1
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Silva HNPD, Almeida APG, Souza CDF, Mancera JM, Martos-Sitcha JA, Martínez-Rodríguez G, Baldisserotto B. Stress response of Rhamdia quelen to the interaction stocking density - Feeding regimen. Gen Comp Endocrinol 2023; 335:114228. [PMID: 36781023 DOI: 10.1016/j.ygcen.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
This study aimed to verify the effect of different feeding and stocking conditions during 14 days on the gene expression of several hormones and enzymes related to the stress cascade and metabolic parameters in silver catfish Rhamdia quelen under the following experimental conditions: 1) fed at low stocking density (2.5 kg m-3, LSD-F); 2) fed at high stocking density (32 kg m-3, HSD-F); 3) food-deprived at LSD (LSD-FD); and 4) food-deprived at HSD (HSD-FD). Fish from LSD-F and HSD-F groups were fed daily (1 % of their body mass), while fish from food-deprived groups (LSD-FD and HSD-FD) were not fed during the experimental time. Plasma metabolic parameters (glucose, lactate, triglycerides, and proteins) and hepatosomatic index (HSI) were evaluated. In addition, mRNA expression of genes related to the stress axis (crh, pomca, pomcb, nr3c2, star, hsd11b2 and hsd20b), heat shock protein family (hsp90 and hspa12a), sodium-dependent noradrenaline transporter (slc6a2), and growth axis (gh and igf1) were also assessed. Specific growth rate and HSI decreased in food-deprived fish regardless of stocking density. The HSD-FD group showed weight loss compared to the HSD-F, LSD-F, and LSD-FD groups. Plasma glucose and triglycerides were reduced in food-deprived groups, while lactate and protein levels did not change. The expression of key players of the stress response (crh, pomca, pomcb, hsd11b2, nr3c2, and hsp90b) and growth (gh and igf1) pathways were differently regulated depending on the experimental condition, whereas no statistical difference between treatments was found for hsd20b, scl6a2, hspa12a, and star mRNAs expression. This study suggests that LSD acts as a stressor affecting negatively the physiological status of fed fish, as demonstrated by the reduction in growth rates, altered metabolic orchestration, and a higher crh mRNA expression. In addition, food deprivation also increased mRNA expression of other assessed genes (nr3c2, hsp90b, pomca, and pomcb) in fish from the HSD group, indicating higher responsiveness to stress in this stocking density when combined with food deprivation.
Collapse
Affiliation(s)
| | - Ana Paula G Almeida
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carine de F Souza
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
McGowan M, MacKenzie S, Steiropoulos N, Weidmann M. Testing of NKA expression by mobile real time PCR is an efficient indicator of smoltification status of farmed Atlantic salmon. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 544:737085. [PMID: 34789951 PMCID: PMC8386247 DOI: 10.1016/j.aquaculture.2021.737085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Assessment of seawater readiness of freshwater salmon smolts is a crucial husbandry step with economic implications in salmon aquaculture but current methods rely on delayed centralised enzymic activity measurement. The efficiency of a qRT-PCR assay for sodium potassium ATPase (NKA) α1a mRNA was tested in a 3-year study on 19 hatcheries across Scotland incorporating environmental factors such as temperature and metal contamination. The NKA qRT-PCR assay was transferred to a mobile laboratory and on-site testing was carried out at 3 hatchery sites. For the first two years standard enzymatic and gene expression assays had similar success rates in detecting smoltification (NKA activity 60%, qRT-PCR 57%). In the third year, all but one site were determined as sea water ready by qRT-PCR but only at 4 by enzymatic testing. On site testing with mobile qRT-PCR was successfully performed on four farm sites. Altogether, high sensitivity was shown for the in lab (98.9%, SE 0.24) and mobile (93.43%, SE 0.119) assays when tested using a quantitative RNA standard. Some indication for obscured smoltification assay results due to environmental increased heavy metal contamination was observed. Our results prove it is possible to test a smoltification marker on site and provide results on the day of testing during the smolt period allowing for informed decisions on seawater transfer.
Collapse
Affiliation(s)
- Michael McGowan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | | | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- Medizinische Hochschule Brandenburg Theodor Fontane, Senftenberg, Germany
| |
Collapse
|
4
|
Irachi S, Hall DJ, Fleming MS, Maugars G, Björnsson BT, Dufour S, Uchida K, McCormick SD. Photoperiodic regulation of pituitary thyroid-stimulating hormone and brain deiodinase in Atlantic salmon. Mol Cell Endocrinol 2021; 519:111056. [PMID: 33069856 DOI: 10.1016/j.mce.2020.111056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Seasonal timing is important for many critical life history events of vertebrates, and photoperiod is often used as a reliable seasonal cue. In mammals and birds, it has been established that a photoperiod-driven seasonal clock resides in the brain and pituitary, and is driven by increased levels of pituitary thyroid stimulating hormone (TSH) and brain type 2 iodothyronine deiodinase (DIO2), which leads to local increases in triiodothyronine (T3). In order to determine if a similar mechanism occurs in fish, we conducted photoperiod manipulations in anadromous (migratory) Atlantic salmon (Salmo salar) that use photoperiod to time the preparatory development of salinity tolerance which accompanies downstream migration in spring. Changing daylength from short days (light:dark (LD) 10:14) to long days (LD 16:8) for 20 days increased gill Na+/K+-ATPase (NKA) activity, gill NKAα1b abundance and plasma growth hormone (GH) levels that normally accompany increased salinity tolerance of salmon in spring. Long-day exposure resulted in five-fold increases in pituitary tshβb mRNA levels after 10 days and were sustained for at least 20 days. tshβb mRNA levels in the saccus vasculosus were low and not influenced by photoperiod. Increased daylength resulted in significant increases in dio2b mRNA levels in the hypothalamus and midbrain/optic tectum regions of the brain. The results are consistent with the presence of a photoperiod-driven seasonal clock in fish which involves pituitary TSH, brain DIO2 and the subsequent production of T3, supporting the hypothesis that this is a common feature of photoperiodic regulation of seasonality in vertebrates.
Collapse
Affiliation(s)
- Shotaro Irachi
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA; Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Daniel J Hall
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | - Mitchell S Fleming
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France; Department of Biological Sciences (BIO), University of Bergen, Bergen, Norway
| | - Gersende Maugars
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sylvie Dufour
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Katsuhisa Uchida
- Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
5
|
Fleming MS, Maugars G, Martin P, Dufour S, Rousseau K. Differential Regulation of the Expression of the Two Thyrotropin Beta Subunit Paralogs by Salmon Pituitary Cells In Vitro. Front Endocrinol (Lausanne) 2020; 11:603538. [PMID: 33329404 PMCID: PMC7729069 DOI: 10.3389/fendo.2020.603538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
We recently characterized two paralogs of the thyrotropin (TSH) beta subunit in Atlantic salmon, tshβa and tshβb, issued from teleost-specific whole genome duplication. The transcript expression of tshβb, but not of tshβa, peaks at the time of smoltification, which revealed a specific involvement of tshβb paralog in this metamorphic event. Tshβa and tshβb are expressed by distinct pituitary cells in salmon, likely related to TSH cells from the pars distalis and pars tuberalis, respectively, in mammals and birds. The present study aimed at investigating the neuroendocrine and endocrine factors potentially involved in the differential regulation of tshβa and tshβb paralogs, using primary cultures of Atlantic salmon pituitary cells. The effects of various neurohormones and endocrine factors potentially involved in the control of development, growth, and metabolism were tested. Transcript levels of tshβa and tshβb were measured by qPCR, as well as those of growth hormone (gh), for comparison and validation. Corticotropin-releasing hormone (CRH) stimulated tshβa transcript levels in agreement with its potential role in the thyrotropic axis in teleosts, but had no effect on tshβb paralog, while it also stimulated gh transcript levels. Thyrotropin-releasing hormone (TRH) had no effect on neither tshβ paralogs nor gh. Somatostatin (SRIH) had no effects on both tshβ paralogs, while it exerted a canonical inhibitory effect on gh transcript levels. Thyroid hormones [triiodothyronine (T3) and thyroxine (T4)] inhibited transcript levels of both tshβ paralogs, as well as gh, but with a much stronger effect on tshβa than on tshβb and gh. Conversely, cortisol had a stronger inhibitory effect on tshβb than tshβa, while no effect on gh. Remarkably, insulin-like growth factor 1 (IGF1) dose-dependently stimulated tshβb transcript levels, while it had no effect on tshβa, and a classical inhibitory effect on gh. This study provides the first data on the neuroendocrine factors involved in the differential regulation of the expression of the two tshβ paralogs. It suggests that IGF1 may be involved in triggering the expression peak of the tshβb paralog at smoltification, thus representing a potential internal signal in the link between body growth and smoltification metamorphosis.
Collapse
Affiliation(s)
- Mitchell Stewart Fleming
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Gersende Maugars
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| |
Collapse
|
6
|
Bernard B, Leguen I, Mandiki SNM, Cornet V, Redivo B, Kestemont P. Impact of temperature shift on gill physiology during smoltification of Atlantic salmon smolts (Salmo salar L.). Comp Biochem Physiol A Mol Integr Physiol 2020; 244:110685. [PMID: 32165323 DOI: 10.1016/j.cbpa.2020.110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/15/2022]
Abstract
Exposure to a temperature increase may disrupt smoltification and delay or stop the downstream migration of smolts. Thermal regimes are often different between a river and its tributaries, but the effects of a relative temperature shift are not well described. We used expression of smoltification genes coupled with gill Na+/K+-ATPase activity (NKA) and plasma cortisol and growth hormone (GH) levels to investigate the impact of a 5 °C difference between tributary and river on salmon juveniles. Responses to a temperature challenge were examined at four time points during the smoltification period, with juveniles reared under three regimes including control, early and late temperature increase. The temperature shifts reduced gill NKA, plasma GH and cortisol levels which indicate hypo-osmoregulation impairment and may reduce the survival of smolts. Out of the 22 genes examined, the expression of six genes was influenced by the temperature treatments, while changes in further eleven genes were influenced by the date of sampling. Genes usually known to be upregulated during smoltification were downregulated after the temperature increase, notably nkaα1b, nkcc1a and igf1r. Upregulation of some genes involved in the hormonal regulation and acid-base equilibrium in early June may indicate a switch towards desmoltification. This study gives further insights about the impact of temperature increase on the molecular processes underlying smoltification and possible responses to human-related water temperature increase. The data also suggest dual roles in the smoltification and desmoltification for GH and IGF1 and points to the implication of genes in the smoltification process, that have previously been unstudied (nbc) or with little data available (igf2).
Collapse
Affiliation(s)
- Benoît Bernard
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Isabelle Leguen
- Fish Physiology and Genomics Institute, Campus of Beaulieu, Building 16A, 35042 Rennes Cedex, France.
| | - Syaghalirwa N M Mandiki
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Valerie Cornet
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Baptiste Redivo
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Patrick Kestemont
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| |
Collapse
|
7
|
Kantserova NP, Lysenko LA, Veselov AE, Nemova NN. Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1187-1194. [PMID: 28343271 DOI: 10.1007/s10695-017-0364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.
Collapse
Affiliation(s)
- Nadezda P Kantserova
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910.
| | - Liudmila A Lysenko
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| | - Alexey E Veselov
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| | - Nina N Nemova
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| |
Collapse
|
8
|
Breves JP, Fujimoto CK, Phipps-Costin SK, Einarsdottir IE, Björnsson BT, McCormick SD. Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure. BMC PHYSIOLOGY 2017; 17:2. [PMID: 28100217 PMCID: PMC5242021 DOI: 10.1186/s12899-017-0028-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Background In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,−5a,−5b1,−5b2,−6b1 and−6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na+/K+-ATPase (Nka) activity, Na+/K+/2Cl−cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters. Results Indicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,−5b1 and−5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March. Conclusions Salmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N Broadway, Saratoga Springs, 12866, NY, USA.
| | - Chelsea K Fujimoto
- Department of Biology, Skidmore College, 815 N Broadway, Saratoga Springs, 12866, NY, USA
| | - Silas K Phipps-Costin
- Department of Biology, Skidmore College, 815 N Broadway, Saratoga Springs, 12866, NY, USA
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden
| | - Stephen D McCormick
- USGS, Leetown Science Center, S.O. Conte Anadromous Fish Research Center, P.O. Box 796, One Migratory Way, Turners Falls, 01376, MA, USA
| |
Collapse
|
9
|
Fukuda M, Kaneko N, Kawaguchi K, Hevrøy EM, Hara A, Shimizu M. Development of a time-resolved fluoroimmunoassay for salmon insulin-like growth factor binding protein-1b. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:66-73. [DOI: 10.1016/j.cbpa.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
|
10
|
Thanh NM, Jung H, Lyons RE, Njaci I, Yoon BH, Chand V, Tuan NV, Thu VTM, Mather P. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus). Mar Genomics 2015; 23:87-97. [PMID: 25979246 DOI: 10.1016/j.margen.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/17/2022]
Abstract
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- Animal Genetics Laboratory, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia.
| | - Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Byoung-Ha Yoon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology, Daejoen 305-333, Republic of Korea.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
11
|
Einarsdóttir IE, Gong N, Jönsson E, Sundh H, Hasselberg-Frank L, Nilsen TO, Stefansson SO, Sundell K, Björnsson BT. Plasma growth hormone-binding protein levels in Atlantic salmon Salmo salar during smoltification and seawater transfer. JOURNAL OF FISH BIOLOGY 2014; 85:1279-1296. [PMID: 25159100 DOI: 10.1111/jfb.12473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Specific growth hormone (GH)-binding protein (Ghbp) was purified from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss plasma with immunoprecipitation and characterized in cross-linking studies using autoradiography and western blots. The size of the Ghbp was estimated to be c. 53 kDa. A radioimmunoassay was established to measure Ghbp in salmonids, using antibodies specific against the extracellular segment of the S. salar growth hormone receptor 1 (grh1; GenBank AY462105). Plasma Ghbp levels were measured in S. salar smolts in fresh water and after transfer to seawater (SW; experiments 1 and 2), and in post-smolts kept at different salinities (0, 12, 22 and 34) for 3 months (experiment 3). A transient increase in plasma Ghbp, which lasted for 1 month or less, was noted in smolts after transfer to SW. Concomitantly, plasma GH and gill Na(+) -K(+) -ATPase activity increased during smoltification (in experiment 2). No difference in plasma Ghbp was evident between post-smolts kept at different salinities, although the fish kept at salinity 34 had higher plasma GH than the group kept at salinity 22 and higher hepatic ghr1 expression than post-smolts kept at salinity 12. This suggests that plasma Ghbp regulation may respond to salinity changes in the short term. The lack of correlation between Ghbp, plasma GH and hepatic ghr1 expression in the long-term post-smolt experiment indicates that Ghbp levels may be regulated independently of other components of the endocrine GH system in salmonids.
Collapse
Affiliation(s)
- I E Einarsdóttir
- University of Gothenburg, Department of Biological and Environmental Sciences, Medicinaregatan 18, 413 90, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, "metamorphoses," as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories.
Collapse
Affiliation(s)
- Sarah K. McMenamin
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - David M. Parichy
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Shimomura T, Nakajima T, Horikoshi M, Iijima A, Urabe H, Mizuno S, Hiramatsu N, Hara A, Shimizu M. Relationships between gill Na⁺,K⁺-ATPase activity and endocrine and local insulin-like growth factor-I levels during smoltification of masu salmon (Oncorhynchus masou). Gen Comp Endocrinol 2012; 178:427-35. [PMID: 22749841 DOI: 10.1016/j.ygcen.2012.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/17/2012] [Accepted: 06/12/2012] [Indexed: 01/28/2023]
Abstract
We established profiles of insulin-like growth factor (IGF)-I mRNA in the liver, gill and white muscle and circulating IGF-I during smoltification of hatchery-reared masu salmon, and compared with that of gill Na(+),K(+)-ATPase (NKA) activity. Gill NKA activity peaked in May and dropped in June. Liver igf1 mRNA was high in March and decreased to low levels thereafter. Gill igf1 increased from March, maintained its high levels during April and May and decreased in June. Muscle igf1 mRNA levels were relatively high during January and April when water temperature was low. Serum IGF-I continuously increased from March through June. Serum IGF-I during March and May showed a positive correlation with NKA activity, although both were also related to fish size. These parameters were standardized with fork length and re-analyzed. As a result, serum IGF-I and gill igf1 were correlated with NKA activity. On the other hand, samples from desmoltification period (June) that had high serum IGF-I levels and low NKA activity disrupted the relationship. Expression of two IGF-I receptor (igf1r) subtypes in the gill decreased in June, which could account for the disruption by preventing circulating IGF-I from acting on the gill and retaining it in the blood. The present study suggests that the increase in gill NKA activity in the course of smoltification of masu salmon was supported by both endocrine and local IGF-I, and the decrease during desmoltification in freshwater was due at least in part to the down-regulation of gill IGF-I receptors.
Collapse
Affiliation(s)
- Takahiro Shimomura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Björnsson BT, Stefansson SO, McCormick SD. Environmental endocrinology of salmon smoltification. Gen Comp Endocrinol 2011; 170:290-8. [PMID: 20627104 DOI: 10.1016/j.ygcen.2010.07.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/07/2010] [Indexed: 01/16/2023]
Abstract
Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor I, cortisol, thyroid hormones, whereas prolactin is inhibitory. Photoperiod and temperature are critical environmental cues for smolt development, and their relative importance will be critical in determining responses to future climate change. Most of our knowledge of the environmental control and endocrine mediation of smolting is based on laboratory and hatchery studies, yet there is emerging information on fish in the wild that indicates substantial differences. Such differences may arise from differences in environmental stimuli in artificial rearing environments, and may be critical to ocean survival and population sustainability. Endocrine disruptors, acidification and other contaminants can perturb smolt development, resulting in poor survival after seawater entry.
Collapse
Affiliation(s)
- Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, University of Gothenburg, Box 463, SE-40530 Göteborg, Sweden
| | | | | |
Collapse
|
16
|
Benedet S, Andersson E, Mittelholzer C, Taranger GL, Björnsson BT. Pituitary and plasma growth hormone dynamics during sexual maturation of female Atlantic salmon. Gen Comp Endocrinol 2010; 167:77-85. [PMID: 20171221 DOI: 10.1016/j.ygcen.2010.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Growth hormone in fish regulates many important physiological processes including growth, metabolism and potentially reproduction. In salmonid fish, GH secretion is episodic with irregularly spaced GH peaks. Plasma GH reflects secretion episodes as well as the clearance rate of the hormone, and plasma levels may thus not always reflect the level of activation of the GH axis. This study measured the production dynamics of GH over a 17-month period in sexually maturing female Atlantic salmon which included final maturation and spawning. For the first time, the level of pituitary GH mRNA, pituitary GH protein and plasma GH protein were analyzed concurrently in the same individuals. mRNA and protein were extracted in parallel from the same samples with subsequent real time quantitative PCR to measure mRNA transcripts and radioimmunoassay to measure pituitary and plasma GH protein. Further, the effects of photoperiod manipulation on these parameters were studied. The results show no correlation between mRNA and protein levels except at some time points, and indicate that it is inappropriate to correlate pooled temporal data and averages in time series unless the relationship among the variables is stable over time. The results indicate complex and shifting relationships between pituitary GH mRNA expression, pituitary GH content and plasma GH levels, which could result from changes in clearance rather than secretion rate at different times and its episodic secretion. The study also suggests that there is a functionally important activation of the GH system during spring leading up to maturation and spawning.
Collapse
Affiliation(s)
- Susana Benedet
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, University of Gothenburg, Box 463, SE 40530 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Reinecke M. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system. JOURNAL OF FISH BIOLOGY 2010; 76:1233-54. [PMID: 20537012 DOI: 10.1111/j.1095-8649.2010.02605.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections.
Collapse
Affiliation(s)
- M Reinecke
- Division of Neuroendocrinology, Institute of Anatomy, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| |
Collapse
|
18
|
Laiz-Carrión R, Fuentes J, Redruello B, Guzmán JM, Martín del Río MP, Power D, Mancera JM. Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. Gen Comp Endocrinol 2009; 162:293-300. [PMID: 19348804 DOI: 10.1016/j.ygcen.2009.03.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 01/28/2009] [Accepted: 03/30/2009] [Indexed: 11/20/2022]
Abstract
Prolactin (PRL), growth hormone (GH) and somatolactin (SL) expression was studied in gilthead sea bream (Sparus auratus) in response to several different stressors (salinity, food deprivation or stocking density). In the first experiment, specimens were acclimated during 100 days at three different environmental salinities: low salinity water (LSW, 6 ppt), brackish water (BW, 12 ppt) and seawater (SW, 38 ppt). Osmoregulatory parameters corresponded to those previously reported for this species under similar osmotic conditions. Pituitary PRL expression increased with decreasing environmental salinity, and was significantly different between SW- and LSW-acclimated fish. Pituitary GH expression was similar between SW- and BW-acclimated fish but decreased in LSW-acclimated specimens. Pituitary SL expression had a "U-shaped" relationship to environmental salinity with the lowest expression in BW-acclimated fish. In a second experiment SW-acclimated specimens were randomly assigned to one of four treatments and maintained for 14 days: (1) fed fish under low density (LD, 4 kg m(-3)); (2) fed fish under high density (HD, 70 kg m(-3)); (3) food deprived fish under LD; and (4) food deprived fish under HD. Plasma glucose and cortisol levels corresponded to those previously reported in S. auratus under similar experimental conditions. Pituitary PRL and SL expression increased in fish maintained under HD and decreased in food deprived fish. In conclusion, an effect of environmental salinity on pituitary PRL and GH expression has been demonstrated. In addition, crowding stress seems to interact with food deprivation in S. auratus and this is reflected by changes in pituitary PRL, GH and SL expression levels.
Collapse
Affiliation(s)
- Raúl Laiz-Carrión
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Monette MY, Björnsson BT, McCormick SD. Effects of short-term acid and aluminum exposure on the parr-smolt transformation in Atlantic salmon (Salmo salar): disruption of seawater tolerance and endocrine status. Gen Comp Endocrinol 2008; 158:122-30. [PMID: 18606407 DOI: 10.1016/j.ygcen.2008.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/09/2008] [Accepted: 05/22/2008] [Indexed: 11/24/2022]
Abstract
Episodic acidification resulting in increased acidity and inorganic aluminum (Al(i)) is known to interfere with the parr-smolt transformation of Atlantic salmon (Salmo salar), and has been implicated as a possible cause of population decline. To determine the extent and mechanism(s) by which short-term acid/Al exposure compromises smolt development, Atlantic salmon smolts were exposed to either control (pH 6.7-6.9) or acid/Al (pH 5.4-6.3, 28-64 microgl(-1) Al(i)) conditions for 2 and 5 days, and impacts on freshwater (FW) ion regulation, seawater (SW) tolerance, plasma hormone levels and stress response were examined. Gill Al concentrations were elevated in all smolts exposed to acid/Al relative to controls confirming exposure to increased Al(i). There was no effect of acid/Al on plasma ion concentrations in FW however, smolts exposed to acid/Al followed by a 24h SW challenge exhibited greater plasma Cl(-) levels than controls, indicating reduced SW tolerance. Loss of SW tolerance was accompanied by reductions in gill Na(+),K(+)-ATPase (NKA) activity and Na(+),K(+),2Cl(-) (NKCC) cotransporter protein abundance. Acid/Al exposure resulted in decreased plasma insulin-like growth factor (IGF-I) and 3,3',5'-triiodo-l-thyronine (T(3)) levels, whereas no effect of treatment was seen on plasma cortisol, growth hormone (GH), or thyroxine (T(4)) levels. Acid/Al exposure resulted in increased hematocrit and plasma glucose levels in FW, but both returned to control levels after 24h in SW. The results indicate that smolt development and SW tolerance are compromised by short-term exposure to acid/Al in the absence of detectable impacts on FW ion regulation. Loss of SW tolerance during short-term acid/Al exposure likely results from reductions in gill NKA and NKCC, possibly mediated by decreases in plasma IGF-I and T(3).
Collapse
Affiliation(s)
- Michelle Y Monette
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
20
|
Nilsen TO, Ebbesson LOE, Kiilerich P, Björnsson BT, Madsen SS, McCormick SD, Stefansson SO. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): seasonal development and seawater acclimation. Gen Comp Endocrinol 2008; 155:762-72. [PMID: 17904138 DOI: 10.1016/j.ygcen.2007.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/06/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11beta-hydroxysteroid dehydrogenase type-2 (11beta-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11beta-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11beta-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon.
Collapse
Affiliation(s)
- Tom O Nilsen
- Department of Biology, University of Bergen, Bergen High Technology Centre, N-5020, Norway.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tipsmark CK, Luckenbach JA, Madsen SS, Borski RJ. IGF-I and branchial IGF receptor expression and localization during salinity acclimation in striped bass. Am J Physiol Regul Integr Comp Physiol 2007; 292:R535-43. [PMID: 16959864 DOI: 10.1152/ajpregu.00915.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass ( Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small, transitory (<24 h) deflections in hydromineral balance. Transfer from freshwater (FW) to seawater (SW) induced an initial decrease in plasma IGF-I levels after 24 h in both fed and fasted fish. There was an overall decrease in liver IGF-I mRNA levels after SW transfer, suggesting that decreased plasma levels may be due to a decline in hepatic IGF-I synthesis. No changes were observed in gill IGF-I mRNA, but SW transfer induced an increase in gill IGF-IR mRNA after 24 h. Transfer from SW to FW induced an increase in plasma IGF-I levels in fasted fish. In fed fish, no significant changes were observed in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed for the first time in teleosts that IGF-IR and Na+-K+-ATPase are localized in putative chloride cells at the base of the lamellae, identifying these cells in the gill as a target for IGF-I and IGF-II. Overall the data suggest a hyperosmoregulatory role of IGF-I in this species.
Collapse
|
22
|
Isolation of Atlantic halibut pituitary hormones by continuous-elution electrophoresis followed by fingerprint identification, and assessment of growth hormone content during larval development. Gen Comp Endocrinol 2006; 150:355-63. [PMID: 17097655 DOI: 10.1016/j.ygcen.2006.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
Continuous-elution electrophoresis (CEE) has been applied to separate putative hormones from adult Atlantic halibut pituitaries. Soluble proteins were separated by size and charge on Model 491 Prep Cell (Bio-Rad), where the homogenate runs through a cylindrical gel, and protein fractions are collected as they elute from the matrix. Protein fractions were assessed by SDS-PAGE and found to contain purified proteins of molecular size from 10 to 33 kDa. Fractions containing proteins with molecular weights of approximately 21, 24, 28 and 32 kDa, were identified as putative growth hormone (GH), prolactin, somatolactin and gonadotropins, respectively. These were analyzed further by mass spectrometry and identified with peptide mass protein fingerprinting. The CEE technique was used successfully for purification of halibut GH with a 5% yield, and appears generally well suited to purify species-specific proteins often needed for research in comparative endocrinology, including immunoassay work. Thus, the GH obtained was subsequently used as standards and iodination label in a homologous radioimmunoassay, applied to analyze GH content through larval development in normally and abnormally metamorphosing larvae. As GH is mainly found in the pituitary, GH contents were analyzed in tissue extracts from the heads only. The pituitary GH content increases proportionally to increased larval weight from first feeding to metamorphic climax. No difference in relative GH content was found between normal and abnormal larvae and it still remains to be established if GH has a direct role in metamorphosis.
Collapse
|
23
|
McCormick SD, O'dea MF, Moeckel AM, Lerner DT, Björnsson BT. Endocrine disruption of parr-smolt transformation and seawater tolerance of Atlantic salmon by 4-nonylphenol and 17beta-estradiol. Gen Comp Endocrinol 2005; 142:280-8. [PMID: 15935154 DOI: 10.1016/j.ygcen.2005.01.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 12/22/2004] [Accepted: 01/26/2005] [Indexed: 11/21/2022]
Abstract
Sex steroids are known to interfere with the parr-smolt transformation of anadromous salmonids, and environmental estrogens such as nonylphenol have recently been implicated in reduced returns of Atlantic salmon in the wild. To determine the endocrine pathways by which estrogenic compounds affect smolt development and seawater tolerance, groups of juvenile Atlantic salmon were injected with one of five doses (0.5, 2, 10, 40 or 150 microg g(-1)) of branched 4-nonylphenol (NP), 2 microg g(-1) of 17beta-estradiol (E(2)), or vehicle, during the parr-smolt transformation in April, and the treatment was repeated 4, 8, and 11 days after the first injection. Plasma was obtained for biochemical analysis 7 and 14 days after initiation of treatment. After 14 days of treatment, additional fish from each treatment group were exposed to seawater for 24h to assess salinity tolerance. The E(2) treatment and the highest NP dose resulted in lower salinity tolerance and decreased plasma insulin-like growth factor I (IGF-I) levels, along with elevated levels of plasma vitellogenin and total calcium. Plasma growth hormone levels were elevated at intermediate NP doses only, and not affected by E(2). After 7 days, plasma thyroxine (T(4)) levels decreased in a strong, dose-dependent manner in response to nonylphenol, but after 14 days, this suppressive effect of T(4) occurred at the highest NP dose only. Similarly, E(2) decreased plasma T(4) levels at 7, but not 14 days. Plasma 3,3',5-triodo-l-thyronine was reduced by E(2) and the highest NP dose after 7 and 14 days of treatment. Plasma cortisol levels were not affected by any of the treatments. The results indicate that the parr-smolt transformation and salinity tolerance can be compromised by exposure to estrogenic compounds. Suppression of plasma IGF-I levels is a likely endocrine pathway for the effects of estrogenic compounds on hypo-osmoregulatory capacity, and the detrimental effects of E(2) and NP on thyroid hormone levels are also likely to compromise the normal parr-smolt transformation of Atlantic salmon.
Collapse
|
24
|
Abstract
The insulin-like growth factor (IGF) system plays a central role in the neuroendocrine regulation of growth in all vertebrates. Evidence from studies in a variety of vertebrate species suggest that this growth factor complex, composed of ligands, receptors, and high-affinity binding proteins, evolved early during vertebrate evolution. Among nonmammalian vertebrates, IGF signaling has been studied most extensively in fish, particularly teleosts of commercial importance. The unique life history characteristics associated with their primarily aquatic existence has fortuitously led to the identification of novel functions of the IGF system that are not evident from studies in mammals and other tetrapod vertebrates. Furthermore, the emergence of the zebrafish as a preferred model for development genetics has spawned progress in determining the requirements for IGF signaling during vertebrate embryonic development. This review is intended as a summary of our understanding of IGF signaling, as revealed through research into the expression, function, and evolution of IGF ligands, receptors, and binding proteins in fish.
Collapse
Affiliation(s)
- Antony W Wood
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
25
|
Arsenault JTM, Fairchild WL, MacLatchy DL, Burridge L, Haya K, Brown SB. Effects of water-borne 4-nonylphenol and 17beta-estradiol exposures during parr-smolt transformation on growth and plasma IGF-I of Atlantic salmon (Salmo salar L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 66:255-265. [PMID: 15129768 DOI: 10.1016/j.aquatox.2003.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
4-Nonylphenol (4-NP) is an endocrine disrupting substance (EDS) capable of mimicking the action of 17beta-estradiol (E2). It has been hypothesized that 4-NP in a pesticide formulation is linked to historical declines in Canadian Atlantic salmon (Salmo salar L.) populations, with effects being related to exposure during parr-smolt transformation (PST). To test this hypothesis, Atlantic salmon smolts were exposed to pulse-doses of water-borne 4-NP (20 ug/l), sustained doses of water-borne E2 (100 ng/l) (positive control), or ethanol vehicle (negative control) in mid-May during the final stages of PST. Individually tagged smolts were then sampled at three times (June, July and October) to monitor subsequent growth in sea water and plasma insulin-like growth factor I (IGF-I) concentrations. Smolt weights and plasma IGF-I concentrations were both affected by E2 and 4-NP. The effects of E2 and 4-NP on mean smolt weights were most prominent in July and October [E2 (*98.1 +/- 2.8, *242.3 +/- 10.6 g), 4-NP (*102.1 +/- 3.1, 255.7 +/- 9.5 g), controls (112.5 +/- 2.8, 282.3 +/- 8.8 g)] (P < 0.05), while their effects on mean plasma IGF-I concentrations were most prominent in June and October [E2 (15.0 +/- 1.9, 28.4 +/- 1.8 ng/ml), 4-NP (*14.8 +/- 1.9, *21.6 +/- 1.7 ng/ml), controls (20.0 +/- 1.1, 31.1 +/- 2.0 ng/ml)] (P < 0.05). Additionally, results suggest that the mechanisms of action of E2 and 4-NP involve disruption in the GH/IGF-I axis, and that they may be different from each other. The effects of E2 and 4-NP on growth and plasma IGF-I concentrations observed in this study are ecologically significant because they evoke concerns for successful growth and survival of wild salmon smolts exposed to low levels of estrogenic substances that may occur from current discharges into rivers supporting sea-run salmon stocks.
Collapse
Affiliation(s)
- J T M Arsenault
- Fisheries and Oceans Canada, P.O. Box 5030, 343 Université Avenue, Moncton, NB, Canada E1C 9B6.
| | | | | | | | | | | |
Collapse
|
26
|
Pettersen EF, Ulvenes M, Melingen GO, Wergeland HI. Peripheral blood and head kidney leucocyte populations during out-of-season (0+) parr-smolt transformation and seawater transfer of Atlantic salmon (Salmo salar L.). FISH & SHELLFISH IMMUNOLOGY 2003; 15:373-385. [PMID: 14550664 DOI: 10.1016/s1050-4648(02)00185-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using monoclonal antibodies (MAb) and flow cytometry, Atlantic salmon neutrophils and Ig+ cells in blood and head kidney were studied in under-yearling out-of-season (0+) smolts, and 2 and 4 weeks after transfer to seawater. The parr-smolt transformation was induced using a phase advanced simulated natural photoperiod regime, and sampling of four fish was performed at regular intervals, starting on the date of the photoperiod initiation. During the freshwater period the proportion of neutrophils in the head kidney leucocytes (HKL) remained quite stable and only gradual changes in Ig+ cells were observed. In the peripheral blood leucocytes (PBL), the proportion of neutrophils markedly increased during the last month prior to seawater transfer. The most notable changes in the proportions of MAb+ leucocytes were observed in PBL after seawater transfer, with a significant increase in Ig+ cells and a significant decrease in neutrophils after two weeks in seawater. In the freshwater samples, although there were fluctuations, a decrease in the numbers of total leucocytes per millilitre blood and per gram head kidney during parr-smolt transformation was observed. The number of MAb+ cells in blood appeared to be relatively stable, while the number in head kidney tended to decrease. Following seawater transfer, the numbers of total and MAb+ leucocytes in both blood and head kidney increased markedly. The results suggest that changes in both distribution and numbers of leucocytes in peripheral blood and head kidney take place during parr-smolt transformation, and that marked changes are associated with seawater transfer. Some mechanisms possibly involved are indicated.
Collapse
Affiliation(s)
- E Fausa Pettersen
- Department of Fisheries and Marine Biology, University of Bergen, Bergen High-Technology Center, N-5020 Bergen, Norway.
| | | | | | | |
Collapse
|
27
|
McCormick SD, Shrimpton JM, Moriyama S, Björnsson BT. Effects of an advanced temperature cycle on smolt development and endocrinology indicate that temperature is not a zeitgeber for smolting in Atlantic salmon. J Exp Biol 2002; 205:3553-60. [PMID: 12364408 DOI: 10.1242/jeb.205.22.3553] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Atlantic salmon (Salmo salar) juveniles were reared under simulated conditions of normal photoperiod (LDN) or short days (LD 9:15) and ambient temperature (AMB: normal temperature increases in April) or an advanced temperature cycle (ADV: temperature increases in February). Under both photoperiod conditions, the timing of increased and peak levels of gill Na+,K+-ATPase activity were not altered by temperature,although the rate of increase was initially greater under ADV. ADV/LD 9:15 resulted in peak gill Na+,K+-ATPase activity that was half of that seen under normal photoperiod and temperature conditions. Plasma growth hormone (GH) levels increased threefold in late March under ADV/LDN,but not under ADV/LD 9:15, indicating that there is a photoperiod-dependent effect of temperature on levels of this hormone. Plasma insulin-like growth factor I (IGF-I) increased in spring in all groups, with increases occurring significantly earlier in the ADV/LDN group. In each photoperiod condition, the advanced temperature cycle resulted in large decreases in plasma thyroxine(T4) levels in March, which subsequently recovered, whereas plasma 3,5,3′-triiodo-L-thyronine (T3) levels were not substantially affected by either photoperiod or temperature. There was no consistent pattern of change in plasma cortisol levels. The results do not provide support for the role of temperature as a zeitgeber, but do indicate that temperature has a role in the timing of smolting by affecting the rate of development and interacting with the photoperiod.
Collapse
Affiliation(s)
- Stephen D McCormick
- USGS, Leetown Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.
| | | | | | | |
Collapse
|