1
|
Martins YA, Cardinali CAEF, Torrão AS. Age-related differences in long-term memory performance and astrocyte morphology in rat hippocampus. Neurobiol Aging 2025; 150:19-43. [PMID: 40043468 DOI: 10.1016/j.neurobiolaging.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Astrocytes are neuromodulator cells. Their complex and dynamic morphology regulates neuronal signaling, synaptic plasticity, and neurogenesis. The impact of aging on astrocyte morphology is still under ongoing debate. Therefore, this study aimed to characterize astrocyte morphology in the hippocampus of older rats. 2-, 18-, and 20-month-old male Wistar rats were submitted to the object recognition test to assess their short- and long-term memories. CA1, CA2, CA3, and the dentate gyrus were collected for immunohistochemistry analysis and glial fibrillary acid protein (GFAP) immunostaining. Our results indicate that 20-month-old rats did not recognize or discriminate the novel object in the long-term memory test. Also, GFAP staining was greater in the oldest group for all analyzed areas. Morphometric and fractal analysis indicated shorter branch lengths and smaller sizes for astrocytes of 20-month-old rats. Overall, our results suggest that 20-month-old rats have long-term memory impairment, increased GFAP staining, and astrocyte dystrophy. These age-related alterations in astrocyte morphology are a resource for future studies exploring the role of astrocytes in age-related cognitive decline and age-related diseases.
Collapse
Affiliation(s)
- Yandara A Martins
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| | | | - Andréa S Torrão
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Cordiano R, Caserta S, Minciullo PL, Allegra A, Gangemi S. Anthraquinones and Aloe Vera Extracts as Potential Modulators of Inflammaging Mechanisms: A Translational Approach from Autoimmune to Onco-Hematological Diseases. Molecules 2025; 30:1251. [PMID: 40142026 PMCID: PMC11944353 DOI: 10.3390/molecules30061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammaging is a chronic, low-grade inflammatory state that contributes to age-related diseases, including cardiovascular disorders, osteoporosis, neurodegeneration, and cancer. This process involves immunosenescence, oxidative stress, and immune aging, all of which contribute to the breakdown of immune tolerance and the onset of autoimmune disorders. Aloe vera (AV) has recently gained attention for its immunomodulatory, anti-inflammatory, and antioxidant properties. This review explores the effects of AV extracts and anthraquinones (e.g., aloe-emodin, emodin, aloin) on key inflammaging-driven mechanisms in autoimmunity. Our analysis highlights AV's ability to regulate hormone balance, autoantibody production, and cytokine/chemokine signaling (such as interleukin-1β, tumor necrosis factor-α, and interferon-γ). It modulates inflammatory pathways, including mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), thereby inhibiting nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation. Additionally, AV enhances antioxidant defenses and restores immune balance by reducing Th1/Th17 subsets while promoting Th2-mediated regulation. Notably, AV also modulates inflammasome-mediated mechanisms and counteracts immunosenescence, which is driven by autophagy-related processes. These effects position AV as a potential integrative approach to mitigating inflammaging-driven autoimmunity. Furthermore, as inflammaging is increasingly recognized in onco-hematological diseases, AV-based strategies may offer novel therapeutic avenues. Future studies should focus on clinical validation, optimizing formulations, and expanding applications to broader age-related and immune-mediated disorders.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| |
Collapse
|
3
|
Teng Y, Huang Y, Tao X, Fan Y, You J. Emerging role of ferroptosis in ultraviolet radiation-driven skin photoaging: a narrative review. Photochem Photobiol Sci 2025; 24:531-542. [PMID: 40063311 DOI: 10.1007/s43630-025-00691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
Photoaging is characterized by chronic inflammation in response to ultraviolet (UV) radiation. UV radiation causes skin cells to produce reactive oxygen species (ROS), which causes oxidative stress and inflammation. ROS can reversibly or irreversibly destroy different cellular compounds, including nucleic acids, proteins, free amino acids, lipids, lipoproteins, carbohydrates, and connective tissue macromolecules. Ferroptosis is a kind of programmed cell death caused by iron dependence and lipid peroxidation and has been recently discovered. Its occurrence is primarily related to iron metabolism, antioxidants, lipid peroxidation, and other processes. In addition, high levels of ROS can trigger oxidative stress, altering the redox balance within cells and thus initiating ferroptosis. Ferroptosis has been implicated in UV-driven skin photoaging. Moreover, UV radiation from sunlight can regulate numerous ferroptosis-linked genes. This review will focus on the function of ferroptosis in UV radiation-damaged skin cells. We hope to draw attention to the significance of ferroptosis regulation in the prevention and treatment of skin photoaging.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Jianhua You
- Dermatology Hospital of Zhejiang Province, No. 61 Wuyuan Road, Wukang Street, Deqing, Huzhou, 313200, Zhejiang, China.
| |
Collapse
|
4
|
Wenuganen S, Walton KG, Travis FT, Stalder T, Wallace RK, Srivastava M, Fagan J. Possible Anti-Aging and Anti-Stress Effects of Long-Term Transcendental Meditation Practice: Differences in Gene Expression, EEG Correlates of Cognitive Function, and Hair Steroids. Biomolecules 2025; 15:317. [PMID: 40149853 PMCID: PMC11939949 DOI: 10.3390/biom15030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Our previous comparison of peripheral blood mononuclear cells (PBMCs) from long-term Transcendental Meditation® (TM®) practitioners and matched non-practitioner controls found 200 differentially expressed (DE) genes. Bioinformatics analyses of these DE genes suggested a reduced risk of diseases associated with stress and aging in the TM group. Here we assessed additional signs of reduced stress and aging. Methods: A sample of 15 of the 200 DE genes was studied using qPCR in PBMCs from 40-year TM practitioners ("Old TM", n = 23) compared to a "Young Control" group (n = 19) and an "Old Control" group (n = 21) of non-meditators. In these three groups, plus a "Young TM", 12-year practitioner group (n = 26), we also studied EEG-based parameters of cognitive function (the Brain Integration Scale (BIS), and latency of three components of the event-related potential (ERP)). Finally, using LC/MS/MS, we compared persistent levels of cortisol (F) and its inactive congener, cortisone (E), in hair. Results: qPCR analysis showed that 13 of the 15 genes were more highly expressed in Old Controls than in Young Controls. In the Old TM group, 7 of these 13 were lower than in Old Controls. Both TM groups had higher BIS scores than their age-matched controls. The Old TM group had shorter N2, P3a, and P3b latencies than the Old Control group, and latencies in the Old TM group were not longer than in the Young Control group. The Hair F/Hair E ratio was higher in the control subgroups than in their age-matched TM subgroups, and Hair F was higher in the Young Control and combined control groups than in the Young TM and combined TM groups. Conclusions: These results are consistent with reductions in biomarkers of chronic stress and biological age in long-term TM meditators. They are also consistent with results from the previous study suggesting that TM practice lowers energy consumption or leads to more efficient energy metabolism.
Collapse
Affiliation(s)
- Supaya Wenuganen
- Center for Brain, Cognition and Consciousness, Maharishi International University, Fairfield, IA 52557, USA;
- Department of Physiology and Health, Maharishi International University, Fairfield, IA 52557, USA; (R.K.W.); (J.F.)
| | - Kenneth G. Walton
- Department of Physiology and Health, Maharishi International University, Fairfield, IA 52557, USA; (R.K.W.); (J.F.)
- Institute for Prevention Research, Maharishi International University, Fairfield, IA 52557, USA
| | - Frederick T. Travis
- Center for Brain, Cognition and Consciousness, Maharishi International University, Fairfield, IA 52557, USA;
| | - Tobias Stalder
- Department of Psychology, University of Siegen, 57076 Siegen, Germany;
| | - R. Keith Wallace
- Department of Physiology and Health, Maharishi International University, Fairfield, IA 52557, USA; (R.K.W.); (J.F.)
| | - Meera Srivastava
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - John Fagan
- Department of Physiology and Health, Maharishi International University, Fairfield, IA 52557, USA; (R.K.W.); (J.F.)
- Health Research Institute, Fairfield, IA 52556, USA
| |
Collapse
|
5
|
Guan MQ, Yu L, Gu H, Fu Q, Liu MM, Li K, Yang XR, Framroze B, Guo JH, Wei JJ, Li YL. Protein hydrolysate from Atlantic salmon (Salmo salar) improves aging-associated neuroinflammation and cognitive decline in rats by reshaping the gut microbiota and Th17/Treg balance. Int J Biol Macromol 2025; 306:141270. [PMID: 39984106 DOI: 10.1016/j.ijbiomac.2025.141270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
As the global population ages, cognitive decline in older adults has gained significant attention in public health, underscoring the urgent need for effective intervention strategies. This study investigates the impact of salmon protein hydrolysate (SPH) on gut microbiota and cognitive decline in aged rats. Over 8 weeks, aged Sprague-Dawley rats were treated with SPH, resulting in significant enhancements in cognitive function as evidenced by operant-based attentional set-shifting and Morris water maze tasks. SPH modulated microglial activation in the hippocampus, reducing M1 polarization and promoting M2 polarization. RT-PCR analysis indicated a decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines, suggesting a reduction in neuroinflammation. Additionally, 16S rRNA gene sequencing revealed that SPH transformed gut microbiota, increasing Bacteroidetes and decreasing Proteobacteria. The bacterial genera Prevotella, Bacteroidetes and Ruminococcus showed notable increases. Furthermore, SPH intervention can also increase the concentrations of certain short-chain fatty acids (SCFAs) in aged rats. Additionally, SPH also restored the Th17/Treg balance and decreased peripheral inflammation. This study offers compelling evidence for SPH as a functional food that may mitigate cognitive decline due to aging.
Collapse
Affiliation(s)
- Mei-Qi Guan
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China
| | - Lian Yu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hong Gu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Fu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Miao-Miao Liu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ke Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Rong Yang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Bomi Framroze
- R&D Department, Hofseth Biocare ASA, Aalesund, Norway
| | - Jun-Hong Guo
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jing-Jing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.
| | - Yan-Li Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
6
|
Gaudilliere B, Xue L, Tsai AS, Gao X, McAllister TN, Tingle M, Porras G, Feinstein I, Feyaerts D, Verdonk F, Sabayev M, Hedou J, Ganio EA, Berson E, Becker M, Espinosa C, Kim Y, Lehallier B, Rawner E, Feng C, Amanatullah DF, Huddleston JI, Goodman SB, Aghaeepour N, Angst MS. Infusion of young donor plasma components in older patients modifies the immune and inflammatory response to surgical tissue injury: a randomized clinical trial. J Transl Med 2025; 23:183. [PMID: 39953524 PMCID: PMC11829456 DOI: 10.1186/s12967-025-06215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Preclinical evidence suggests that young plasma has beneficial effects on multiple organ systems in aged mice. Whether young plasma exerts beneficial effects in an aging human population remains highly controversial. Despite lacking data, young donor plasma infusions have been promoted for age-related conditions. Given the preclinical evidence that young plasma exerts beneficial effects by attenuating inflammation, this study examined whether administering a young plasma protein fraction to an elderly population would exert anti-inflammatory and immune modulating effects in humans, using surgery as a tissue injury model. METHODS This double-blind, placebo-controlled study enrolled and randomized 38 patients undergoing major joint replacement surgery. Patients received four separate infusions of a plasma protein fraction derived from young donors, or placebo one day before surgery, before and after surgery on the day of surgery, and one day after surgery. Blood specimens for proteomic and immunological analyses were collected before each infusion. Based on the high-content assessment of circulating plasma proteins with single-cell analyses of peripheral immune cells, proteomic signatures and cell-type-specific signaling responses that separated the treatment groups were derived with regression models. RESULTS Elastic net regression models revealed that administration a young plasma protein fraction significantly altered the proteomic (AUC = 0.796, p = 0.002) and the cellular immune response (AUC 0.904, p < 0.001) to surgical trauma resulting in signaling pathway- and cell type-specific anti-inflammatory immune modulation. Affected proteomic pathways regulating inflammation included JAK-STAT, NF-kappa B, and MAPK (p < 0.001). These findings were confirmed at the cellular level as the MAPK and JAK/STAT signaling responses were diminished and IkB, the negative regulator of NFkB, was elevated in adaptive immune cells. CONCLUSION Reported findings provide a first proof of principle in humans that a young plasma protein fraction actively regulates inflammatory and immune responses in an elderly population. They provide a solid rationale for elucidating active principles in young plasma that may be of therapeutic benefits for a range of age-related pathologies. TRIAL REGISTRATION ClinicalTrials.gov, NCT03981419.
Collapse
Affiliation(s)
- Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Xue
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Xiaoxiao Gao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Tiffany N McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Martha Tingle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Gladys Porras
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Igor Feinstein
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maximilian Sabayev
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Julien Hedou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eloïse Berson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Yeasul Kim
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Derek F Amanatullah
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James I Huddleston
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Drosen ME, Bulbule S, Gottschalk G, Peterson D, Allen LA, Arnold LA, Roy A. Inactivation of ATG13 stimulates chronic demyelinating pathologies in muscle-serving nerves and spinal cord. Immunol Res 2025; 73:27. [PMID: 39777574 PMCID: PMC11706859 DOI: 10.1007/s12026-024-09557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Chronic muscle fatigue is a condition characterized by debilitating muscle weakness and pain. Based on our recent finding to study the potential effect of mTOR on ATG13 inactivation in chronic muscle fatigue, we report that biweekly oral administration with MHY1485, a potent inducer of mTOR, develops chronic illness in mice resulting in severe muscle weakness. As a mechanism, we observed that MHY1485 feeding impaired ATG13-dependent autophagy, caused the infiltration of inflammatory M1 macrophages (Mφ), upregulated IL6 and RANTES by STAT3 activation, and augmented demyelination in muscle-serving nerve fibers. Interestingly, these mice displayed worsened muscle fatigue during 2-day post-treadmill exercise, suggesting the critical role of chronic mTOR activation in potential PEM pathogenesis. Interestingly, ATG13-repressor mice exhibited enhanced infiltration of M1Mφ cells, STAT3 activation, demyelination of nerve fibers, and PEM-like symptoms, suggesting the potential role of ATG13 impairment in post-exertional fatigue. HIGHLIGHTS: The potential role of mTOR activation in post-exertional fatigue is highlighted. As a molecular mechanism, mTOR activation augments autophagy impairment via ATG13 inactivation. Autophagy impairment induces IL-6 and RANTES via STAT3, demyelinates nerves in the muscle and spinal cord. ATG13 repressor mice (Tg-ATG13) displayed inflammatory demyelination and post-treadmill fatigue.
Collapse
Affiliation(s)
- Molly E Drosen
- Milwaukee Institute for Drug Discovery, Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI, 53211, USA
- Simmaron R&D Lab, 2000 E Kenwood Blvd, Suite # 320, Milwaukee, WI, 53211, USA
| | - Sarojini Bulbule
- Simmaron R&D Lab, 2000 E Kenwood Blvd, Suite # 320, Milwaukee, WI, 53211, USA
| | - Gunnar Gottschalk
- Simmaron R&D Lab, 2000 E Kenwood Blvd, Suite # 320, Milwaukee, WI, 53211, USA
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV, 89451, USA
| | | | - Linda Adrienne Allen
- Milwaukee Institute for Drug Discovery, Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI, 53211, USA
| | - Leggy A Arnold
- Milwaukee Institute for Drug Discovery, Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI, 53211, USA
| | - Avik Roy
- Milwaukee Institute for Drug Discovery, Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI, 53211, USA.
- Simmaron R&D Lab, 2000 E Kenwood Blvd, Suite # 320, Milwaukee, WI, 53211, USA.
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV, 89451, USA.
| |
Collapse
|
8
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Alimoradi N, Ramezani A, Tahami M, Firouzabadi N. Metformin Exhibits Anti-Inflammatory Effects by Regulating microRNA-451/CXCL16 and B Cell Leukemia/Lymphoma 2 in Patients With Osteoarthritis. ACR Open Rheumatol 2025; 7:e11755. [PMID: 39435687 PMCID: PMC11694140 DOI: 10.1002/acr2.11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common cause of chronic disability in joints among older individuals. The primary goal of OA treatment is pain relief to improve the quality of life. Inflammation and aging are involved in the pathogenesis of pain in OA. In this study, we evaluated the ability of metformin to regulate microRNAs, such as miR-451 and miR-15b, and their target proteins, CXCL16 and B cell leukemia/lymphoma 2 (BCL-2), involved in inflammation and apoptosis. METHODS In this double-blind placebo-controlled clinical trial, patients were randomly divided into two groups: one receiving metformin and the other receiving a placebo for four months (starting at 0.5 g/day for the first week, increasing to 1 g/day for the second week, and increasing to 1.5 g/day for the remaining period). In addition to evaluating the clinical response using the Knee Injury and Osteoarthritis Outcome Score questionnaire, miR-451 and miR-15b expression levels were detected using real-time polymerase chain reaction. The serum levels of CXCL16 and BCL-2 were evaluated using enzyme-linked immunosorbent assay kits before (time zero) and after treatment (month four). RESULTS Metformin increased miR-451 expression levels simultaneously with pain reduction, whereas miR-15b expression did not change significantly after four months of treatment. Also, metformin decreased the serum levels of BCL-2 and CXCL16 in patients with OA. CONCLUSION The effects of metformin in reducing pain can be attributed to many factors, including its anti-inflammatory and antiaging effects. Our findings suggest that metformin may reduce pain and inflammation in patients with OA through the regulation of miR-451/CXCL16 and BCL-2.
Collapse
|
10
|
Hao Z, Han Y, Zhao Q, Zhu M, Liu X, Yang Y, An N, He D, Lefai E, Storey KB, Chang H, Xie M. Involvement of Melatonin, Oxidative Stress, and Inflammation in the Protective Mechanism of the Carotid Artery over the Torpor-Arousal Cycle of Ground Squirrels. Int J Mol Sci 2024; 25:12888. [PMID: 39684599 DOI: 10.3390/ijms252312888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear. Morphology, hemodynamic, mitochondrial oxidative stress, and inflammatory factors of the carotid artery were assessed in ground squirrels who were sampled during summer active (SA), late torpor (LT), and interbout arousal (IBA) conditions. Changes were assessed by methods including hematoxylin and eosin staining, color Doppler ultrasound, ELISA, Western blots, and qPCR. Changes in arterial blood and serum melatonin were also measured by blood gas analyzer and ELISA, whereas mitochondrial oxidative stress and inflammation factors of primary vascular smooth muscle cells (VSMCs) were assessed by qPCR. (1) Intima-media carotid thickness, peak systolic velocity (PSV), end diastolic blood flow velocity (EDV), maximal blood flow rate (Vmax) and pulsatility index (PI) were significantly decreased in the LT group as compared with the SA group, whereas there were no difference between the SA and IBA groups. (2) PO2, oxygen saturation, hematocrit and PCO2 in the arterial blood were significantly increased, and pH was significantly decreased in the LT group as compared with the SA and IBA groups. (3) The serum melatonin concentration was significantly increased in the LT group as compared with the SA and IBA groups. (4) MT treatment significantly reduced the elevated levels of LONP1, NF-κB, NLRP3 and IL-6 mRNA expression of VSMCs under hypoxic conditions. (5) Protein expression of HSP60 and LONP1 in the carotid artery were significantly reduced in the LT and IBA groups as compared with the SA group. (6) The proinflammatory factors IL-1β, IL-6, and TNF-α were reduced in the carotid artery of the LT group as compared with the SA and IBA groups. The carotid artery experiences no oxidative stress or inflammatory response during the torpor-arousal cycle. In addition, melatonin accumulates during torpor and alleviates oxidative stress and inflammatory responses caused by hypoxia in vitro in VSMCs from ground squirrels.
Collapse
Affiliation(s)
- Ziwei Hao
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Minghui Zhu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Dinglin He
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
11
|
Frasca D, Romero M, Blomberg BB. Similarities in B Cell Defects between Aging and Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1407-1413. [PMID: 39495900 DOI: 10.4049/jimmunol.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
The aging population is increasing worldwide, and there is also an increase in the aging population living with overweight and obesity, due to changes in lifestyle and in dietary patterns that elderly individuals experience later in life. Both aging and obesity are conditions of accelerated metabolic dysfunction and dysregulated immune responses. In this review, we summarize published findings showing that obesity induces changes in humoral immunity similar to those induced by aging and that the age-associated B cell defects are mainly due to metabolic changes. We discuss the role of the obese adipose tissue in inducing dysfunctional humoral responses and autoimmune Ab secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
12
|
Su B, Ren Y, Yao W, Su Y, He Q. Mitochondrial dysfunction and NLRP3 inflammasome: key players in kidney stone formation. BJU Int 2024; 134:696-713. [PMID: 38967108 DOI: 10.1111/bju.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The mitochondrion serves as a critical intracellular organelle, engaging in essential roles in the regulation of energy production, oxidative stress management, calcium homeostasis, and apoptosis. One such disease that has been particularly associated with these functions is kidney stone disease (KSD), specifically calcium oxalate (CaOx). It is underpinned by oxidative stress and tissue inflammation. Recent studies have shed light on the vital involvement of mitochondrial dysfunction, the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) inflammasome, endoplasmic reticulum stress and subsequent cell death in CaOx crystal retention and aggregation. These processes are pivotal in the pathogenesis of kidney stone formation. This review focuses on the pivotal roles of mitochondria in renal cell functions and provides an overview of the intricate interconnectedness between mitochondrial dysfunction and NLRP3 inflammasome activation in the context of KSD. It is essential to recognise the utmost significance of gaining a comprehensive understanding of the mechanisms that safeguard mitochondrial function and regulate the NLRP3 inflammasome. Such knowledge carries significant scientific implications and opens up promising avenues for the development of innovative strategies to prevent the formation of kidney stones.
Collapse
Affiliation(s)
- Boyan Su
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - YaLin Ren
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Weimin Yao
- Department of Urology, Tongji Medical College Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qiqi He
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Chairunisa F, Widita E, Thwin KM, Takehara S, Nohno K, Hanindriyo L, Miyazaki H, Ogawa H. Ten years' evaluation of periodontal status and its changes among Japanese older adults. SPECIAL CARE IN DENTISTRY 2024; 44:1731-1741. [PMID: 39030932 DOI: 10.1111/scd.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
AIMS This study aims to evaluate the periodontal status and its changes among Japanese older adults over a 10-year period. METHODS AND RESULTS A total of 206 dentate older adults aged 70 years who completely participated in 10 years of oral examination were included. The community periodontal index (CPI) was used to assess the gingival and periodontal pocket status, while the loss of attachment (LA) scoring system was used to report the extensive LA. A higher score in CPI (Code 3 and Code 4) and more extensive attachment loss were found in a majority of participants. During follow-up evaluation, mean number of sextants with CPI code 4 remained stable, while CPI code 3 significantly decreased particularly in male participants. Whereas, sextants without attachment loss significantly decreased on average. The mean number of missing sextants significantly increased from 1.1 to 1.9, and 5.8% of subjects had all sextants excluded in the follow-up. CONCLUSION This study indicated that majority of the older people experienced severe periodontal disease and this condition remained stable during 10-year period. Additionally, the incidence of tooth loss increased as individuals aged. Regular oral care and maintenance are highly recommended for older population.
Collapse
Affiliation(s)
- Fania Chairunisa
- Division of Preventive Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elastria Widita
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kaung Myat Thwin
- Division of Preventive Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sachiko Takehara
- Division of Preventive Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaname Nohno
- Division of Oral Science for Health Promotion, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Lisdrianto Hanindriyo
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hideo Miyazaki
- Department of Dental Hygiene and Welfare, Meirin Junior College, Niigata, Japan
| | - Hiroshi Ogawa
- Division of Preventive Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
14
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
15
|
Bergman M, Goshtchevsky U, Atlan T, Astre G, Halabi R, El H, Moses E, Lemus AJJ, Benayoun BA, Tzfati Y, Ben-Ami I, Harel I. The cGAS-STING pathway is an in vivo modifier of genomic instability syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618655. [PMID: 39464159 PMCID: PMC11508313 DOI: 10.1101/2024.10.16.618655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in genes involved in DNA damage repair (DDR) often lead to premature aging syndromes. While recent evidence suggests that inflammation, alongside mutation accumulation and cell death, may drive disease phenotypes, its precise contribution to in vivo pathophysiology remains unclear. Here, by modeling Ataxia Telangiectasia (A-T) and Bloom Syndrome in the African turquoise killifish ( N. furzeri ), we replicate key phenotypes of DDR syndromes, including infertility, cytoplasmic DNA fragments, and reduced lifespan. The link between DDR defects and inflammation is attributed to the activation of the cGAS-STING pathway and interferon signaling by cytoplasmic DNA. Accordingly, mutating cGAS partially rescues germline defects and senescence in A-T fish. Double mutants also display reversal of telomere abnormalities and suppression of transposable elements, underscoring cGAS's non-canonical role as a DDR inhibitor. Our findings emphasize the role of interferon signaling in A-T pathology and identify the cGAS-STING pathway as a potential therapeutic target for genomic instability syndromes.
Collapse
|
16
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
17
|
Seo DH, Corr M, Patel S, Lui LY, Cauley JA, Evans D, Mau T, Lane NE. Chemokine CXCL9, a marker of inflammaging, is associated with changes of muscle strength and mortality in older men. Osteoporos Int 2024; 35:1789-1796. [PMID: 38965121 PMCID: PMC11427528 DOI: 10.1007/s00198-024-07160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Our study examined associations of the CXC motif chemokine ligand 9 (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with musculoskeletal function in elderly men. We found in certain outcomes both cross-sectional and longitudinal significant associations of CXCL9 with poorer musculoskeletal function and increased mortality in older men. This requires further investigation. PURPOSE We aim to determine the relationship of (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with both cross-sectional and longitudinal musculoskeletal outcomes and mortality in older men. METHODS A random sample from the Osteoporotic Fractures in Men (MrOS) Study cohort (N = 300) was chosen for study subjects that had attended the third and fourth clinic visits, and data was available for major musculoskeletal outcomes (6 m walking speed, chair stands), hip bone mineral density (BMD), major osteoporotic fracture, mortality, and serum inflammatory markers. Serum levels of CXCL9 were measured by ELISA, and the associations with musculoskeletal outcomes were assessed by linear regression and fractures and mortality with Cox proportional hazards models. RESULTS The mean CXCL9 level of study participants (79.1 ± 5.3 years) was 196.9 ± 135.2 pg/ml. There were significant differences for 6 m walking speed, chair stands, physical activity scores, and history of falls in the past year across the quartiles of CXCL9. However, higher CXCL9 was only significantly associated with changes in chair stands (β = - 1.098, p < 0.001) even after adjustment for multiple covariates. No significant associations were observed between CXCL9 and major osteoporotic fracture or hip BMD changes. The risk of mortality increased with increasing CXCL9 (hazard ratio quartile (Q)4 vs Q1 1.98, 95% confidence interval 1.25-3.14; p for trend < 0.001). CONCLUSIONS Greater serum levels of CXCL9 were significantly associated with a decline in chair stands and increased mortality. Additional studies with a larger sample size are needed to confirm our findings.
Collapse
Affiliation(s)
- Da Hea Seo
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, USA
| | - Sheena Patel
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Evans
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Nancy E Lane
- Department of Medicine and Rheumatology, University of California, Davis, CA, USA.
| |
Collapse
|
18
|
Finzi A, Ottoboni S, Cellini M, Corcioni B, Gaudiano C, Fontana L. Color Doppler Imaging, Endothelin-1, Corneal Biomechanics and Scleral Rigidity in Asymmetric Age-Related Macular Degeneration. Clin Ophthalmol 2024; 18:2583-2591. [PMID: 39281979 PMCID: PMC11401527 DOI: 10.2147/opth.s479225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Age-related macular degeneration (AMD) presents a multifaceted etiopathogenesis involving ischemic, inflammatory, and genetic components. This study investigates the correlation between ocular hemodynamics, scleral rigidity (SR), and plasma endothelin-1 (ET1) levels in treatment-naive patients with asymmetrical AMD. Patients and Methods This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 years, who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD (iAMD) in the other eye. The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years. All patients and healthy controls underwent color Doppler imaging (i) of the ophthalmic artery (OA), short posterior ciliary arteries (SPCAs), and central retinal artery (CRA); Plasma ET-1 levels were measured for all patients and healthy subjects. Corneal biomechanics were assessed using an Ocular Response Analyzer and two indices were obtained: corneal hysteresis (CH) and corneal resistance factor (CRF). Results Results showed reduced blood flow velocities and increased resistance indices in AMD eyes, particularly affecting the short posterior ciliary arteries. According to mechanical theory, ARMD eyes exhibited elevated scleral rigidity and corneal resistance factor compared to controls, with a notable rise in SR in neovascular AMD (nAMD) eyes. As per the chronic subacute inflammation theory, plasma ET-1 levels were significantly higher in AMD patients, correlating with abnormal SPCAs blood flow and increased resistance indices. Conclusion Findings suggest a multifactorial etiology of AMD involving an increase of ET-1 plasma levels with biomechanic damages of corneal and scleral tissue in nAMD.
Collapse
Affiliation(s)
- Alessandro Finzi
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ottoboni
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Cellini
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beniamino Corcioni
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Fontana
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
19
|
Yamamoto T, Isaka Y. Pathological mechanisms of kidney disease in ageing. Nat Rev Nephrol 2024; 20:603-615. [PMID: 39025993 DOI: 10.1038/s41581-024-00868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The kidney is a metabolically active organ that requires energy to drive processes such as tubular reabsorption and secretion, and shows a decline in function with advancing age. Various molecular mechanisms, including genomic instability, telomere attrition, inflammation, autophagy, mitochondrial function, and changes to the sirtuin and Klotho signalling pathways, are recognized regulators of individual lifespan and pivotal factors that govern kidney ageing. Thus, mechanisms that contribute to ageing not only dictate renal outcomes but also exert a substantial influence over life expectancy. Conversely, kidney dysfunction, in the context of chronic kidney disease (CKD), precipitates an expedited ageing trajectory in individuals, leading to premature ageing and a disconnect between biological and chronological age. As CKD advances, age-related manifestations such as frailty become increasingly conspicuous. Hence, the pursuit of healthy ageing necessitates not only the management of age-related complications but also a comprehensive understanding of the processes and markers that underlie systemic ageing. Here, we examine the hallmarks of ageing, focusing on the mechanisms by which they affect kidney health and contribute to premature organ ageing. We also review diagnostic methodologies and interventions for premature ageing, with special consideration given to the potential of emerging therapeutic avenues to target age-related kidney diseases.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
20
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
21
|
Li J, Wang X, Nepovimova E, Wu Q, Kuca K. Deoxynivalenol induces cell senescence in RAW264.7 macrophages via HIF-1α-mediated activation of the p53/p21 pathway. Toxicology 2024; 506:153868. [PMID: 38906241 DOI: 10.1016/j.tox.2024.153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Deoxynivalenol (DON), a potent mycotoxin, exhibits strong immunotoxicity and poses a significant threat to human and animal health. Cell senescence has been implicated in the immunomodulatory effects of DON; however, the potential of DON to induce cell senescence remains inadequately explored. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) serves as a crucial target of mycotoxins and is closely involved in cell senescence. To investigate this potential, we employed the RAW264.7 macrophage model and treated the cells with varying concentrations of DON (2-8 μM) for 24 h. Transcriptome analysis revealed that 2365 genes were significantly upregulation while 2405 genes were significantly decreased after exposure to DON. KEGG pathway enrichment analysis demonstrated substantial enrichment in pathways associated with cellular senescence and hypoxia. Remarkably, we observed a rapid and sustained increase in HIF-1α expression following DON treatment. DON induced cell senescence through the activation of the p53/p21WAF1/CIP1 (p21) and p16INK4A (p16) pathways, while also upregulating the expression of nuclear factor-κB, leading to the secretion of senescence-associated secretory phenotype (SASP) factors, including IL-6, IL-8, and CCL2. Crucially, HIF-1α positively regulated the expression of p53, p21, and p16, as well as the secretion of SASP factors. Additionally, DON induced cell cycle arrest at the S phase, enhanced the activity of the senescence biomarker senescence-associated β-galactosidase, and disrupted cell morphology, characterized by mitochondrial damage. Our study elucidates that DON induces cell senescence in RAW264.7 macrophages by modulating the HIF-1α/p53/p21 pathway. These findings provide valuable insights for the accurate prevention of DON-induced immunotoxicity and associated diseases.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50005, Czech Republic.
| |
Collapse
|
22
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Sanderson KR, Wekon-Kemeni C, Charlton JR. From premature birth to premature kidney disease: does accelerated aging play a role? Pediatr Nephrol 2024; 39:2001-2013. [PMID: 37947901 PMCID: PMC11082067 DOI: 10.1007/s00467-023-06208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
As the limits of fetal viability have increased over the past 30 years, there has been a growing body of evidence supporting the idea that chronic disease should be taken into greater consideration in addition to survival after preterm birth. Accumulating evidence also suggests there is early onset of biologic aging after preterm birth. Similarly, chronic kidney disease (CKD) is also associated with a phenotype of advanced biologic age which exceeds chronologic age. Yet, significant knowledge gaps remain regarding the link between premature biologic age after preterm birth and kidney disease. This review summarizes the four broad pillars of aging, the evidence of premature aging following preterm birth, and in the setting of CKD. The aim is to provide additional plausible biologic mechanisms to explore the link between preterm birth and CKD. There is a need for more research to further elucidate the biologic mechanisms of the premature aging paradigm and kidney disease after preterm birth. Given the emerging research on therapies for premature aging, this paradigm could create pathways for prevention of advanced CKD.
Collapse
Affiliation(s)
- Keia R Sanderson
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA.
| | - Christel Wekon-Kemeni
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Nephrology, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Sajeeda A, Bhat AM, Gorke S, Wani IA, Sidiqui A, Ahmed Z, Sheikh TA. Naringenin, a flavanone constituent from Sea buckthorn pulp extract, prevents ultraviolet (UV)-B radiation-induced skin damage via alleviation of impaired mitochondrial dynamics mediated inflammation in human dermal fibroblasts and Balb/c mice models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112944. [PMID: 38796981 DOI: 10.1016/j.jphotobiol.2024.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Ultraviolet-B (UV-B) irradiation has been reported to cause oxidative stress and inflammation-mediated skin photo-damage. Furthermore, mitochondrial dynamics have been implicated to play a critical role in these processes. For the first time, we describe in this study how UVB-induced aberrant mitochondrial dynamics and inflammation interact in primary human dermal fibroblasts (HDFs). Our findings demonstrated that UV-B irradiation induced -impairment in mitochondrial dynamics by increasing mitochondrial fragmentation in HDFs. Imbalanced mitochondrial dynamics lead to the activation of NFкB and pro-inflammatory cytokines. The current study further aimed to investigate the protective effect of Naringenin (a naturally occurring flavonoid isolated from Sea buckthorn fruit pulp) against UV-B-induced mitochondrial fragmentation and inflammation in HDFs and Balb/c mice. Although Naringenin has been shown to have anti-inflammatory and antioxidant potential, its effects and mechanisms of action on UVB-induced inflammation remained unclear. We observed that Naringenin restored the UV-B-induced imbalance in mitochondrial fission and fusion in HDFs. It also inhibited the phosphorylation of NFкB and reduced the generation of pro-inflammatory cytokines. Naringenin also alleviated UV-B-induced oxidative stress by scavenging the reactive oxygen species and up-regulating the cellular antioxidant enzymes (Catalase and Nrf2). Topical application of Naringenin to the dorsal skin of Balb/c mice exposed to UV-B radiation prevented mitochondrial fragmentation and progression of inflammatory responses. Naringenin treatment prevented neutrophil infiltration and epidermal thickening in mice's skin. These findings provide an understanding for further research into impaired mitochondrial dynamics as a therapeutic target for UV-B-induced inflammation. Our findings imply that Naringenin could be developed as a therapeutic remedy against UVB-induced inflammation.
Collapse
Affiliation(s)
- Archoo Sajeeda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India
| | - Aalim Maqsood Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India
| | - Shikha Gorke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India
| | - Irfan Ahmad Wani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India
| | - Adil Sidiqui
- Department of Pathology, Government Medical College (GMC), Srinagar, Jammu and Kashmir, India
| | - Zabeer Ahmed
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India
| | - Tasduq Abdullah Sheikh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India.
| |
Collapse
|
25
|
Wu X, Song J, Zhang Y, Kuai L, Liu C, Ma X, Li B, Zhang Z, Luo Y. Exploring the role of autophagy in psoriasis pathogenesis: Insights into sustained inflammation and dysfunctional keratinocyte differentiation. Int Immunopharmacol 2024; 135:112244. [PMID: 38776847 DOI: 10.1016/j.intimp.2024.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Psoriasis is a common and prevalent chronic papulosquamous cutaneous disorder characterized by sustained inflammation, uncontrolled keratinocyte proliferation, dysfunctional differentiation, and angiogenesis. Autophagy, an intracellular catabolic process, can be induced in response to nutrient stress. It entails the degradation of cellular constituents through the lysosomal machinery, and its association with psoriasis has been well-documented. Nevertheless, there remains a notable dearth of research concerning the involvement of autophagy in the pathogenesis of psoriasis within human skin. This review provides a comprehensive overview of autophagy in psoriasis pathogenesis, focusing on its involvement in two key pathological manifestations: sustained inflammation and uncontrolled keratinocyte proliferation and differentiation. Additionally, it discusses potential avenues for disease management.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
26
|
Cai H, Zheng Y, Chen Y, Lu Q, Hong W, Guo Q, Zheng S. Miao medicine Gu Yan Xiao tincture inhibits mTOR to stimulate chondrocyte autophagy in a rabbit model of osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118095. [PMID: 38548121 DOI: 10.1016/j.jep.2024.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Gu Yan Xiao tincture, a blend of traditional Chinese herbs, is traditionally used for osteoarthritis and related pain. This study investigated its mechanism of action in order to rationalize and validate its therapeutic use. AIM OF THE STUDY This study analyzed, in a rabbit model of knee osteoarthritis, whether and how Gu Yan Xiao tincture exerts therapeutic benefits by modulating chondrocyte autophagy. MATERIALS AND METHODS The active constituents within the GYX tincture were identified using liquid chromatography-mass spectrometry. The rabbit model was established by injecting animals with type II collagenase intra-articularly, and the effects of topically applied tincture were examined on osteoarthritis lesions of the knee using histopathology, micro-computed tomography and x-ray imaging. Effects of the tincture were also evaluated on levels of inflammatory cytokines, matrix metalloproteases, and autophagy in chondrocytes. As a positive control, animals were treated with sodium diclofenac. RESULTS The tincture mitigated the reduction in joint space, hyperplasia of the synovium and matrix metalloproteases in serum that occurred after injection of type II collagenase in rabbits. These therapeutic effects were associated with inhibition of mTOR and activation of autophagy in articular chondrocytes. Inhibiting mTOR with rapamycin potentiated the therapeutic effects of the tincture, while inhibiting autophagy with 3-methyladenine antagonized them. CONCLUSIONS Gu Yan Xiao tincture mitigates tissue injury in a rabbit model of osteoarthritis, at least in part by inhibiting mTOR and thereby promoting autophagy in chondrocytes. These results rationalize the use of the tincture not only against osteoarthritis but also potentially other diseases involving inhibition of autophagy in bones and joints.
Collapse
Affiliation(s)
- He Cai
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yuhao Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yinying Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing Lu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Wu Hong
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qiucheng Guo
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Shuguang Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
27
|
Yu Y, Wang G, Liu Y, Meng Z. Potential application of traditional Chinese medicine in age-related macular degeneration-focusing on mitophagy. Front Pharmacol 2024; 15:1410998. [PMID: 38828456 PMCID: PMC11140084 DOI: 10.3389/fphar.2024.1410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Retinal pigment epithelial cell and neuroretinal damage in age-related macular degeneration (AMD) can lead to serious visual impairments and blindness. Studies have shown that mitophagy, a highly specialized cellular degradation system, is implicated in the pathogenesis of AMD. Mitophagy selectively eliminates impaired or non-functioning mitochondria via several pathways, such as the phosphatase and tensin homolog-induced kinase 1/Parkin, BCL2-interacting protein 3 and NIP3-like protein X, FUN14 domain-containing 1, and AMP-activated protein kinase pathways. This has a major impact on the maintenance of mitochondrial homeostasis. Therefore, the regulation of mitophagy could be a promising therapeutic strategy for AMD. Traditional Chinese medicine (TCM) uses natural products that could potentially prevent and treat various diseases, such as AMD. This review aims to summarize recent findings on mitophagy regulation pathways and the latest progress in AMD treatment targeting mitophagy, emphasizing methods involving TCM.
Collapse
Affiliation(s)
- Yujia Yu
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gaofeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhaoru Meng
- School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
28
|
Thirugnanam S, Rout N. A Perfect Storm: The Convergence of Aging, Human Immunodeficiency Virus Infection, and Inflammasome Dysregulation. Curr Issues Mol Biol 2024; 46:4768-4786. [PMID: 38785555 PMCID: PMC11119826 DOI: 10.3390/cimb46050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The emergence of combination antiretroviral therapy (cART) has greatly transformed the life expectancy of people living with HIV (PWH). Today, over 76% of the individuals with HIV have access to this life-saving therapy. However, this progress has come with a new challenge: an increase in age-related non-AIDS conditions among patients with HIV. These conditions manifest earlier in PWH than in uninfected individuals, accelerating the aging process. Like PWH, the uninfected aging population experiences immunosenescence marked by an increased proinflammatory environment. This phenomenon is linked to chronic inflammation, driven in part by cellular structures called inflammasomes. Inflammatory signaling pathways activated by HIV-1 infection play a key role in inflammasome formation, suggesting a crucial link between HIV and a chronic inflammatory state. This review outlines the inflammatory processes triggered by HIV-1 infection and aging, with a focus on the inflammasomes. This review also explores current research regarding inflammasomes and potential strategies for targeting inflammasomes to mitigate inflammation. Further research on inflammasome signaling presents a unique opportunity to develop targeted interventions and innovative therapeutic modalities for combating HIV and aging-associated inflammatory processes.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
29
|
Barros RDS, Queiroz LAD, de Assis JB, Pantoja KC, Bustia SX, de Sousa ESA, Rodrigues SF, Akamine EH, Sá-Nunes A, Martins JO. Effects of low-dose rapamycin on lymphoid organs of mice prone and resistant to accelerated senescence. Front Immunol 2024; 15:1310505. [PMID: 38515742 PMCID: PMC10954823 DOI: 10.3389/fimmu.2024.1310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Aging is a complex, natural, and irreversible phenomenon that subjects the body to numerous changes in the physiological process, characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to immunosenescence. Here, we evaluated the regulation of immunosenescence in lymphoid organs of senescence-accelerated prone 8 (SAM-P8) and senescence-accelerated resistant 1 (SAM-R1) mice treated with a low dose of rapamycin (RAPA). Mice were treated with a dose of 7.1 µg/kg RAPA for 2 months and had body mass and hematological parameters analyzed prior and during treatment. Cellular and humoral parameters of serum, bone marrow, thymus, and spleen samples were evaluated by ELISA, histology, and flow cytometry. Changes in body mass, hematological parameters, cell number, and in the secretion of IL-1β, IL-6, TNF-α, IL-7, and IL-15 cytokines were different between the 2 models used. In histological analyses, we observed that SAM-P8 mice showed faster thymic involution than SAM-R1 mice. Regarding the T lymphocyte subpopulations in the spleen, CD4+ and CD8+ T cell numbers were higher and lower, respectively, in SAM-P8 mice treated with RAPA, with the opposite observed in SAM-R1. Additionally, we found that the low dose of RAPA used did not trigger changes that could compromise the immune response of these mice and the administered dose may have contributed to changes in important lymphocyte populations in the adaptive immune response and the secretion of cytokines that directly collaborate with the maturation and proliferation of these cells.
Collapse
Affiliation(s)
- Rafael dos Santos Barros
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luiz Adriano Damasceno Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Josiane Betim de Assis
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kamilla Costa Pantoja
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Sofia Xavier Bustia
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Hiromi Akamine
- Laboratory of Vascular Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Rasouli M, Fattahi R, Nuoroozi G, Zarei-Behjani Z, Yaghoobi M, Hajmohammadi Z, Hosseinzadeh S. The role of oxygen tension in cell fate and regenerative medicine: implications of hypoxia/hyperoxia and free radicals. Cell Tissue Bank 2024; 25:195-215. [PMID: 37365484 DOI: 10.1007/s10561-023-10099-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Student Research Committee, Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zeinab Zarei-Behjani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, Zanjan University, Zanjan, Iran
| | - Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Frank N, Herrmann MJ, Lauer M, Förster CY. Exploratory Review of the Takotsubo Syndrome and the Possible Role of the Psychosocial Stress Response and Inflammaging. Biomolecules 2024; 14:167. [PMID: 38397404 PMCID: PMC10886847 DOI: 10.3390/biom14020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Takotsubo syndrome (TTS) is a cardiomyopathy that clinically presents as a transient and reversible left ventricular wall motion abnormality (LVWMA). Recovery can occur spontaneously within hours or weeks. Studies have shown that it mainly affects older people. In particular, there is a higher prevalence in postmenopausal women. Physical and emotional stress factors are widely discussed and generally recognized triggers. In addition, the hypothalamic-pituitary-adrenal (HPA) axis and the associated glucocorticoid-dependent negative feedback play an important role in the resulting immune response. This review aims to highlight the unstudied aspects of the trigger factors of TTS. The focus is on emotional stress/chronic unpredictable mild stress (CUMS), which is influenced by estrogen concentration and noradrenaline, for example, and can lead to changes in the behavioral, hormonal, and autonomic systems. Age- and gender-specific aspects, as well as psychological effects, must also be considered. We hypothesize that this leads to a stronger corticosteroid response and altered feedback of the HPA axis. This may trigger proinflammatory markers and thus immunosuppression, inflammaging, and sympathetic overactivation, which contributes significantly to the development of TTS. The aim is to highlight the importance of CUMS and psychological triggers as risk factors and to make an exploratory proposal based on the new knowledge. Based on the imbalance between the sympathetic and parasympathetic nervous systems, transcutaneous vagus nerve stimulation (tVNS) is presented as a possible new therapeutic approach.
Collapse
Affiliation(s)
- Niklas Frank
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
| | - Martin J. Herrmann
- Center of Mental Health, Department of Psychiatry and Psychotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (M.J.H.); (M.L.)
| | - Martin Lauer
- Center of Mental Health, Department of Psychiatry and Psychotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (M.J.H.); (M.L.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
| |
Collapse
|
32
|
Sadeghi Z, Wu YX, Vu A, Song L, Phan W, Kim J, Keast JR, Balis U, DeLancey J, Villalta SA, Zi X. Dysfunction of the aging female mouse urethra is associated with striated muscle loss and increased fibrosis: an initial report. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:516-529. [PMID: 38148939 PMCID: PMC10749384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 12/28/2023]
Abstract
The decline of urethral function with advancing age plays a major role in urinary incontinence in women, impairing quality of life and economically burdening the health care system. However, none of the current urinary incontinence treatments address the declining urethral function with aging, and the mechanisms by which aging impacts urethra physiology remain little known or explored. Here, we have compared functional, morphometric, and global gene expression of urethral tissues between young and old female mice. Bladder leak point pressure (LPP) measurement showed that the aged female mice had 26.55% lower LPP compared to younger mice. Vectorized Scale-Invariant Pattern Recognition (VIPR) analysis of the relative abundance of different tissue components revealed that the mid-urethra of old female mice contains less striated muscle, more extracellular matrix/fibrosis, and diminished elastin fibers ratio compared to young mice. Gene expression profiling analysis (bulk RNA-seq of the whole urethra) showed more down-regulated genes in aged than young mice. Immune response and muscle-related (striated and smooth) pathways were predominantly enriched. In contrast, keratinization, skin development, and cell differentiation pathways were significantly downregulated in aged urethral tissues compared to those from young female mice. These results suggest that molecular pathways (i.e., ACVR1/FST signaling and CTGF/TGF-β signaling) leading to a decreased striated muscle mass and an increase in fibrous extracellular matrix in the process of aging deserve further investigation for their roles in the declined urethral function.
Collapse
Affiliation(s)
- Zhina Sadeghi
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
- Muscle Biology and Disease Research Center, University of CaliforniaIrvine, CA 92868, USA
| | - Yi Xi Wu
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
| | - Amberly Vu
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
| | - William Phan
- Department of Cell Biology and Neuroscience, University of CaliforniaRiverside, CA 92521, USA
| | - Jeffery Kim
- Department of Pathology and Laboratory Medicine, University of CaliforniaIrvine, CA 92868, USA
- Experimental Tissue Resource, University of CaliforniaIrvine, CA 92868, USA
| | - Janet R Keast
- Department of Anatomy and Physiology, University of MelbourneParkville, VIC 3010, Australia
| | - Ulysses Balis
- Department of Pathology-Bioinformatics, University of MichiganAnn Arbor, MI 48109, USA
| | - John DeLancey
- Department of Gynecology, University of MichiganAnn Arbor, MI 48109, USA
| | - S Armando Villalta
- Muscle Biology and Disease Research Center, University of CaliforniaIrvine, CA 92868, USA
- Department of Physiology and Biophysics, University of CaliforniaIrvine, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
- Veterans Affairs Long Beach Healthcare SystemLong Beach, CA 90822, USA
| |
Collapse
|
33
|
Poser M, Sing KEA, Ebert T, Ziebolz D, Schmalz G. The rosetta stone of successful ageing: does oral health have a role? Biogerontology 2023; 24:867-888. [PMID: 37421489 PMCID: PMC10615965 DOI: 10.1007/s10522-023-10047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Ageing is an inevitable aspect of life and thus successful ageing is an important focus of recent scientific efforts. The biological process of ageing is mediated through the interaction of genes with environmental factors, increasing the body's susceptibility to insults. Elucidating this process will increase our ability to prevent and treat age-related disease and consequently extend life expectancy. Notably, centenarians offer a unique perspective on the phenomenon of ageing. Current research highlights several age-associated alterations on the genetic, epigenetic and proteomic level. Consequently, nutrient sensing and mitochondrial function are altered, resulting in inflammation and exhaustion of regenerative ability.Oral health, an important contributor to overall health, remains underexplored in the context of extreme longevity. Good masticatory function ensures sufficient nutrient uptake, reducing morbidity and mortality in old age. The relationship between periodontal disease and systemic inflammatory pathologies is well established. Diabetes, rheumatoid arthritis and cardiovascular disease are among the most significant disease burdens influenced by inflammatory oral health conditions. Evidence suggests that the interaction is bi-directional, impacting progression, severity and mortality. Current models of ageing and longevity neglect an important factor in overall health and well-being, a gap that this review intends to illustrate and inspire avenues for future research.
Collapse
Affiliation(s)
- Maximilian Poser
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany.
| | - Katie E A Sing
- Department of Medicine, Royal Devon and Exeter Hospital, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Thomas Ebert
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| |
Collapse
|
34
|
Baeva ME, Camara-Lemarroy C. The role of autophagy protein Atg5 in multiple sclerosis. Mult Scler Relat Disord 2023; 79:105029. [PMID: 37778158 DOI: 10.1016/j.msard.2023.105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Multiple sclerosis (MS) is a neurological disease which has a strong autoimmune component to its pathology. Although there are currently many approved immunomodulatory treatments that reduce the rate of relapse and slow down the progression of the disease, the cure is still elusive. This may be due to the underlying etiology still being unknown. Autophagy is the potential link between neurodegeneration and autoimmunity. Specifically, this review will focus on the autophagy protein Atg5 and examine the in vitro cell culture, animal and human studies that have examined its expression and effects in the context of MS. The findings of these investigations are summarized, and a model is proposed in which elevated Atg5 levels leads to dysfunctional autophagy, neurodegeneration, inflammation, and eventually clinical disability. While there are currently no drugs that specifically target Atg5, our review recommends that further investigations into the role that Atg5 plays in MS pathophysiology may eventually lead to the development of autophagy-specific treatments of MS.
Collapse
Affiliation(s)
- Maria-Elizabeth Baeva
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| | - Carlos Camara-Lemarroy
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| |
Collapse
|
35
|
Hseu JH, Chan CI, Vadivalagan C, Chen SJ, Yen HR, Hseu YC, Yang HL, Wu PY. Tranexamic acid improves psoriasis-like skin inflammation: Evidence from in vivo and in vitro studies. Biomed Pharmacother 2023; 166:115307. [PMID: 37573659 DOI: 10.1016/j.biopha.2023.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
The chronic disease psoriasis is associated with severe inflammation and abnormal keratinocyte propagation in the skin. Tranexamic acid (TXA), a plasmin inhibitor, is used to cure serious bleeding. We investigated whether TXA ointment mitigated Imiquimod (IMQ)-induced psoriasis-like inflammation. Furthermore, this study investigated the effect of noncytotoxic concentrations of TXA on IL-17-induced human keratinocyte (HaCaT) cells to determine the status of proliferative psoriatic keratinocytes. We found that TXA reduced IMQ-induced psoriasis-like erythema, thickness, scaling, and cumulative scores (erythema plus thickness plus scaling) on the back skin of BALB/c mice. Additionally, TXA decreased ear thickness and suppressed hyperkeratosis, hyperplasia, and inflammation of the ear epidermis in IMQ-induced BALB/c mice. Furthermore, TXA inhibited IMQ-induced splenomegaly in BALB/c mouse models. In IL-17-induced HaCaT cells, TXA inhibited ROS production and IL-8 secretion. Interestingly, TXA suppressed the IL-17-induced NFκB signaling pathway via IKK-mediated IκB degradation. TXA inhibited IL-17-induced activation of the NLRP3 inflammasome through caspase-1 and IL1β expression. TXA inhibited IL-17-induced NLRP3 inflammasome activation by enhancing autophagy, as indicated by LC3-II accumulation, p62/SQSTM1 expression, ATG4B inhibition, and Beclin-1/Bcl-2 dysregulation. Notably, TXA suppressed IL-17-induced Nrf2-mediated keratin 17 expression. N-acetylcysteine pretreatment reversed the effects of TXA on NFκB, NLRP3 inflammasomes, and the Nrf2-mediated keratin 17 pathway in IL-17-induced HaCaT cells. Results further confirmed that in the ear skin of IMQ-induced mice, psoriasis biomarkers such as NLRP3, IL1β, Nrf2, and keratin 17 expression were downregulated by TXA treatment. TXA improves IMQ-induced psoriasis-like inflammation in vivo and psoriatic keratinocytes in vitro. Tranexamic acid is a promising future treatment for psoriasis.
Collapse
Affiliation(s)
- Jhih-Hsuan Hseu
- Department of Dermatology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chon-I Chan
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| | - Siang-Jyun Chen
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 404333, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan.
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404327, Taiwan; Department of Dermatology, School of Medicine, China Medical University, Taichung 404333, Taiwan.
| |
Collapse
|
36
|
Raee P, Tan SC, Najafi S, Zandsalimi F, Low TY, Aghamiri S, Fazeli E, Aghapour M, Mofarahe ZS, Heidari MH, Fathabadi FF, Abdi F, Asouri M, Ahmadi AA, Ghanbarian H. Autophagy, a critical element in the aging male reproductive disorders and prostate cancer: a therapeutic point of view. Reprod Biol Endocrinol 2023; 21:88. [PMID: 37749573 PMCID: PMC10521554 DOI: 10.1186/s12958-023-01134-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Autophagy is a highly conserved, lysosome-dependent biological mechanism involved in the degradation and recycling of cellular components. There is growing evidence that autophagy is related to male reproductive biology, particularly spermatogenic and endocrinologic processes closely associated with male sexual and reproductive health. In recent decades, problems such as decreasing sperm count, erectile dysfunction, and infertility have worsened. In addition, reproductive health is closely related to overall health and comorbidity in aging men. In this review, we will outline the role of autophagy as a new player in aging male reproductive dysfunction and prostate cancer. We first provide an overview of the mechanisms of autophagy and its role in regulating male reproductive cells. We then focus on the link between autophagy and aging-related diseases. This is followed by a discussion of therapeutic strategies targeting autophagy before we end with limitations of current studies and suggestions for future developments in the field.
Collapse
Affiliation(s)
- Pourya Raee
- Student Research Committee, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran
| | - Farshid Zandsalimi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Fazeli
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahyar Aghapour
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Abdi
- Department of Chemical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Asouri
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Lana D, Branca JJV, Delfino G, Giovannini MG, Casamenti F, Nardiello P, Bucciantini M, Stefani M, Zach P, Zecchi-Orlandini S, Nosi D. Morphofunctional Investigation in a Transgenic Mouse Model of Alzheimer's Disease: Non-Reactive Astrocytes Are Involved in Aβ Load and Reactive Astrocytes in Plaque Build-Up. Cells 2023; 12:2258. [PMID: 37759482 PMCID: PMC10526848 DOI: 10.3390/cells12182258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The term neuroinflammation defines the reactions of astrocytes and microglia to alterations in homeostasis in the diseased central nervous system (CNS), the exacerbation of which contributes to the neurodegenerative effects of Alzheimer's disease (AD). Local environmental conditions, such as the presence of proinflammatory molecules, mechanical properties of the extracellular matrix (ECM), and local cell-cell interactions, are determinants of glial cell phenotypes. In AD, the load of the cytotoxic/proinflammatory amyloid β (Aβ) peptide is a microenvironmental component increasingly growing in the CNS, imposing time-evolving challenges on resident cells. This study aimed to investigate the temporal and spatial variations of the effects produced by this process on astrocytes and microglia, either directly or by interfering in their interactions. Ex vivo confocal analyses of hippocampal sections from the mouse model TgCRND8 at different ages have shown that overproduction of Aβ peptide induced early and time-persistent disassembly of functional astroglial syncytium and promoted a senile phenotype of reactive microglia, hindering Aβ clearance. In the late stages of the disease, these patterns were altered in the presence of Aβ-plaques, surrounded by typically reactive astrocytes and microglia. Morphofunctional characterization of peri-plaque gliosis revealed a direct contribution of astrocytes in plaque buildup that might result in shielding Aβ-peptide cytotoxicity and, as a side effect, in exacerbating neuroinflammation.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, University of Florence, 50134 Florence, Italy; (D.L.); (M.G.G.)
| | - Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (J.J.V.B.); (S.Z.-O.)
| | - Giovanni Delfino
- Department of Biology, University of Florence, 50121 Florence, Italy;
| | - Maria Grazia Giovannini
- Department of Health Sciences, University of Florence, 50134 Florence, Italy; (D.L.); (M.G.G.)
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy;
| | - Pamela Nardiello
- General Laboratory, Careggi University Hospital, 50134 Florence, Italy;
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (M.B.); (M.S.)
| | - Petr Zach
- Department of Anatomy, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (J.J.V.B.); (S.Z.-O.)
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (J.J.V.B.); (S.Z.-O.)
- DMSC Imaging Platform, 50134 Florence, Italy
| |
Collapse
|
38
|
Raina K, Kumari R, Thakur P, Sharma R, Singh R, Thakur A, Anand V, Sharma R, Chaudhary A. Mechanistic role and potential of Ayurvedic herbs as anti-aging therapies. Drug Metab Pers Ther 2023; 38:211-226. [PMID: 37708954 DOI: 10.1515/dmpt-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Medicinal plants and herbs are the most important part of the Ayurveda. The term Rasayana in Charaka Samhita confers long life, youthfulness, strong body, freedom from diseases and the plants mentioned in Rsayana possess antiaging property. Aging is the collective term used for the complex detrimental physiological changes that reduce the functional ability of the cell. Oxidative stress, telomeres shortening, inflammation, and mitochondrial dysfunction are the main factors that regulate the aging process. Chronological aging is an irreversible process but the factors causing biological aging can be controlled. Ayurvedic herbs are better for the management of age-related problems. There are several natural bioactive agents present in plants that can delay the aging process in humans. They trigger actions like enhancing gene longevity and telomerase activity, ROS scavenging furthermore regeneration of tissues. CONTENT The plants mentioned in the Rasayana of Ayurveda have antiaging potential and can be used to solve modern problems related to aging. Some Ayurvedic plants and their antiaging potential has explained in this review. The main causes of aging, medicinal plants and their use as potential antiaging mediator are covered in this study. SUMMARY The process of aging is still an enigma. It is a complex, irretrievable, dynamic process that involves a number of factors and is subject to a number of environmental and genetic influences. Rasayana aspect has not been much investigated in clinical trials. Aging is considered to result from free radical damage. According to Charaka, Rasayana drugs open the partially or fully blocked channels. Many Rasayanas show free radical scavenging activity and has the potential to mitigate the effects of aging. It gives an overview of the significance of Ayurvedic medicinal plants as a source of inspiration and the use of these plants as remedies for antiaging. OUTLOOK This study briefly outlooks the causes of aging and how medicinal plants can be used to reverse the aging process. In this study, we discussed the antiaging potential and mechanistic roles of Ayurvedic herbs. These herbs have the properties to slow down the natural process of aging and can successfully manage common age-related problems.
Collapse
Affiliation(s)
- Kirti Raina
- Department of Plant Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Ruchika Kumari
- Department of Plant Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Palak Thakur
- Department of Plant Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Randeep Singh
- PG Department of Zoology, Khalsa College Amritsar, Amritsar, Punjab, India
| | - Abhinay Thakur
- PG Department of Zoology, DAV College Jalandhar, Jalandhar, Punjab, India
| | - Vikas Anand
- Department of Physics & Astronomical Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashun Chaudhary
- Department of Plant Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| |
Collapse
|
39
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Jiménez Peinado P, Urbach A. From Youthful Vigor to Aging Decline: Unravelling the Intrinsic and Extrinsic Determinants of Hippocampal Neural Stem Cell Aging. Cells 2023; 12:2086. [PMID: 37626896 PMCID: PMC10453598 DOI: 10.3390/cells12162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.
Collapse
Affiliation(s)
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, 07747 Jena, Germany
- Aging Research Center Jena, Leibniz Institute on Aging, 07745 Jena, Germany
| |
Collapse
|
41
|
Vallet H, Guidet B, Boumendil A, De Lange DW, Leaver S, Szczeklik W, Jung C, Sviri S, Beil M, Flaatten H. The impact of age-related syndromes on ICU process and outcomes in very old patients. Ann Intensive Care 2023; 13:68. [PMID: 37542186 PMCID: PMC10403479 DOI: 10.1186/s13613-023-01160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023] Open
Abstract
In this narrative review, we describe the most important age-related "syndromes" found in the old ICU patients. The syndromes are frailty, comorbidity, cognitive decline, malnutrition, sarcopenia, loss of functional autonomy, immunosenescence and inflam-ageing. The underlying geriatric condition, together with the admission diagnosis and the acute severity contribute to the short-term, but also to the long-term prognosis. Besides mortality, functional status and quality of life are major outcome variables. The geriatric assessment is a key tool for long-term qualitative outcome, while immediate severity accounts for acute mortality. A poor functional baseline reduces the chances of a successful outcome following ICU. This review emphasises the importance of using a geriatric assessment and considering the older patient as a whole, rather than the acute illness in isolation, when making decisions regarding intensive care treatment.
Collapse
Affiliation(s)
- Hélène Vallet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), Department of Geriatrics, Saint Antoine, Assistance Publique Hôpitaux de Paris (AP-HP), Sorbonne Université, F75012, Paris, France
| | - Bertrand Guidet
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, Hôpital Saint-Antoine, service de réanimation, Sorbonne Université, INSERM, AP-HP, 75012, Paris, France.
| | - Ariane Boumendil
- service de réanimation, AP-HP, Hôpital Saint-Antoine, F75012, Paris, France
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Susannah Leaver
- Department of Critical Care Medicine, St George's Hospital London, London, England
| | - Wojciech Szczeklik
- Intensive Care and Perioperative Medicine Division, Jagiellonian University Medical College, Kraków, Poland
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sigal Sviri
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Michael Beil
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Hans Flaatten
- Department of Clinical Medicine, Department of Research and Developement, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Veronesi F, Costa V, Bellavia D, Basoli V, Giavaresi G. Epigenetic Modifications of MiRNAs in Osteoarthritis: A Systematic Review on Their Methylation Levels and Effects on Chondrocytes, Extracellular Matrix and Joint Inflammation. Cells 2023; 12:1821. [PMID: 37508486 PMCID: PMC10377913 DOI: 10.3390/cells12141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a joint disorder characterized by progressive degeneration of cartilage extracellular matrix (ECM), chondrocyte hypertrophy and apoptosis and inflammation. The current treatments mainly concern pain control and reduction of inflammation, but no therapeutic strategy has been identified as a disease-modifying treatment. Therefore, identifying specific biomarkers useful to prevent, treat or distinguish the stages of OA disease has become an immediate need of clinical practice. The role of microRNAs (miRNAs) in OA has been investigated in the last decade, and increasing evidence has emerged that the influence of the environment on gene expression through epigenetic processes contributes to the development, progression and aggressiveness of OA, in particular acting on the microenvironment modulations. The effects of epigenetic regulation, particularly different miRNA methylation during OA disease, were highlighted in the present systematic review. The evidence arising from this study of the literature conducted in three databases (PubMed, Scopus, Web of Science) suggested that miRNA methylation state already strongly impacts OA progression, driving chondrocytes and synoviocyte proliferation, apoptosis, inflammation and ECM deposition. However, the possibility of understanding the mechanism by which different epigenetic modifications of miRNA or pre-miRNA sequences drive the aggressiveness of OA could be the new focus of future investigations.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Viviana Costa
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Daniele Bellavia
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Valentina Basoli
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (SwissMAM), University of Basel, 4123 Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gianluca Giavaresi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
43
|
Turrini S, Wong B, Eldaief M, Press DZ, Sinclair DA, Koch G, Avenanti A, Santarnecchi E. The multifactorial nature of healthy brain ageing: Brain changes, functional decline and protective factors. Ageing Res Rev 2023; 88:101939. [PMID: 37116664 DOI: 10.1016/j.arr.2023.101939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
As the global population faces a progressive shift towards a higher median age, understanding the mechanisms underlying healthy brain ageing has become of paramount importance for the preservation of cognitive abilities. The first part of the present review aims to provide a comprehensive look at the anatomical changes the healthy brain endures with advanced age, while also summarizing up to date findings on modifiable risk factors to support a healthy ageing process. Subsequently, we describe the typical cognitive profile displayed by healthy older adults, conceptualizing the well-established age-related decline as an impairment of four main cognitive factors and relating them to their neural substrate previously described; different cognitive trajectories displayed by typical Alzheimer's Disease patients and successful agers with a high cognitive reserve are discussed. Finally, potential effective interventions and protective strategies to promote cognitive reserve and defer cognitive decline are reviewed and proposed.
Collapse
Affiliation(s)
- Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy
| | - Bonnie Wong
- Neuropsychology Program, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA , USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Z Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of ageing Research, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Stroke Unit, Department of Systems Medicine, University of Tor Vergata, Rome, Italy; Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Polcz VE, Barrios EL, Chapin B, Price C, Nagpal R, Chakrabarty P, Casadesus G, Foster T, Moldawer L, Efron PA. Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clin Sci (Lond) 2023; 137:963-978. [PMID: 37337946 PMCID: PMC10285043 DOI: 10.1042/cs20220555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.
Collapse
Affiliation(s)
- Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Benjamin Chapin
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- Florida State University College of Health and Human Sciences, Tallahassee, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Thomas Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
45
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
46
|
Han ZZ, Fleet A, Larrieu D. Can accelerated ageing models inform us on age-related tauopathies? Aging Cell 2023; 22:e13830. [PMID: 37013265 PMCID: PMC10186612 DOI: 10.1111/acel.13830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Alex Fleet
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Delphine Larrieu
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| |
Collapse
|
47
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
48
|
Protocatechuic Aldehyde Alleviates d -Galactose-Induced Cardiomyocyte Senescence by Regulating the TCF3/ATG5 Axis. J Cardiovasc Pharmacol 2023; 81:221-231. [PMID: 36651950 DOI: 10.1097/fjc.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/03/2022] [Indexed: 01/19/2023]
Abstract
ABSTRACT Cardiomyocyte senescence is an independent risk factor for cardiovascular diseases. Protocatechuic aldehyde (PCA) is a natural chemical in the Chinese medicinal herb Salvia miltiorrhiza . PCA could protect against oxidative stress and inflammation in the cardiovascular system. In present study, we treated H9C2 cells with d -galactose to establish an in vitro model of cardiomyocyte senescence and investigated the role and underlying mechanisms of PCA in myocardial cell senescence. It was found that d -galactose induced transcription factor 3 (TCF3) expression and decreased autophagy-related genes 5 (ATG5) expression. Meanwhile, inflammation and senescence were exacerbated by d -galactose. TCF3 transcriptionally inhibited ATG5 expression. TCF3 knockdown abolished the effects of d -galactose on H9C2 by activating ATG5-mediated autophagy. PCA hindered TCF3 and inflammation to alleviate the d -galactose-induced senescence of H9C2 cells in a dose-dependent manner. Whereas, the anti-inflammation and anti-senescence effects of PCA were reversed by TCF3 knockdown. Furthermore, absence of ATG5 partially eliminated the impacts of PCA on H9C2 cells treated with d -galactose. Conclusively, PCA alleviated d -galactose-induced senescence by downregulating TCF3, promoting ATG5-mediated autophagy, and inhibiting inflammation in H9C2 cells. These results elucidated the potential mechanism by which PCA alleviated cardiomyocyte senescence and enabled its application in treating cardiomyocyte senescence.
Collapse
|
49
|
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2023; 19:207-219. [PMID: 35106736 PMCID: PMC9984661 DOI: 10.1007/s11302-021-09836-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. Finally, we analyzed potential targets of P2X7R for osteoporosis.
Collapse
Affiliation(s)
- Haoyun Huang
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu-Mei He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Miao-Miao Lin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomei Zhang
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Li Liang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, Urrutia AO. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. PROGRESS IN BRAIN RESEARCH 2023; 275:165-215. [PMID: 36841568 PMCID: PMC11191546 DOI: 10.1016/bs.pbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brier A Rigby Dames
- Department of Computer Science, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom.
| | - Huseyin Kilili
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karina Díaz-Barba
- Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.
| |
Collapse
|