1
|
Filippone EJ, Gulati R, Farber JL. Contemporary review of IgA nephropathy. Front Immunol 2024; 15:1436923. [PMID: 39188719 PMCID: PMC11345586 DOI: 10.3389/fimmu.2024.1436923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024] Open
Abstract
IgA nephropathy (IgAN) is considered the most common primary glomerulonephritis worldwide with a predilection for Asian-Pacific populations and relative rarity in those of African descent. Perhaps 20%-50% of patients progress to kidney failure. The pathogenesis is incompletely understood. Mesangial deposition of immune complexes containing galactose-deficient IgA1 complexed with anti-glycan IgG or IgA antibodies results in mesangial cell activation and proliferation, inflammatory cell recruitment, complement activation, and podocyte damage. Diagnosis requires a biopsy interpreted by the Oxford criteria. Additional pathologic features include podocytopathy, thrombotic microangiopathy, and C4d staining. Biomarkers predicting adverse outcomes include proteinuria, reduced GFR, hypertension, and pathology. Acceptable surrogate endpoints for therapeutic trials include ongoing proteinuria and rate of eGFR decline. The significance of persisting hematuria remains uncertain. The mainstay of therapy is supportive, consisting of lifestyle modifications, renin-angiotensin inhibition (if hypertensive or proteinuric), sodium-glucose-transporter 2 inhibition (if GFR reduced or proteinuric), and endothelin-receptor antagonism (if proteinuric). Immunosuppression should be considered for those at high risk after maximal supportive care. Corticosteroids are controversial with the most positive results observed in Chinese. They carry a high risk of serious side effects. Similarly, mycophenolate may be most effective in Chinese. Other immunosuppressants are of uncertain benefit. Tonsillectomy appears efficacious in Japanese. Active areas of investigation include B-cell inhibition with agents targeting the survival factors BAFF and APRIL and complement inhibition with agents targeting the alternate pathway (Factors B and D), the lectin pathway (MASP-2), and the common pathway (C3 and C5). Hopefully soon, the who and the how of immunosuppression will be clarified, and kidney failure can be forestalled.
Collapse
Affiliation(s)
- Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Rakesh Gulati
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - John L. Farber
- Department of Pathology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Shi X, Xiao B, Feng R. Identification of a glycolysis-related miRNA Signature for Predicting Breast cancer Survival. Mol Biotechnol 2024; 66:1988-2006. [PMID: 37535159 DOI: 10.1007/s12033-023-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Breast cancer (BC) is a common type of cancer and has a poor prognosis. In this study, we collected the mRNA and miRNA expression profiles of BC patients were obtained from The Cancer Genome Atlas (TCGA) to explore a novel prognostic strategy for BC patients using bioinformatics tools. We found that six glycolysis-related miRNAs (GRmiRs, including hsa-mir-1247, hsa-mir148b, hsa-mir-133a-2, has-mir-1307, hsa-mir-195 and hsa-mir-1258) were correlated with prognosis of BC samples. The risk score model was established based on 6 prognosis-associated GRmiRs. The outcome of high risk group was significantly poorer. Cox regression analysis showed that risk score was an independent prognostic factor. Differentially expressed genes identified between high and low risk groups were mainly enriched in inflammation and immune-related signaling pathways. The proportion of infiltration of 12 kinds of immune cells in high and low risk groups were significantly different. Risk score was closely associated with many immune indexes. Multiple DEGRGs and miRNAs were associated with drugs. In conclusion, glycolysis-related miRNA signature effectively predicts BC prognosis.
Collapse
Affiliation(s)
- Xuejing Shi
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China
| | - Baoqiang Xiao
- Department of General Surgery, Tianjin Hospital, Tianjin, Hexi District, 300211, P.R. China
| | - Rui Feng
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China.
| |
Collapse
|
3
|
Duan ZY, Zhang C, Chen XM, Cai GY. Blood and urine biomarkers of disease progression in IgA nephropathy. Biomark Res 2024; 12:72. [PMID: 39075557 PMCID: PMC11287988 DOI: 10.1186/s40364-024-00619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
The prognosis of patients with IgA nephropathy (IgAN) is variable but overall not good. Almost all patients with IgAN are at risk of developing end-stage renal disease within their expected lifetime. The models presently available for prediction of the risk of progression of IgAN, including the International IgA Nephropathy Prediction Tool, consist of traditional clinical, pathological, and therapeutic indicators. Finding biomarkers to improve the existing risk prediction models or replace pathological indicators is important for clinical practice. Many studies have attempted to identify biomarkers for prediction of progression of IgAN, such as galactose-deficient IgA1, complement, a spectrum of protein biomarkers, non-coding RNA, and shedding cells. This article reviews the biomarkers of progression of IgAN identified in recent years, with a focus on those with clinical value, in particular the combination of multiple biomarkers into a biomarker spectrum. Future research should focus on establishing a model based primarily on biomarkers that can predict progression of IgAN and testing it in various patient cohorts.
Collapse
Affiliation(s)
- Zhi-Yu Duan
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Chun Zhang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
4
|
Roberts LE, Williams CEC, Oni L, Barratt J, Selvaskandan H. IgA Nephropathy: Emerging Mechanisms of Disease. Indian J Nephrol 2024; 34:297-309. [PMID: 39156850 PMCID: PMC11326799 DOI: 10.25259/ijn_425_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 08/20/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis reported across the world and is characterized by immunoglobulin A (IgA) dominant mesangial deposits, which are poorly O-glycosylated. This deposition leads to a cascade of glomerular and tubulointerstitial inflammation and fibrosis, which can progress to chronic kidney disease. The variability in rate of progression reflects the many genetic and environmental factors that drive IgAN. Here, we summarize the contemporary understanding of the disease mechanisms that drive IgAN and provide an overview of new and emerging therapies, which target these mechanisms.
Collapse
Affiliation(s)
- Lydia E Roberts
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Chloe E C Williams
- Royal Liverpool and Broadgreen University Hospital Trusts, Liverpool, United Kingdom
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Louise Oni
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Nephrology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, Kökény G. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Noncoding RNA 2024; 10:30. [PMID: 38804362 PMCID: PMC11130806 DOI: 10.3390/ncrna10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasing health burden. Evidence suggests the importance of miRNA in diagnosing CKD, yet the reports are inconsistent. This study aimed to determine novel miRNA biomarkers and potential therapeutic targets from hypothesis-free miRNA profiling studies in human and murine CKDs. Comprehensive literature searches were conducted on five databases. Subgroup analyses of kidney diseases, sample types, disease stages, and species were conducted. A total of 38 human and 12 murine eligible studies were analyzed using Robust Rank Aggregation (RRA) and vote-counting analyses. Gene set enrichment analyses of miRNA signatures in each kidney disease were conducted using DIANA-miRPath v4.0 and MIENTURNET. As a result, top target genes, Gene Ontology terms, the interaction network between miRNA and target genes, and molecular pathways in each kidney disease were identified. According to vote-counting analysis, 145 miRNAs were dysregulated in human kidney diseases, and 32 were dysregulated in murine CKD models. By RRA, miR-26a-5p was significantly reduced in the kidney tissue of Lupus nephritis (LN), while miR-107 was decreased in LN patients' blood samples. In both species, epithelial-mesenchymal transition, Notch, mTOR signaling, apoptosis, G2/M checkpoint, and hypoxia were the most enriched pathways. These miRNA signatures and their target genes must be validated in large patient cohort studies.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
- Fundeni Clinical Institute, Fundeni Street 258, 022328 Bucharest, Romania
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra utca 8, 6725 Szeged, Hungary
| | - Dariimaa Ganbat
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
- Department of Public Health, Graduate School of Medicine, International University of Health and Welfare, Tokyo 107-840, Japan
| | - Fanni Dembrovszky
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Fanni Adél Meznerics
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária utca 41, 1085 Budapest, Hungary
| | - Ailar Nasirzadeh
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
6
|
Wang Y, Sun N, He R, Wang Z, Jin J, Gao T, Qu J. Molecular characterization of m6A RNA methylation regulators with features of immune dysregulation in IgA nephropathy. Clin Exp Med 2024; 24:92. [PMID: 38693353 PMCID: PMC11062981 DOI: 10.1007/s10238-024-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
The role of RNA N6-methyladenosine (m6A) modification in immunity is being elucidated. This study aimed to explore the potential association between m6A regulators and the immune microenvironment in IgA nephropathy (IgAN). The expression profiles of 24 m6A regulators in 107 IgAN patients were obtained from the Gene Expression Omnibus (GEO) database. The least absolute shrinkage and selection operator (LASSO) regression and logistic regression analysis were utilized to construct a model for distinguishing IgAN from control samples. Based on the expression levels of m6A regulators, unsupervised clustering was used to identify m6A-induced molecular clusters in IgAN. Gene set enrichment analysis (GSEA) and immunocyte infiltration among different clusters were examined. The gene modules with the highest correlation for each of the three clusters were identified by weighted gene co-expression network analysis (WGCNA). A model containing 10 m6A regulators was developed using LASSO and logistic regression analyses. Three molecular clusters were determined using consensus clustering of 24 m6A regulators. A decrease in the expression level of YTHDF2 in IgAN samples was significantly negatively correlated with an increase in resting natural killer (NK) cell infiltration and was positively correlated with the abundance of M2 macrophage infiltration. The risk scores calculated by the nomogram were significantly higher for cluster-3, and the expression levels of m6A regulators in this cluster were generally low. Immunocyte infiltration and pathway enrichment results for cluster-3 differed significantly from those for the other two clusters. Finally, the expression of YTHDF2 was significantly decreased in IgAN based on immunohistochemical staining. This study demonstrated that m6A methylation regulators play a significant role in the regulation of the immune microenvironment in IgAN. Based on m6A regulator expression patterns, IgAN can be classified into multiple subtypes, which might provide additional insights into novel therapeutic methods for IgAN.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Nephrology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Nan Sun
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rui He
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zida Wang
- Department of Emergency, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingsi Jin
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Gao
- Department of Emergency, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Junwen Qu
- Department of Urology, Jiading Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201899, China.
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
7
|
Selvaskandan H, Barratt J, Cheung CK. Novel Treatment Paradigms: Primary IgA Nephropathy. Kidney Int Rep 2024; 9:203-213. [PMID: 38344739 PMCID: PMC10851020 DOI: 10.1016/j.ekir.2023.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2025] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Approximately 30% to 45% of patients progress to kidney failure (KF) within 20 to 25 years of diagnosis, and there has long been a lack of effective treatments. The therapeutic landscape in IgAN is rapidly evolving, driven in large part by the acceptance of the surrogate clinical trial end point of proteinuria reduction by regulatory authorities for the accelerated approval of new therapies. Two drugs, targeted release formulation (TRF)-budesonide (nefecon) and sparsentan, have recently been approved under this scheme. Advancing insights into the pathophysiology of IgAN, including the roles of the mucosal immune system, B-cells, the complement system, and the endothelin system have driven development of therapies that target these factors. This review outlines current, recently approved, and emerging therapies for IgAN.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
8
|
Sun M, Shi G, Zhang X, Kan C, Xie S, Peng W, Liu W, Wang P, Zhang R. Deciphering roles of protein post-translational modifications in IgA nephropathy progression and potential therapy. Aging (Albany NY) 2024; 16:964-982. [PMID: 38175721 PMCID: PMC10817402 DOI: 10.18632/aging.205406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.
Collapse
Affiliation(s)
- Mengying Sun
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Shimin Xie
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
9
|
Rai B, Maurya PK, Srivastava M, Mishra P, Asif MH, Tiwari S. An In-Silico Approach to Identify Therapeutic Target and Markers Associated with Diabetic Nephropathy. Curr Diabetes Rev 2024; 21:e100622205872. [PMID: 35702773 DOI: 10.2174/1573399819666220610191935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Renal disease in T2DM could arise independently of hyperglycemia, aka non diabetic kidney disease. Its prevalence ranges from 33% to 72.5% among T2DM patients. Specific molecular signatures that distinguish Diabetic Nephropathy from NDKD (FSGS) in T2DM might provide new targets for CKD management. METHODS Five original GEO microarray DN and FSGS datasets were evaluated (GSE111154, GSE96804, GSE125779, GSE129973 and GSE121233). Each of the three groups (DN, FSGS, and Controls) had equal renal transcriptome data (n=32) included in the analysis to eliminate bias. The DEGs were identified using TAC4.0. Pathway analysis was performed on the discovered genes aligned to official gene symbols using Reactome, followed by functional gene enrichment analysis using Funrich, Enrichr..STRING and Network analyst investigated PPI, followed by Webgestalt's pathway erichment. Finally, using the Targetscan 7.0 and DIANA tools, filtered differential microRNAs downregulated in DN were evaluated for target identification. RESULT Between the three groups, DN, FSGS, and Control, a total of 194 DEGs with foldchange, >2 & <-2 and P-value 0.01 were found in the renal transcriptome. In comparison to control, 45 genes were elevated, particularly in DN, whereas 43 were upregulated specifically in FSGS. DN datasets were compared to FSGS in a separate analysis. FABP4, EBF1, ADIRF, and ART4 were shown to be among the substantially up-regulated genes unique to DN in both analyses. The transcriptional regulation of white adipocytes was discovered by pathway analysis. CONCLUSION The molecular markers revealed might be employed as specific targets in the aetiology of DN, as well as in T2DM patients' therapeutic care.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pramod Kumar Maurya
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Medha Srivastava
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhakar Mishra
- Department of Biostatistics and Health, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mehar Hasan Asif
- Genetics and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
10
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
11
|
Xu LL, Zhou XJ, Zhang H. An Update on the Genetics of IgA Nephropathy. J Clin Med 2023; 13:123. [PMID: 38202130 PMCID: PMC10780034 DOI: 10.3390/jcm13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN), the most common form of glomerulonephritis, is one of the leading causes of end-stage kidney disease (ESKD). It is widely believed that genetic factors play a significant role in the development of IgAN. Previous studies of IgAN have provided important insights to unravel the genetic architecture of IgAN and its potential pathogenic mechanisms. The genome-wide association studies (GWASs) together have identified over 30 risk loci for IgAN, which emphasizes the importance of IgA production and regulation in the pathogenesis of IgAN. Follow-up fine-mapping studies help to elucidate the candidate causal variant and the potential pathogenic molecular pathway and provide new potential therapeutic targets. With the rapid development of next-generation sequencing technologies, linkage studies based on whole-genome sequencing (WGS)/whole-exome sequencing (WES) also identify rare variants associated with IgAN, accounting for some of the missing heritability. The complexity of pathogenesis and phenotypic variability may be better understood by integrating genetics, epigenetics, and environment. We have compiled a review summarizing the latest advancements in genetic studies on IgAN. We similarly summarized relevant studies examining the involvement of epigenetics in the pathogenesis of IgAN. Future directions and challenges in this field are also proposed.
Collapse
Affiliation(s)
- Lin-Lin Xu
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| |
Collapse
|
12
|
Shankar M, Shetty A, N S M, C G S, A K, Tennankore K. Urinary exosomal miRNA signature of IgA nephropathy: a case-control study. Sci Rep 2023; 13:21400. [PMID: 38049447 PMCID: PMC10695945 DOI: 10.1038/s41598-023-47751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
IgA nephropathy is the most common primary glomerulonephritis worldwide and can progress to end-stage kidney disease (ESKD). The current "gold standard" for diagnosis is kidney biopsy, which is invasive and associated with morbidity. miRNAs are small, non-coding endogenous RNA that may serve as non-invasive biomarkers, and that are found in urinary exosomes. Thus far, there is a paucity of studies of the miRNA profile for the diagnosis of IgA nephropathy. Hence, we aimed to study the urinary exosomal miRNA signature of Indian patients with IgA nephropathy. Fifty biopsy-proven IgA nephropathy patients, 50 healthy controls and 25 patients with ESKD (IgA nephropathy) were recruited over 2 years (2020-2022). Urinary exosomes were isolated from which miRNA was extracted . Analysis of urinary exosomal miRNA was done using the digital multiplexed nCounter® human v3 miRNA Expression Assay which contains 799 unique miRNA barcodes. Candidate miRNAs were identified using Lasso regression and consensus clustering. The mean age of IgA nephropathy patients was 36.32 ± 3.067 years, mean creatinine was 2.26 ± 0.318 mg/dl and mean proteinuria was 2.69 ± 0.64 g/day. Compared to healthy controls, the majority (N = 150) of miRNAs were significantly downregulated. Five candidate miRNAs (hsa.miR.146b.3p, hsa.miR.599, hsa.miR.4532, hsa.miR.664b.5p and hsa.miR.221.5p) were able to differentiate between IgA nephropathy cases and controls (AUC > 0.90); the presence of all 5 was associated with 100% specificity and sensitivity for diagnosing IgA nephropathy cases. This study of Indian patients identified that there was a significant difference in the urinary exosomal miRNA profile between IgA nephropathy cases and healthy controls, suggesting that miRNAs may be valuable in the non-invasive diagnosis of IgA nephropathy.
Collapse
Affiliation(s)
- Mythri Shankar
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India.
| | - Aditya Shetty
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | - Madhura N S
- Department of Biochemistry, Institute of NephroUrology, Bengaluru, India
| | - Sreedhara C G
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | - Kishan A
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | | |
Collapse
|
13
|
Stamellou E, Seikrit C, Tang SCW, Boor P, Tesař V, Floege J, Barratt J, Kramann R. IgA nephropathy. Nat Rev Dis Primers 2023; 9:67. [PMID: 38036542 DOI: 10.1038/s41572-023-00476-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a 'four-hit' process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.
Collapse
Affiliation(s)
- Eleni Stamellou
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Seikrit
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Peter Boor
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Vladimir Tesař
- Department of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
14
|
Zhang Y, Yang H, Jiang M, Nie X. Exploring the pathogenesis and treatment of IgA nephropathy based on epigenetics. Epigenomics 2023; 15:1017-1026. [PMID: 37909120 DOI: 10.2217/epi-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
IgA nephropathy is the most common primary glomerulonephritis worldwide. However, its exact cause remains unclear, with known genetic factors explaining only 11% of the variation. Recently, researchers have turned their attention to epigenetic abnormalities in immune-related diseases, recognizing their significance in IgA nephropathy's development and progression. This emerging field has revolutionized our understanding of epigenetics in IgA nephropathy research. Though in its early stages, studying IgA nephropathy's epigenetics holds promise for unraveling its pathogenesis and identifying new biomarkers and therapies. This review aims to comprehensively analyze epigenetics' role in IgA nephropathy's development and suggest avenues for potential therapeutic interventions. In the future, assessing and modulating epigenetics may become integral in diagnosing, tailoring treatments and assessing prognoses for IgA nephropathy.
Collapse
Affiliation(s)
- Yunfan Zhang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Huanhuan Yang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Ming Jiang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Xiaojing Nie
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| |
Collapse
|
15
|
Zanoni F, Abinti M, Belingheri M, Castellano G. Present and Future of IgA Nephropathy and Membranous Nephropathy Immune Monitoring: Insights from Molecular Studies. Int J Mol Sci 2023; 24:13134. [PMID: 37685941 PMCID: PMC10487514 DOI: 10.3390/ijms241713134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
IgA Nephropathy (IgAN) and Membranous Nephropathy (MN) are primary immune-mediated glomerular diseases with highly variable prognosis. Current guidelines recommend that greater immunologic activity and worse prognosis should guide towards the best treatment in an individualized approach. Nevertheless, proteinuria and glomerular filtration rate, the current gold standards for prognosis assessment and treatment guidance in primary glomerular diseases, may be altered with chronic damage and nephron scarring, conditions that are not related to immune activity. In recent years, thanks to the development of new molecular technologies, among them genome-wide genotyping, RNA sequencing techniques, and mass spectrometry, we have witnessed an outstanding improvement in understanding the pathogenesis of IgAN and MN. In addition, recent genome-wide association studies have suggested potential targets for immunomodulating agents, stressing the need for the identification of specific biomarkers of immune activity. In this work, we aim to review current evidence and recent progress, including the more recent use of omics techniques, in the identification of potential biomarkers for immune monitoring in IgAN and MN.
Collapse
Affiliation(s)
- Francesca Zanoni
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Matteo Abinti
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mirco Belingheri
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Giuseppe Castellano
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
16
|
Piko N, Bevc S, Hojs R, Ekart R. Atherosclerosis and Epigenetic Modifications in Chronic Kidney Disease. Nephron Clin Pract 2023; 147:655-659. [PMID: 37459841 DOI: 10.1159/000531292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/23/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most common chronic diseases worldwide, with prevalence currently projected at 10% and rising. Cardiovascular disease is the leading cause of morbidity and mortality in CKD patients and is integrally linked with atherogenesis and vascular stiffness. Estimated glomerular filtration rate and the level of proteinuria are not only markers of kidney function but of cardiovascular risk, as well. Despite the efforts, CKD patients still experience excessive cardiovascular burden. MicroRNAs (miRNAs) are small (18-24 nucleotides), single-stranded non-coding RNAs that regulate gene expression by blocking messenger RNA (mRNA) translation and initiating degradation of mRNA. Studies have confirmed the imperative role of miRNA dysregulation in the pathophysiology of several diseases, including atherosclerosis and CKD. This article summarizes what is currently known about the role of miRNAs in CKD patients.
Collapse
Affiliation(s)
- Nejc Piko
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| |
Collapse
|
17
|
Mucha K, Pac M, Pączek L. Omics are Getting Us Closer to Understanding IgA Nephropathy. Arch Immunol Ther Exp (Warsz) 2023; 71:12. [PMID: 37060455 PMCID: PMC10105675 DOI: 10.1007/s00005-023-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/02/2023] [Indexed: 04/16/2023]
Abstract
During the last decade, thanks to omics technologies, new light has been shed on the pathogenesis of many diseases. Genomics, epigenomics, transcriptomics, and proteomics have helped to provide a better understanding of the origin and heterogeneity of several diseases. However, the risk factors for most autoimmune diseases remain unknown. The successes and pitfalls of omics have also been observed in nephrology, including immunoglobulin A nephropathy (IgAN), the most common form of glomerulonephritis and a principal cause of end-stage renal disease worldwide. Unfortunately, the immense progress in basic research has not yet been followed by the satisfactory development of a targeted treatment. Although, most omics studies describe changes in the immune system, there is still insufficient data to apply their results in the constantly evolving multi-hit pathogenesis model and thus do to provide a complete picture of the disease. Here, we describe recent findings regarding the pathophysiology of IgAN and link omics studies with immune system dysregulation. This review provides insights into specific IgAN markers, which may lead to the identification of potential targets for personalised treatment in the future.
Collapse
Affiliation(s)
- Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Michał Pac
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Kumar S, Priscilla C, Parameswaran S, Shewade DG, Viswanathan P, Ganesh RN. miR-148b as a Potential Biomarker for IgA Nephropathy. KIDNEY AND DIALYSIS 2023; 3:84-94. [DOI: 10.3390/kidneydial3010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Background: IgA nephropathy (IgAN) is one of the most common glomerular diseases worldwide. Approximately 25 percent of IgAN patients reach the kidney failure stage within twenty years of diagnosis. The histopathological examination of kidney biopsy is needed to confirm the diagnosis of IgAN. microRNA (miRNA) is a small RNA that plays an important role at the post-transcriptional level by downregulating mRNAs (messenger RNA). We tried to establish a miRNA-based biomarker for IgAN. Methods: We recruited 30 IgAN patients and 15 healthy controls as study participants after taking their informed written consent. A real-time PCR-based method was used for the absolute quantification of miRNAs. A logistic regression method and receiver operating characteristic analysis were performed to find the diagnostic and prognostic accuracy of miR-148b and let-7b for IgAN in histopathological MEST-C scores. Results: miR-148b and let-7b levels were higher in IgAN patients compared to the healthy controls. miR-148b was positively correlated with glomerular filtration rate (GFR) and negatively correlated with segmental glomerulosclerosis, tubular atrophy/interstitial fibrosis (T), and blood pressure (BP). The sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic (ROC) for miR-148b against T were 0.87, 0.77, and 0.85, respectively. The threshold value of the miR-148b copy number was 8479 to differentiate the severe condition of IgAN. Conclusion: miR-148b can be used as a potential biomarker for IgAN.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - C. Priscilla
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Deepak Gopal Shewade
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Pragasam Viswanathan
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
19
|
Du Y, Cheng T, Liu C, Zhu T, Guo C, Li S, Rao X, Li J. IgA Nephropathy: Current Understanding and Perspectives on Pathogenesis and Targeted Treatment. Diagnostics (Basel) 2023; 13:diagnostics13020303. [PMID: 36673113 PMCID: PMC9857562 DOI: 10.3390/diagnostics13020303] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, with varied clinical and histopathological features between individuals, particularly across races. As an autoimmune disease, IgAN arises from consequences of increased circulating levels of galactose-deficient IgA1 and mesangial deposition of IgA-containing immune complexes, which are recognized as key events in the widely accepted "multi-hit" pathogenesis of IgAN. The emerging evidence further provides insights into the role of genes, environment, mucosal immunity and complement system. These developments are paralleled by the increasing availability of diagnostic tools, potential biomarkers and therapeutic agents. In this review, we summarize current evidence and outline novel findings in the prognosis, clinical trials and translational research from the updated perspectives of IgAN pathogenesis.
Collapse
|
20
|
Noncoding RNAs associated with IgA nephropathy. J Nephrol 2022; 36:911-923. [PMID: 36495425 DOI: 10.1007/s40620-022-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is one of the most common glomerulonephritides. The disease is characterized by haematuria, proteinuria, deposition of galactose-deficient IgA1 in the glomerular mesangium and mesangial hypercellularity, further leading to extracellular matrix expansion. Kidney biopsy is the gold standard for IgAN diagnosis. Due to the invasiveness of renal biopsy, there is an unmet need for noninvasive biomarkers to diagnose and estimate the severity of IgAN. Understanding the role of RNA molecules as genetic markers to target diseases may allow developing therapeutic and diagnostic markers. In this review we have focused on intrarenal, extrarenal and extracellular noncoding RNAs involved in the progression of IgAN. This narrative review summarizes the pathogenesis of IgAN along with the correlation of noncoding RNA molecules such as microRNAs, small interfering RNAs, circular RNAs and long non-coding RNAs that play an important role in regulating gene expression, and that represent another type of regulation affecting the expression of specific glycosyltranferases, a key element contributing to the development of IgAN.
Collapse
|
21
|
Ohyama Y, Yamaguchi H, Ogata S, Chiurlia S, Cox SN, Kouri NM, Stangou MJ, Nakajima K, Hayashi H, Inaguma D, Hasegawa M, Yuzawa Y, Tsuboi N, Renfrow MB, Novak J, Papagianni AA, Schena FP, Takahashi K. Racial heterogeneity of IgA1 hinge-region O-glycoforms in patients with IgA nephropathy. iScience 2022; 25:105223. [PMID: 36277451 PMCID: PMC9583103 DOI: 10.1016/j.isci.2022.105223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Galactose (Gal)-deficient IgA1 (Gd-IgA1) is involved in IgA nephropathy (IgAN) pathogenesis. To reflect racial differences in clinical characteristics, we assessed disease- and race-specific heterogeneity in the O-glycosylation of the IgA1 hinge region (HR). We determined serum Gd-IgA1 levels in Caucasians (healthy controls [HCs], n = 31; IgAN patients, n = 63) and Asians (HCs, n = 20; IgAN patients, n = 60) and analyzed profiles of serum IgA1 HR O-glycoforms. Elevated serum Gd-IgA1 levels and reduced number of Gal residues per HR were observed in Caucasians. Reduced number of N-acetylgalactosamine (GalNAc) residues per HR and elevated relative abundance of IgA1 with three HR O-glycans were common features in IgAN patients; these features were associated with elevated blood pressure and reduced renal function. We speculate that the mechanisms underlying the reduced GalNAc content in IgA1 HR may be relevant to IgAN pathogenesis.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hisateru Yamaguchi
- Department of Nursing, Yokkaichi Nursing and Medical Care University, Yokkaichi, Mie 512-8045, Japan
| | - Soshiro Ogata
- Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Samantha Chiurlia
- University of Bari and Schena Foundation, Valenzano, Bari 70010, Italy
| | - Sharon N. Cox
- University of Bari and Schena Foundation, Valenzano, Bari 70010, Italy
| | - Nikoletta-Maria Kouri
- Department of Nephrology, Aristotle University of Thessaloniki, Thessaloniki, 54642, Greece
| | - Maria J. Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Thessaloniki, 54642, Greece
| | - Kazuki Nakajima
- Institute for Glyco-core Research, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Daijo Inaguma
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Midori Hasegawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Matthew B. Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
22
|
Cho AY, Oh JH, Lee KY, Sun IO. The clinical significance of circulating microRNA-21 in patients with IgA nephropathy. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Urinary microRNA-21 (miR-21) has been reported to correlate with the histologic lesions of IgA nephropathy (IgAN). We investigated whether urinary or circulating miR-21 could serve as a biomarker for detecting the renal progression of IgAN.Methods: Forty patients with biopsy-proven IgAN were enrolled in this study. Serum and urinary sediment miRs were extracted, and the expression of miR-21 was quantified by real-time quantitative polymerase chain reaction. Renal progression was defined as end-stage renal disease, a sustained doubling of serum creatinine, or a 50% decrease in estimated glomerular filtration rate (eGFR) from baseline.Results: Six patients experienced renal progression during the follow-up period. The baseline eGFR was lower in the progression group (49±11 mL/min/1.73 m2 vs. 90±23 mL/min/1.73 m2, p<0.05) than in the non-progression group. The level of circulating miR-21 on kidney biopsy was higher in the progression group than in the non-progression group (40.0±0.6 vs. 38.2±1.1 ΔCt value of miR-21, p<0.01), whereas there was no significant difference in urinary miR-21 (38.1±2.1 vs. 37.8±1.4 ΔCt value of miR-21, p=0.687) between the two groups. Receiver operating characteristic curve analysis demonstrated that circulating miR-21 had good discriminative power for diagnosing renal progression of IgAN, with an area under the curve of 0.975.Conclusions: The level of circulating miR-21 was higher in the progression group than in the non-progression group at the time of kidney biopsy. Therefore, circulating miR-21 could be a surrogate marker of renal progression in patients with IgAN.
Collapse
|
23
|
Zhang X, Chao P, Jiang H, Yang S, Muhetaer G, Zhang J, Song X, Lu C. Integration of three machine learning algorithms identifies characteristic RNA binding proteins linked with diagnosis, immunity and pyroptosis of IgA nephropathy. Front Genet 2022; 13:975521. [PMID: 36246620 PMCID: PMC9554240 DOI: 10.3389/fgene.2022.975521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: RNA-binding proteins (RBPs) are essential for most post-transcriptional regulatory events, which exert critical roles in nearly all aspects of cell biology. Here, characteristic RBPs of IgA nephropathy were determined with multiple machine learning algorithms. Methods: Our study included three gene expression datasets of IgA nephropathy (GSE37460, GSE73953, GSE93798). Differential expression of RBPs between IgA nephropathy and normal samples was analyzed via limma, and hub RBPs were determined through MCODE. Afterwards, three machine learning algorithms (LASSO, SVM-RFE, random forest) were integrated to determine characteristic RBPs, which were verified in the Nephroseq database. Immune cell infiltrations were estimated through CIBERSORT. Utilizing ConsensusClusterPlus, IgA nephropathy were classified based on hub RBPs. The potential upstream miRNAs were predicted. Results: Among 388 RBPs with differential expression, 43 hub RBPs were determined. After integration of three machine learning algorithms, three characteristic RBPs were finally identified (DDX27, RCL1, and TFB2M). All of them were down-regulated in IgA nephropathy than normal specimens, with the excellent diagnostic efficacy. Additionally, they were significantly linked to immune cell infiltrations, immune checkpoints, and pyroptosis-relevant genes. Based on hub RBPs, IgA nephropathy was stably classified as two subtypes (cluster 1 and 2). Cluster 1 exhibited the relatively high expression of pyroptosis-relevant genes and characteristic RBPs. MiR-501-3p, miR-760, miR-502-3p, miR-1224-5p, and miR-107 were potential upstream miRNAs of hub RBPs. Conclusion: Collectively, our findings determine three characteristic RBPs in IgA nephropathy and two RBPs-based subtypes, and thus provide a certain basis for further research on the diagnosis and pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Peng Chao
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hong Jiang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Gulimire Muhetaer
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jun Zhang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xue Song
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- *Correspondence: Xue Song, ; Chen Lu,
| | - Chen Lu
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Xue Song, ; Chen Lu,
| |
Collapse
|
24
|
Earle A, Bessonny M, Benito J, Huang K, Parker H, Tyler E, Crawford B, Khan N, Armstrong B, Stamatikos A, Garimella S, Clay-Gilmour A. Urinary Exosomal MicroRNAs as Biomarkers for Obesity-Associated Chronic Kidney Disease. J Clin Med 2022; 11:5271. [PMID: 36142918 PMCID: PMC9502686 DOI: 10.3390/jcm11185271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The early detection of chronic kidney disease (CKD) is key to reducing the burden of disease and rising costs of care. This need has spurred interest in finding new biomarkers for CKD. Ideal bi-omarkers for CKD should be: easy to measure; stable; reliably detected, even when interfering substances are present; site-specific based on the type of injury (tubules vs. glomeruli); and its changes in concentration should correlate with disease risk or outcome. Currently, no single can-didate biomarker fulfills these criteria effectively, and the mechanisms underlying kidney fibrosis are not fully understood; however, there is growing evidence in support of microRNA-mediated pro-cesses. Specifically, urinary exosomal microRNAs may serve as biomarkers for kidney fibrosis. In-creasing incidences of obesity and the recognition of obesity-associated CKD have increased interest in the interplay of obesity and CKD. In this review, we provide: (1) an overview of the current scope of CKD biomarkers within obese individuals to elucidate the genetic pathways unique to obesi-ty-related CKD; (2) a review of microRNA expression in obese individuals with kidney fibrosis in the presence of comorbidities, such as diabetes mellitus and hypertension; (3) a review of thera-peutic processes, such as diet and exercise, that may influence miR-expression in obesity-associated CKD; (4) a review of the technical aspects of urinary exosome isolation; and (5) future areas of research.
Collapse
Affiliation(s)
- Angel Earle
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Madison Bessonny
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Josh Benito
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hannah Parker
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Tyler
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Crawford
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Nabeeha Khan
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Bridget Armstrong
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Sudha Garimella
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Alyssa Clay-Gilmour
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
25
|
Barratt J, Pawluczyk I, Selvaskandan H. Clinical application of microRNAs in glomerular diseases. Nephrol Dial Transplant 2022; 38:1375-1384. [PMID: 35906877 DOI: 10.1093/ndt/gfac230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi) occurs in all organisms and modulates most, if not all, biological pathways. It is the process by which non-coding RNAs, including microRNAs (miRs), regulate gene transcription and post-transcriptional processing of messenger RNA (mRNA). A single miR can modulate several genes within a cell, and several miRs can regulate expression of the same gene, adding tiers of complexity to regulation of gene expression. MicroRNAs and other RNAi approaches have been successfully used in vitro and in vivo to selectively manipulate gene transcription, making them pivotal agents for basic science research and candidates for targeted therapeutics. This review will focus on miRs and their potential as biomarkers and novel therapeutics for glomerular disease.
Collapse
Affiliation(s)
- Jonathan Barratt
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | - Izabella Pawluczyk
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | - Haresh Selvaskandan
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| |
Collapse
|
26
|
Study on the Mechanism of circRNA Regulating the miRNA Level in Nephrotic Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3729995. [PMID: 35859997 PMCID: PMC9293565 DOI: 10.1155/2022/3729995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
Background Nephrotic syndrome is an enormous public healthy threaten, which causes a variety of complications and secondary disease; however, the molecular mechanism of nephrotic syndrome remains unclear. Methods In our study, RNA-seq were used to test the transcription level of patients with nephrotic syndrome, in order to investigate the interaction of circRNA-miRNA-mRNA in nephrotic syndrome patients. Results Consistent with our hypothesis, miRNAs were confirmed to be associated with nephrotic syndrome, majority of their targeting circRNAs downregulated in nephrotic syndrome patients and at the same time, the KEGG pathway analysis found that target genes of the circRNAs bonding miRNAs was highly correlated with the occurrence of kidney diseases. Conclusion Thus, we can draw a conclusion that downregulated circRNAs cause miRNA expressing aberrant and then affect the expression level of mRNA, finally leading to the generation of nephrotic syndrome.
Collapse
|
27
|
Person T, King RG, Rizk DV, Novak J, Green TJ, Reily C. Cytokines and Production of Aberrantly O-Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. J Interferon Cytokine Res 2022; 42:301-315. [PMID: 35793525 PMCID: PMC9536348 DOI: 10.1089/jir.2022.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly O-glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly O-glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Taylor Person
- Department of Microbiology and Birmingham, Alabama, USA
| | - R. Glenn King
- Department of Microbiology and Birmingham, Alabama, USA
| | - Dana V. Rizk
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jan Novak
- Department of Microbiology and Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology and Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology and Birmingham, Alabama, USA
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
28
|
Liu F, Chen J, Luo C, Meng X. Pathogenic Role of MicroRNA Dysregulation in Podocytopathies. Front Physiol 2022; 13:948094. [PMID: 35845986 PMCID: PMC9277480 DOI: 10.3389/fphys.2022.948094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) participate in the regulation of various important biological processes by regulating the expression of various genes at the post-transcriptional level. Podocytopathies are a series of renal diseases in which direct or indirect damage of podocytes results in proteinuria or nephrotic syndrome. Despite decades of research, the exact pathogenesis of podocytopathies remains incompletely understood and effective therapies are still lacking. An increasing body of evidence has revealed a critical role of miRNAs dysregulation in the onset and progression of podocytopathies. Moreover, several lines of research aimed at improving common podocytopathies diagnostic tools and avoiding invasive kidney biopsies have also identified circulating and urine miRNAs as possible diagnostic and prognostic biomarkers for podocytopathies. The present review mainly aims to provide an updated overview of the recent achievements in research on the potential applicability of miRNAs involved in renal disorders related to podocyte dysfunction by laying particular emphasis on focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous nephropathy (MN), diabetic kidney disease (DKD) and IgA nephropathy (IgAN). Further investigation into these dysregulated miRNAs will not only generate novel insights into the mechanisms of podocytopathies, but also might yield novel strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| |
Collapse
|
29
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Wen L, Zhao Z, Li F, Ji F, Wen J. ICAM-1 related long noncoding RNA is associated with progression of IgA nephropathy and fibrotic changes in proximal tubular cells. Sci Rep 2022; 12:9645. [PMID: 35688937 PMCID: PMC9187724 DOI: 10.1038/s41598-022-13521-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) related long noncoding RNA (ICR) is on the antisense strand of ICAM-1 and regulates ICAM-1 expression. ICAM-1 is involved in renal tubulointerstitial injury; however, the expression and clinical implication of ICR are not determined in IgA nephropathy (IgAN). We compared renal ICR levels in 337 IgAN patients with those of 89 biopsy controls, and a markedly increased ICR level was observed in IgAN patients. By Cox proportional hazards models, higher levels of renal ICR were independently associated with disease progression event defined as end-stage renal disease or ≥ 40% decline in estimated glomerular filtration rate. Patients in the highest tertile of renal ICR had a 3.5-fold higher risk for disease progression compared with those in the lowest tertile. The addition of renal ICR to a model with traditional risk factors improved risk prediction of disease progression (net reclassification index: 0.31 [95% CI 0.01–0.50]; integrated discrimination index: 0.10 [95% CI 0.04–0.16]). Inhibition of ICR by transfection with plasmids containing ICR shRNA significantly reduced expression of collagen I and α-SMA, and phosphorylation of Akt and mTOR in TGF-β1- treated HK-2 cells. Our findings suggest that renal ICR might be an independent predictor of IgAN progression and contribute to renal fibrosis.
Collapse
Affiliation(s)
- Lu Wen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Fanghua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fengping Ji
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianguo Wen
- Henan Joint International Pediatric Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Wen L, Wang X, Ji F, Wen J, Zhao Z. Renal Megalin mRNA Downregulation Is Associated with CKD Progression in IgA Nephropathy. Am J Nephrol 2022; 53:481-489. [PMID: 35661648 DOI: 10.1159/000524929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Megalin plays an important role in proximal tubule uptake of filtered proteins. Downregulation and dysfunction of megalin were previously demonstrated in IgA nephropathy (IgAN); however, its relationship to IgAN progression remains unclear. METHODS We measured renal megalin mRNA and miR-148b, previously identified as a regulator of megalin, in a retrospective cohort of 417 IgAN patients at the time of biopsy, and evaluated their associations with chronic kidney disease (CKD) progression event, defined as end-stage renal disease or ≥40% decline in estimated glomerular filtration rate, using Cox proportional hazard models. Risk classification statistics were calculated for CKD progression. RESULTS During a median follow-up of 43 months, 121 (29.0%) patients reached the CKD progression event. Patients in the highest tertile of renal megalin mRNA had a lower risk for CKD progression than in the lowest tertile (hazard ratio (HR): 0.407, 95% confidence interval (CI) 0.231-0.719; p = 0.002). Log megalin mRNA was independent and negatively associated with CKD progression in IgAN (HR: 0.529, 95% CI 0.377-0.742; p < 0.001). The addition of renal megalin mRNA to a model with traditional risk factors improved risk prediction of disease progression (C statistic from 0.76 to 0.80; integrated discrimination index: 0.04 [95% CI: 0.02-0.07]). Moreover, patients in the highest tertile of renal miR-148b had a 2.3-fold higher risk for CKD progression compared with those in the lowest tertile. CONCLUSIONS Lower renal megalin mRNA levels were associated with a greater risk of CKD progression in IgAN independent of clinical and pathological characteristics, suggesting that renal megalin could be an important prognostic factor for IgAN.
Collapse
Affiliation(s)
- Lu Wen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengping Ji
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianguo Wen
- Henan Joint International Pediatric Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Szeto CC, Ng JKC, Fung WWS, Chan GCK, Luk CCW, Lai KB, Wang G, Chow KM, Mac-Moune Lai F. Urinary mi-106a for the diagnosis of IgA nephropathy: Liquid biopsy for kidney disease. Clin Chim Acta 2022; 530:81-86. [DOI: 10.1016/j.cca.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/03/2022]
|
33
|
Nagasawa Y, Misaki T, Ito S, Naka S, Wato K, Nomura R, Matsumoto-Nakano M, Nakano K. Title IgA Nephropathy and Oral Bacterial Species Related to Dental Caries and Periodontitis. Int J Mol Sci 2022; 23:725. [PMID: 35054910 PMCID: PMC8775524 DOI: 10.3390/ijms23020725] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
A relationship between IgA nephropathy (IgAN) and bacterial infection has been suspected. As IgAN is a chronic disease, bacteria that could cause chronic infection in oral areas might be pathogenetic bacteria candidates. Oral bacterial species related to dental caries and periodontitis should be candidates because these bacteria are well known to be pathogenic in chronic dental disease. Recently, several reports have indicated that collagen-binding protein (cnm)-(+) Streptococcs mutans is relate to the incidence of IgAN and the progression of IgAN. Among periodontal bacteria, Treponema denticola, Porphyromonas gingivalis and Campylobacte rectus were found to be related to the incidence of IgAN. These bacteria can cause IgAN-like histological findings in animal models. While the connection between oral bacterial infection, such as infection with S. mutans and periodontal bacteria, and the incidence of IgAN remains unclear, these bacterial infections might cause aberrantly glycosylated IgA1 in nasopharynx-associated lymphoid tissue, which has been reported to cause IgA deposition in mesangial areas in glomeruli, probably through the alteration of microRNAs related to the expression of glycosylation enzymes. The roles of other factors related to the incidence and progression of IgA, such as genes and cigarette smoking, can also be explained from the perspective of the relationship between these factors and oral bacteria. This review summarizes the relationship between IgAN and oral bacteria, such as cnm-(+) S. mutans and periodontal bacteria.
Collapse
Affiliation(s)
- Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu 430-8558, Shizuoka, Japan;
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu 433-8558, Shizuoka, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Gifu Hospital, Kakamigahara 502-0817, Gifu, Japan;
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kaoruko Wato
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| |
Collapse
|
34
|
Wei SY, Guo S, Feng B, Ning SW, Du XY. Identification of miRNA-mRNA network and immune-related gene signatures in IgA nephropathy by integrated bioinformatics analysis. BMC Nephrol 2021; 22:392. [PMID: 34823491 PMCID: PMC8620631 DOI: 10.1186/s12882-021-02606-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide, and its diagnosis depends mainly on renal biopsy. However, there is no specific treatment for IgAN. Moreover, its causes and underlying molecular events require further exploration. METHODS The expression profiles of GSE64306 and GSE93798 were downloaded from the Gene Expression Omnibus (GEO) database and used to identify the differential expression of miRNAs and genes, respectively. The StarBase and TransmiR databases were employed to predict target genes and transcription factors of the differentially expressed miRNAs (DE-miRNAs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to predict biological functions. A comprehensive analysis of the miRNA-mRNA regulatory network was constructed, and protein-protein interaction (PPI) networks and hub genes were identified. CIBERSORT was used to examine the immune cells in IgAN, and correlation analyses were performed between the hub genes and infiltrating immune cells. RESULTS Four downregulated miRNAs and 16 upregulated miRNAs were identified. Forty-five and twelve target genes were identified for the upregulated and downregulated DE-miRNAs, respectively. CDKN1A, CDC23, EGR1, HIF1A, and TRIM28 were the hub genes with the highest degrees of connectivity. CIBERSORT revealed increases in the numbers of activated NK cells, M1 and M2 macrophages, CD4 naive T cells, and regulatory T cells in IgAN. Additionally, HIF1A, CDC23, TRIM28, and CDKN1A in IgAN patients were associated with immune cell infiltration. CONCLUSIONS A potential miRNA-mRNA regulatory network contributing to IgAN onset and progression was successfully established. The results of the present study may facilitate the diagnosis and treatment of IgAN by targeting established miRNA-mRNA interaction networks. Infiltrating immune cells may play significant roles in IgAN pathogenesis. Future studies on these immune cells may help guide immunotherapy for IgAN patients.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Bei Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shang-Wei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
| | - Xuan-Yi Du
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China.
| |
Collapse
|
35
|
Xu Y, He Y, Hu H, Xu R, Liao Y, Dong X, Song H, Chen X, Chen J. The increased miRNA-150-5p expression of the tonsil tissue in patients with IgA nephropathy may be related to the pathogenesis of disease. Int Immunopharmacol 2021; 100:108124. [PMID: 34600394 DOI: 10.1016/j.intimp.2021.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The microRNA (miRNA) expression of the tonsil tissues in patients with immunoglobulin A (IgA) nephropathy (IgAN) has not been reported in the literature. METHODS In this study, the expression of nine miRNAs was measured in the tonsil tissues of patients with IgAN, including miRNA-21-5p, miRNA-29a-3p, miRNA-34a-5p, miRNA-146a-5p, miRNA-146b-5p, miRNA-148b-3p, miRNA-150-5p, miRNA-155-5p, and miRNA-181a-5p. Forty patients with proved primary IgA nephropathy were enrolled in our study, 20 IgAN patients with gross hematuria, which induced by tonsillitis (GH-IgAN group) and 20 IgAN patients without gross hematuria in the history (non-GH-IgAN group). Another 20 patients recruited as the control group (CT group) were chronic tonsillitis without kidney disease. RESULTS Compared to the CT group, the expression level of miRNA-150-5p in the tonsils was significantly upregulated in the GH-IgAN group, but not in the non-GH-IgAN group (P = 0.031 and P = 0.122, respectively). A correlation analysis was performed between the expression of miRNAs in the tonsils and the clinical data of IgAN patients. The results showed that in the GH-IgAN group, the miRNA-150 expression was positively correlated with systolic blood pressure (β = 2.36, 95% CI 1.11-3.61, P = 0.0016), diastolic blood pressure (β = 1.02, 95% CI 0.22-1.82, P = 0.0224), uric acid (β = 7.43, 95% CI 1.81-13.04, P = 0.0184), leukocyte count (β = 0.22, 95% CI 0.09-0.35, P = 0039), neutrophil count (β = 0.19, 95% CI 0.06-0.32, P = 0.0096), cholesterol (β = 0.09, 95% CI 0.02-0.16, P = 0.0207) and triglyceride level (β = 0.16, 95% CI 0.10-0.22, P < 0.000). Besides, it was negatively correlated with the estimated glomerular filtration rate (eGFR) (β = -2.06, 95% CI: -3.90 - -0.21, P = 0.0421) in the GH-IgAN group; however, no significant correlation was found in the non-GH-IgAN group. CONCLUSION The present findings suggest that miRNA-150-5p may be important in the pathogenesis of IgAN, especially in mucosal immunity against the disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, 518102, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ricong Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ying Liao
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xu Dong
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Haiying Song
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xiaojie Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Jia Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
36
|
Scionti K, Molyneux K, Selvaskandan H, Barratt J, Cheung CK. New Insights into the Pathogenesis and Treatment Strategies in IgA Nephropathy. GLOMERULAR DISEASES 2021; 2:15-29. [PMID: 36751267 PMCID: PMC9677740 DOI: 10.1159/000519973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Background Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. It is defined by mesangial IgA deposition, with consequent mesangial cell proliferation, inflammation, and tubulointerstitial fibrosis. Summary Approximately 30% of affected patients will progress to end-stage kidney disease within 20 years of diagnosis. Currently, there is no disease-specific treatment available and management recommendations are, in general, limited to optimization of lifestyle measures and use of renin-angiotensin-aldosterone system blockers. More recently, advances in the understanding of the pathogenesis of IgAN have informed the development of novel therapeutic strategies that are now being tested in clinical trials. These have focused on different areas that include modulating the production of poorly galactosylated IgA1, which is central to the development of IgAN, and inhibiting the downstream signaling pathways and complement activation that are triggered following mesangial IgA1 deposition. In this review, we will summarize important pathogenic mechanisms in IgAN and highlight important areas of interest where treatment strategies are being developed. Key messages IgAN is a common form of primary glomerulonephritis for which there is no current approved specific therapy. Recent advances in the understanding of its pathogenesis have led to the development of novel therapies, with the hope that new treatment options will be available soon to treat this condition.
Collapse
Affiliation(s)
- Katrin Scionti
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Karen Molyneux
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom,*Jonathan Barratt,
| | - Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
37
|
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. It is considered that the pathogenesis of IgAN involves the ‘multiple hit theory’ and the immune-inflammatory mechanism; however, these theories have certain limitations. The gold standard for diagnosing IgAN is still renal biopsy. Although renal biopsy is accurate, it is traumatic and is associated with some risks and limitations, so there is a need for non-invasive diagnostic methods. According to recent studies, microRNAs (miRNAs) play important roles in the occurrence and development of IgAN; thus, they provide the possibility of the noninvasive diagnosis of IgAN and also have some value in predicting prognosis. This review summarizes the current research status of miRNAs in the occurrence, development, diagnosis, and prognosis of IgAN. We also highlight some interesting and challenging points that require further study.
Collapse
Affiliation(s)
- Xingchen Yao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Yaling Zhai
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Huanping An
- Medicine Experiment Center, Hanzhong Vocational and Technical College, Hanzhong, China
| | - Jingge Gao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Yazhuo Chen
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Wenhui Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Renal Research Institution, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Yin Q, Wang P, Wu X. MicroRNA -148 alleviates cardiac dysfunction, immune disorders and myocardial apoptosis in myocardial ischemia-reperfusion (MI/R) injury by targeting pyruvate dehydrogenase kinase (PDK4). Bioengineered 2021; 12:5552-5565. [PMID: 34517782 PMCID: PMC8806724 DOI: 10.1080/21655979.2021.1965812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ischemic heart disease in children may be induced by varied factors, and there is no corresponding systematic treatment up to now. This study aims to investigate the effects of microRNA (miR)-148 on myocardial injury in immature rats with myocardial ischemia-reperfusion (MI/R) injury. In this study, MI/R model was established by ligating the coronary artery of heart. The results showed that miR-148 alleviated myocardial injury and rescued relevant parameters (mean ventricular systolic blood pressure (MAP), left ventricular systolic blood pressure (LVSP), heart rate (HR), creatine kinase-MB (CK-MB), cTn1 and Mb in immature rats with MI/R injury. Besides, miR-148 improved the immune dysfunction induced by MI/R through increasing the number of interleukin (IL)-10+ cells and reducing the number of inducible nitric oxide synthase (iNOS)+ cells. In addition, miR-148 relieved the apoptosis of cardiomyocytes induced by MI/R through inhibiting the expression of Bax and elevating the expression of Bcl-2. Further molecular mechanism indicated that pyruvate dehydrogenase kinase 4 (PDK4) was the downstream target of miR-148, which was further confirmed by dual luciferase reporter assay and related expression detection. Accordingly, silenced PDK4 attenuated cardiac dysfunction, immune disorder and myocardial apoptosis in immature rats and enhanced the ability of antioxidant enzymes. What is more, activated SMAD pathway induced by MI/R injury was then blocked by silenced PDK4. Taken together, our study demonstrated that overexpressed miR-148 relieved cardiac dysfunction, immune disorder and cardiomyocyte apoptosis in immature MI/R rats by PDK4 inhibition, which provided novel targets for MI/R injury treatment.
Collapse
Affiliation(s)
- Qi Yin
- Department of Health care center, Hainan People's Hospital, Haikou, Hainan, China
| | - Ping Wang
- Department of Health care center, Hainan People's Hospital, Haikou, Hainan, China
| | - Xiaohua Wu
- Department of Health care center, Hainan People's Hospital, Haikou, Hainan, China
| |
Collapse
|
39
|
The Zebrafish Model to Understand Epigenetics in Renal Diseases. Int J Mol Sci 2021; 22:ijms22179152. [PMID: 34502062 PMCID: PMC8431166 DOI: 10.3390/ijms22179152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic modifications are able to alter gene expression and include DNA methylation, different histone variants, and post-transcriptional modifications (PTMs), such as acetylation or phosphorylation, and through short/long RNAs, respectively. In this review, we focus on current knowledge concerning epigenetic modifications in gene regulation. We describe different forms of epigenetic modifications and explain how epigenetic changes can be detected. The relevance of epigenetics in renal diseases is highlighted with multiple examples and the use of the zebrafish model to study glomerular diseases in general and epigenetics in renal diseases in particular is discussed. We end with an outlook on how to use epigenetic modifications as a therapeutic target for different diseases. Here, the zebrafish model can be employed as a high-throughput screening tool not only to discover epigenetic alterations contributing to disease, but also to test novel substances that change epigenetic signatures in vivo. Therefore, the zebrafish model harbors the opportunity to find novel pathogenic pathways allowing a pre-selection of potential targets and compounds to be tested for renal diseases.
Collapse
|
40
|
Ohyama Y, Renfrow MB, Novak J, Takahashi K. Aberrantly Glycosylated IgA1 in IgA Nephropathy: What We Know and What We Don't Know. J Clin Med 2021; 10:jcm10163467. [PMID: 34441764 PMCID: PMC8396900 DOI: 10.3390/jcm10163467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
IgA nephropathy (IgAN), the most common primary glomerular disease worldwide, is characterized by glomerular deposition of IgA1-containing immune complexes. The IgA1 hinge region (HR) has up to six clustered O-glycans consisting of Ser/Thr-linked N-acetylgalactosamine usually with β1,3-linked galactose and variable sialylation. Circulating levels of IgA1 with abnormally O-glycosylated HR, termed galactose-deficient IgA1 (Gd-IgA1), are increased in patients with IgAN. Current evidence suggests that IgAN is induced by multiple sequential pathogenic steps, and production of aberrantly glycosylated IgA1 is considered the initial step. Thus, the mechanisms of biosynthesis of aberrantly glycosylated IgA1 and the involvement of aberrant glycoforms of IgA1 in disease development have been studied. Furthermore, Gd-IgA1 represents an attractive biomarker for IgAN, and its clinical significance is still being evaluated. To elucidate the pathogenesis of IgAN, it is important to deconvolute the biosynthetic origins of Gd-IgA1 and characterize the pathogenic IgA1 HR O-glycoform(s), including the glycan structures and their sites of attachment. These efforts will likely lead to development of new biomarkers. Here, we review the IgA1 HR O-glycosylation in general and the role of aberrantly glycosylated IgA1 in the pathogenesis of IgAN in particular.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan;
| | - Matthew B. Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.B.R.); (J.N.)
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.B.R.); (J.N.)
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan;
- Correspondence: ; Tel.: +81-(562)-93-2430; Fax: +81-(562)-93-1830
| |
Collapse
|
41
|
Li Y, Xia M, Peng L, Liu H, Chen G, Wang C, Yuan D, Liu Y, Liu H. Downregulation of miR‑214-3p attenuates mesangial hypercellularity by targeting PTEN‑mediated JNK/c-Jun signaling in IgA nephropathy. Int J Biol Sci 2021; 17:3343-3355. [PMID: 34512151 PMCID: PMC8416718 DOI: 10.7150/ijbs.61274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Mesangial cell (MC) proliferation and matrix expansion are basic pathological characteristics of IgA nephropathy (IgAN). However, the stepwise mechanism of MC proliferation and the exact set of related signaling molecules remain largely unclear. In this study, we found a significant upregulation of miR-214-3p in the renal cortex of IgAN mice by miRNA sequencing. In situ hybridization analysis showed that miR-214-3p expression was obviously elevated in MCs in the renal cortex in IgAN. Functionally, knockdown of miR-214-3p alleviated mesangial hypercellularity and renal lesions in IgAN mice. In vitro, the inhibition of miR-214-3p suppressed MC proliferation and arrested G1-S cell cycle pSrogression in IgAN. Mechanistically, a luciferase reporter assay verified PTEN as a direct target of miR-214-3p. Downregulation of miR-214-3p increased PTEN expression and reduced p-JNK and p-c-Jun levels, thereby inhibiting MC proliferation and ameliorating renal lesions in IgAN. Moreover, these changes could be attenuated by co-transfection with PTEN siRNA. Collectively, these results illustrated that miR-214-3p accelerated MC proliferation in IgAN by directly targeting PTEN to modulate JNK/c-Jun signaling. Therefore, miR-214-3p may represent a novel therapeutic target for IgAN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
42
|
Farzamikia N, Baradaran B, Mostafavi S, Ahmadian E, Hosseiniyan Khatibi SM, Zununi Vahed S, Ardalan M. Podocyte-derived microparticles in IgA nephropathy. Biomed Pharmacother 2021; 141:111891. [PMID: 34237594 DOI: 10.1016/j.biopha.2021.111891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Microparticles are a general term for different types of cell plasma membrane-originated vesicles that are released into the extracellular environment. The paracrine action of these nano-sized vesicles is crucial for intercellular communications through the transfer of diverse lipids, cytosolic proteins, RNA as well as microRNAs. The progression of different diseases influences the composition, occurrence, and functions of these cell-derived particles. Podocyte injury has been shown to have an important role in the pathophysiology of many glomerular diseases including IgA nephropathy (IgAN). This review would focus on the possible potential of podocyte-derived microparticles detected in urine to be used as a diagnostic tool in IgAN.
Collapse
Affiliation(s)
- Negin Farzamikia
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Mostafavi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
43
|
Ma H, Li X, Yu S, Hu Y, Yin M, Zhu F, Xu L, Wang T, Wang H, Li H, Zhao B, Huang Y. Deletion of the miR-25/93/106b cluster induces glomerular deposition of immune complexes and renal fibrosis in mice. J Cell Mol Med 2021; 25:7922-7934. [PMID: 34197043 PMCID: PMC8358857 DOI: 10.1111/jcmm.16721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/17/2023] Open
Abstract
IgA nephropathy (IgAN), the most common form of primary glomerulonephritis, is caused by immune system dysfunction and affects only the kidneys. miRNA was involved in IgAN, in which their roles are still unknown. Herein, we found increased glomerular medulla size, proteinuria, kidney artery resistance, kidney fibrosis and immune complex deposition in 5‐month miR‐25/93/106b cluster knockout (miR‐TKO) mice. In vitro, the inhibition of miR‐25 cluster could promote cell proliferation and increase fibrosis‐related protein and transferrin receptor (TFRC) expression in human renal glomerular mesangial cell (HRMC). Luciferase assay revealed that inhibition of miR‐93/106b cluster could upregulate Ccnd1 expression through direct binding with the 3’UTR of Ccnd1. Conversely, inhibition of Ccnd1 expression prevented miR‐93/106b‐induced effect in HRMC. These findings suggested that miR‐25 cluster played an important role in the progression of IgAN, which provided new insights into the pathogenesis and treatment of IgAN.
Collapse
Affiliation(s)
- Hongchuang Ma
- Department of Cell Biology, Jinan University, Guangzhou, China.,Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Xiang Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Shanshan Yu
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Yanling Hu
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | | | - Fubin Zhu
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Licheng Xu
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Tianhe Wang
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Hongzhi Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Binghai Zhao
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou, China
| |
Collapse
|
44
|
Pawluczyk I, Nicholson M, Barbour S, Er L, Selvaskandan H, Bhachu JS, Barratt J. A Pilot Study to Predict Risk of IgA Nephropathy Progression Based on miR-204 Expression. Kidney Int Rep 2021; 6:2179-2188. [PMID: 34386667 PMCID: PMC8343780 DOI: 10.1016/j.ekir.2021.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Immunoglobulin (Ig)A nephropathy (IgAN) is the most frequently diagnosed primary glomerulonephritis worldwide. Despite the common diagnostic feature of mesangial IgA-containing immune complex deposition, the clinical course of the disease is extremely variable, with 30% of patients developing end-stage kidney disease within 20 years of diagnosis. Therefore, identifying which patients are likely to progress is paramount. Results In this pilot study, we found that urinary exosomal miR-204 expression was significantly reduced in IgAN compared with healthy subjects. However, there was no difference in miR-204 expression between IgAN and non-IgAN chronic kidney disease controls. Analysis of miR-204 expression in kidney biopsy cores by next-generation sequencing followed by quantitative polymerase chain reaction validation in independent cohorts demonstrated that expression of miR-204 was significantly lower in IgAN compared with thin-membrane nephropathy but not compared with membranous nephropathy. Patients with IgAN at high risk of future progression had significantly lower expression of miR-204 than those at low risk of progression. Cortical localization indicated that miR-204 was preferentially expressed in the interstitium compared with glomeruli in IgAN nonprogressors and that this distribution was lost in IgAN progressors. Receiver operating characteristic curve analysis between the 2 IgAN cohorts revealed an area under the curve of 0.82. In addition, miR-204 expression correlated with known clinicopathological prognostic risk factors. Importantly, incorporating miR-204 into the International IgAN risk prediction tool improved the diagnostic power of the algorithm to predict risk of progression. Conclusion Additional large-scale studies are now needed to validate the additive value of miR-204 in improving risk prediction in IgAN and more broadly in chronic kidney disease.
Collapse
Affiliation(s)
- Izabella Pawluczyk
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Matthew Nicholson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sean Barbour
- Division of Nephrology, University of British Columbia, Vancouver, Canada
| | - Lee Er
- Division of Nephrology, University of British Columbia, Vancouver, Canada
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jasraj S Bhachu
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
45
|
The Non-Coding RNA Landscape in IgA Nephropathy-Where Are We in 2021? J Clin Med 2021; 10:jcm10112369. [PMID: 34071162 PMCID: PMC8198207 DOI: 10.3390/jcm10112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
IgA nephropathy (IgAN) is the most commonly diagnosed primary glomerulonephritis worldwide. It is a slow progressing disease with approximately 30% of cases reaching end-stage kidney disease within 20 years of diagnosis. It is currently only diagnosed by an invasive biopsy and treatment options are limited. However, the current surge in interest in RNA interference is opening up new horizons for the use of this new technology in the field of IgAN management. A greater understanding of the fundamentals of RNA interference offers exciting possibilities both for biomarker discovery and, more importantly, for novel therapeutic approaches to target key pathogenic pathways in IgAN. This review aims to summarise the RNA interference literature in the context of microRNAs and their association with the multifaceted aspects of IgA nephropathy.
Collapse
|
46
|
Serum Levels of miR-148b and Let-7b at Diagnosis May Have Important Impact in the Response to Treatment and Long-Term Outcome in IgA Nephropathy. J Clin Med 2021; 10:jcm10091987. [PMID: 34063140 PMCID: PMC8125269 DOI: 10.3390/jcm10091987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background/aims: Previous studies showed that two microRNAs, let-7b and miR-148, which regulate the O-glycosylation process of IgA1, may predict diagnosis of primary IgA nephropathy (IgAN). The combined analysis of their serum levels in calculated statistical models may act as serum biomarkers for the diagnosis of primary IgAN. In the present study, we aimed to assess their impact not only on clinical and histological findings at onset but also on renal function after a long-term follow-up. Patients and methods: We enrolled 61 Caucasian patients with biopsy-proven IgAN. Serum levels of miR-148b, let-7b, and galactose-deficient IgA1 (Gd-IgA1) at the time of diagnosis were measured using real-time quantitative PCR and enzyme-linked immunosorbent assay using the monoclonal antibody KM55, respectively. Their values along with calculated Models 1 and 2 were correlated with histologic scoring system (Oxford classification system) and with renal function at diagnosis and after 11.9 ± 6.6 years. Fifty-five healthy volunteers were enrolled as controls. Results: No significant correlation was found between miRNA and Gd-IgA1 levels and eGFR and proteinuria at diagnosis. A significant negative association was detected between the presence of crescents and serum levels of let-7b (p = 0.002), miR-148b (p = 0.01), and Models 1 and 2 (p = 0.02 and p = 0.007, respectively). At the end of follow-up, eGFR correlated with let-7b levels (p = 0.01), Model 1 (p = 0.002), and Model 2 (p = 0.004). Patients with fast progression of the renal damage had significantly increased levels of let-7b (p = 0.01), Model 1 (p = 0.003), and Model 2 (p = 0.005) compared to slow progressors, as did those who reached ESKD (p = 0.002, p = 0.001, and p = 0.001, respectively). Results were most prominent in those treated with corticosteroids. Finally, cut off levels in Models 1 and 2 could also predict the renal function outcome after long-term follow-up. Conclusions: Serum levels of let-7b and miR-148b and their combination, may serve as predictors for long-term renal function outcomes, particularly in patients treated with corticosteroids.
Collapse
|
47
|
Tellier J. miR-148a weaves its thread into the plasma cell fate. Eur J Immunol 2021; 51:1076-1079. [PMID: 33792033 DOI: 10.1002/eji.202149240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022]
Abstract
The plasma cells (PC) are characterized by their rarity, their formidable capacity to continuously secrete massive amounts of antibodies and the potential to live through the whole life span of the organism that houses them. Because of the potency of their effector function, their differentiation and survival are tightly regulated. The PC identity is implemented and maintained by a transcriptional program that allow them to face the challenges entailed by their longevity and high metabolic activity. The main transcription factors overseeing this transcriptional network have been identified (BLIMP1, IRF4, XBP1), but new players, like miRNA, continue to emerge and bring new layers of complexity to the regulatory loops. In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2021. 51: 1089-1109], Pracht et al. identify miR-148a as a significant actor of the PC program that favors the differentiation through the inhibition of competitor fates, and supports the survival and fitness of the long-lived PC. In this commentary, we will discuss the place of miR-148a in the PC transcriptional network and its potential as a therapeutic target in PC-driven diseases.
Collapse
Affiliation(s)
- Julie Tellier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
48
|
Liu C, Li X, Shuai L, Dang X, Peng F, Zhao M, Xiong S, Liu Y, He Q. Astragaloside IV Inhibits Galactose-Deficient IgA1 Secretion via miR-98-5p in Pediatric IgA Nephropathy. Front Pharmacol 2021; 12:658236. [PMID: 33935780 PMCID: PMC8085534 DOI: 10.3389/fphar.2021.658236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose: The factor associated with IgA nephropathy (IgAN) is an abnormality of IgA known as galactose-deficient IgA1 (Gd-IgA1). The purpose of this study was to determine the molecular role played by miRNAs in the formation of Gd-IgA1 in IgAN and investigate the regulatory role of Astragaloside IV (AS-IV) in miRNAs. Patients and methods: Bioinformatics analysis, along with functional and mechanistic experiments, were used to investigate the relationship and function of miRNA, β-1, 3-galactosyltransferase (C1GALT1), Gd-IgA1, and AS-IV. Analyses involved a series of tools, including quantitative real-time polymerase chain reaction (qRT-qPCR), Western blot, enzyme-linked immunosorbent assay (ELISA), Vicia Villosa lectin-binding assay (VVA), Cell counting kit-8 assay (CCK-8), and the dual-luciferase reporter assay. Results: miRNA screening and validation showed that miR-98-5p was significantly upregulated in the peripheral blood mononuclear cells (PBMCs) of pediatric patients with IgAN compared with patients diagnosed with mesangial proliferative glomerulonephritis (MsPGN) and immunoglobulin A vasculitis nephritis (IgAV-N), and healthy controls (p < 0.05). Experiments with the dual-luciferase reporter confirmed that miR-98-5p might target C1GALT1. The overexpression of miR-98-5p in DAKIKI cells decreased both the mRNA and protein levels of C1GALT1 and increased the levels of Gd-IgA1 levels; these effects were reversed by co-transfection with the C1GALT1 plasmid, and vice versa. In addition, AS-IV downregulated the levels of Gd-IgA1 level in DAKIKI cells by inhibiting miR-98-5p. Conclusions: Our results revealed that AS-IV could inhibit Gd-IgA1 secretion via miR-98-5p. Increased levels of miR-98-5p in pediatric IgAN patients might affect the glycosylation of IgA1 by targeting C1GALT1. In addition, our analyses suggest that the pathogenesis of IgAN may differ from that of IgAV-N. Collectively, these results provide significant insight into the pathogenesis of IgAN and identify a potential therapeutic target.
Collapse
Affiliation(s)
- Caiqiong Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lanjun Shuai
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqiang Dang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fangrong Peng
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiqiu Xiong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
50
|
Sallustio F, Curci C, Chaoul N, Fontò G, Lauriero G, Picerno A, Divella C, Di Leo V, De Angelis M, Ben Mkaddem S, Macchia L, Gallone A, Monteiro RC, Pesce F, Gesualdo L. High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrol Dial Transplant 2021; 36:452-464. [PMID: 33200215 PMCID: PMC7898021 DOI: 10.1093/ndt/gfaa264] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis. The role of the microbiota and mucosal immunity in the pathogenesis of IgAN remains a key element. To date, the hypothetical relationship between commensal bacteria, elevated tumour necrosis factor (TNF) superfamily member 13 [also known as B-cell activating factor (BAFF)] levels, perturbed homoeostasis of intestinal-activated B cells and intestinal IgA class switch has not been clearly shown in IgAN patients. METHODS We studied the intestinal-renal axis connections, analysing levels of BAFF, TNF ligand superfamily member 13 (APRIL) and intestinal-activated B cells in IgAN patients, healthy subjects (HSs) and patients with non-IgA glomerulonephritides. RESULTS IgAN patients had increased serum levels of BAFF cytokine, correlating with higher amounts of five specific microbiota metabolites, and high APRIL cytokine serum levels. We also found that subjects with IgAN have a higher level of circulating gut-homing (CCR9+ β7 integrin+) regultory B cells, memory B cells and IgA+ memory B cells compared with HSs. Finally, we found that IgAN patients had high levels of both total plasmablasts (PBs) and intestinal-homing PBs. Interestingly, PBs significantly increased in IgAN but not in patients with other glomerulonephritides. CONCLUSIONS Our results demonstrate a significant difference in the amount of intestinal-activated B lymphocytes between IgAN patients and HSs, confirming the hypothesis of the pathogenic role of intestinal mucosal hyperresponsiveness in IgAN. The intestinal-renal axis plays a crucial role in IgAN and several factors may contribute to its complex pathogenesis and provide an important area of research for novel targeted therapies to modulate progression of the disease.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo
Moro”, Bari, Italy
| | - Claudia Curci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University
of Bari “Aldo Moro”, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| | - Nada Chaoul
- Allergology Unit, Department of Emergency and Organ Transplantation, University
“Aldo Moro”, Bari, Italy
| | - Giulia Fontò
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| | - Gabriella Lauriero
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| | - Angela Picerno
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| | - Vincenzo Di Leo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo
Moro, Bari, Italy
| | - Sanae Ben Mkaddem
- Faculty of Medicine, Center for Research on Inflammation, Paris Diderot
University, INSERM U1149, ELR8252 CNRS, Paris, France
| | - Luigi Macchia
- Allergology Unit, Department of Emergency and Organ Transplantation, University
“Aldo Moro”, Bari, Italy
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University
of Bari “Aldo Moro”, Bari, Italy
| | - Renato C Monteiro
- Faculty of Medicine, Center for Research on Inflammation, Paris Diderot
University, INSERM U1149, ELR8252 CNRS, Paris, France
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and
Organ Transplantation, University “Aldo Moro”, Bari, Italy
| |
Collapse
|