis (PBC) are still poorly understood. In the present study, we investigated the associations between the stage of PBC and the immune reaction triggered by oxidative stress; the presence of obesity, steatosis,steatohepatitis; and other toxic, metabolic, or steatogenic factors. METHODS We studied clinical, laboratory, and histological data for 274 untreated patients with serum antimitochondrial antibody (AMA)-positive PBC. Circulating IgG against human serum albumin adducted with malondialdeyde, the major product of lipid peroxidation, was measured in these patients and in a group of 98 sex-, age and body mass index (BMI)-matched controls. RESULTS Steatosis was present in 40.5% of all patients. Steatohepatitis was present in 14.9% of all patients. There was a significant association between the frequencies of steatosis and steatohepatitis and the worsening of PBC. Circulating IgG against lipid peroxidation products was significantly higher in the PBC patients than in the controls. Titers of lipid peroxidation-related antibodies were significantly increased in patients with steatosis and inpatients at more advanced stages. Bivariate analysis revealed a significant association between indirect evidence of oxidative stress, steatosis, steatohepatitis, age, BMI, frequency of diabetes, alcohol intake, iron grade after Perl's stain, and PBC stage. Logistic regression analysis confirmed that the titers of antibodies against lipid peroxidation products (odds ratio 4.5, p< .001, 95% confidence interval 3.9–14.4), the presence of steatosis (odds ratio 4.1, 95% confidence interval 2.5–15.4, p< .001), higher BMI (odds ratio 3.9, p< .021, 95%confidence interval 1.4–9.5), and alcohol intake (males ≥ 30 g/day, females ≥ 20 g/day, odds ratio 4.5,95% confidence interval 1.3–19.8, p< .029) were independently associated with more advanced stages of the disease. CONCLUSIONS The immune reactions triggered by oxidative stress, steatosis, obesity, and alcohol intake are independent predictors of PBC stage progression.
Collapse
Affiliation(s)
- Paolo Sorrentino
- Liver Unit, Clinical and Experimental Hepatology, Department of Internal Medicine, S.G. Moscati Hospital, Via Pennini, Avellino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Valenti VE, Abreu LCD, Sato MA, Ferreira C. ATZ (3-amino-1,2,4-triazole) injected into the fourth cerebral ventricle influences the Bezold-Jarisch reflex in conscious rats. Clinics (Sao Paulo) 2010; 65:1339-43. [PMID: 21340224 PMCID: PMC3020346 DOI: 10.1590/s1807-59322010001200018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/08/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Many studies have investigated the importance of oxidative stress on the cardiovascular system. In this study we evaluated the effects of central catalase inhibition on cardiopulmonary reflex in conscious Wistar rats. METHODS Male Wistar rats were implanted with a stainless steel guide cannula in the fourth cerebral ventricle. The femoral artery and vein were cannulated for mean arterial pressure and heart rate measurement and for drug infusion, respectively. After basal mean arterial pressure and heart rate recordings, the cardiopulmonary reflex was tested with a dose of phenylbiguanide (PBG, 8 μg/kg, bolus). Cardiopulmonary reflex was evaluated before and μ l15 minutes after 1.0 μl 3-amino-1,2,4-triazole (ATZ, 0.01 g/100 μl)0.01 g/100 μl) injection into the fourth cerebral ventricle. Vehicle treatment did not change cardiopulmonary reflex responses. RESULTS Central ATZ significantly increased hypotensive responses without influencing the bradycardic reflex. CONCLUSION ATZ injected into the fourth cerebral ventricle increases sympathetic inhibition but does not change the parasympathetic component of the cardiopulmonary reflex in conscious Wistar rats.
Collapse
Affiliation(s)
- Vitor E Valenti
- Departamento de Medicina, Disciplina de Cardiologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
30
|
Vincent AM, Hayes JM, McLean LL, Vivekanandan-Giri A, Pennathur S, Feldman EL. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 2009; 58:2376-85. [PMID: 19592619 PMCID: PMC2750230 DOI: 10.2337/db09-0047] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Neuropathy is a frequent and severe complication of diabetes. Multiple metabolic defects in type 2 diabetic patients result in oxidative injury of dorsal root ganglia (DRG) neurons. Our previous work focused on hyperglycemia clearly demonstrates induction of mitochondrial oxidative stress and acute injury in DRG neurons; however, this mechanism is not the only factor that produces neuropathy in vivo. Dyslipidemia also correlates with the development of neuropathy, even in pre-diabetic patients. This study was designed to explore the contribution of dyslipidemia in neuropathy. RESEARCH DESIGN AND METHODS Mice (n = 10) were fed a control (10% kcal %fat) or high-fat (45% kcal %fat) diet to explore the impact of plasma lipids on the development of neuropathy. We also examined oxidized lipid-mediated injury in cultured DRG neurons from adult rat using oxidized LDLs (oxLDLs). RESULTS Mice on a high-fat diet have increased oxLDLs and systemic and nerve oxidative stress. They develop nerve conduction velocity (NCV) and sensory deficits prior to impaired glucose tolerance. In vitro, oxLDLs lead to severe DRG neuron oxidative stress via interaction with the receptor lectin-like oxLDL receptor (LOX)-1 and subsequent NAD(P)H oxidase activity. Oxidative stress resulting from oxLDLs and high glucose is additive. CONCLUSIONS Multiple metabolic defects in type 2 diabetes directly injure DRG neurons through different mechanisms that all result in oxidative stress. Dyslipidemia leads to high levels of oxLDLs that may injure DRG neurons via LOX-1 and contribute to the development of diabetic neuropathy.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|