1
|
Schwarzlmueller P, Triebig A, Assié G, Jouinot A, Theurich S, Maier T, Beuschlein F, Kobold S, Kroiss M. Steroid hormones as modulators of anti-tumoural immunity. Nat Rev Endocrinol 2025; 21:331-343. [PMID: 40128599 DOI: 10.1038/s41574-025-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Immune evasion is a hallmark of cancer progression but the role of steroid hormones in this evasion has long been underrated. This oversight is particularly notable for glucocorticoids given that exogenous glucocorticoids remain a cornerstone therapy in various oncological treatment regimens, supportive care and treatment of immune-related adverse events caused by immune-checkpoint inhibitors. Cortisol, the main endogenous glucocorticoid in humans, is secreted by the adrenal cortex in response to stress. Additionally, cortisol and its inactive metabolite cortisone can be interconverted to further modulate tissue-dependent glucocorticoid action. In the past 5 years, intratumoural production of glucocorticoids, by both immune and tumour cells, has been shown to support tumour immune evasion. Here, we summarize current progress at the crossroads of endocrinology and immuno-oncology. We outline the known effects of steroid hormones on different immune cell types with a focus on glucocorticoids and androgens. We conclude with options for pharmaceutical intervention, including the engineering of cell-based therapies that resist the immunosuppressive action of steroid hormones. Overall, local steroid production and metabolism are emerging elements of tumour immune suppression that are potentially amenable to therapeutic intervention. Targeting steroid hormones to enhance anticancer therapies could increase their efficacy but will require expertise in endocrine care.
Collapse
Affiliation(s)
| | - Alexandra Triebig
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Assié
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Paris, France
| | - Anne Jouinot
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Paris, France
- Université Paris Cité, Institut Cochin, Paris, France
| | - Sebastian Theurich
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital, Munich, Germany
- Cancer- and Immunometabolism Research Group, Gene Center, Ludwig Maximilian University (LMU), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, Heidelberg, Germany
| | - Tanja Maier
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix Beuschlein
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), Zurich, Switzerland
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Sebastian Kobold
- German Cancer Consortium (DKTK), Munich Site, Heidelberg, Germany
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- Kroiss Endokrinologie & Diabetologie, Schweinfurt, Germany.
| |
Collapse
|
2
|
Rege J, Udager AM. Molecular characterization of archival adrenal tumor tissue from patients with ACTH-independent Cushing syndrome. J Steroid Biochem Mol Biol 2025; 247:106666. [PMID: 39709101 PMCID: PMC12007412 DOI: 10.1016/j.jsbmb.2024.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Cushing syndrome represents a multitude of signs and symptoms associated with long-term and excessive exposure to glucocorticoids. Solitary cortisol-producing adenomas (CPAs) account for most cases of ACTH-independent Cushing syndrome (CS). Technological advances in next-generation sequencing have significantly increased our understanding about the genetic landscape of CPAs. However, the conventional approach utilizes fresh/frozen tissue samples, which are not routinely available for most clinical adrenal adenoma specimens. This coupled with the fact that CS is relatively rare reduces the accessibility to CPAs for research. In order to circumvent this issue, our group recently developed a sequencing strategy that allowed the use of formalin-fixed paraffin-embedded (FFPE) CPA samples for mutation analysis. Our streamlined approach includes the visualization and genomic DNA (gDNA) capture of the cortisol-producing regions in the tumor using immunohistochemistry (IHC)-guided techniques followed by targeted and/or whole-exome sequencing analysis. This approach has the advantage of using both prospective and retrospective CPA cohorts since FFPE pathologic specimens are routinely banked. This review discusses this advanced approach using IHC-guided gDNA capture of pathologic tissue followed by NGS as a preferred method for mutational analysis of CPAs.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States.
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Yazawa T, Watanabe Y, Yokohama Y, Imamichi Y, Hasegawa K, Nakajima KI, Kitano T, Ida T, Sato T, Islam MS, Umezawa A, Takahashi S, Kato Y, Jahan S, Kawabe JI. Evaluation of 3β-hydroxysteroid dehydrogenase activity using progesterone and androgen receptors-mediated transactivation. Front Endocrinol (Lausanne) 2024; 15:1480722. [PMID: 39415787 PMCID: PMC11479897 DOI: 10.3389/fendo.2024.1480722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
3β-Hydroxysteroid dehydrogenases (3β-HSDs) catalyze the oxidative conversion of delta (5)-ene-3-beta-hydroxy steroids and ketosteroids. Human 3β-HSD type 2 (HSD3B2) is predominantly expressed in gonadal and adrenal steroidogenic cells for producing all classes of active steroid hormones. Mutations in HSD3B2 gene cause a rare form of congenital adrenal hyperplasia with varying degree of salt wasting and incomplete masculinization, resulting from reduced production of corticoids and androgens. Therefore, evaluation of the HSD3B2 enzymatic activity in both pathways for each steroid hormone production is important for accurately understanding and diagnosing this disorder. Using progesterone receptor (PR)- and androgen receptor (AR)-mediated transactivation, we adapted a method that easily evaluates enzymatic activity of HSD3B2 by quantifying the conversion from substrates [pregnenolone (P5) and dehydroepiandrosterone (DHEA)] to (progesterone and androstenedione). HEK293 cells were transduced to express human HSD3B2, and incubated medium containing P5 or DHEA. Depending on the incubation time with HSD3B2-expressing cells, the culture media progressively increased luciferase activities in CV-1 cells, transfected with the PR/AR expression vector and progesterone-/androgen-responsive reporter. Culture media from human and other mammalian HSD3B1-expressing cells also increased the luciferase activities. HEK293 cells expressing various missense mutations in the HSD3B2 gene revealed the potential of this system to evaluate the relationship between the enzymatic activities of mutant proteins and patient phenotype.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Yugo Watanabe
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Yuko Yokohama
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshitaka Imamichi
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Japan
| | - Kazuya Hasegawa
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Ke-ichi Nakajima
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takanori Ida
- Division of International Cooperation and Education, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Kurume, Japan
| | - Mohammad Sayful Islam
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuhito Kato
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Sharmin Jahan
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Jun-ichi Kawabe
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
4
|
Ishikawa A, Takanuma T, Hashimoto N, Tsudzuki M. Association between Temperament and Stress-related Gene Expression in Day-old Chickens. J Poult Sci 2024; 61:2024022. [PMID: 39130209 PMCID: PMC11310665 DOI: 10.2141/jpsa.2024022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Stress in day-old chickens from commercial hatcheries is associated with problematic behavior in adult animals. Recently, we developed a new behavioral handling test for day-old chickens and demonstrated that it assessed temperament differences between seven breeds of native Japanese and Western chickens. In this study, we used 2-day-old male chicks from five of the above breeds to investigate the relationship between temperament and mRNA levels of three stress-related genes (nuclear receptor subfamily 3 group C member 1 (NR3C1), cytochrome P450 family 11 subfamily A member 1, and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1) involved in the hypothalamic-pituitary-adrenal axis. Principal component analysis of 10 behavioral traits for the handling test revealed that the Fayoumi breed and Hiroshima line of the Chabo breed, both of which exhibited boisterous temperament, clustered separately from the other breeds. Only NR3C1 expression showed a significant positive correlation with two behavioral traits (general vocalization and approaching the wall), and a negative correlation with movement. These results suggest that the complex temperament of day-old chickens is regulated, in part, by stress-related genes along the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Akira Ishikawa
- Graduate School of Bioagricultural Sciences, Nagoya
University, Nagoya 464-8601, Japan
| | - Tomoka Takanuma
- Graduate School of Bioagricultural Sciences, Nagoya
University, Nagoya 464-8601, Japan
| | - Norikazu Hashimoto
- Livestock Experiment Station, Wakayama Prefecture,
Hidaka-Gun 644-1111, Japan
| | - Masaoki Tsudzuki
- Graduate School of Integrated Sciences for Life, Hiroshima
University, Higashi-Hiroshima 739-8525, Japan
| |
Collapse
|
5
|
Chauhan K, Tyagi M. Update on non-infectious uveitis treatment: anti-TNF-alpha and beyond. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1412930. [PMID: 39157460 PMCID: PMC11327136 DOI: 10.3389/fopht.2024.1412930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Non-infectious uveitis (NIU) encompasses a range of conditions marked by inflammation within various layers of the eye. NIU is a significant contributor to irreversible vision loss among the working-age population in developed countries. The aim of treating uveitis is to manage inflammation, prevent its recurrences and to restore or salvage vision. Presently, the standard treatment protocol for NIU involves initiating corticosteroids as the primary therapeutic agents, although more aggressive approaches and steroid sparing agent may be necessary in certain cases. These advanced treatments option include synthetic immunosuppressants like antimetabolites, calcineurin inhibitors and alkylating agents. For patients who exhibit an intolerance or resistance to corticosteroids and conventional immunosuppressive therapies, biologic agents have emerged as a promising alternative. Notably, among the biologic treatments evaluated, TNF-α inhibitors, anti-CD20 therapy and alkylating agents have shown considerable efficacy. In this review, we delve into the latest evidence surrounding the effectiveness of biologic therapy and introduce novel therapeutic strategies targeting immune components as potential avenues for advancing treatment of NIU.
Collapse
Affiliation(s)
- Khushboo Chauhan
- Saroja A Rao Centre for Uveitis, L V Prasad Eye Institute, Hyderabad, India
- Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Saroja A Rao Centre for Uveitis, L V Prasad Eye Institute, Hyderabad, India
- Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
6
|
Xu Y, Patterson MT, Dolfi B, Zhu A, Bertola A, Schrank PR, Gallerand A, Kennedy AE, Hillman H, Dinh L, Shekhar S, Tollison S, Bold TD, Ivanov S, Williams JW. Adrenal gland macrophages regulate glucocorticoid production through Trem2 and TGF-β. JCI Insight 2024; 9:e174746. [PMID: 38869957 PMCID: PMC11383592 DOI: 10.1172/jci.insight.174746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Glucocorticoid synthesis by adrenal glands (AGs) is regulated by the hypothalamic-pituitary-adrenal axis to facilitate stress responses when the host is exposed to stimuli. Recent studies implicate macrophages as potential steroidogenic regulators, but the molecular mechanisms by which AG macrophages exert such influence remain unclear. In this study, we investigated the role of AG macrophages in response to cold challenge or atherosclerotic inflammation as physiologic models of acute or chronic stress. Using single-cell RNA sequencing, we observed dynamic AG macrophage polarization toward classical activation and lipid-associated phenotypes following acute or chronic stimulation. Among transcriptional alterations induced in macrophages, triggering receptor expressed on myeloid cells 2 (Trem2) was highlighted because of its upregulation following stress. Conditional deletion of macrophage Trem2 revealed a protective role in stress responses. Mechanistically, Trem2 deletion led to increased AG macrophage death, abolished the TGF-β-producing capacity of AG macrophages, and resulted in enhanced glucocorticoid production. In addition, enhanced glucocorticoid production was replicated by blockade of TGF-β signaling. Together, these observations suggest that AG macrophages restrict steroidogenesis through Trem2 and TGF-β, which opens potential avenues for immunotherapeutic interventions to resolve stress-related disorders.
Collapse
Affiliation(s)
- Yingzheng Xu
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael T Patterson
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Alisha Zhu
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Patricia R Schrank
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Ainsley E Kennedy
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hannah Hillman
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lynn Dinh
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sia Shekhar
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samuel Tollison
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tyler D Bold
- Center for Immunology and
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jesse W Williams
- Center for Immunology and
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Azhar S, Shen WJ, Hu Z, Kraemer FB. MicroRNA regulation of adrenal glucocorticoid and androgen biosynthesis. VITAMINS AND HORMONES 2023; 124:1-37. [PMID: 38408797 DOI: 10.1016/bs.vh.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Steroid hormones are derived from a common precursor molecule, cholesterol, and regulate a wide range of physiologic function including reproduction, salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function, and various metabolic processes. Among the steroids synthesized by the adrenal and gonadal tissues, adrenal mineralocorticoids, and glucocorticoids are essential for life. The process of steroidogenesis is regulated at multiple levels largely by transcriptional, posttranscriptional, translational, and posttranslational regulation of the steroidogenic enzymes (i.e., cytochrome P450s and hydroxysteroid dehydrogenases), cellular compartmentalization of the steroidogenic enzymes, and cholesterol processing and transport proteins. In recent years, small noncoding RNAs, termed microRNAs (miRNAs) have been recognized as major post-transcriptional regulators of gene expression with essential roles in numerous biological processes and disease pathologies. Although their role in the regulation of steroidogenesis is still emerging, several recent studies have contributed significantly to our understanding of the role miRNAs play in the regulation of the steroidogenic process. This chapter focuses on the recent developments in miRNA regulation of adrenal glucocorticoid and androgen production in humans and rodents.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States.
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
8
|
Schröder MAM, Greenald D, Lodewijk R, van Herwaarden AE, Span PN, Sweep FCGJ, Mitchell RT, Claahsen-van der Grinten HL. Evaluation of Ex Vivo Adrenocorticotropic Hormone Responsiveness of Human Fetal Testis. Endocrinology 2023; 164:bqad165. [PMID: 37935047 PMCID: PMC10652325 DOI: 10.1210/endocr/bqad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Testicular adrenal rest tumors (TARTs), commonly occurring in males with congenital adrenal hyperplasia, may arise from chronic stimulation of adrenocorticotropic hormone (ACTH)-sensitive cells in the testes. It is not yet established whether the human fetal testis (HFT) is responsive to ACTH. To investigate this, we cultured HFT tissue with and without ACTH for up to 5 days, and quantified adrenal steroid hormones and expression of adrenal steroidogenic enzymes. Fetal testis and adrenal tissue produced high levels of testosterone and cortisol, respectively, indicating viability. In contrast to fetal adrenal tissues, the expression of ACTH receptor MC2R was either absent or expressed at extremely low levels in ex vivo HFT tissue and no clear response to ACTH in gene expression or steroid hormone production was observed. Altogether, this study suggests that the HFT is unresponsive to ACTH, which would indicate that a TART does not arise from fetal testicular cells chronically exposed to ACTH in utero.
Collapse
Affiliation(s)
- Mariska A M Schröder
- Department of Pediatrics, Radboud Amalia Children's Hospital, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- MRC Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, and the Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - David Greenald
- MRC Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, and the Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Renate Lodewijk
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, and the Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Hedi L Claahsen-van der Grinten
- Department of Pediatrics, Radboud Amalia Children's Hospital, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
9
|
del Valle I, Young MD, Kildisiute G, Ogunbiyi OK, Buonocore F, Simcock IC, Khabirova E, Crespo B, Moreno N, Brooks T, Niola P, Swarbrick K, Suntharalingham JP, McGlacken-Byrne SM, Arthurs OJ, Behjati S, Achermann JC. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 2023; 8:e168177. [PMID: 37440461 PMCID: PMC10443814 DOI: 10.1172/jci.insight.168177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.
Collapse
Affiliation(s)
- Ignacio del Valle
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Matthew D. Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Olumide K. Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Ian C. Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Eleonora Khabirova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Katherine Swarbrick
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Jenifer P. Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sinead M. McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Owen J. Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - John C. Achermann
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| |
Collapse
|
10
|
Park SS, Kim YH, Kang H, Ahn CH, Byun DJ, Choi MH, Kim JH. Serum and hair steroid profiles in patients with nonfunctioning pituitary adenoma undergoing surgery: A prospective observational study. J Steroid Biochem Mol Biol 2023; 230:106276. [PMID: 36858289 DOI: 10.1016/j.jsbmb.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Patients who undergo transsphenoidal surgery (TSS) experience perioperative hormonal changes, but there are few studies on the perioperative changes of serum and hair steroid profiles. This study investigated the perioperative changes in steroid metabolic signatures in patients with nonfunctioning pituitary adenoma (NFPA) who underwent transsphenoidal surgery (TSS). A total of 55 participants who underwent TSS for NFPA at a single center between July 2017 and October 2018 were enrolled. Fifteen serum steroids and their metabolic ratios were profiled using gas chromatography-mass spectrometry (GC-MS) before and 1 day, 1 week, and 3 months after TSS. Five steroids from hair samples collected 1 day and 3 months after TSS were also quantitatively compared. Serum cortisol and its A-ring reductive metabolites, as well as 6β-hydroxycortisol, increased dramatically 1 day after TSS and then gradually decreased. Seven serum steroids, including adrenal androgens and mineralocorticoids, and hair cortisone levels were significantly lower in patients with preoperative adrenocorticotropic hormone (ACTH) deficiency (N = 7) than in those without ACTH deficiency (N = 48). Serum levels of dehydroepiandrosterone (DHEA) levels 1 week after TSS predicted ACTH deficiency 3 months after TSS, with 100 % sensitivity and 86 % specificity. A significant positive correlation between the preoperative serum and hair DHEA levels (r = 0.356, P = 0.008) was observed. These findings suggest that the levels of DHEA in both the serum and hair could be an early marker of ACTH deficiency after TSS. In addition, hair cortisone may be a useful preoperative indicator of chronic ACTH deficiency.
Collapse
Affiliation(s)
- Seung Shin Park
- Department of Internal Medicine, Seoul National University College of Medicine, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Republic of Korea
| | - Yong Hwy Kim
- Pituitary Center, Seoul National University Hospital, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Republic of Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Dong Jun Byun
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Republic of Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Republic of Korea.
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Republic of Korea,; Pituitary Center, Seoul National University Hospital, Republic of Korea.
| |
Collapse
|
11
|
Cheng K, Seita Y, Moriwaki T, Noshiro K, Sakata Y, Hwang YS, Torigoe T, Saitou M, Tsuchiya H, Iwatani C, Hosaka M, Ohkouchi T, Watari H, Umazume T, Sasaki K. The developmental origin and the specification of the adrenal cortex in humans and cynomolgus monkeys. SCIENCE ADVANCES 2022; 8:eabn8485. [PMID: 35442744 PMCID: PMC9020778 DOI: 10.1126/sciadv.abn8485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of the adrenal cortex, a vital endocrine organ, originates in the adrenogonadal primordium, a common progenitor for both the adrenocortical and gonadal lineages in rodents. In contrast, we find that in humans and cynomolgus monkeys, the adrenocortical lineage originates in a temporally and spatially distinct fashion from the gonadal lineage, arising earlier and more anteriorly within the coelomic epithelium. The adrenal primordium arises from adrenogenic coelomic epithelium via an epithelial-to-mesenchymal transition, which then progresses into the steroidogenic fetal zone via both direct and indirect routes. Notably, we find that adrenocortical and gonadal lineages exhibit distinct HOX codes, suggesting distinct anterior-posterior regionalization. Together, our assessment of the early divergence of these lineages provides a molecular framework for understanding human adrenal and gonadal disorders.
Collapse
Affiliation(s)
- Keren Cheng
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasunari Seita
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Bell Research Center for Reproductive Health and Cancer, Nagoya 460-0003, Japan
| | - Taku Moriwaki
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kiwamu Noshiro
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuka Sakata
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Young Sun Hwang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University Graduate School of Medicine, Sapporo 060-8556, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Masayoshi Hosaka
- Fukuzumi Obstetrics and Gynecology Hospital, Sapporo 062-0043, Japan
| | | | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Umazume
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kotaro Sasaki
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author.
| |
Collapse
|
12
|
Turcu AF, Mallappa A, Nella AA, Chen X, Zhao L, Nanba AT, Byrd JB, Auchus RJ, Merke DP. 24-Hour Profiles of 11-Oxygenated C 19 Steroids and Δ 5-Steroid Sulfates during Oral and Continuous Subcutaneous Glucocorticoids in 21-Hydroxylase Deficiency. Front Endocrinol (Lausanne) 2021; 12:751191. [PMID: 34867794 PMCID: PMC8636728 DOI: 10.3389/fendo.2021.751191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Optimal management of androgen excess in 21-hydroxylase deficiency (21OHD) remains challenging. 11-oxygenated-C19 steroids (11-oxyandrogens) have emerged as promising biomarkers of disease control, but data regarding their response to treatment are lacking. Objective To compare the dynamic response of a broad set of steroids to both conventional oral glucocorticoids (OG) and circadian cortisol replacement via continuous subcutaneous hydrocortisone infusion (CSHI) in patients with 21OHD based on 24-hour serial sampling. Participants and Methods We studied 8 adults (5 women), ages 19-43 years, with poorly controlled classic 21OHD who participated in a single-center open-label phase I-II study comparing OG with CSHI. We used mass spectrometry to measure 15 steroids (including 11-oxyandrogens and Δ5 steroid sulfates) in serum samples obtained every 2 h for 24 h after 3 months of stable OG, and 6 months into ongoing CSHI. Results In response to OG therapy, androstenedione, testosterone (T), and their four 11-oxyandrogen metabolites:11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone and 11-ketotestosterone (11KT) demonstrated a delayed decline in serum concentrations, and they achieved a nadir between 0100-0300. Unlike DHEAS, which had little diurnal variation, pregnenolone sulfate (PregS) and 17-hydoxypregnenolone sulfate peaked in early morning and declined progressively throughout the day. CSHI dampened the early ACTH and androgen rise, allowing the ACTH-driven adrenal steroids to return closer to baseline before mid-day. 11KT concentrations displayed the most consistent difference between OG and CSHI across all time segments. While T was lowered by CSHI as compared with OG in women, T increased in men, suggesting an improvement of the testicular function in parallel with 21OHD control in men. Conclusion 11-oxyandrogens and PregS could serve as biomarkers of disease control in 21OHD. The development of normative data for these promising novel biomarkers must consider their diurnal variability.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Ashwini Mallappa
- Pediatric Service, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, United States
| | - Aikaterini A Nella
- Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX, United States
| | - Xuan Chen
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Lili Zhao
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Aya T Nanba
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - James Brian Byrd
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Deborah P Merke
- Pediatric Service, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, United States
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
13
|
Wellman K, Fu R, Baldwin A, Rege J, Murphy E, Rainey WE, Mukherjee N. Transcriptomic Response Dynamics of Human Primary and Immortalized Adrenocortical Cells to Steroidogenic Stimuli. Cells 2021; 10:cells10092376. [PMID: 34572026 PMCID: PMC8466536 DOI: 10.3390/cells10092376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Adrenal steroid hormone production is a dynamic process stimulated by adrenocorticotropic hormone (ACTH) and angiotensin II (AngII). These ligands initialize a rapid and robust gene expression response required for steroidogenesis. Here, we compare the predominant human immortalized cell line model, H295R cell, with primary cultures of adult adrenocortical cells derived from human kidney donors. We performed temporally resolved RNA-seq on primary cells stimulated with either ACTH or AngII at multiple time points. The magnitude of the expression dynamics elicited by ACTH was greater than AngII in primary cells. This is likely due to the larger population of adrenocortical cells that are responsive to ACTH. The dynamics of stimulus-induced expression in H295R cells are mostly recapitulated in primary cells. However, there are some expression responses in primary cells absent in H295R cells. These data are a resource for the endocrine community and will help researchers determine whether H295R is an appropriate model for the specific aspect of steroidogenesis that they are studying.
Collapse
Affiliation(s)
- Kimberly Wellman
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Amber Baldwin
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (J.R.); (W.E.R.)
| | - Elisabeth Murphy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (J.R.); (W.E.R.)
| | - Neelanjan Mukherjee
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-(303)-724-1623
| |
Collapse
|
14
|
Pecori Giraldi F, Sesta A, Tapella L, Cassarino MF, Castelli L. Dual effects of 9-cis retinoic acid on ACTH-dependent hyperplastic adrenal tissues. Sci Rep 2021; 11:14315. [PMID: 34253781 PMCID: PMC8275666 DOI: 10.1038/s41598-021-93672-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Retinoids play a pivotal role in adrenal development and differentiation. Recent clinical trials revealed therapeutic potential of both all-trans and 9-cis retinoic acid in patients with cortisol excess due to a pituitary ACTH-secreting adenoma and indicated that retinoids might act also on the adrenal. Aim of the present study was to evaluate the effect of 9-cis retinoic acid on adrenals from patients with ACTH-dependent Cushing’s syndrome. Adrenal specimens from six patients with Cushing’s disease were incubated with 10 nM–1 µM 9-cis retinoic acid with and without 10 nM ACTH. Cortisol secretion was measured by immunoassay and expression of genes involved in steroidogenesis as well as retinoic acid action were evaluated by real-time RT-PCR. Incubation with 10–100 nM 9-cis retinoic acid increased spontaneous cortisol secretion and expression of STAR and CYP17A. On the other hand, in wells treated with ACTH, 9-cis retinoic acid markedly diminished ACTH receptor upregulation and no stimulatory effect on cortisol secretion or steroidogenic enzyme synthesis was observed. ACTH itself increased ligand-induced retinoic acid receptor expression, possibly enhancing sensitivity to retinoic acid. Our findings indicate that the effect of 9-cis retinoic acid in presence of ACTH is distinct from unchallenged wells and support the hypothesis of a direct adrenal action in patients with Cushing’s disease.
Collapse
Affiliation(s)
- Francesca Pecori Giraldi
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy. .,Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy.
| | - Antonella Sesta
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Laura Tapella
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Maria Francesca Cassarino
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Luigi Castelli
- Ospedale San Carlo, Reparto di Chirurgia, 20037, Paderno Dugnano, MI, Italy
| |
Collapse
|
15
|
Abstract
Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France
| | - Andreas Schedl
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
16
|
Fu R, Wellman K, Baldwin A, Rege J, Walters K, Hirsekorn A, Riemondy K, Rainey WE, Mukherjee N. RNA-binding proteins regulate aldosterone homeostasis in human steroidogenic cells. RNA (NEW YORK, N.Y.) 2021; 27:rna.078727.121. [PMID: 34074709 PMCID: PMC8284322 DOI: 10.1261/rna.078727.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Angiotensin II (AngII) stimulates adrenocortical cells to produce aldosterone, a master regulator of blood pressure. Despite extensive characterization of the transcriptional and enzymatic control of adrenocortical steroidogenesis, there are still major gaps in the precise regulation of AII-induced gene expression kinetics. Specifically, we do not know the regulatory contribution of RNA-binding proteins (RBPs) and RNA decay, which can control the timing of stimulus-induced gene expression. To investigate this question, we performed a high-resolution RNA-seq time course of the AngII stimulation response and 4-thiouridine pulse labeling in a steroidogenic human cell line (H295R). We identified twelve temporally distinct gene expression responses that contained mRNA encoding proteins known to be important for various steps of aldosterone production, such as cAMP signaling components and steroidogenic enzymes. AngII response kinetics for many of these mRNAs revealed a coordinated increase in both synthesis and decay. These findings were validated in primary human adrenocortical cells stimulated ex vivo with AngII. Using a candidate screen, we identified a subset of RNA-binding protein and RNA decay factors that activate or repress AngII-stimulated aldosterone production. Among the repressors of aldosterone were BTG2, which promotes deadenylation and global RNA decay. BTG2 was induced in response to AngII stimulation and promoted the repression of mRNAs encoding pro-steroidogenic factors indicating the existence of an incoherent feedforward loop controlling aldosterone homeostasis. These data support a model in which coordinated increases in transcription and decay facilitate the major transcriptomic changes required to implement a pro-steroidogenic expression program that actively resolved to prevent aldosterone overproduction.
Collapse
Affiliation(s)
- Rui Fu
- University of Colorado Denver School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Melau C, Nielsen JE, Perlman S, Lundvall L, Langhoff Thuesen L, Juul Hare K, Schou Hammerum M, Frederiksen H, Mitchell RT, Juul A, Jørgensen A. Establishment of a Novel Human Fetal Adrenal Culture Model that Supports de Novo and Manipulated Steroidogenesis. J Clin Endocrinol Metab 2021; 106:843-857. [PMID: 33212489 DOI: 10.1210/clinem/dgaa852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 12/28/2022]
Abstract
CONTEXT Disorders affecting adrenal steroidogenesis promote an imbalance in the normally tightly controlled secretion of mineralocorticoids, glucocorticoids, and androgens. This may lead to differences/disorders of sex development in the fetus, as seen in virilized girls with congenital adrenal hyperplasia (CAH). Despite the important endocrine function of human fetal adrenals, neither normal nor dysregulated adrenal steroidogenesis is understood in detail. OBJECTIVE Due to significant differences in adrenal steroidogenesis between human and model species (except higher primates), we aimed to establish a human fetal adrenal model that enables examination of both de novo and manipulated adrenal steroidogenesis. DESIGN AND SETTING Human adrenal tissue from 54 1st trimester fetuses were cultured ex vivo as intact tissue fragments for 7 or 14 days. MAIN OUTCOME MEASURES Model validation included examination of postculture tissue morphology, viability, apoptosis, and quantification of steroid hormones secreted to the culture media measured by liquid chromatography-tandem mass spectrometry. RESULTS The culture approach maintained cell viability, preserved cell populations of all fetal adrenal zones, and recapitulated de novo adrenal steroidogenesis based on continued secretion of steroidogenic intermediates, glucocorticoids, and androgens. Adrenocorticotropic hormone and ketoconazole treatment of ex vivo cultured human fetal adrenal tissue resulted in the stimulation of steroidogenesis and inhibition of androgen secretion, respectively, demonstrating a treatment-specific response. CONCLUSIONS Together, these data indicate that ex vivo culture of human fetal adrenal tissue constitutes a novel approach to investigate local effects of pharmaceutical exposures or emerging therapeutic options targeting imbalanced steroidogenesis in adrenal disorders, including CAH.
Collapse
Affiliation(s)
- Cecilie Melau
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John E Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Signe Perlman
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Lundvall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lea Langhoff Thuesen
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Kristine Juul Hare
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Mette Schou Hammerum
- Departmet of Obstetrics and Gynaecology, Herlev University Hospital, Herlev, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Recchiuti A, Patruno S, Plebani R, Romano M. The Resolution Approach to Cystic Fibrosis Inflammation. Front Pharmacol 2020; 11:1129. [PMID: 32848748 PMCID: PMC7403222 DOI: 10.3389/fphar.2020.01129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023] Open
Abstract
Despite the high expectations associated with the recent introduction of CFTR modulators, airway inflammation still remains a relevant clinical issue in cystic fibrosis (CF). The classical anti-inflammatory drugs have shown very limited efficacy, when not being harmful, raising the question of whether alternative approaches should be undertaken. Thus, a better knowledge of the mechanisms underlying the aberrant inflammation observed in CF is pivotal to develop more efficacious pharmacology. In this respect, the observation that endogenous proresolving pathways are defective in CF and that proresolving mediators, physiologically generated during an acute inflammatory reaction, do not completely suppress inflammation, but promote resolution, tissue healing and microbial clearance, without compromising immune host defense mechanisms, opens interesting therapeutic scenarios for CF. In this mini-review, we present the current knowledge and perspectives of proresolving pharmacology in CF, focusing on the specialized proresolving lipid mediators and selected peptides.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Patruno
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mario Romano
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
19
|
Abstract
INTRODUCTION Currently, there are no proven drugs that are FDA approved for the treatment of dermatomyositis (DM), even though multiple clinical trials are ongoing to evaluate safety and efficacy of novel therapeutics in DM. The purpose of this review is to highlight the biological plausibility, existing clinical evidence as well as completed and ongoing clinical trials for various drugs in pipeline for development for use in dermatomyositis. AREAS COVERED The drugs with the strongest evidence have been included in this review with a focus on the mechanism of their action pertaining to the disease process, clinical studies including completed and ongoing trials. With better understanding of the underlying pathophysiologic process, there are new molecular targets that have been identified that can be targeted by these novel drugs, predominantly biologic drugs. EXPERT OPINION There are various drugs being evaluated in phase II/III clinical trials that hold promise in DM. At the forefront of these are immunoglobulin, Lenabasum, and Abatacept for which phase III clinical trials are ongoing. In addition, promising clinical studies are ongoing or reported for KZR-616, anti-B cell therapy, anti-interferon drugs, and Repository Corticotrophin Injection (RCI).
Collapse
Affiliation(s)
- Tanya Chandra
- Internal Medicine Residency Program, University of Connecticut , Farmington, CT, USA
| | - Rohit Aggarwal
- Department of Medicine, Rheumatology and Clinical Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
20
|
Hassan M, Karkhur S, Bae JH, Halim MS, Ormaechea MS, Onghanseng N, Nguyen NV, Afridi R, Sepah YJ, Do DV, Nguyen QD. New therapies in development for the management of non-infectious uveitis: A review. Clin Exp Ophthalmol 2020; 47:396-417. [PMID: 30938012 DOI: 10.1111/ceo.13511] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/16/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023]
Abstract
Uveitis is a spectrum of inflammatory disorders characterized by ocular inflammation and is one of the leading causes of preventable visual loss. The main aim of the treatment of uveitis is to control the inflammation, prevent recurrences of the disease and preserve vision while minimizing the adverse effects associated with the therapeutic agents. Initial management of uveitis relies heavily on the use of corticosteroids. However, monotherapy with high-dose corticosteroids is associated with side effects and cannot be maintained long term. Therefore, steroid-sparing agents are needed to decrease the burden of steroid therapy. Currently, the therapeutic approach for non-infectious uveitis (NIU) consists of a step-ladder strategy with the first-line option being corticosteroids in various formulations followed by the use of first-, second- and third-line agents in cases with suboptimal steroid response. Unfortunately, the agents currently at our disposal have limitations such as having a narrow therapeutic window along with their own individual potential side-effect profiles. Therefore, research has been targeted to identify newer drugs as well as new uses for older drugs that target specific pathways in the inflammatory response. Such efforts are made in order to provide targeted and safer therapy with reduced side effects and greater efficacy. Several specially designed molecular antibodies are currently in various phases of investigations that can potentially halt the inflammation in patients with NIU. In the review, we have provided a comprehensive overview of the current and upcoming therapeutic options for patients with NIU.
Collapse
Affiliation(s)
- Muhammad Hassan
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Samendra Karkhur
- Byers Eye Institute, Stanford University, Palo Alto, California.,Department of Ophthalmology, Sadguru Netra Chikitsalaya, Chitrakoot, India
| | - Jeong H Bae
- Byers Eye Institute, Stanford University, Palo Alto, California.,Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Maria S Ormaechea
- Byers Eye Institute, Stanford University, Palo Alto, California.,Department of Ophthalmology, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Neil Onghanseng
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Nam V Nguyen
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Rubbia Afridi
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Yasir J Sepah
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Diana V Do
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Quan D Nguyen
- Byers Eye Institute, Stanford University, Palo Alto, California
| |
Collapse
|
21
|
Jin W, Ma R, Zhai L, Xu X, Lou T, Huang Q, Wang J, Zhao D, Li X, Sun L. Ginsenoside Rd attenuates ACTH-induced corticosterone secretion by blocking the MC2R-cAMP/PKA/CREB pathway in Y1 mouse adrenocortical cells. Life Sci 2020; 245:117337. [PMID: 31972205 DOI: 10.1016/j.lfs.2020.117337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Higher levels of glucocorticoids (GCs), and impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis may cause or exacerbate the occurrence of metabolic and psychiatric disorders. It has been reported that ginseng saponin extract (GSE) has an inhibitory effect on the hyperactivity of the HPA axis induced by stresses and increased corticosterone level induced by intraperitoneal injection of adrenocorticotrophic hormone (ACTH) in mice. However, the molecular mechanisms by which GSE and its active ginsenosides inhibit corticosterone secretion remain elusive. MAIN METHODS Y1 mouse adrenocortical cells were treated with ACTH for up to 60 min to establish a cell model of corticosterone secretion. After treatment with different concentrations of GSE or ginsenoside monomers for 24 h prior to the addition of ACTH, analyses of cAMP content, PKA activity, and the levels of steroidogenesis regulators, melanocortin-2 receptor (MC2R), and melanocortin-2 receptor accessory protein (MRAP) in ACTH-induced Y1 cells were performed. RESULTS We demonstrated that GSE inhibits ACTH-stimulated corticosterone production in Y1 cells by inhibiting factors critical for steroid synthesis. Ginsenoside Rd, an active ingredient of GSE, inhibits corticosterone secretion in the cells and impedes ACTH-induced corticosterone biosynthesis through down-regulation of proteins in the cAMP/PKA/CREB signaling pathway. In addition, Western blot and qPCR analyses showed that ginsenoside Rd attenuated the induction of MC2R and MRAP by ACTH. CONCLUSION Our findings indicate that ginsenoside Rd inhibits ACTH-induced corticosterone production through blockading the MC2R-cAMP/PKA/CREB pathway in adrenocortical cells. Overall, this mechanism may represent an important therapeutic option for the treatment of stress-related disorders, further supporting the pharmacological benefits of ginseng.
Collapse
Affiliation(s)
- Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tingting Lou
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
22
|
Corticosteroid-Binding Globulin is expressed in the adrenal gland and its absence impairs corticosterone synthesis and secretion in a sex-dependent manner. Sci Rep 2019; 9:14018. [PMID: 31570737 PMCID: PMC6769001 DOI: 10.1038/s41598-019-50355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Corticosteroid-binding globulin (CBG) is synthesized by the liver and secreted into the bloodstream where binds to glucocorticoids. Thus CBG has the role of glucocorticoid transport and free hormone control. In addition, CBG has been detected in some extrahepatic tissues without a known role. CBG-deficient mice show decreased total corticosterone levels with missing of classical sexual dimorphism, increased free corticosterone, higher adrenal gland size and altered HPA axis response to stress. Our aim was to ascertain whether CBG deficiency could affect the endocrine synthetic activity of adrenal gland and if the adrenal gland produces CBG. We determined the expression in adrenal gland of proteins involved in the cholesterol uptake and its transport to mitochondria and the main enzymes involved in the corticosterone, aldosterone and catecholamine synthesis. The results showed that CBG is synthesized in the adrenal gland. CBG-deficiency reduced the expression of ACTH receptor, SRB1 and the main genes involved in the adrenal hormones synthesis, stronger in females resulting in the loss of sexual dimorphism in corticosteroid adrenal synthesis, despite corticosterone content in adrenal glands from CBG-deficient females was similar to wildtype ones. In conclusion, these results point to an unexplored and relevant role of CBG in the adrenal gland functionality related to corticosterone production and release.
Collapse
|
23
|
Selyatitskaya VG, Afonnikova ED, Pal Chikova NA, Kuz Minova OI. [Hypercorticism during streptozotocin diabetes and mifepristone administration: the role of cyclic adenosine monophosphate]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:311-315. [PMID: 31436172 DOI: 10.18097/pbmc20196504311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It was studed basal and ACTH-stimulated production of cyclic adenosine monophosphate (cAMP) and corticosteroid hormones (progesterone and corticosterone) in rat adrenals in vitro under streptozotocin diabetes, in conditions of mifepristone administration and their combination. It was shown that in streptozotocin diabetes animals, both the basal and adrenocorticotropic hormone (ACTH) stimulated cAMP production significantly increased; this was accompanied by the increase in basal and ACTH-stimulated progesterone and corticosterone production in rat adrenals in vitro. Repeated administration of mifepristone to control and diabetic rats caused an increase mainly in ACTH-stimulated production of the main glucocorticoid hormone, corticosterone, without additional changes in the cAMP level. The results obtained suggest activation of two mechanisms of steroidogenesis enhancement in experimental animals. In rats with streptozotocin diabetes, both basal and ACTH-stimulated activity of all stages of steroidogenesis increase, which is mediated by the increased formation of cAMP as second messenger mediating the ACTH action on adrenocortical cells. Prolonged administration of mifepristone to control and diabetic rats resulted in increased activity of only late stages of steroidogenesis with predominant elevation of synthesis of physiologically active hormone corticosterone without additional changes in cAMP production level.
Collapse
Affiliation(s)
- V G Selyatitskaya
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E D Afonnikova
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - N A Pal Chikova
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - O I Kuz Minova
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
24
|
Gley K, Murani E, Trakooljul N, Zebunke M, Puppe B, Wimmers K, Ponsuksili S. Transcriptome profiles of hypothalamus and adrenal gland linked to haplotype related to coping behavior in pigs. Sci Rep 2019; 9:13038. [PMID: 31506580 PMCID: PMC6736951 DOI: 10.1038/s41598-019-49521-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 08/27/2019] [Indexed: 11/08/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is an important component of neuroendocrine stress regulation and coping behavior. Transcriptome profiles of the hypothalamus and adrenal gland were assessed to identify molecular pathways and candidate genes for coping behavior in pigs. Ten each of high- (HR) and low- (LR) reactive pigs (n = 20) were selected for expression profiling based haplotype information of a prominent QTL-region on SSC12 discovered in our previous genome-wide association study (GWAS) on coping behavior. Comparing the HR and LR pigs showed 692 differentially expressed genes (DEGs) in the adrenal gland and 853 DEGs in the hypothalamus, respectively. Interestingly, 47% (17 out of 36) of DEGs found in both tissues were located in GWAS regions identified on SSC12, indicating that there are significant functional positional candidate genes for coping behaviour. Pathway analysis assigned DEGs to glucocorticoid receptor signaling in the adrenal gland. Furthermore, oxidative phosphorylation, mitochondrial dysfunction, and NGF signaling as well as cholecystokinin/Gastrin-mediated were identified in the hypothalamus. We narrowed the list of candidate genes in GWAS regions by analyzing their DEGs in the HPA axis. The top identified transcripts, including ATP1B2, AURKB, MPDU1 and NDEL1 provide evidence for molecular correlates of coping behavior in GWAS regions.
Collapse
Affiliation(s)
- Kevin Gley
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Birger Puppe
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
25
|
Hazell G, Horn G, Lightman SL, Spiga F. Dynamics of ACTH-Mediated Regulation of Gene Transcription in ATC1 and ATC7 Adrenal Zona Fasciculata Cell Lines. Endocrinology 2019; 160:587-604. [PMID: 30768667 PMCID: PMC6380881 DOI: 10.1210/en.2018-00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that mouse ATC1 and ATC7 cells, the first adrenocortical cell lines to exhibit a complete zona fasciculata (ZF) cell phenotype, respond to dynamic ACTH stimulation in a similar manner as the adrenal gland in vivo. Exploiting our previous in vivo observations that gene transcription within the steroidogenic pathway is dynamically regulated in response to a pulse of ACTH, we exposed ATC1 and ATC7 cells to various patterns of ACTH, including pulsatile and constant, and measured the transcriptional activation of this pathway. We show that pulses of ACTH administered to ATC7 cells can reliably stimulate a pulsatile pattern of transcriptional activity that is comparable to that observed in adrenal ZF cells in vivo. Hourly pulses of ACTH stimulate dynamic increases in CREB phosphorylation (pCREB) and transcription of genes involved in critical steps of steroidogenesis including signal transduction (e.g., MRAP), cholesterol delivery (e.g., StAR), and steroid biosynthesis (e.g., CYP11A1), as well as those relating to transcriptional regulation of steroidogenic factors (e.g., SF-1 and Nur-77). In contrast, constant ACTH stimulation results in a prolonged and exaggerated pCREB and steroidogenic gene transcriptional response. We also show that when a large dose of ACTH (100 nM) is applied after these treatment regimens, a significant increase in steroidogenic transcriptional responsiveness is achieved only in cells that have been exposed to pulsatile, rather than constant, ACTH. Our data support our in vivo observations that pulsatile ACTH is important for the optimal transcriptional responsiveness of the adrenal. Importantly, our data suggest that ATC7 cells respond to dynamic ACTH stimulation.
Collapse
Affiliation(s)
- Georgina Hazell
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - George Horn
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Francesca Spiga
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Clark AJL, Chan L. Stability and Turnover of the ACTH Receptor Complex. Front Endocrinol (Lausanne) 2019; 10:491. [PMID: 31402897 PMCID: PMC6676219 DOI: 10.3389/fendo.2019.00491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid production in mammals is principally regulated by the action of the pituitary hormone adrenocorticotropin (ACTH) acting on its cognate membrane receptor on the zona fasciculata cells of the adrenal cortex. The receptor for ACTH consists of two essential components, a small seven transmembrane domain G protein-coupled receptor of the melanocortin receptor subgroup known as the melanocortin 2 receptor (MC2R) and a small single transmembrane domain protein that adopts a antiparallel homodimeric form and which is known as the melanocortin 2 receptor accessory protein (MRAP). MRAP is essential for the trafficking of the MC2R to the cell surface as well as being required for receptor responsiveness to ACTH at physiological concentrations-probably by facilitating ACTH binding, but possibly also by supporting G protein interaction with the MC2R. A number of studies have shown that ACTH stimulates the expression of functional receptor at the cell surface and the transcription of both MC2R and MRAP mRNA. However, the time course of these transcriptional effects differs such that MRAP is expressed relatively rapidly whereas MC2R transcription responds much more slowly. Furthermore, recent data suggests that MRAP protein is turned over with a short half-life whereas MC2R has a significantly longer half-life. These findings imply that these two ACTH receptor proteins have distinct trajectories and that it is likely that MRAP-independent MC2R is present at the cell surface. In such a situation newly transcribed and translated MRAP could enable the rapid recruitment of functional receptor at the plasma membrane without the need for new MC2R translation. This may be advantageous in circumstances of significant stress in that the potentially complex and perhaps inefficient process of de novo MC2R translation, folding, post-translational modification and trafficking can be avoided.
Collapse
|
27
|
Weger M, Weger BD, Görling B, Poschet G, Yildiz M, Hell R, Luy B, Akcay T, Güran T, Dickmeis T, Müller F, Krone N. Glucocorticoid deficiency causes transcriptional and post-transcriptional reprogramming of glutamine metabolism. EBioMedicine 2018; 36:376-389. [PMID: 30266295 PMCID: PMC6197330 DOI: 10.1016/j.ebiom.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/12/2023] Open
Abstract
Background Deficient glucocorticoid biosynthesis leading to adrenal insufficiency is life-threatening and is associated with significant co-morbidities. The affected pathways underlying the pathophysiology of co-morbidities due to glucocorticoid deficiency remain poorly understood and require further investigation. Methods To explore the pathophysiological processes related to glucocorticoid deficiency, we have performed global transcriptional, post-transcriptional and metabolic profiling of a cortisol-deficient zebrafish mutant with a disrupted ferredoxin (fdx1b) system. Findings fdx1b−/− mutants show pervasive reprogramming of metabolism, in particular of glutamine-dependent pathways such as glutathione metabolism, and exhibit changes of oxidative stress markers. The glucocorticoid-dependent post-transcriptional regulation of key enzymes involved in de novo purine synthesis was also affected in this mutant. Moreover, fdx1b−/− mutants exhibit crucial features of primary adrenal insufficiency, and mirror metabolic changes detected in primary adrenal insufficiency patients. Interpretation Our study provides a detailed map of metabolic changes induced by glucocorticoid deficiency as a consequence of a disrupted ferredoxin system in an animal model of adrenal insufficiency. This improved pathophysiological understanding of global glucocorticoid deficiency informs on more targeted translational studies in humans suffering from conditions associated with glucocorticoid deficiency. Fund Marie Curie Intra-European Fellowships for Career Development, HGF-programme BIFTM, Deutsche Forschungsgemeinschaft, BBSRC.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Benjamin D Weger
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin Görling
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Melek Yildiz
- Kanuni Sultan Süleyman Education and Research Hospital, Küçükçekmece, Istanbul, Turkey
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Burkhard Luy
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Teoman Akcay
- Istinye University Gaziosmanpasa Medical Park Hospital Gaziosmanpasa, Istanbul, Turkey
| | - Tülay Güran
- Marmara University, Department of Pediatric Endocrinology and Diabetes, Pendik, Istanbul, Turkey
| | - Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nils Krone
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2TH, UK; Department of Biomedical Science, The Bateson Centre, Firth Court, Western Bank, Sheffield S10 2TN, UK..
| |
Collapse
|
28
|
Candida Barisson Villares Fragoso M, Pontes Cavalcante I, Meneses Ferreira A, Marinho de Paula Mariani B, Ferini Pacicco Lotfi C. Genetics of primary macronodular adrenal hyperplasia. Presse Med 2018; 47:e139-e149. [PMID: 30075949 DOI: 10.1016/j.lpm.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in molecular genetics investigations of primary macronodular adrenal hyperplasia (PMAH) have been providing new insights for the research on this issue. The cAMP-dependent pathway is physiologically triggered by ACTH and its receptor, MC2-R, in adrenocortical cells. Different mechanisms of this cascade may be altered in some functioning adrenal cortical disorders. Activating somatic mutations of the GNAS gene (known as gsp oncogene) which encodes the stimulatory G protein alpha-subunit (Gsα) have been found in a small number of adrenocortical secreting adenomas and rarely in PMAH. Lately, ARMC5 was linked to the cyclic AMP signaling pathway, which could be implicated in all of mechanisms of cortisol-secreting by macronodules adrenal hyperplasia and the molecular defects in: G protein aberrant receptors; MC2R; GNAS; PRKAR1A; PDE11A; PDE8B. Around 50 % of patient's relatives with PMAH and 30 % of apparently sporadic hypercortisolism carried ARMC5 mutations. Therefore, PMAH is genetically determined more frequently than previously believed. This review summarizes the most important molecular mechanisms involved in PMAH.
Collapse
Affiliation(s)
| | - Isadora Pontes Cavalcante
- University of Sao Paulo, Adrenal Unit, Service of Endocrinology and Metabolism, 03178-200 Sao Paulo, Brazil; University of Sao Paulo, Institute of Biomedical Sciences, Department of Anatomy, 03178-200 Sao Paulo, Brazil
| | - Amanda Meneses Ferreira
- University of Sao Paulo, Adrenal Unit, Service of Endocrinology and Metabolism, 03178-200 Sao Paulo, Brazil
| | | | | |
Collapse
|
29
|
Tamamori-Adachi M, Koga A, Susa T, Fujii H, Tsuchiya M, Okinaga H, Hisaki H, Iizuka M, Kitajima S, Okazaki T. DNA damage response induced by Etoposide promotes steroidogenesis via GADD45A in cultured adrenal cells. Sci Rep 2018; 8:9636. [PMID: 29941883 PMCID: PMC6018231 DOI: 10.1038/s41598-018-27938-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid production is regulated by adrenocorticotropic hormone (ACTH) via the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway in the adrenal cortex, but the changes in steroidogenesis associated with aging are unknown. In this study, we show that cell-autonomous steroidogenesis is induced by non-ACTH- mediated genotoxic stress in human adrenocortical H295R cells. Low-dose etoposide (EP) was used to induce DNA damage as a genotoxic stress, leading to cellular senescence. We found that steroidogenesis was promoted in cells stained with γH2AX, a marker of DNA damaged cells. Among stress-associated and p53-inducible genes, the expression of GADD45A and steroidogenesis-related genes was significantly upregulated. Immunofluorescence analysis revealed that GADD45A accumulated in the nuclei. Metabolite assay using cultured media showed that EP-treated cells were induced to produce and secrete considerable amounts of glucocorticoid. Knockdown of GADD45A using small interfering RNA markedly inhibited the EP-induced upregulation of steroidogenesis-related gene expression, and glucocorticoid production. A p38MAPK inhibitor, but not a PKA inhibitor, suppressed EP-stimulated steroidogenesis. These results suggest that DNA damage itself promotes steroidogenesis via one or more unprecedented non-ACTH-mediated pathway. Specifically, GADD45A plays a crucial role in the steroidogenic processes triggered by EP-stimulated genotoxic stress. Our study sheds new light on an alternate mechanism of steroidogenesis in the adrenal cortex.
Collapse
Affiliation(s)
- Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Akane Koga
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Fujii
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of General Medicine, National Defense Medical College, 3-2, Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Masao Tsuchiya
- Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8605, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
30
|
Aggarwal R, Marder G, Koontz DC, Nandkumar P, Qi Z, Oddis CV. Efficacy and safety of adrenocorticotropic hormone gel in refractory dermatomyositis and polymyositis. Ann Rheum Dis 2018; 77:720-727. [PMID: 29237618 DOI: 10.1136/annrheumdis-2017-212047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023]
Abstract
AIM To evaluate the efficacy, safety, tolerability and steroid-sparing effect of repository corticotropin injection (RCI), in an open-label clinical trial, in refractory adult polymyositis (PM) and dermatomyositis (DM). METHODS Adults with refractory PM and DM were enrolled by two centres. Inclusion criteria included refractory disease defined as failing glucocorticoid and/or ≥1 immunosuppressive agent, as well as active disease defined as significant muscle weakness and >2 additional abnormal core set measures (CSMs) or a cutaneous 10 cm Visual Analogue Scale score of ≥3 cm and at least three other abnormal CSMs. All patients received RCI of 80 units subcutaneously twice weekly for 24 weeks. The primary end point for the trial was the International Myositis Assessment and Clinical Studies definition of improvement. Secondary end points included safety, tolerability, steroid-sparing as well as the 2016 American College of Rheumatology (ACR)/European League Against Rheumatism myositis response criteria (EULAR) RESULTS: Ten of the 11 enrolled subjects (6 DM, 4 PM) completed the study. Seven of 10 met the primary end point of efficacy at a median of 8 weeks. There was a significant decrease in prednisone dose from baseline to conclusion (18.5 (15.7) vs 2.3 (3.2); P<0.01). Most individual CSMs improved at week 24 compared with the baseline, with the muscle strength improving by >10% and the physician global by >40%. RCI was considered safe and tolerable. No patient developed significant weight gain or an increase of haemoglobin A1c or cushingoid features. CONCLUSION Treatment with RCI was effective in 70% of patients, safe and tolerable, and led to a steroid dose reduction in patients with adult myositis refractory to glucocorticoid and traditional immunosuppressive drugs. TRIAL REGISTRATION NUMBER NCT01906372; Results.
Collapse
Affiliation(s)
- Rohit Aggarwal
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Galina Marder
- Northwell Health, Formerly North Shore-Long Island Jewish Medical Center, Great Neck, New York, USA
| | - Diane Carol Koontz
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Preeya Nandkumar
- Northwell Health, Formerly North Shore-Long Island Jewish Medical Center, Great Neck, New York, USA
| | - Zengbiao Qi
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chester V Oddis
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Cavalcante IP, Nishi M, Zerbini MCN, Almeida MQ, Brondani VB, Botelho MLADA, Tanno FY, Srougi V, Chambo JL, Mendonca BB, Bertherat J, Lotfi CFP, Fragoso MCBV. The role of ARMC5 in human cell cultures from nodules of primary macronodular adrenocortical hyperplasia (PMAH). Mol Cell Endocrinol 2018; 460:36-46. [PMID: 28676429 DOI: 10.1016/j.mce.2017.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 01/22/2023]
Abstract
The participation of aberrant receptors and intra-adrenal ACTH in hyperplastic tissue are considered mechanisms that regulate hypercortisolism in PMAH. Additionally, germline ARMC5 mutations have been described as the most frequent genetic abnormality found in patients diagnosed with PMAH. Previous functional studies analyzed ARMC5 role using H295R cells. Therefore, we investigated the role of ARMC5 in cell cultures obtained from PMAH nodules containing steroidogenic cells, aberrant receptors and intra-adrenal ACTH. ARMC5 silencing in non-mutated PMAH cell cultures decreased steroidogenesis-related genes and increased CCNE1 mRNA expression and proliferative capacity without affecting cell viability. Additionally, ARMC5 overexpression induced cell death in PMAH mutated cell cultures, thereby decreasing cell viability. We confirmed the role of ARMC5 as an important pro-apoptotic protein involved in PMAH-related steroidogenesis. We also report for the first time the involvement of ARMC5 in controlling proliferation and regulating cell cycle in PMAH cell cultures; these effects need to be explored further.
Collapse
Affiliation(s)
- Isadora P Cavalcante
- Institute of Biomedical Sciences, Department of Anatomy, University of Sao Paulo, SP, Brazil
| | - Mirian Nishi
- Laboratory of Hormone and Molecular Genetic LIM/42, University of Sao Paulo, SP, Brazil
| | | | - Madson Q Almeida
- Laboratory of Hormone and Molecular Genetic LIM/42, University of Sao Paulo, SP, Brazil; Adrenal Unit, Discipline of Endocrinology & Metabolism, University of Sao Paulo, SP, Brazil
| | - Vania B Brondani
- Laboratory of Hormone and Molecular Genetic LIM/42, University of Sao Paulo, SP, Brazil; Adrenal Unit, Discipline of Endocrinology & Metabolism, University of Sao Paulo, SP, Brazil
| | | | - Fabio Y Tanno
- Department of Urology, University of Sao Paulo, SP, Brazil
| | - Victor Srougi
- Department of Urology, University of Sao Paulo, SP, Brazil
| | | | - Berenice B Mendonca
- Laboratory of Hormone and Molecular Genetic LIM/42, University of Sao Paulo, SP, Brazil; Adrenal Unit, Discipline of Endocrinology & Metabolism, University of Sao Paulo, SP, Brazil
| | - Jérôme Bertherat
- Service d'Endocrinologie, Hôpital Cochin, Centre de Référence Maladies Rares de la Surrénale, Institut Cochin, INSERM U 1016, CNRS 8104, Université Paris Descartes, Paris, France
| | - Claudimara F P Lotfi
- Institute of Biomedical Sciences, Department of Anatomy, University of Sao Paulo, SP, Brazil.
| | - Maria Candida B V Fragoso
- Laboratory of Hormone and Molecular Genetic LIM/42, University of Sao Paulo, SP, Brazil; Adrenal Unit, Discipline of Endocrinology & Metabolism, University of Sao Paulo, SP, Brazil
| |
Collapse
|
32
|
Rege J, Nanba AT, Auchus RJ, Ren J, Peng HM, Rainey WE, Turcu AF. Adrenocorticotropin Acutely Regulates Pregnenolone Sulfate Production by the Human Adrenal In Vivo and In Vitro. J Clin Endocrinol Metab 2018; 103:320-327. [PMID: 29126147 PMCID: PMC5761485 DOI: 10.1210/jc.2017-01525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022]
Abstract
Background Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in human circulation, and adrenocorticotropic hormone (ACTH) is considered the major regulator of its synthesis. Pregnenolone sulfate (PregS) and 5-androstenediol-3-sulfate (AdiolS) have recently emerged as biomarkers of adrenal disorders. Objective To define the relative human adrenal production of Δ5-steroid sulfates under basal and cosyntropin-stimulated conditions. Methods Liquid chromatography-tandem mass spectrometry was used to quantify three unconjugated and four sulfated Δ5-steroids in (1) paired adrenal vein (AV) and mixed venous serum samples (21 patients) and (2) cultured human adrenal cells both before and after cosyntropin stimulation, (3) microdissected zona fasciculata (ZF) and zona reticularis (ZR) from five human adrenal glands, and (4) a reconstituted in vitro human 17α-hydroxylase/17,20-lyase/(P450 17A1) system. Results Of the steroid sulfates, PregS had the greatest increase after cosyntropin stimulation in the AV (32-fold), whereas DHEAS responded modestly (1.8-fold). PregS attained concentrations comparable to those of DHEAS in the AV after cosyntropin stimulation (AV DHEAS/PregS, 24 and 1.3 before and after cosyntropin, respectively). In cultured adrenal cells, PregS demonstrated the sharpest response to cosyntropin, whereas DHEAS responded only modestly (21-fold vs 1.8-fold higher compared with unstimulated cells at 3 hours, respectively). Steroid analyses in isolated ZF and ZR showed similar amounts of PregS and 17α-hydroxypregnenolone in both zones, whereas DHEAS and AdiolS were higher in ZR (P < 0.05). Conclusion Our studies demonstrated that unlike DHEAS, PregS displayed a prominent acute response to cosyntropin. PregS could be used to interrogate the acute adrenal response to ACTH stimulation and as a biomarker in various adrenal disorders.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Aya T. Nanba
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jianwei Ren
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109
| | - Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109
| | - Adina F. Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
33
|
Løtvedt P, Fallahshahroudi A, Bektic L, Altimiras J, Jensen P. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiol Stress 2017; 7:113-121. [PMID: 28879214 PMCID: PMC5577413 DOI: 10.1016/j.ynstr.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 08/19/2017] [Indexed: 01/21/2023] Open
Abstract
Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens. We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds.
Collapse
Affiliation(s)
| | | | | | | | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
34
|
Amweg AN, Rodríguez FM, Huber E, Marelli BE, Gareis NC, Belotti EM, Rey F, Salvetti NR, Ortega HH. Detection and activity of 11 beta hydroxylase (CYP11B1) in the bovine ovary. Reproduction 2017; 153:433-441. [DOI: 10.1530/rep-16-0493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
Glucocorticoids (GCs) such as cortisol and corticosterone are important steroid hormones with different functions in intermediate metabolism, development, cell differentiation, immune response and reproduction. In response to physiological and immunological stress, adrenocorticotropic hormone (ACTH) acts on the adrenal gland by stimulating the synthesis and secretion of GCs. However, there is increasing evidence that GCs may also be synthesized by extra-adrenal tissues. Here, we examined the gene and protein expression of the enzyme 11β-hydroxylase P450c11 (CYP11B1), involved in the conversion of 11-deoxycortisol to cortisol, in the different components of the bovine ovary and determined the functionality of CYP11B1in vitro.CYP11B1mRNA was expressed in granulosa and theca cells in small, medium and large antral ovarian follicles, and CYP11B1 protein was expressed in medium and large antral follicles. After stimulation by ACTH, we observed an increased secretion of cortisol by the wall of large antral follicles. We also observed a concentration-dependent decrease in the concentration of cortisol in response to metyrapone, an inhibitor of CYP11B1. This decrease was significant at 10−5 µM metyrapone. In conclusion, this study demonstrated for the first time the presence of CYP11B1 in the bovine ovary. This confirms that there could be a local synthesis of GCs in the bovine ovary and therefore a potential endocrine responder to stress through these hormones.
Collapse
|
35
|
Pignatti E, Leng S, Carlone DL, Breault DT. Regulation of zonation and homeostasis in the adrenal cortex. Mol Cell Endocrinol 2017; 441:146-155. [PMID: 27619404 PMCID: PMC5235909 DOI: 10.1016/j.mce.2016.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
The adult adrenal cortex is organized into concentric zones, each specialized to produce distinct steroid hormones. Cellular composition of the cortex is highly dynamic and subject to diverse signaling controls. Cortical homeostasis and regeneration rely on centripetal migration of steroidogenic cells from the outer to the inner cortex, which is accompanied by direct conversion of zona glomerulosa (zG) into zona fasciculata (zF) cells. Given the important impact of tissue structure and growth on steroidogenic function, it is essential to understand the mechanisms governing adrenal zonation and homeostasis. Towards this end, we review the distinctions between each zone by highlighting their morphological and ultra-structural features, discuss key signaling pathways influencing zonal identity, and evaluate current evidence for long-term self-renewing stem cells in the adult cortex. Finally, we review data supporting zG-to-zF transdifferentiation/direct conversion as a major mechanism of adult cortical renewal.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Babischkin JS, Aberdeen GW, Pepe GJ, Albrecht ED. Estrogen Suppresses Interaction of Melanocortin 2 Receptor and Its Accessory Protein in the Primate Fetal Adrenal Cortex. Endocrinology 2016; 157:4588-4601. [PMID: 27779913 PMCID: PMC5133357 DOI: 10.1210/en.2016-1562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have shown that fetal adrenal fetal zone (FZ) volume and serum dehydroepiandrosterone sulfate (DHAS) levels were increased, whereas definitive and transitional zone (DZ/TZ) volume was unaltered, in baboons in which estrogen levels were suppressed by the administration of the aromatase inhibitor letrozole. The interaction of the melanocortin 2 receptor (MC2R) with its accessory protein (MRAP) is essential for trafficking MC2R to the adrenal cell surface for binding to ACTH. The present study determined whether the estrogen-dependent regulation of fetal adrenocortical development is mediated by ACTH and/or expression/interaction of MC2R and MRAP. Fetal pituitary proopiomelanocortin mRNA and plasma ACTH levels and fetal adrenal MC2R-MRAP interaction were assessed in baboons in which estrogen was suppressed/restored by letrozole/letrozole plus estradiol administration during the second half of gestation. Although fetal pituitary proopiomelanocortin and plasma ACTH levels and fetal adrenal MC2R and MRAP protein levels were unaltered, MC2R-MRAP interaction was 2-fold greater (P < .05) in the DZ/TZ in letrozole-treated baboons than in untreated animals and restored by letrozole plus estradiol treatment. We propose that the increasing levels of estradiol with advancing pregnancy suppress interaction of MC2R with MRAP, thereby diminishing MC2R movement to the cell membrane in the DZ/TZ. This would be expected to reduce progenitor cell proliferation in the DZ and migration to the FZ, thereby restraining FZ growth and DHAS production to maintain fetal adrenal DHAS and placental estradiol levels in a physiological range late in gestation.
Collapse
Affiliation(s)
- Jeffery S Babischkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Graham W Aberdeen
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Gerald J Pepe
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| |
Collapse
|
37
|
Brown AN. Repository corticotropin injection in patients with refractory psoriatic arthritis: a case series. Open Access Rheumatol 2016; 8:97-102. [PMID: 27956846 PMCID: PMC5113927 DOI: 10.2147/oarrr.s113288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Although numerous treatment options are available for patients with psoriatic arthritis (PsA), a need for effective and tolerable treatments remains for patients with refractory disease who have failed previous therapies and continue to experience tender and/or swollen joints, pain, and disease activity. Repository corticotropin injection (RCI) is believed to produce steroidogenic, steroid-independent, anti-inflammatory, and immunomodulatory effects in patients with rheumatic disorders, such as PsA. Limited literature exists on the use of RCI in patients with refractory PsA. The objective of this case series is to provide information on the clinical features of patients with refractory PsA and their response to RCI. PATIENTS Nine patients treated with RCI for refractory PsA were retrospectively identified and included in the case series. RESULTS All the nine patients experienced at least transient improvements in their active skin and joint disease. In some patients, it was necessary to titrate the RCI to an appropriate dose. RCI was used in some patients to bridge with another PsA therapy, such as apremilast or certolizumab. RCI was well tolerated, but discontinued in three patients due to preexisting conditions (hypertension and hyperglycemia). CONCLUSION RCI may be a safe and effective option for patients with refractory PsA who failed therapy with multiple previous treatments.
Collapse
Affiliation(s)
- Alan N Brown
- Low Country Rheumatology, North Charleston, SC, USA
| |
Collapse
|
38
|
Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56:T135-56. [PMID: 26793988 DOI: 10.1530/jme-15-0257] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
39
|
Nanba K, Chen AX, Turcu AF, Rainey WE. H295R expression of melanocortin 2 receptor accessory protein results in ACTH responsiveness. J Mol Endocrinol 2016; 56:69-76. [PMID: 26576642 DOI: 10.1530/jme-15-0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
Abstract
The H295R adrenocortical cell line is widely used for molecular analysis of adrenal functions but is known to have only modest ACTH responsiveness. The lack of ACTH response was linked to a low expression of its receptor, melanocortin 2 receptor (MC2R). We hypothesized that increasing the MC2R accessory protein (MRAP), which is required to traffic MC2R from the endoplasmic reticulum to the cell surface, would increase ACTH responsiveness. Lentiviral particles containing human MRAP-open reading frame were generated and transduced in H295R cells. Using antibiotic resistance, 18 clones were isolated for characterization. The most ACTH-responsive steroidogenic clone, H295RA, was used for further experiments. Successful induction of MRAP and increased expression of MC2R in H295RA cells was confirmed by quantitative real-time RT-PCR and protein analysis. Treatment with ACTH significantly increased aldosterone, cortisol, and dehydroepiandrosterone production in H295RA cells. ACTH also significantly increased transcript levels for all of the steroidogenic enzymes required to produce aldosterone, cortisol, and dehydroepiandrosterone, as well as MC2R mRNA. Using liquid chromatography/tandem mass spectrometry, we further revealed that the main unconjugated steroids produced in H295RA cells were 11-deoxycortisol, cortisol, and androstenedione. Treatment of H295RA cells with ACTH also acutely increased cAMP production and cellular protein levels for total and phosphorylated steroidogenic acute regulatory protein. In summary, through genetic manipulation, we have developed an ACTH-responsive human adrenocortical cell line. The cell line will provide a powerful in vitro tool for molecular analysis of physiologic and pathologic conditions involving the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Andrew X Chen
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Adina F Turcu
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - William E Rainey
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
40
|
Lefebvre H, Thomas M, Duparc C, Bertherat J, Louiset E. Role of ACTH in the Interactive/Paracrine Regulation of Adrenal Steroid Secretion in Physiological and Pathophysiological Conditions. Front Endocrinol (Lausanne) 2016; 7:98. [PMID: 27489549 PMCID: PMC4951519 DOI: 10.3389/fendo.2016.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
In the normal human adrenal gland, steroid secretion is regulated by a complex network of autocrine/paracrine interactions involving bioactive signals released by endothelial cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells themselves. ACTH can be locally produced by medullary chromaffin cells and is, therefore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also triggers the release of angiogenic and vasoactive agents from adrenocortical cells and adrenal mast cells and, thus, indirectly regulates steroid production through modulation of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecretion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical cells that express gonadal markers. This observation suggests that ectopic production of ACTH may result from impaired embryogenesis leading to abnormal maturation of the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a major player in the autocrine/paracrine processes occurring in the adrenal gland in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Hervé Lefebvre
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France
- *Correspondence: Hervé Lefebvre,
| | - Michaël Thomas
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
| | - Céline Duparc
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
| | - Jérôme Bertherat
- U1016, INSERM, Institut Cochin, Paris, France
- Department of Endocrinology and Metabolic Diseases, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Estelle Louiset
- U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Rouen, France
| |
Collapse
|
41
|
Spät A, Hunyady L, Szanda G. Signaling Interactions in the Adrenal Cortex. Front Endocrinol (Lausanne) 2016; 7:17. [PMID: 26973596 PMCID: PMC4770035 DOI: 10.3389/fendo.2016.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: András Spät,
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
42
|
Maben ZJ, Malik S, Jiang LH, Hinkle PM. Dual Topology of the Melanocortin-2 Receptor Accessory Protein Is Stable. Front Endocrinol (Lausanne) 2016; 7:96. [PMID: 27486435 PMCID: PMC4947873 DOI: 10.3389/fendo.2016.00096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023] Open
Abstract
Melanocortin 2 receptor accessory protein (MRAP) facilitates trafficking of melanocortin 2 (MC2) receptors and is essential for ACTH binding and signaling. MRAP is a single transmembrane domain protein that forms antiparallel homodimers. These studies ask when MRAP first acquires this dual topology, whether MRAP architecture is static or stable, and whether the accessory protein undergoes rapid turnover. To answer these questions, we developed an approach that capitalizes on the specificity of bacterial biotin ligase, which adds biotin to lysine in a short acceptor peptide sequence; the distinct mobility of MRAP protomers of opposite orientations based on their N-linked glycosylation; and the ease of identifying biotin-labeled proteins. We inserted biotin ligase acceptor peptides at the N- or C-terminal ends of MRAP and expressed the modified proteins in mammalian cells together with either cytoplasmic or endoplasmic reticulum-targeted biotin ligase. MRAP assumed dual topology early in biosynthesis in both CHO and OS3 adrenal cells. Once established, MRAP orientation was stable. Despite its conformational stability, MRAP displayed a half-life of under 2 h in CHO cells. The amount of MRAP was increased by the proteasome inhibitor MG132 and MRAP underwent ubiquitylation on lysine and other amino acids. Nonetheless, when protein synthesis was blocked with cycloheximide, MRAP was rapidly degraded even when MG132 was included and all lysines were replaced by arginines, implicating non-proteasomal degradation pathways. The results show that although MRAP does not change orientations during trafficking, its synthesis and degradation are dynamically regulated.
Collapse
Affiliation(s)
- Zachary J. Maben
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyi H. Jiang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia M. Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- *Correspondence: Patricia M. Hinkle,
| |
Collapse
|
43
|
Amweg AN, Rodríguez FM, Huber E, Marelli BE, Salvetti NR, Rey F, Ortega HH. Role of Glucocorticoids in Cystic Ovarian Disease: Expression of Glucocorticoid Receptor in the Bovine Ovary. Cells Tissues Organs 2015; 201:138-47. [DOI: 10.1159/000442150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to characterize the expression of glucocorticoid receptor (GR) in the components of normal bovine ovary and in animals with cystic ovarian disease (COD). Changes in the protein and mRNA expression levels were determined in control cows and cows with COD by immunohistochemistry and real-time PCR. GR protein expression in granulosa cells was higher in cysts from animals with spontaneous COD and adrenocorticotropic hormone-induced COD than in tertiary follicles from control animals. In theca interna cells, GR expression was higher in cysts from animals with spontaneous COD than in tertiary follicles from control animals. The increase in GR expression observed in cystic follicles suggests a mechanism of action for cortisol and its receptor through the activation/inactivation of specific transcription factors. These factors could be related to the pathogenesis of COD in cattle.
Collapse
|
44
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
45
|
Domestication Effects on Stress Induced Steroid Secretion and Adrenal Gene Expression in Chickens. Sci Rep 2015; 5:15345. [PMID: 26471470 PMCID: PMC4608001 DOI: 10.1038/srep15345] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/23/2015] [Indexed: 11/25/2022] Open
Abstract
Understanding the genetic basis of phenotypic diversity is a challenge in contemporary biology. Domestication provides a model for unravelling aspects of the genetic basis of stress sensitivity. The ancestral Red Junglefowl (RJF) exhibits greater fear-related behaviour and a more pronounced HPA-axis reactivity than its domesticated counterpart, the White Leghorn (WL). By comparing hormones (plasmatic) and adrenal global gene transcription profiles between WL and RJF in response to an acute stress event, we investigated the molecular basis for the altered physiological stress responsiveness in domesticated chickens. Basal levels of pregnenolone and dehydroepiandrosterone as well as corticosterone response were lower in WL. Microarray analysis of gene expression in adrenal glands showed a significant breed effect in a large number of transcripts with over-representation of genes in the channel activity pathway. The expression of the best-known steroidogenesis genes were similar across the breeds used. Transcription levels of acute stress response genes such as StAR, CH25 and POMC were upregulated in response to acute stress. Dampened HPA reactivity in domesticated chickens was associated with changes in the expression of several genes that presents potentially minor regulatory effects rather than by means of change in expression of critical steroidogenic genes in the adrenal.
Collapse
|
46
|
Arrat H, Lukas TJ, Siddique T. ACTH (Acthar Gel) Reduces Toxic SOD1 Protein Linked to Amyotrophic Lateral Sclerosis in Transgenic Mice: A Novel Observation. PLoS One 2015; 10:e0125638. [PMID: 25955410 PMCID: PMC4425507 DOI: 10.1371/journal.pone.0125638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/12/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a complex etiology and pathology that makes the development of new therapies difficult. ACTH has neurotrophic and myotrophic effects, but has not been tested in an ALS mouse model. The G93A-SOD1 mouse model of ALS was used to test the ability of this drug to delay ALS-like symptoms. We showed that within a specific dose range, ACTH significantly postponed the disease onset and paralysis in the mouse model. To our surprise and of greater significance is that ACTH significantly reduced the levels of soluble SOD1 in the spinal cord and CNS tissues of G93A-SOD1 treated mice as well as cultured fibroblasts.
Collapse
Affiliation(s)
- Hasan Arrat
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, United States of America
| | - Thomas J. Lukas
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, United States of America
- * E-mail: (TS); (TJL)
| | - Teepu Siddique
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, United States of America
- * E-mail: (TS); (TJL)
| |
Collapse
|
47
|
Piaditis G, Markou A, Papanastasiou L, Androulakis II, Kaltsas G. Progress in aldosteronism: a review of the prevalence of primary aldosteronism in pre-hypertension and hypertension. Eur J Endocrinol 2015; 172:R191-203. [PMID: 25538205 DOI: 10.1530/eje-14-0537] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Primary aldosteronism (PA) secondary to excessive and/or autonomous aldosterone secretion from the renin-angiotensin system accounts for ∼10% of cases of hypertension and is primarily caused by bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenomas (APAs). Although the diagnosis has traditionally been supported by low serum potassium levels, normokalaemic and even normotensive forms of PA have been identified expanding further the clinical phenotype. Moreover, recent evidence has shown that serum aldosterone correlates with increased blood pressure (BP) in the general population and even moderately raised aldosterone levels are linked to increased cardiovascular morbidity and mortality. In addition, aldosterone antagonists are effective in BP control even in patients without evidence of dysregulated aldosterone secretion. These findings indicate a higher prevalence of aldosterone excess among hypertensive patients than previously considered that could be attributed to disease heterogeneity, aldosterone level fluctuations related to an ACTH effect or inadequate sensitivity of current diagnostic means to identify apparent aldosterone excess. In addition, functioning aberrant receptors expressed in the adrenal tissue have been found in a subset of PA cases that could also be related to its pathogenesis. Recently a number of specific genetic alterations, mainly involving ion homeostasis across the membrane of zona glomerulosa, have been detected in ∼50% of patients with APAs. Although specific genotype/phenotype correlations have not been clearly identified, differential expression of these genetic alterations could also account for the wide clinical phenotype, variations in disease prevalence and performance of diagnostic tests. In the present review, we critically analyse the current means used to diagnose PA along with the role that ACTH, aberrant receptor expression and genetic alterations may exert, and provide evidence for an increased prevalence of aldosterone dysregulation in patients with essential hypertension and pre-hypertension.
Collapse
Affiliation(s)
- George Piaditis
- Department of Endocrinology and Diabetes CenterG. Gennimatas Hospital, 154 Mesogion Avenue, 11527 Holargos, Athens, Greece andDepartment of PathophysiologyNational University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Athina Markou
- Department of Endocrinology and Diabetes CenterG. Gennimatas Hospital, 154 Mesogion Avenue, 11527 Holargos, Athens, Greece andDepartment of PathophysiologyNational University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Labrini Papanastasiou
- Department of Endocrinology and Diabetes CenterG. Gennimatas Hospital, 154 Mesogion Avenue, 11527 Holargos, Athens, Greece andDepartment of PathophysiologyNational University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Ioannis I Androulakis
- Department of Endocrinology and Diabetes CenterG. Gennimatas Hospital, 154 Mesogion Avenue, 11527 Holargos, Athens, Greece andDepartment of PathophysiologyNational University of Athens, Mikras Asias 75, 11527 Athens, Greece Department of Endocrinology and Diabetes CenterG. Gennimatas Hospital, 154 Mesogion Avenue, 11527 Holargos, Athens, Greece andDepartment of PathophysiologyNational University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Gregory Kaltsas
- Department of Endocrinology and Diabetes CenterG. Gennimatas Hospital, 154 Mesogion Avenue, 11527 Holargos, Athens, Greece andDepartment of PathophysiologyNational University of Athens, Mikras Asias 75, 11527 Athens, Greece
| |
Collapse
|
48
|
Talaber G, Tuckermann JP, Okret S. ACTH controls thymocyte homeostasis independent of glucocorticoids. FASEB J 2015; 29:2526-34. [PMID: 25733567 DOI: 10.1096/fj.14-268508] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
It has been known for decades that lowering the circulating glucocorticoid (GC) concentration as in Addison's disease or after removing the adrenals results in thymus enlargement, largely due to thymocyte expansion. This has been attributed to the loss of the proapoptotic effects on thymocytes by adrenal GCs. Here, we test this concept and report that ACTH directly controls thymic growth post-adrenalectomy (ADX) independent of the proapoptotic effect of GCs. This was supported by the finding that ADX caused thymus enlargement and a 1.7-fold (P < 0.001) increase in thymocyte number in GR(LckCre) mice resistant to GC-induced thymocyte apoptosis, similar to the increase seen in wild-type mice (2.2-fold; P < 0.01). We show by immunostaining that melanocortin receptor subtype 2, which selectively binds ACTH, is partly expressed on the thymic epithelium. Furthermore, ACTH in comparison to vehicle induced a 2.0-fold (P < 0.01) increase in fetal thymic organ culture thymocyte numbers in vitro and enhanced 2.2-fold (P < 0.05) the expression of delta-like ligand 4, a factor that supports T-cell development. Additionally, adrenalectomized GR(LckCre) mice treated with ACTH under conditions that repressed endogenous ACTH secretion showed increased thymocyte cellularity (1.9-fold; P < 0.01) and splenic naive T-cell numbers (2.5-fold; P < 0.001) compared to when treated with PBS. Altogether, our results show that ACTH directly controls thymocyte homeostasis independent of GCs. These results revise the old paradigm behind compensatory thymus growth following ADX, now demonstrating that ACTH has a central role in regulating thymocyte expansion when systemic GC concentration is low.
Collapse
Affiliation(s)
- Gergely Talaber
- *Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden; and Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Jan Peter Tuckermann
- *Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden; and Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Sam Okret
- *Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden; and Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
49
|
Abstract
Although anti-inflammatory drugs are among the most common class of marketed drugs, chronic inflammatory conditions such as rheumatoid arthritis, multiple sclerosis or inflammatory bowel disease still represent unmet needs. New first-in-class drugs might be discovered in the future but the repurpose and further development of old drugs also offers promise for these conditions. This is the case of the melanocortin adrenocorticotropin hormone, ACTH, used in patients since 1952 but regarded as the last therapeutic option when other medications, such as glucocorticoids, cannot be used. Better understanding on its physiological and pharmacological mechanisms of actions and new insights on melanocortin receptors biology have revived the interest on rescuing this old and effective drug. ACTH does not only induce cortisol production, as previously assumed, but it also exerts anti-inflammatory actions by targeting melanocortin receptors present on immune cells. The endogenous agonists for these receptors (ACTH, α-, β-, and γ-melanocyte stimulating hormones), are also produced locally by immune cells, indicating the existence of an endogenous anti-inflammatory tissue-protective circuit involving the melanocortin system. These findings suggested that new ACTH-like melanocortin drugs devoid of steroidogenic actions, and hence side effects, could be developed. This review summarizes the actions of ACTH and melanocortin drugs, their role as endogenous pro-resolving mediators, their current clinical use and provides an overview on how recent advances on GPCR functioning may lead to a novel class of drugs.
Collapse
|
50
|
Lefebvre H, Duparc C, Prévost G, Bertherat J, Louiset E. Cell-to-cell communication in bilateral macronodular adrenal hyperplasia causing hypercortisolism. Front Endocrinol (Lausanne) 2015; 6:34. [PMID: 25941513 PMCID: PMC4403554 DOI: 10.3389/fendo.2015.00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
It has been well established that, in the human adrenal gland, cortisol secretion is not only controlled by circulating corticotropin but is also influenced by a wide variety of bioactive signals, including conventional neurotransmitters and neuropeptides, released within the cortex by various cell types such as chromaffin cells, neurons, cells of the immune system, adipocytes, and endothelial cells. These different types of cells are present in bilateral macronodular adrenal hyperplasia (BMAH), a rare etiology of primary adrenal Cushing's syndrome, where they appear intermingled with adrenocortical cells in the hyperplastic cortex. In addition, the genetic events, which cause the disease, favor abnormal adrenal differentiation that results in illicit expression of paracrine regulatory factors and their receptors in adrenocortical cells. All these defects constitute the molecular basis for aberrant autocrine/paracrine regulatory mechanisms, which are likely to play a role in the pathophysiology of BMAH-associated hypercortisolism. The present review summarizes the current knowledge on this topic as well as the therapeutic perspectives offered by this new pathophysiological concept.
Collapse
Affiliation(s)
- Hervé Lefebvre
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France
- *Correspondence: Hervé Lefebvre, Department of Endocrinology, INSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University Hospital of Rouen, Rouen 76031, France e-mail:
| | - Céline Duparc
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France
| | - Jérôme Bertherat
- INSERM Unité 1016, Institut Cochin, Paris, France
- Department of Endocrinology and Metabolic Diseases, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Estelle Louiset
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
| |
Collapse
|