1
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
2
|
Peters CE, Quinn EK, Rodriguez-Villamizar LA, MacDonald H, Villeneuve PJ. Exposure to low-dose radiation in occupational settings and ischaemic heart disease: a systematic review and meta-analysis. Occup Environ Med 2023; 80:706-714. [PMID: 37857488 DOI: 10.1136/oemed-2023-108865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Ionising radiation is a human carcinogen, but the evidence is less clear that exposure to low-dose ionising radiation (LDIR) increases the risk of adverse cardiovascular outcomes. We synthesised the literature of chronic occupational exposure to LDIR and cardiovascular disease, particularly for ischaemic heart disease (IHD).The literature search was conducted using three databases including studies published between 1990 and 2022. A quality assessment of the studies was completed using the Office of Health and Assessment and Translation Risk of Bias Rating Tool. We conducted meta-analyses for IHD mortality using random effects models using measures of excess relative risk per sievert (ERR/Sv) obtained from internal cohort comparisons, as well as with standardised mortality ratios (SMRs) from external cohort comparisons.We identified 2189 articles, and of these, 26 provided data on IHD and were retained. Most studies were classified as having a 'moderate' level of risk of bias. Fourteen and 10 studies reporting external radiation doses were included in meta-analyses using SMR and ERR/Sv, respectively. The meta-summary SMR was 0.81 (95% CI 0.74 to 0.89) with evidence of reduced risk but high heterogeneity across studies. For internal cohort measures, the summary ERR/Sv for a lagged exposure of 10 years was 0.10 (95% CI 0.01 to 0.20) with low heterogeneity. The subgroup analysis by lagged exposure time showed the strongest association were for the 15 and 20 years lag.Our findings suggest that occupational exposure to LDIR increases the risk IHD mortality and highlight the relevance of internal cohort comparisons.
Collapse
Affiliation(s)
- Cheryl E Peters
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Population and Public Health, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- Prevention, Screening and Hereditary Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Emma Kathleen Quinn
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Andrea Rodriguez-Villamizar
- Department of Public Health, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
- Deparment of Neurosciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Paul J Villeneuve
- Deparment of Neurosciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
4
|
Little MP, Azizova TV, Richardson DB, Tapio S, Bernier MO, Kreuzer M, Cucinotta FA, Bazyka D, Chumak V, Ivanov VK, Veiga LHS, Livinski A, Abalo K, Zablotska LB, Einstein AJ, Hamada N. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ 2023; 380:e072924. [PMID: 36889791 PMCID: PMC10535030 DOI: 10.1136/bmj-2022-072924] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE To systematically review and perform a meta-analysis of radiation associated risks of cardiovascular disease in all groups exposed to radiation with individual radiation dose estimates. DESIGN Systematic review and meta-analysis. MAIN OUTCOME MEASURES Excess relative risk per unit dose (Gy), estimated by restricted maximum likelihood methods. DATA SOURCES PubMed and Medline, Embase, Scopus, Web of Science Core collection databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Databases were searched on 6 October 2022, with no limits on date of publication or language. Animal studies and studies without an abstract were excluded. RESULTS The meta-analysis yielded 93 relevant studies. Relative risk per Gy increased for all cardiovascular disease (excess relative risk per Gy of 0.11 (95% confidence interval 0.08 to 0.14)) and for the four major subtypes of cardiovascular disease (ischaemic heart disease, other heart disease, cerebrovascular disease, all other cardiovascular disease). However, interstudy heterogeneity was noted (P<0.05 for all endpoints except for other heart disease), possibly resulting from interstudy variation in unmeasured confounders or effect modifiers, which is markedly reduced if attention is restricted to higher quality studies or those at moderate doses (<0.5 Gy) or low dose rates (<5 mGy/h). For ischaemic heart disease and all cardiovascular disease, risks were larger per unit dose for lower dose (inverse dose effect) and for fractionated exposures (inverse dose fractionation effect). Population based excess absolute risks are estimated for a number of national populations (Canada, England and Wales, France, Germany, Japan, USA) and range from 2.33% per Gy (95% confidence interval 1.69% to 2.98%) for England and Wales to 3.66% per Gy (2.65% to 4.68%) for Germany, largely reflecting the underlying rates of cardiovascular disease mortality in these populations. Estimated risk of mortality from cardiovascular disease are generally dominated by cerebrovascular disease (around 0.94-1.26% per Gy), with the next largest contribution from ischaemic heart disease (around 0.30-1.20% per Gy). CONCLUSIONS Results provide evidence supporting a causal association between radiation exposure and cardiovascular disease at high dose, and to a lesser extent at low dose, with some indications of differences in risk between acute and chronic exposures, which require further investigation. The observed heterogeneity complicates a causal interpretation of these findings, although this heterogeneity is much reduced if only higher quality studies or those at moderate doses or low dose rates are considered. Studies are needed to assess in more detail modifications of radiation effect by lifestyle and medical risk factors. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020202036.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - David B Richardson
- Department of Environmental and Occupational Health, Irvine Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Soile Tapio
- Technische Universität München, Munich, Germany
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | | | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim Chumak
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Victor K Ivanov
- Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk, Russia
| | - Lene H S Veiga
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Kossi Abalo
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
5
|
Circulatory system disease mortality and occupational exposure to radon progeny in the cohort of Newfoundland Fluorspar Miners between 1950 and 2016. Int Arch Occup Environ Health 2023; 96:411-418. [PMID: 36319769 PMCID: PMC9968242 DOI: 10.1007/s00420-022-01932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Exposure to ionizing radiation may increase the risk of circulatory diseases, including heart disease. A limited number of cohort studies of underground miners have investigated these associations. We previously reported a positive but non-statistically significant association between radon progeny and heart disease in a cohort of Newfoundland fluorspar miners. In this study, we report updated findings that incorporate 15 additional years of follow-up. METHODS The cohort included 2050 miners who worked in the fluorspar mines from 1933 to 1978. Statistics Canada linked the personal identifying data of the miners to Canadian mortality data to identify deaths from 1950 to 2016. We used previously derived individual-level estimates of annual radon progeny exposure in working-level months. Cumulative exposure was categorized into quantiles. We estimated relative risks and their 95% confidence intervals using Poisson regression for deaths from circulatory, ischemic heart disease and acute myocardial infarction. Relative risks were adjusted for attained age, calendar year, and the average number of cigarettes smoked daily. RESULTS Relative to the Newfoundland male population, the standardized mortality ratio for circulatory disease in this cohort was 0.82 (95% CI 0.74-0.91). Those in the highest quantile of cumulative radon progeny exposure had a relative risk of circulatory disease mortality of 1.03 (95% CI 0.76-1.40) compared to those in the lowest quantile. The corresponding estimates for ischemic disease and acute myocardial infarction were 0.99 (95% CI 0.66-1.48), and 1.39 (95% CI 0.84-2.30), respectively. CONCLUSIONS Our findings do not support the hypothesis that occupational exposure to radon progeny increases the risk of circulatory disease.
Collapse
|
6
|
Zalesak-Kravec S, Huang W, Wang P, Yu J, Liu T, Defnet AE, Moise AR, Farese AM, MacVittie TJ, Kane MA. Multi-omic Analysis of Non-human Primate Heart after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:352-371. [PMID: 34546217 PMCID: PMC8554778 DOI: 10.1097/hp.0000000000001478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
7
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
8
|
Milder CM, Kendall GM, Arsham A, Schöllnberger H, Wakeford R, Cullings HM, Little MP. Summary of Radiation Research Society Online 66th Annual Meeting, Symposium on "Epidemiology: Updates on epidemiological low dose studies," including discussion. Int J Radiat Biol 2021; 97:866-873. [PMID: 33395353 PMCID: PMC8165006 DOI: 10.1080/09553002.2020.1867326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Cato M Milder
- Space Radiation Analysis Group, NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058 USA
| | - Gerald M Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Aryana Arsham
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Helmut Schöllnberger
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima, Japan 732-0815
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| |
Collapse
|
9
|
Rikhi R, Samra G, Arustamyan M, Patel J, Zhou L, Bungo B, Moudgil R. Radiation induced cardiovascular disease: An odyssey of bedside-bench-bedside approach. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:49-55. [PMID: 34756229 DOI: 10.1016/j.lssr.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/13/2023]
Abstract
The journey to Mars will be an ambitious, yet arduous task as it will entail culmination of all the information we have gathered over many decades. While the mission is of utmost importance, preservation of astronaut's well-being is paramount also. To that end, mitigation of radiation risk especially afflicting cardiovascular disease (CVD) is of great interest and challenge. Current data from astronauts on low earth orbit and Apollo missions provides insight on the risk of CVD from radiation exposure. However, data is limited given the small cohort size of astronauts who embarked on just nine prolonged missions. Therefore, a cerebral approach to understanding and mitigating risks are essential. This paper discusses the need for a predictive preclinical model to help understand and mitigate the effects of radiation on astronauts. We will discuss strengths and limitations of preclinical models and the methods of validating and constructing a model to predict human clinical outcomes. Our bedside-bench-bedside approach focuses on adapting the preclinical model through common investigative tools used between humans and animals. The result will be an optimization of preclinical model to a point of being a surrogate clinical model capable of predicting CVD outcomes in astronauts exposed to radiation.
Collapse
Affiliation(s)
- Rishi Rikhi
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Gursharan Samra
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Michael Arustamyan
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Jay Patel
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Leon Zhou
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Brandon Bungo
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Rohit Moudgil
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
10
|
Little MP, Pawel D, Misumi M, Hamada N, Cullings HM, Wakeford R, Ozasa K. Lifetime Mortality Risk from Cancer and Circulatory Disease Predicted from the Japanese Atomic Bomb Survivor Life Span Study Data Taking Account of Dose Measurement Error. Radiat Res 2020; 194:259-276. [PMID: 32942303 PMCID: PMC7646983 DOI: 10.1667/rr15571.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/24/2020] [Indexed: 11/03/2022]
Abstract
Dosimetric measurement error is known to potentially bias the magnitude of the dose response, and can also affect the shape of dose response. In this report, generalized relative and absolute rate models are fitted to the latest Japanese atomic bomb survivor solid cancer, leukemia and circulatory disease mortality data (followed from 1950 through 2003), with the latest (DS02R1) dosimetry, using Bayesian techniques to adjust for errors in dose estimates and assessing other model uncertainties. Linear-quadratic models are fitted and used to assess lifetime mortality risks for contemporary UK, USA, French, Russian, Japanese and Chinese populations. For a test dose of 0.1 Gy absorbed dose weighted by neutron relative biological effectiveness, solid cancer, leukemia and circulatory disease mortality risks for a UK population using a generalized linear-quadratic relative rate model were estimated to be 3.88% Gy-1 [95% Bayesian credible interval (BCI): 1.17, 6.97], 0.35% Gy-1 (95% BCI: -0.03, 0.78) and 2.24% Gy-1 (95% BCI: -0.17, 13.76), respectively. Using a generalized absolute rate linear-quadratic model at 0.1 Gy, the lifetime risks for these three end points were estimated to be 3.56% Gy-1 (95% BCI: 0.54, 6.78), 0.41% Gy-1 (95% BCI: 0.01, 0.86) and 1.56% Gy-1 (95% BCI: -1.10, 7.21), respectively. There was substantial evidence of curvature for solid cancer (in particular, the group of solid cancers excluding lung, breast and stomach cancers) and leukemia, so that for solid cancer and leukemia, estimates of excess risk per unit dose were nearly doubled by increasing the dose from 0.01 to 1.0 Gy, with most of the increase occurring in the interval from 0.1 to 1.0 Gy. For circulatory disease, the dose-response curvature was inverse, so that risk per unit dose was nearly halved by going from 0.01 t o 1.0 Gy weighted absorbed dose, although there were substantial uncertainties. In general, there were higher radiation risks for females compared to males. This was true for solid cancer and circulatory disease overall, as well as for lung, breast, stomach and the group of other solid cancers, and was the case whether relative or absolute rate projection models were employed; however, for leukemia this pattern was reversed. Risk estimates varied somewhat between populations, with lower cancer risks in aggregate for China and Russia, but higher circulatory disease risks for Russia, particularly using the relative rate model. There was more pronounced variation for certain cancer sites and certain types of projection models, so that breast cancer risk was markedly lower in China and Japan using a relative rate model, but the opposite was the case for stomach cancer. There was less variation between countries using the absolute rate models for stomach cancer and breast cancer, but this was not the case for lung cancer and the group of other solid cancers, or for circulatory disease.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland 20892-9778
| | - David Pawel
- Office of Air and Radiation, Environmental Protection Agency, Washington, DC 20004
| | | | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan
| | | | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| |
Collapse
|
11
|
Effect of radiotherapy on coronary arteries and heart in breast-conserving surgery: a dosimetric analysis. Radiol Oncol 2020; 54:128-134. [PMID: 32187016 PMCID: PMC7087428 DOI: 10.2478/raon-2020-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/15/2020] [Indexed: 11/30/2022] Open
Abstract
Background There are certain risks of radiotherapy (RT), especially patients with left-sided breast cancer have a higher tendency to develop cardiac complications than the right-sided cancers. This study aims to perform a dosi-metric analysis the effect of RT on coronary arteries and heart in breast-conserving surgery. Patients and methods A total of 40 patients with early stage right and left-sided breast carcinomas (T1/T2 + N0) were randomly selected. RT was delivered to the entire breast, and tumor beds were boosted in these patients using tangential fields with computed tomography based planning. The doses for Left anterior descending coronary artery (LAD), left circumflex coronary artery (LCx), right ventricle (RV), left ventricle (LV), and heart were recorded and median values compared between groups. Results The highest mean of radiation dose in patients with left-sided breast cancer was to LAD 2402.48 ± 838.39 cGy, while the highest mean dose in right-sided breast cancer patients was to RV 130.18 ± 24.92. The highest maximum dose of radiotherapy was applied to heart at left-sided breast cancer patients as well as at right-sides prients. The mean V5 of the LV was 18.68% (6.89–31.69), mean V25 of the LV was 5.22% (0.45–16.54), mean V5 in bilateral ventricles was 23.73% (2.56–26.89), and mean V25 in bilateral ventricles 6.78% (0.63–13.63). Conclusions Especially in left-sided breast cancer, the most direct and best strategy to reduce and protect radiation-induced cardiac injury is to balance dose constraints between several high-dose regions of cardiac substructures and the mean heart dose.
Collapse
|
12
|
Comments on a Thought-Provoking Article about Occupational Radiation Injury. J Vasc Interv Radiol 2020; 31:49-50. [DOI: 10.1016/j.jvir.2019.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
|
13
|
Zhuang L, Xia W, Hou M. Co‑culturing with hypoxia pre‑conditioned mesenchymal stem cells as a new strategy for the prevention of irradiation‑induced fibroblast‑to‑myofibroblast transition. Oncol Rep 2019; 42:1781-1792. [PMID: 31485596 PMCID: PMC6775806 DOI: 10.3892/or.2019.7293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis is a pathological consequence of radiation-induced fibroblast proliferation and fibroblast-to-myofibroblast transition (FMT). Mesenchymal stem cell (MSC) transplantation has been revealed to be an effective treatment strategy to inhibit cardiac fibrosis. We identified a novel MSC-driven mechanism that inhibited cardiac fibrosis, via the regulation of multiple fibrogenic pathways. Hypoxia pre-conditioned MSCs (MSCsHypoxia) were co-cultured with fibroblasts using a Transwell system. Radiation-induced fibroblast proliferation was assessed using an MTT assay, and FMT was confirmed by assessing the mRNA levels of various markers of fibrosis, including type I collagen (Col1) and alpha smooth muscle actin (α-SMA). α-SMA expression was also confirmed via immunocytochemistry. The expression levels of Smad7 and Smad3 were detected by western blotting, and Smad7 was silenced using small interfering RNAs. The levels of oxidative stress following radiation were assessed by the detection of reactive oxygen species (ROS) and the activity of superoxide dismutase (SOD), malondialdehyde (MDA), and 4-hydroxynonenal (HNE). It was revealed that co-culturing with MSCsHypoxia could inhibit fibroblast proliferation and FMT. In addition, the present results indicated that MSCs are necessary and sufficient for the inhibition of fibroblast proliferation and FMT by functionally targeting TGF-β1/Smad7/Smad3 signaling via the release of hepatocyte growth factor (HGF). Furthermore, it was observed that MSCs inhibited fibrosis by modulating oxidative stress. Co-culturing with MSCsHypoxia alleviated fibroblast proliferation and FMT via the TGF-β1/Smad7/Smad3 pathway. MSCs may represent a novel therapeutic approach for the treatment of radiation-related cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
14
|
Tang FR, Loganovsky K. Low dose or low dose rate ionizing radiation-induced health effect in the human. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:32-47. [PMID: 29883875 DOI: 10.1016/j.jenvrad.2018.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore.
| | - Konstantin Loganovsky
- Radiation Psychoneurology Department, Institute of Clinical Radiology, State Institution "National Research Centre for Radiation Medicne, National Academy of Medical Sciences of Ukraine", 53 Melnikov Str., Kyiv, 04050, Ukraine
| |
Collapse
|
15
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
16
|
Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein E, Paganetti H, Wang B, Wuu CS, George Xu X. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys 2017; 44:e391-e429. [DOI: 10.1002/mp.12462] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Stephen F. Kry
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Bryan Bednarz
- Department of Medical Physics; University of Wisconsin; Madison WI 53705 USA
| | - Rebecca M. Howell
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Larry Dauer
- Departments of Medical Physics/Radiology; Memorial Sloan-Kettering Cancer Center; New York NY 10065 USA
| | - David Followill
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Eric Klein
- Department of Radiation Oncology; Washington University; Saint Louis MO 63110 USA
| | - Harald Paganetti
- Department of Radiation Oncology; Massachusetts General Hospital and Harvard Medical School; Boston MA 02114 USA
| | - Brian Wang
- Department of Radiation Oncology; University of Louisville; Louisville KY 40202 USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology; Columbia University; New York NY 10032 USA
| | - X. George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering; Rensselaer Polytechnic Institute; Troy NY 12180 USA
| |
Collapse
|
17
|
Hoel DG, Carnes BA. Cardiovascular effects of fission neutron or 60Co γ exposure in the B6CF 1 mouse. Int J Radiat Biol 2017; 93:563-568. [PMID: 28112567 DOI: 10.1080/09553002.2017.1286051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, the B6CF1 mice from the JANUS program at the Argonne National Laboratory were analyzed for increased cardiovascular disease (CVD) mortality from 60Co γ ray or fission neutron exposures administered in either a single dose or protracted weekly doses. The data used for this study represent the last studies conducted at Argonne and have been archived for at least 15 years. CVD mortality increased in a dose-dependent manner from γ rays as well as from neutron exposures. The relative biological effectiveness (RBE) for neutrons is about 4 or 5. CVD mortality appeared to be enhanced when the dose was protracted, with a DDREF (dose and dose rate effectiveness factor) in the range of 0.4-0.45 for neutron and gamma ray exposure, respectively.
Collapse
Affiliation(s)
- David G Hoel
- a Department of Public Health Sciences , Medical University of South Carolina , Charleston , SC , USA
| | - Bruce A Carnes
- b The Donald W. Reynolds Department of Geriatric Medicine , University of Oklahoma College of Medicine , Oklahoma City , OK , USA
| |
Collapse
|
18
|
Tapio S. Pathology and biology of radiation-induced cardiac disease. JOURNAL OF RADIATION RESEARCH 2016; 57:439-448. [PMID: 27422929 PMCID: PMC5045085 DOI: 10.1093/jrr/rrw064] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 05/08/2023]
Abstract
Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation.
Collapse
Affiliation(s)
- Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
19
|
Wang Y, Boerma M, Zhou D. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases. Radiat Res 2016; 186:153-61. [PMID: 27387862 DOI: 10.1667/rr14445.1] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Marjan Boerma
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Daohong Zhou
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
20
|
Zhang N, He L, Wang J, Guo Y, Liu Y, Kong Y, Li Y. WITHDRAWN: Chronic intermittent hypobaric hypoxia attenuates radiation-induced heart damage in rats. Biochem Biophys Res Commun 2016:S0006-291X(16)31072-5. [PMID: 27372426 DOI: 10.1016/j.bbrc.2016.06.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Ling He
- Department of Emergency, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong 518000, China
| | - Jin Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yin Guo
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yu Liu
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yan Kong
- Department of Medicine Oncology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
21
|
Kamkar M, Wei L, Gaudet C, Bugden M, Petryk J, Duan Y, Wyatt HM, Wells RG, Marcel YL, Priest ND, Mitchel REJ, Ruddy TD. Evaluation of Apoptosis with 99mTc-rhAnnexin V-128 and Inflammation with 18F-FDG in a Low-Dose Irradiation Model of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Nucl Med 2016; 57:1784-1791. [PMID: 27307347 DOI: 10.2967/jnumed.116.172346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Low-dose radiation in apolipoprotein E-deficient (ApoE-/-) mice has a protective effect with less subsequent atherosclerosis. Inflammation and apoptosis play major roles in the development of atherosclerosis. We evaluated the temporal pattern of the development of histologic atherosclerosis, inflammation with 18F-FDG, and apoptosis with 99mTc-rhAnnexin V-128 at 3 time points. METHODS ApoE-/- mice were fed a high-fat diet, exposed to low-dose 60Co γ-radiation of 25 mGy at 2 mo of age, and evaluated within 1 wk (2-mo group), 1 mo (3-mo group), and 2 mo (4-mo group) from the time of radiation. Mice were divided into 3 subgroups and each received 18F-FDG, 99mTc-rhAnnexin V-128, or no radiotracer for autoradiography. Mice underwent euthanasia and aortic root dissection. The extent of atherosclerosis was determined by en face and Oil red O imaging. Aortic arch inflammation (18F-FDG) and apoptosis (99mTc-rhAnnexin V-128) were determined with digital autoradiography. Aortic sinus sections were stained with Sudan IV for assessment of lesion area and stage, antiCD68 antibody for inflammation and anti-cleaved-caspase 3 antibody for apoptosis. RESULTS The extent of aortic atherosclerosis increased from 2 to 3 mo and from 3 to 4 mo. Inflammation (CD68) decreased and apoptosis (anti-cleaved-caspase 3 antibody) increased in aortic sinus slices measured as percentage of lesion by 4 mo. With increasing lesion stage, lesion inflammation decreased and lesion apoptosis increased. Aortic arch inflammation (18F-FDG uptake) did not differ over time and did not correlate with average lesion stage. However, aortic arch apoptosis (99mTc-rhAnnexin V-128) increased significantly by 4 mo and correlated with average lesion stage. There were no differences between the treatment subgroups (18F-FDG, 99mTc-rhAnnexin V-128, or no radiotracer). CONCLUSION The temporal pattern of development of inflammation and apoptosis differ during the development of atherosclerosis in ApoE-/- mice treated with low-dose radiation. Advanced lesions are characterized by increased apoptosis and either less or similar amounts of inflammation, shown on immunohistochemistry and autoradiography. Treatment with radiotracers had no significant effects on extent of atherosclerosis, inflammation, or apoptosis.
Collapse
Affiliation(s)
- Maryam Kamkar
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | | | - Chantal Gaudet
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Michelle Bugden
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Julia Petryk
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Yin Duan
- Nordion, Inc., Kanata, Canada; and
| | - Heather M Wyatt
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - R Glenn Wells
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Yves L Marcel
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Nicholas D Priest
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ronald E J Mitchel
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
22
|
Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol 2016; 58:14-25. [PMID: 26849909 DOI: 10.1016/j.semcdb.2016.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
23
|
Little MP, Lipshultz SE. Low dose radiation and circulatory diseases: a brief narrative review. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2015; 1:4. [PMID: 33530149 PMCID: PMC7837141 DOI: 10.1186/s40959-015-0007-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022]
Abstract
Exposure to high doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be estimated while adjusting for concomitant chemotherapy. An association between lower dose exposures and late-occurring circulatory disease has only recently been suspected in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are variable, possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Here, we summarize the evidence for a causal association between moderate- and low-level radiation exposure (whether at high or low dose rates) and circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.
- National Cancer Institute, Room 7E546, 9609 Medical Center Drive, MSC 9778, Rockville, MD, 20892-9778, USA.
| | - Steven E Lipshultz
- Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, MI, 48201-2196, USA
| |
Collapse
|
24
|
Prisby RD, Alwood JS, Behnke BJ, Stabley JN, McCullough DJ, Ghosh P, Globus RK, Delp MD. Effects of hindlimb unloading and ionizing radiation on skeletal muscle resistance artery vasodilation and its relation to cancellous bone in mice. J Appl Physiol (1985) 2015; 120:97-106. [PMID: 26472865 DOI: 10.1152/japplphysiol.00423.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/08/2015] [Indexed: 01/10/2023] Open
Abstract
Spaceflight has profound effects on vascular function as a result of weightlessness that may be further compounded by radiation exposure. The purpose of the present study was to assess the individual and combined effects of hindlimb unloading (HU) and radiation (Rad) on vasodilator responses in the skeletal muscle vasculature. Adult male C57BL/6J mice were randomized to one of four groups: control (Con), HU (tail suspension for 15 days), Rad (200 cGy of (137)Cs), and HU-Rad (15-day tail suspension and 200 cGy of (137)Cs). Endothelium-dependent vasodilation of gastrocnemius feed arteries was assessed in vitro using acetylcholine (ACh, 10(-9)-10(-4) M) and inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX). Endothelium-independent vasodilation was assessed using Dea-NONOate (10(-9)-10(-4) M). Endothelium-dependent and -independent vasodilator responses were impaired relative to Con responses in all treatment groups; however, there was no further impairment from the combination of treatments (HU-Rad) relative to that in the HU and Rad groups. The NOS-mediated contribution to endothelium-dependent vasodilation was depressed with HU and Rad. This impairment in NOS signaling may have been partially compensated for by an enhancement of PGI2-mediated dilation. Changes in endothelium-dependent vasodilation were also associated with decrements in trabecular bone volume in the proximal tibia metaphysis. These data demonstrate that the simulated space environment (i.e., radiation exposure and unloading of muscle and bone) significantly impairs skeletal muscle artery vasodilation, mediated through endothelium-dependent reductions in NOS signaling and decrements in vascular smooth muscle cell responsiveness to NO.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| | - Brad J Behnke
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Kinesiology and the Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas; and
| | - John N Stabley
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida
| | - Danielle J McCullough
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| | - Michael D Delp
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
25
|
Assessing radiation exposure of the left anterior descending artery, heart and lung in patients with left breast cancer: A dosimetric comparison between multicatheter accelerated partial breast irradiation and whole breast external beam radiotherapy. Radiother Oncol 2015; 117:459-66. [PMID: 26328940 DOI: 10.1016/j.radonc.2015.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/20/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE This study aims to quantify dosimetric reduction to the left anterior descending (LAD) artery, heart and lung when comparing whole breast external beam radiotherapy (WBEBRT) with multicatheter accelerated partial breast irradiation (MCABPI) for early stage left breast cancer. MATERIALS AND METHODS Planning CT data sets of 15 patients with left breast cancer receiving multicatheter brachytherapy post breast conserving surgery were used to create two independent treatment plans - WBEBRT prescribed to 50 Gy/25 fractions and MCABPI prescribed to 34 Gy/10 fractions. Dose parameters for (i) LAD artery, (ii) heart, and (iii) ipsilateral lung were calculated and compared between the two treatment modalities. RESULTS After adjusting for Equivalent Dose in 2 Gy fractions(EQD2), and comparing MCAPBI with WBEBRT, the largest dose reduction was for the LAD artery whose mean dose differed by a factor of 7.7, followed by the ipsilateral lung and heart with a factor of 4.6 and 2.6 respectively. Compared to WBEBRT, the mean MCAPBI LAD was significantly lower compared to WBEBRT (6.0 Gy vs 45.9 Gy; p<0.01). Mean MCAPBI heart D(0.1cc) (representing the dose received by the most highly exposed 0.1 cc of the risk organ, i.e. the dose peak) was significantly lower (16.3 Gy vs 50.6 Gy; p<0.01). Likewise, the mean heart dose (MHD) was significantly lower (2.3 Gy vs 6.0 Gy; p<0.01). Peak dose and mean lung dose (MLD) for ipsilateral lung was also lower for MCAPBI compared to WBEBRT (Peak dose: 22.2 Gy vs 52.0 Gy; p<0.01; MLD: 2.3 Gy vs 10.7 Gy; p<0.01). CONCLUSION Compared to WBEBRT, MCAPBI showed a significant reduction in radiation dose for the LAD, heart and lung. This may translate into better cardiac and pulmonary toxicities for patients undergoing MCAPBI.
Collapse
|
26
|
Barrett HH, Myers KJ, Hoeschen C, Kupinski MA, Little MP. Task-based measures of image quality and their relation to radiation dose and patient risk. Phys Med Biol 2015; 60:R1-75. [PMID: 25564960 PMCID: PMC4318357 DOI: 10.1088/0031-9155/60/2/r1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality.
Collapse
Affiliation(s)
- Harrison H. Barrett
- College of Optical Sciences, University of Arizona, Tucson, AZ
- Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona, Tucson, AZ
| | - Kyle J. Myers
- Division of Imaging and Applied Mathematics, Office of Scientific and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD
| | - Christoph Hoeschen
- Department of Electrical Engineering and Information Technology, Otto-von-Guericke University, Magdeburg, Germany
- Research unit Medical Radiation Physics and Diagnostics, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Matthew A. Kupinski
- College of Optical Sciences, University of Arizona, Tucson, AZ
- Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona, Tucson, AZ
| | - Mark P. Little
- Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
27
|
Sharma S, Moros EG, Boerma M, Sridharan V, Han EY, Clarkson R, Hauer-Jensen M, Corry PM. A novel technique for image-guided local heart irradiation in the rat. Technol Cancer Res Treat 2014; 13:593-603. [PMID: 24000983 PMCID: PMC3951712 DOI: 10.7785/tcrtexpress.2013.600256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/06/2022] Open
Abstract
In radiotherapy treatment of thoracic, breast and chest wall tumors, the heart may be included (partially or fully) in the radiation field. As a result, patients may develop radiation-induced heart disease (RIHD) several years after exposure to radiation. There are few methods available to prevent or reverse RIHD and the biological mechanisms remain poorly understood. In order to further study the effects of radiation on the heart, we developed a model of local heart irradiation in rats using an image-guided small animal conformal radiation therapy device (SACRTD) developed at our institution. First, Monte Carlo based simulations were used to design an appropriate collimator. EBT-2 films were used to measure relative dosimetry, and the absolute dose rate at the isocenter was measured using the AAPM protocol TG-61. The hearts of adult male Sprague-Dawley rats were irradiated with a total dose of 21 Gy. For this purpose, rats were anesthetized with isoflurane and placed in a custom-made vertical rat holder. Each heart was irradiated with a 3-beam technique (one AP field and 2 lateral fields), with each beam delivering 7 Gy. For each field, the heart was visualized with a digital flat panel X-ray imager and placed at the isocenter of the 1.8 cm diameter beam. In biological analysis of radiation exposure, immunohistochemistry showed γH2Ax foci and nitrotyrosine throughout the irradiated hearts but not in the lungs. Long-term follow-up of animals revealed histopathological manifestations of RIHD, including myocardial degeneration and fibrosis. The results demonstrate that the rat heart irradiation technique using the SACRTD was successful and that surrounding untargeted tissues were spared, making this approach a powerful tool for in vivo radiobiological studies of RIHD. Functional and structural changes in the rat heart after local irradiation are ongoing.
Collapse
Affiliation(s)
- Sunil Sharma
- Department of Radiation Oncology, Radiation Oncology Center, University of Arkansas for Medical _Sciences, Little Rock, AR .
| | | | | | | | | | | | | | | |
Collapse
|
28
|
XIE XIAOXUE, OUYANG SHUYU, WANG HUI, YANG WENJUAN, JIN HEKUN, HU BINGQIANG, SHEN LIANGFANG. Dosimetric comparison of left-sided whole breast irradiation with 3D-CRT, IP-IMRT and hybrid IMRT. Oncol Rep 2014; 31:2195-205. [DOI: 10.3892/or.2014.3058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/30/2013] [Indexed: 11/06/2022] Open
|
29
|
Abstract
The atomic bomb and other studies have established with certainty that moderate-to-high doses of radiation cause many types of solid cancer and leukemia. Moving down the dose range to the vicinity of 100-200 mSv, the risks become fuzzy and then unknown at low doses on the order of 10-20 mSv. Nor have low-dose experimental studies provided definitive answers: some have suggested there may be adverse biological effects in the range of 5-50 mSv, while others support a "no risk" interpretation. Epidemiologic data contain intrinsic "noise" (variation by known and unknown factors related to genetics, lifestyle, other environmental exposures, sociodemographics, diagnostic accuracy, etc.) so are generally too insensitive to provide compelling answers in the low-dose range. However, there have been recent provocative reports regarding risk from relatively low-dose occupational and medical radiation exposures that warrant careful consideration. Summaries of the largest studies with low-dose or low dose-rate radiation exposure provide suggestive evidence of risk for solid cancer and stronger evidence for leukemia risk. Recently, interest in health endpoints other than cancer also has risen sharply, in particular the degree of cardiovascular and cataract risk following doses under 1 Sv. Data regarding cardiovascular disease are limited and fuzzy, with suggestions of inconsistencies, and the risk at low doses is essentially unknown. The evidence of cataract risk after low dose-rate exposures among those conducting interventional medical radiological procedures is becoming strong. The magnitude of radiation impacts on human health requires fuller documentation, especially for low-dose or low dose-rate exposures. From the epidemiologic vantage point, this will require longer observation of existing irradiated cohorts and development of new informative cohorts, improved accuracy in dose assessments, more attention to confounding variables, and more biosamples from irradiated groups to enable translational radiobiological studies. Introduction of Radiation Impacts on Human Health (Video 2:02, http://links.lww.com/HP/A35).
Collapse
Affiliation(s)
- Roy E Shore
- *Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| |
Collapse
|
30
|
Little MP. A review of non-cancer effects, especially circulatory and ocular diseases. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:435-449. [PMID: 23903347 PMCID: PMC4074546 DOI: 10.1007/s00411-013-0484-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/14/2013] [Indexed: 05/30/2023]
Abstract
There is a well-established association between high doses (>5 Gy) of ionizing radiation exposure and damage to the heart and coronary arteries, although only recently have studies with high-quality individual dosimetry been conducted that would enable quantification of this risk adjusting for concomitant chemotherapy. The association between lower dose exposures and late occurring circulatory disease has only recently begun to emerge in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are somewhat variable, possibly a result of confounding and effect modification by well-known (but unobserved) risk factors. Radiation doses of 1 Gy or more are associated with increased risk of posterior subcapsular cataract. Accumulating evidence from the Japanese atomic bomb survivors, Chernobyl liquidators, US astronauts, and various other exposed groups suggests that cortical cataracts may also be associated with ionizing radiation, although there is little evidence that nuclear cataracts are radiogenic. The dose-response appears to be linear, although modest thresholds (of no more than about 0.6 Gy) cannot be ruled out. A variety of other non-malignant effects have been observed after moderate/low-dose exposure in various groups, in particular respiratory and digestive disease and central nervous system (and in particular neuro-cognitive) damage. However, because these are generally only observed in isolated groups, or because the evidence is excessively heterogeneous, these associations must be treated with caution.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, 9609 Medical Center Drive MSC 9778, Bethesda, MD, 20892-9778, USA,
| |
Collapse
|
31
|
Borghini A, Luca Gianicolo EA, Picano E, Andreassi MG. Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Atherosclerosis 2013; 230:40-7. [DOI: 10.1016/j.atherosclerosis.2013.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/16/2022]
|
32
|
Stewart FA, Seemann I, Hoving S, Russell NS. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol (R Coll Radiol) 2013; 25:617-24. [PMID: 23876528 DOI: 10.1016/j.clon.2013.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 12/22/2022]
Abstract
There is a clear association between therapeutic doses of thoracic irradiation and an increased risk of cardiovascular disease (CVD) in cancer survivors, although these effects may take decades to become symptomatic. Long-term survivors of Hodgkin's lymphoma and childhood cancers have two-fold to more than seven-fold increased risks for late cardiac deaths after total tumour doses of 30-40 Gy, given in 2 Gy fractions, where large volumes of heart were included in the field. Increased cardiac mortality is also seen in women irradiated for breast cancer. Breast doses are generally 40-50 Gy in 2 Gy fractions, but only a small part of the heart is included in the treatment fields and mean heart doses rarely exceeded 10-15 Gy, even with older techniques. The relative risks of cardiac mortality (1.1-1.4) are consequently lower than for Hodgkin's lymphoma survivors. Some epidemiological studies show increased risks of cardiac death after accidental or environmental total body exposures to much lower radiation doses. The mechanisms whereby these cardiac effects occur are not fully understood and different mechanisms are probably involved after high therapeutic doses to the heart, or part of the heart, than after low total body exposures. These various mechanisms probably result in different cardiac pathologies, e.g. coronary artery atherosclerosis leading to myocardial infarct, versus microvascular damage and fibrosis leading to congestive heart failure. Experimental studies can help to unravel some of these mechanisms and may identify suitable strategies for managing or inhibiting CVD. In this overview, the main epidemiological and clinical evidence for radiation-induced CVD is summarised. Experimental data shedding light on some of the underlying pathologies and possible targets for intervention are also discussed.
Collapse
Affiliation(s)
- F A Stewart
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:47-57. [PMID: 23124827 DOI: 10.1007/s00411-012-0438-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 10/21/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to analyze the mortality from circulatory diseases for about 30,000 members of the Techa River cohort over the period 1950-2003, and to investigate how these rates depend on radiation doses. This population received both external and internal exposures from (90)Sr, (89)Sr, (137)Cs, and other uranium fission products as a result of waterborne releases from the Mayak nuclear facility in the Southern Urals region of the Russian Federation. The analysis included individualized estimates of the total (external plus internal) absorbed dose in muscle calculated based on the Techa River Dosimetry System 2009. The cohort-average dose to muscle tissue was 35 mGy, and the maximum dose was 510 mGy. Between 1950 and 2003, 7,595 deaths from circulatory diseases were registered among cohort members with 901,563 person years at risk. Mortality rates in the cohort were analyzed using a simple parametric excess relative risk (ERR) model. For all circulatory diseases, the estimated excess relative risk per 100 mGy with a 15-year lag period was 3.6 % with a 95 % confidence interval of 0.2-7.5 %, and for ischemic heart disease it was 5.6 % with a 95 % confidence interval of 0.1-11.9 %. A linear ERR model provided the best fit. Analyses with a lag period shorter than 15 years from the beginning of exposure did not reveal any significant risk of mortality from either all circulatory diseases or ischemic heart disease. There was no evidence of an increased mortality risk from cerebrovascular disease (p > 0.5). These results should be regarded as preliminary, since they will be updated after adjustment for smoking and alcohol consumption.
Collapse
|
34
|
Fung E, Hendry J. External beam radiotherapy (EBRT) techniques used in breast cancer treatment to reduce cardiac exposure. Radiography (Lond) 2013. [DOI: 10.1016/j.radi.2012.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Mitchel REJ, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen YX, Priest ND, Whitman SC. Low-dose radiation exposure and protection against atherosclerosis in ApoE(-/-) mice: the influence of P53 heterozygosity. Radiat Res 2013; 179:190-9. [PMID: 23289388 DOI: 10.1667/rr3140.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We recently described the effects of low-dose γ-radiation exposures on atherosclerosis in genetically susceptible (ApoE(-/-)) mice with normal p53 function. Doses as low as 25 mGy, given at either early or late stage disease, generally protected against atherosclerosis in a manner distinctly nonlinear with dose. We now report the influence of low doses (25-500 mGy) on atherosclerosis in ApoE(-/-) mice with reduced p53 function (Trp53(+/-)). Single exposures were given at either low or high dose rate (1 or 150 mGy/min) to female C57BL/6J ApoE(-/-) Trp53(+/-) mice. Mice were exposed at either early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (7 months of age) and examined 2 or 4 months later. In unirradiated mice, reduced p53 functionality elevated serum cholesterol and accelerated both aortic root lesion growth and severity in young mice. Radiation exposure to doses as low as 25 mGy at early stage disease, at either the high or the low dose rate, inhibited lesion growth, decreased lesion frequency and slowed the progression of lesion severity in the aortic root. In contrast, exposure at late stage disease produced generally detrimental effects. Both low-and high-dose-rate exposures accelerated lesion growth and high dose rate exposures also increased serum cholesterol levels. These results show that at early stage disease, reduced p53 function does not influence the protective effects against atherosclerosis of low doses given at low dose rate. In contrast, when exposed to the same doses at late stage disease, reduced p53 function produced detrimental effects, rather than the protective effects seen in Trp53 normal mice. As in the Trp53 normal mice, all effects were highly nonlinear with dose. These results indicate that variations in p53 functionality can dramatically alter the outcome of a low-dose exposure, and that the assumption of a linear response with dose for human populations is probably unwarranted.
Collapse
Affiliation(s)
- R E J Mitchel
- Radiological Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, Chumak VV, Cucinotta FA, de Vathaire F, Hall P, Harrison JD, Hildebrandt G, Ivanov V, Kashcheev VV, Klymenko SV, Kreuzer M, Laurent O, Ozasa K, Schneider T, Tapio S, Taylor AM, Tzoulaki I, Vandoolaeghe WL, Wakeford R, Zablotska LB, Zhang W, Lipshultz SE. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1503-11. [PMID: 22728254 PMCID: PMC3556625 DOI: 10.1289/ehp.1204982] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/22/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Although high doses of ionizing radiation have long been linked to circulatory disease, evidence for an association at lower exposures remains controversial. However, recent analyses suggest excess relative risks at occupational exposure levels. OBJECTIVES We performed a systematic review and meta-analysis to summarize information on circulatory disease risks associated with moderate- and low-level whole-body ionizing radiation exposures. METHODS We conducted PubMed/ISI Thomson searches of peer-reviewed papers published since 1990 using the terms "radiation" AND "heart" AND "disease," OR "radiation" AND "stroke," OR "radiation" AND "circulatory" AND "disease." Radiation exposures had to be whole-body, with a cumulative mean dose of < 0.5 Sv, or at a low dose rate (< 10 mSv/day). We estimated population risks of circulatory disease from low-level radiation exposure using excess relative risk estimates from this meta-analysis and current mortality rates for nine major developed countries. RESULTS Estimated excess population risks for all circulatory diseases combined ranged from 2.5%/Sv [95% confidence interval (CI): 0.8, 4.2] for France to 8.5%/Sv (95% CI: 4.0, 13.0) for Russia. CONCLUSIONS Our review supports an association between circulatory disease mortality and low and moderate doses of ionizing radiation. Our analysis was limited by heterogeneity among studies (particularly for noncardiac end points), the possibility of uncontrolled confounding in some occupational groups by lifestyle factors, and higher dose groups (> 0.5 Sv) generally driving the observed trends. If confirmed, our findings suggest that overall radiation-related mortality is about twice that currently estimated based on estimates for cancer end points alone (which range from 4.2% to 5.6%/Sv for these populations).
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852-7238, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Radiation-induced heart disease (RIHD) is a serious side effect of radiotherapy for intrathoracic and chest wall tumors. The threshold dose for development of clinically significant RIHD is believed to be lower than previously assumed. Therefore, research into mechanisms of RIHD has gained substantial momentum. RIHD becomes clinically apparent ten to fifteen years after radiation exposure. Chronic manifestations of RIHD include accelerated atherosclerosis, cardiomyopathy, and valve abnormalities. Reducing exposure of the heart during radiotherapy is the only known method of preventing RIHD, and there are no approaches to reverse RIHD once it occurs. We use a combination of pharmacological and genetic animal models to determine biological mechanisms of RIHD. Major technological advances in small animal research have made this type of study more valuable. The long-term goal of this work is to identify targets for intervention in RIHD, thereby enhancing the efficacy and safety of thoracic radiotherapy.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansass
| |
Collapse
|
38
|
Anbumani S, Palled SR, Prabhakar GS, Nambiraj NA, Pichandi A. Accelerated partial breast irradiation using external beam radiotherapy-A feasibility study based on dosimetric analysis. Rep Pract Oncol Radiother 2012; 17:200-6. [PMID: 24377024 DOI: 10.1016/j.rpor.2012.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/28/2012] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
AIM To investigate the feasibility of using External Beam radiotherapy for accelerated partial breast irradiation by a comparative tumour and normal tissue dose volume analysis with that of high dose rate interstitial brachytherapy. BACKGROUND Accelerated Partial Breast Irradiation (APBI) is more clinically appealing because of the reduced treatment course duration and the irradiated area. Brachytherapy application is more dependent on the clinician's expertise when it is practised free hand without image guidance and a template. It happens to be an invasive procedure with the use of local anaesthesia which adds patient discomfort apart from its cost compared to External Beam Radiotherapy. But APBI with brachytherapy is more commonly practised procedure compared to EBRT owing to its previous reults. Hence in this research study, we intend to explore the use of EBRT with the radiobiological corrections for APBI in the place of brachytherapy. It is done as a dosimetric comparison of Brachytherapy treatment plans with that of EBRT plans. MATERIALS AND METHODS The computed tomography images of 15 patients undergoing ISBT planning were simulated with conformal photon fields. Various dose volume parameters of each structure were obtained from the DVH generated in the brachytherapy and the simulated external beam planning which can correlate well with the late toxicity. The plan quality indices such as conformity index and homogeneity index for the target volume were computed from the dosimetric factors. The statistical p values for CI, HI and normal tissue dosimetric parameters were calculated and the confidence levels achievable were analysed. The dose prescribed in brachytherapy was 3400cGy in ten fractions. The equivalent prescription dose for the external beam radiotherapy planning was 3000cGy in five fractions applied with radiobiological correction. RESULTS All the fifteen patients were with complete lung data and six were with left sided tumours having complete cardiac data. The lung dosimetry data and the cardiac dosimetry data of the patients were studied. Lower percentages of lung and cardiac V 20 and V 5 volumes were obtained with conformal planning. The conformity of radiation dose to the tumour volume was akin to the interstitial brachytherapy planning. Moreover the external beam planning resulted in more homogenous dose distribution. For the sampled population, the statistical analysis showed a confidence level of 95% for using EBRT as an alternate to multi catheter ISBT. CONCLUSION The EBRT planning for Accelerated Partial Breast Irradiation was found to be technically feasible in the institution where the interstitial brachytherapy happens to be the only available technique as evident from the dose volume parameters and the statistical analysis.
Collapse
|
39
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 857] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
40
|
Aziz MH, Schneider F, Clausen S, Blank E, Herskind C, Afzal M, Wenz F. Can the risk of secondary cancer induction after breast conserving therapy be reduced using intraoperative radiotherapy (IORT) with low-energy x-rays? Radiat Oncol 2011; 6:174. [PMID: 22176703 PMCID: PMC3260102 DOI: 10.1186/1748-717x-6-174] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation induced secondary cancers are a rare but severe late effect after breast conserving therapy. Intraoperative radiotherapy (IORT) is increasingly used during breast conserving surgery. The purpose of this analysis was to estimate secondary cancer risks after IORT compared to other modalities of breast radiotherapy (APBI - accelerated partial breast irradiation, EBRT - external beam radiotherapy). METHODS Computer-tomography scans of an anthropomorphic phantom were acquired with an INTRABEAM IORT applicator (diameter 4 cm) in the outer quadrant of the breast and transferred via DICOM to the treatment planning system. Ipsilateral breast, contralateral breast, ipsilateral lung, contralateral lung, spine and heart were contoured. An INTRABEAM source (50 kV) was defined with the tip of the drift tube at the center of the spherical applicator. A dose of 20 Gy at 0 mm depth from the applicator surface was prescribed for IORT and 34 Gy (5 days × 2 × 3.4 Gy) at 10 mm depth for APBI. For EBRT a total dose of 50 Gy in 2 Gy fractions was planned using two tangential fields with wedges. The mean and maximal doses, DVHs and volumes receiving more than 0.1 Gy and 4 Gy of organs at risk (OAR) were calculated and compared. The life time risk for secondary cancers was estimated according to NCRP report 116. RESULTS IORT delivered the lowest maximal doses to contralateral breast (< 0.3 Gy), ipsilateral (1.8 Gy) and contralateral lung (< 0.3 Gy), heart (1 Gy) and spine (< 0.3 Gy). In comparison, maximal doses for APBI were 2-5 times higher. EBRT delivered a maximal dose of 10.4 Gy to the contralateral breast and 53 Gy to the ipsilateral lung. OAR volumes receiving more than 4 Gy were 0% for IORT, < 2% for APBI and up to 10% for EBRT (ipsilateral lung). The estimated risk for secondary cancer in the respective OAR is considerably lower after IORT and/or APBI as compared to EBRT. CONCLUSIONS The calculations for maximal doses and volumes of OAR suggest that the risk of secondary cancer induction after IORT is lower than compared to APBI and EBRT.
Collapse
Affiliation(s)
- Muhammad Hammad Aziz
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Frank Schneider
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Elena Blank
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Muhammad Afzal
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
41
|
Grosche B, Lackland DT, Land CE, Simon SL, Apsalikov KN, Pivina LM, Bauer S, Gusev BI. Mortality from cardiovascular diseases in the Semipalatinsk historical cohort, 1960-1999, and its relationship to radiation exposure. Radiat Res 2011; 176:660-9. [PMID: 21787182 PMCID: PMC3866702 DOI: 10.1667/rr2211.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The data on risk of mortality from cardiovascular disease due to radiation exposure at low or medium doses are inconsistent. This paper reports an analysis of the Semipalatinsk historical cohort exposed to radioactive fallout from nuclear testing in the vicinity of the Semipalatinsk Nuclear Test Site, Kazakhstan. The cohort study, which includes 19,545 persons of exposed and comparison villages in the Semipalatinsk region, had been set up in the 1960s and comprises 582,656 person-years of follow-up between 1960 and 1999. A dosimetric approach developed by the U.S. National Cancer Institute (NCI) has been used. Radiation dose estimates in this cohort range from 0 to 630 mGy (whole-body external). Overall, the exposed population showed a high mortality from cardiovascular disease. Rates of mortality from cardiovascular disease in the exposed group substantially exceeded those of the comparison group. Dose-response analyses were conducted for both the entire cohort and the exposed group only. A dose-response relationship that was found when analyzing the entire cohort could be explained completely by differences between the baseline rates in exposed and unexposed groups. When taking this difference into account, no statistically significant dose-response relationship for all cardiovascular disease, for heart disease, or for stroke was found. Our results suggest that within this population and at the level of doses estimated, there is no detectable risk of radiation-related mortality from cardiovascular disease.
Collapse
Affiliation(s)
- Bernd Grosche
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, Oberschleissheim, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 2011; 11:3299-311. [DOI: 10.1002/pmic.201100178] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Mitchel REJ, Hasu M, Bugden M, Wyatt H, Little MP, Gola A, Hildebrandt G, Priest ND, Whitman SC. Low-dose radiation exposure and atherosclerosis in ApoE⁻/⁻ mice. Radiat Res 2011; 175:665-76. [PMID: 21375359 PMCID: PMC3998759 DOI: 10.1667/rr2176.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hypothesis that single low-dose exposures (0.025-0.5 Gy) to low-LET radiation given at either high (about 150 mGy/min) or low (1 mGy/min) dose rate would promote aortic atherosclerosis was tested in female C57BL/6J mice genetically predisposed to this disease (ApoE⁻/⁻). Mice were exposed either at an early stage of disease (2 months of age) and examined 3 or 6 months later or at a late stage of disease (8 months of age) and examined 2 or 4 months later. Changes in aortic lesion frequency, size and severity as well as total serum cholesterol levels and the uptake of lesion lipids by lesion-associated macrophages were assessed. Statistically significant changes in each of these measures were observed, depending on dose, dose rate and disease stage. In all cases, the results were distinctly non-linear with dose, with maximum effects tending to occur at 25 or 50 mGy. In general, low doses given at low dose rate during either early- or late-stage disease were protective, slowing the progression of the disease by one or more of these measures. Most effects appeared and persisted for months after the single exposures, but some were ultimately transitory. In contrast to exposure at low dose rate, high-dose-rate exposure during early-stage disease produced both protective and detrimental effects, suggesting that low doses may influence this disease by more than one mechanism and that dose rate is an important parameter. These results contrast with the known, generally detrimental effects of high doses on the progression of this disease in the same mice and in humans, suggesting that a linear extrapolation of the known increased risk from high doses to low doses is not appropriate.
Collapse
Affiliation(s)
- R E J Mitchel
- Radiological Protection Research and Instrumentation Branch, Atomic Energy of Canada, Chalk River, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rudat V, Alaradi AA, Mohamed A, Ai-Yahya K, Altuwaijri S. Tangential beam IMRT versus tangential beam 3D-CRT of the chest wall in postmastectomy breast cancer patients: a dosimetric comparison. Radiat Oncol 2011; 6:26. [PMID: 21418616 PMCID: PMC3069936 DOI: 10.1186/1748-717x-6-26] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022] Open
Abstract
Background This study evaluates the dose distribution of reversed planned tangential beam intensity modulated radiotherapy (IMRT) compared to standard wedged tangential beam three-dimensionally planned conformal radiotherapy (3D-CRT) of the chest wall in unselected postmastectomy breast cancer patients Methods For 20 unselected subsequent postmastectomy breast cancer patients tangential beam IMRT and tangential beam 3D-CRT plans were generated for the radiotherapy of the chest wall. The prescribed dose was 50 Gy in 25 fractions. Dose-volume histograms were evaluated for the PTV and organs at risk. Parameters of the dose distribution were compared using the Wilcoxon matched pairs test. Results Tangential beam IMRT statistically significantly reduced the ipsilateral mean lung dose by an average of 21% (1129 cGy versus 1437 cGy). In all patients treated on the left side, the heart volume encompassed by the 70% isodose line (V70%; 35 Gy) was reduced by an average of 43% (5.7% versus 10.6%), and the mean heart dose by an average of 20% (704 cGy versus 877 cGy). The PTV showed a significantly better conformity index with IMRT; the homogeneity index was not significantly different. Conclusions Tangential beam IMRT significantly reduced the dose-volume of the ipsilateral lung and heart in unselected postmastectomy breast cancer patients.
Collapse
Affiliation(s)
- Volker Rudat
- Department of Radiation Oncology, Saad Specialist Hospital, Saudi Arabia.
| | | | | | | | | |
Collapse
|
45
|
Gurdalli S, Kuske RR, Quiet CA, Ozer M. Dosimetric performance of Strut-Adjusted Volume Implant: A new single-entry multicatheter breast brachytherapy applicator. Brachytherapy 2011; 10:128-35. [DOI: 10.1016/j.brachy.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/26/2010] [Accepted: 03/31/2010] [Indexed: 12/31/2022]
|
46
|
Yarnold J, Bentzen SM, Coles C, Haviland J. Hypofractionated whole-breast radiotherapy for women with early breast cancer: myths and realities. Int J Radiat Oncol Biol Phys 2011; 79:1-9. [PMID: 20950960 DOI: 10.1016/j.ijrobp.2010.08.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/09/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022]
Affiliation(s)
- John Yarnold
- Section of Radiotherapy, Institute of Cancer Research and Royal Marsden Hospital, Sutton, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Bouillon K, Haddy N, Delaloge S, Garbay JR, Garsi JP, Brindel P, Mousannif A, Lê MG, Labbe M, Arriagada R, Jougla E, Chavaudra J, Diallo I, Rubino C, de Vathaire F. Long-Term Cardiovascular Mortality After Radiotherapy for Breast Cancer. J Am Coll Cardiol 2011; 57:445-52. [DOI: 10.1016/j.jacc.2010.08.638] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 07/13/2010] [Accepted: 08/10/2010] [Indexed: 10/18/2022]
|
48
|
Boerma M, Hauer-Jensen M. Potential targets for intervention in radiation-induced heart disease. Curr Drug Targets 2010; 11:1405-12. [PMID: 20583977 PMCID: PMC3311026 DOI: 10.2174/1389450111009011405] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 04/05/2010] [Indexed: 12/14/2022]
Abstract
Radiotherapy of thoracic and chest wall tumors, if all or part of the heart was included in the radiation field, can lead to radiation-induced heart disease (RIHD), a late and potentially severe side effect. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves. The pathogenesis of RIHD is largely unknown, and a treatment is not available. Hence, ongoing pre-clinical studies aim to elucidate molecular and cellular mechanisms of RIHD. Here, an overview of recent pre-clinical studies is given, and based on the results of these studies, potential targets for intervention in RIHD are discussed.
Collapse
Affiliation(s)
- M Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | |
Collapse
|
49
|
Azizova TV, Muirhead CR, Druzhinina MB, Grigoryeva ES, Vlasenko EV, Sumina MV, O'Hagan JA, Zhang W, Haylock RGE, Hunter N. Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948-1958. Radiat Res 2010; 174:155-68. [PMID: 20681782 DOI: 10.1667/rr1789.1] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Incidence of and mortality from cardiovascular diseases have been studied in a cohort of 12,210 workers first employed at one of the main plants of the Mayak nuclear facility during 1948-1958 and followed up to 31 December 2000. Information on external gamma-ray doses is available for virtually all of these workers (99.9%); the mean total gamma-ray dose (+/-SD) was 0.91 +/- 0.95 Gy (99% percentile 3.9 Gy) for men and 0.65 +/- 0.75 Gy (99% percentile 2.99 Gy) for women. In contrast, plutonium body burden was measured for only 30.0% of workers; among those monitored, the mean cumulative liver dose from plutonium alpha exposure (+/- SD) was 0.40 +/- 1.15 Gy (99% percentile 5.88 Gy) for men and 0.81 +/- 4.60 Gy (99% percentile 15.95 Gy) for women. A total of 3751 cases of ischemic heart disease (IHD), including 683 cases of acute myocardial infarction (AMI), and 1495 IHD deaths, including 338 AMI deaths, were identified in the study cohort during the follow-up period. Having adjusted for non-radiation factors, there were statistically significant increasing trends with both total external gamma-ray dose and internal liver dose in IHD incidence. The trend with internal dose was weaker and was not statistically significant after adjusting for external dose, whereas the external dose trend was little changed after adjusting for internal dose. The trend with external dose in IHD mortality was not statistically significantly greater than zero but was consistent with the corresponding trend in IHD incidence. The estimated trend in IHD mortality with internal dose was lower and was not statistically significant once adjustment was made for external dose. There was a statistically significantly increasing trend in AMI incidence but not AMI incidence with external dose. The risk estimates for IHD in relation to external radiation are generally compatible with those from other large occupational studies and the Japanese A-bomb survivors.
Collapse
Affiliation(s)
- T V Azizova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Boerma M, Hauer-Jensen M. Preclinical research into basic mechanisms of radiation-induced heart disease. Cardiol Res Pract 2010; 2011:858262. [PMID: 20953374 PMCID: PMC2952915 DOI: 10.4061/2011/858262] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/04/2010] [Indexed: 01/20/2023] Open
Abstract
Radiation-induced heart disease (RIHD) is a potentially severe side effect of radiotherapy of thoracic and chest wall tumors if all or part of the heart was included in the radiation field. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves. There is no method to prevent or reverse these injuries when the heart is exposed to ionizing radiation. This paper presents an overview of recent studies that address the role of microvascular injury, endothelial dysfunction, mast cells, and the renin angiotensin system in animal models of cardiac radiation injury. These insights into the basic mechanisms of RIHD may lead to the identification of targets for intervention in this late radiotherapy side effect.
Collapse
Affiliation(s)
- M. Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, USA
| | - M. Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, USA
| |
Collapse
|