1
|
Zhao T, Zhang Z, Chen Z, Xu G, Wang Y, Wang F. Biological functions of 5-methylcytosine RNA-binding proteins and their potential mechanisms in human cancers. Front Oncol 2025; 15:1534948. [PMID: 39990690 PMCID: PMC11842269 DOI: 10.3389/fonc.2025.1534948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
The 5-methylcytosine (m5C) modification is a crucial epigenetic RNA modification, which is involved in the post-transcriptional regulation of genes. It plays an important role in various biological processes, including cell metabolism, growth, apoptosis, and tumorigenesis. By affecting the proliferation, migration, invasion, and drug sensitivity of tumor cells, m5C methylation modification plays a vital part in the initiation and progression of tumors and is closely associated with the poor tumor prognosis. m5C-related proteins are categorized into three functional groups: m5C methyltransferases (m5C writers), m5C demethylases (m5C erasers), and m5C methyl-binding proteins (m5C readers). This paper introduces several common methodologies for detecting m5C methylation; and reviews the molecular structure and biological functions of m5C readers, including ALYREF, YBX1, YBX2, RAD52, YTHDF2, FMRP, and SRSF2. It further summarizes their roles and regulatory mechanisms in tumors, offering novel targets and insights for tumor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Huang Y, Wei X, Tu M, Lu W, Xu J. CircMAN1A2_009 facilitates YBX1 nuclear localization to induce GLO1 activation for cervical adenocarcinoma cell growth. Cancer Sci 2024; 115:3273-3287. [PMID: 39038813 PMCID: PMC11447891 DOI: 10.1111/cas.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
The molecular mechanisms driving the development of cervical adenocarcinoma (CADC) and optimal patient management strategies remain elusive. In this study, we have identified circMAN1A2_009 as an oncogenic circular RNA (circRNA) in CADC. Clinically, circMAN1A2_009 showed significant upregulation in CADC tissues, with an impressive area under the curve value of 0.8075 for detecting CADC. Functional studies, involving both gain-of-function and loss-of-function experiments, revealed that circMAN1A2_009 suppressed reactive oxygen species accumulation and apoptosis, and boosted cell viability in CADC cells. Conversely, silencing circMAN1A2_009 reversed these effects. Further mechanistic investigations indicated that circMAN1A2_009 interacted with YBX1, facilitating the phosphorylation levels of YBX1 at serine 102 (p-YBX1S102) and facilitating YBX1 nuclear localization through sequence 245-251. This interaction subsequently increased the activity of the glyoxalase 1 (GLO1) promoter, leading to the activation of GLO1 expression. Consistently, inhibition of either YBX1 or GLO1 mirrored the biological effects of circMAN1A2_009 in CADC cells. Additionally, knockdown of YBX1 or GLO1 partially reversed the oncogenic behaviors induced by circMAN1A2_009. In conclusion, our findings propose circMAN1A2_009 as a potential oncogene and a promising indicator for diagnosing and guiding therapy in CADC patients.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyan Tu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Tang J, Yin C, Chen M, Dong M, Xu Y. Yifei Sanjie formula alleviates lung cancer progression via regulating PRMT6-YBX1-CDC25A axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3225-3237. [PMID: 38357781 DOI: 10.1002/tox.24160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Lung cancer (LC) is the most prevalent cancer type, with a high mortality rate worldwide. The current treatment options for LC have not been particularly successful in improving patient outcomes. Yifei Sanjie (YFSJ), a well-applicated traditional Chinese medicine formula, is widely used to treat pulmonary diseases, especially LC, yet little is known about its molecular mechanisms. This study was conducted to explore the molecular mechanism by which YFSJ ameliorated LC progression. The A549, NCI-H1975, and Calu-3 cells were treated with the YFSJ formula and observed for colony number, apoptosis, migration, and invasion properties recorded via corresponding assays. The PRMT6-YBX1-CDC25A axis was tested and verified through luciferase reporter, RNA immunoprecipitation, and chromatin immunoprecipitation assays and rescue experiments. Our results demonstrated that YFSJ ameliorated LC cell malignant behaviors by increasing apoptosis and suppressing proliferation, migration, and invasion processes. We also noticed that the xenograft mouse model treated with YFSJ significantly reduced tumor growth compared with the control untreated group in vivo. Mechanistically, it was found that YFSJ suppressed the expression of PRMT6, YBX1, and CDC25A, while the knockdown of these proteins significantly inhibited colony growth, migration, and invasion, and boosted apoptosis in LC cells. In summary, our results suggest that YFSJ alleviates LC progression via the PRMT6-YBX1-CDC25A axis, confirming its efficacy in clinical use. The findings of our study provide a new regulatory network for LC growth and metastasis, which could shed new insights into pulmonary medical research.
Collapse
Affiliation(s)
- Jie Tang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenyan Yin
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meiyun Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengjia Dong
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Youqi Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
5
|
Ding N, Song X, Yu H, Wang J, Huang L, Zhou Y, He X. Mechanism of Exosomal LncRNA PART1 in Esophageal Cancer Angiogenesis by Targeting miR-302a-3p/CDC25A Axis. Technol Cancer Res Treat 2023; 22:15330338231184327. [PMID: 37386808 PMCID: PMC10333641 DOI: 10.1177/15330338231184327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE LncRNA PART1 has been confirmed related to multiple cancer bioactivities mediated with vascular endothelial growth factor signaling. Nevertheless, the role of LncRNA PART1 in esophageal cancer induced angiogenesis remains unclear. The present work focused on assessing LncRNA PART1 effects on esophageal cancer-induced angiogenesis and exploring possible mechanisms. METHODS Western blot and immunofluorescence were conducted for identifying EC9706 exosomes. MiR-302a-3p and LncRNA PART1 levels were assessed by real-time quantitative polymerase chain reaction. Cell Counting Kit-8, EdU, wound healing, transwell, and tubule information were adopted for detecting human umbilical vein endothelial cell viability, proliferation, migration, invasion, and tubule information, respectively. Starbase software and dual-luciferase reporter were conducted for predicting and judging the expression interrelation of LncRNA PART1 and its potential target-miR-302a-3p. The same methods were carried out for verifying the inhibiting influences of miR-302a-3p upregulation and its potential target-cell division cycle 25 A. RESULTS LncRNA PART1 levels were upregulated and related to the overall survival of patients in esophageal cancer. EC9706-Exos accelerated human umbilical vein endothelial cell proliferation, migration, invasion, and tubule formation via LncRNA PART1. LncRNA PART1 served as a sponge of miR-302a-3p, then miR-302a-3p targeted cell division cycle 25 A, and EC9706-Exos accelerated human umbilical vein endothelial cell angiogenesis via LncRNA PART1/ miR-302a-3p/cell division cycle 25 A axis. CONCLUSION EC9706-Exos accelerates human umbilical vein endothelial cell angiogenesis via LncRNA PART1/miR-302a-3p/ cell division cycle 25 A axis, indicating EC9706-Exos may act as a promoter of angiogenesis. Our research will contribute to clarify the mechanism of tumor angiogenesis.
Collapse
Affiliation(s)
- Naixin Ding
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Song
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hongliang Yu
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Tumor Biobank, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqin Zhou
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xia He
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
YB1 associates with oncogenetic roles and poor prognosis in nasopharyngeal carcinoma. Sci Rep 2022; 12:3699. [PMID: 35260638 PMCID: PMC8904596 DOI: 10.1038/s41598-022-07636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the malignant tumor arising from the nasopharynx epithelium with ethnic and geographical distribution preference. Y-box binding protein-1 (YB1) is the highly expressed DNA/RNA-binding protein with cold shock domain, and enhanced YB1 expression was proved to be associated with many kinds of malignant tumors. There is no systematic study about the regulation of YB1 and cell proliferation, migration, invasion and stress granules (SGs) in NPC, and the relationship between YB1 expression and clinical characteristics and prognosis of NPC patients. We analyzed the mRNA expression of YBX1 in head and neck squamous carcinoma (HNSC) and NPC in databases, investigated the functions of YB1 in cell proliferation, migration and invasion and SGs formation of NPC cells, and detected expression of YB1 protein in a large scale of NPC samples and analyzed their association with clinicopathological features and prognostic significance of NPC patients. YBX1 mRNA was significantly high expression in HNSC and NPC by bioinformatic analysis, and higher expression of YBX1 mRNA indicated poorer prognosis of HNSC patients. Clinically, the expression of YB1 in NPC tissues was significantly higher than these in the control nasopharyngeal epithelial tissues. We further found that the expression of YB1 had an evidently positive relation with advanced clinical stages of patients with NPC. The overall survival rates (OS) were significantly lower for NPC patients with positive expression of YB1. Multivariate analysis confirmed that positive expression of YB1 was the independent poorer prognostic factor for patients with NPC. Moreover, compared with the immortalized nasopharyngeal epithelial cell line (NP69), the basal level of YB1 in NPC cell lines was significantly higher. Knocking down YB1 may inhibit Akt/mTOR pathway in NPC cells. Knocking down YB1 by small interfering RNAs can reduce the ability of proliferation, migration, invasion and SGs formation of NPC cells. The expression of YB1 in NPC cell lines or patients with NPC was significantly higher. The high expression of YB1 protein may act as one valuable independent biomarker to predict poor prognosis for patients with NPC. Knocking down YB1 may release the malignant phenotype of NPC cells.
Collapse
|
7
|
Lara-Chica M, Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Ponce FJ, Moreno R, Morrison K, Di Vona C, Arató K, Jiménez-Jiménez C, Morrugares R, Schmitz ML, de la Luna S, de la Vega L, Calzado MA. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death Differ 2022; 29:105-117. [PMID: 34363019 PMCID: PMC8738746 DOI: 10.1038/s41418-021-00845-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin-Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.
Collapse
Affiliation(s)
- Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco J Ponce
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rita Moreno
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Kimberley Morrison
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
8
|
Ma X, Yang S, Jiang H, Wang Y, Xiang Z. Transcriptomic analysis of tumor tissues and organoids reveals the crucial genes regulating the proliferation of lung adenocarcinoma. J Transl Med 2021; 19:368. [PMID: 34446056 PMCID: PMC8393455 DOI: 10.1186/s12967-021-03043-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
Background Accumulative evidence shows that an organoid is a more practical and reliable tool in cancer biology research. This study aimed to identify and validate crucial genes involved in non-small cell lung cancer carcinogenesis and development using the transcriptomic analysis of tumor tissues and organoids. Methods Gene set enrichment analysis (GSEA) of tumor tissues, tumor organoids, and normal tissues was performed to reveal the similar and different mechanisms involved in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) carcinogenesis and progression. Differentially expressed gene analysis, prognostic analysis, and gene co-expression network analysis were further used to identify hub genes involved in LUAD and LUSC carcinogenesis and development. Finally, LUAD cell lines and organoids were used to validate these findings. Results GSEA analysis was performed to reveal the similar mechanisms involved in LUAD and LUSC carcinogenesis and development, such as P53 signaling pathway, base mismatch repair, DNA replication, cAMP signaling pathway and PPAR pathway. However, comparing with LUSC organoids, LUAD organoids showed downregulation of immune-related pathways, inflammation-related pathways, MAPK signaling pathways, and Rap1 signaling pathways, although these pathways were downregulated in LUAD and LUSC tissues by comparing with normal lung tissues. Further gene co-expression network analysis and prognostic analysis indicated CDK1, CCNB2, and CDC25A as the hub tumor-promoting genes in LUAD but not in LUSC, which were further validated in other datasets. Using LUAD cell lines and organoid models, CDK1 and CCNB2 knockdown were found to suppress LUAD proliferation. However, CDC25A knockdown did not inhibit LUAD cell line proliferation but could effectively suppress LUAD organoid growth, indicating that an organoid could be used as an effective tool to study cancer biology in LUAD. Conclusions The results revealed CDK1, CCNB2, and CDC25A as the hub genes involved in LUAD carcinogenesis and development, which could be used as the potential biomarkers and targets for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03043-6.
Collapse
Affiliation(s)
- Xiao Ma
- Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China.
| | - Su Yang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Hesheng Jiang
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Yujie Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Zhen Xiang
- Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Stojanovska V, Shah A, Woidacki K, Fischer F, Bauer M, Lindquist JA, Mertens PR, Zenclussen AC. YB-1 Is Altered in Pregnancy-Associated Disorders and Affects Trophoblast in Vitro Properties via Alternation of Multiple Molecular Traits. Int J Mol Sci 2021; 22:ijms22137226. [PMID: 34281280 PMCID: PMC8269420 DOI: 10.3390/ijms22137226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes between the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while they were increased in preeclampsia and unchanged in spontaneous abortions when compared to normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overexpression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation, while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The invasion and migration properties were affected at different degrees among the trophoblast cell lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflammation was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated, leads to trophoblast disadvantage that at least in part is mediated by NF-κB.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
- Correspondence: (V.S.); (A.C.Z.)
| | - Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Katja Woidacki
- Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Correspondence: (V.S.); (A.C.Z.)
| |
Collapse
|
10
|
Su H, Fan G, Huang J, Qiu X. YBX1 regulated by Runx3-miR-148a-3p axis facilitates non-small-cell lung cancer progression. Cell Signal 2021; 85:110049. [PMID: 34082012 DOI: 10.1016/j.cellsig.2021.110049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Y-box binding protein 1 (YBX1) is a common oncogene in non-small-cell lung cancer (NSCLC), which is regulated by microRNAs (miRNAs) and transcription factors. This research aims to explore the function of YBX1, miR-148a-3p and Runt-related transcription factor 3 (Runx3) in NSCLC development, and analyze their interactions. METHODS YBX1, miR-148a-3p and Runx3 levels were detected using quantitative reverse transcription polymerase chain reaction(RT-PCR), Western blotting or immunohistochemical staining. The functions of YBX1, miR-148a-3p and Runx3 were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing, transwell, flow cytometry, xenograft model and Western blotting analyses. The binding correlation was validated through dual-luciferase reporter analysis and chromatin immunoprecipitation (ChIP). RESULTS YBX1 expression was upregulated, and miR-148a-3p and Runx3 levels were reduced in NSCLC samples and cell lines. YBX1 silence restrained NSCLC cell proliferation, migration, invasion and tumor growth, and enhanced apoptosis. YBX1 was targeted via miR-148a-3p. MiR-148a-3p knockdown promoted cell proliferation, migration, invasion and tumor growth, and repressed apoptosis, and these effects were abolished by YBX1 silence. Runx3 upregulation restrained cell proliferation, migration, invasion and tumor growth, and facilitated apoptosis. Runx3 bound with miR-148a-3p promotor to regulate miR-148a-3p expression. Runx3 silence modulated YBX1 expression though miR-148a-3p to promote NSCLC progression by increasing Cyclin D1, Cyclin B1, Slug-1, MMP-2 and MMP-9 levels. CONCLUSION Runx3-miR-148a-3p axis targeted YBX1 to modulate NSCLC progression.
Collapse
Affiliation(s)
- Hongbo Su
- Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Guanzhi Fan
- Department of Pathology, Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, PR China
| | - Jin Huang
- Department of Radiotherapy, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
11
|
Tailor D, Resendez A, Garcia-Marques FJ, Pandrala M, Going CC, Bermudez A, Kumar V, Rafat M, Nambiar DK, Honkala A, Le QT, Sledge GW, Graves E, Pitteri SJ, Malhotra SV. Y box binding protein 1 inhibition as a targeted therapy for ovarian cancer. Cell Chem Biol 2021; 28:1206-1220.e6. [PMID: 33713600 DOI: 10.1016/j.chembiol.2021.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.
Collapse
Affiliation(s)
- Dhanir Tailor
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mallesh Pandrala
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Catherine C Going
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Dhanya K Nambiar
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - George W Sledge
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Edward Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
12
|
Lou L, Wang J, Lv F, Wang G, Li Y, Xing L, Shen H, Zhang X. Y-box binding protein 1 (YB-1) promotes gefitinib resistance in lung adenocarcinoma cells by activating AKT signaling and epithelial-mesenchymal transition through targeting major vault protein (MVP). Cell Oncol (Dordr) 2020; 44:109-133. [PMID: 32894437 DOI: 10.1007/s13402-020-00556-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Gefitinib is a first-line treatment option for epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. However, most patients inevitably develop gefitinib resistance. The mechanism underlying this resistance is not fully understood. Y-box binding protein 1 (YB-1) has been reported to play a role in modulating drug sensitivity, but its role in gefitinib resistance is currently unknown. Here, we investigated the role of YB-1 in gefitinib resistance of lung adenocarcinoma. METHODS We determined the expression of YB-1, epithelial-mesenchymal transition (EMT) and AKT signaling markers, as well as the viability of lung adenocarcinoma cell lines bearing mutant (HCC827, PC-9) or wild-type (H1299) EGFR. We also evaluated PC-9 cell migration and invasion using transwell assays. The clinical importance of YB-1 and major vault protein (MVP) was evaluated using primary lung adenocarcinoma patient samples. RESULTS We found that YB-1 was significantly upregulated in gefitinib-resistant lung adenocarcinoma cells compared to gefitinib-sensitive cells. YB-1 augmented gefitinib resistance by activating the AKT pathway and promoting EMT. Decreased migration and invasion was observed upon MVP silencing in YB-1-overexpressing PC-9 cells, as well as restored gefitinib sensitivity. A retrospective analysis of 85 patients with lung adenocarcinoma revealed that YB-1 levels were significantly increased in tyrosine kinase inhibitor (TKI)-resistant patients compared to those in TKI-sensitive patients, indicating that YB-1 may serve as a biomarker to clinically predict acquired gefitinib resistance. CONCLUSION YB-1 activates AKT signaling and promotes EMT at least in part by directly activating MVP. Hence, targeting the YB-1/MVP axis may help to overcome gefitinib resistance in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Lei Lou
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China.,Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China
| | - Fengzhu Lv
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China. .,Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China.
| |
Collapse
|
13
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY, Hu KS, He JH, Saw PE, Xu X, Yin D. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020; 10:10823-10837. [PMID: 32929382 PMCID: PMC7482804 DOI: 10.7150/thno.47830] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yong-Xin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Dan-Lan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Hai-Yan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Le-Hang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Li-Min Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yong-Sheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Kai-Shun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
14
|
Johnson TG, Schelch K, Lai K, Marzec KA, Kennerson M, Grusch M, Reid G, Burgess A. YB-1 Knockdown Inhibits the Proliferation of Mesothelioma Cells through Multiple Mechanisms. Cancers (Basel) 2020; 12:E2285. [PMID: 32823952 PMCID: PMC7464182 DOI: 10.3390/cancers12082285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
Y-box binding protein-1 (YB-1) is a multifunctional oncoprotein that has been shown to regulate proliferation, invasion and metastasis in a variety of cancer types. We previously demonstrated that YB-1 is overexpressed in mesothelioma cells and its knockdown significantly reduces tumour cell proliferation, migration, and invasion. However, the mechanisms driving these effects are unclear. Here, we utilised an unbiased RNA-seq approach to characterise the changes to gene expression caused by loss of YB-1 knockdown in three mesothelioma cell lines (MSTO-211H, VMC23 and REN cells). Bioinformatic analysis showed that YB-1 knockdown regulated 150 common genes that were enriched for regulators of mitosis, integrins and extracellular matrix organisation. However, each cell line also displayed unique gene expression signatures, that were differentially enriched for cell death or cell cycle control. Interestingly, deregulation of STAT3 and p53-pathways were a key differential between each cell line. Using flow cytometry, apoptosis assays and single-cell time-lapse imaging, we confirmed that MSTO-211H, VMC23 and REN cells underwent either increased cell death, G1 arrest or aberrant mitotic division, respectively. In conclusion, this data indicates that YB-1 knockdown affects a core set of genes in mesothelioma cells. Loss of YB-1 causes a cascade of events that leads to reduced mesothelioma proliferation, dependent on the underlying functionality of the STAT3/p53-pathways and the genetic landscape of the cell.
Collapse
Affiliation(s)
- Thomas G. Johnson
- The Asbestos Diseases Research Institute (ADRI), Concord Hospital, Concord, Sydney 2139, Australia;
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
- Sydney Catalyst Translational Research Centre, Sydney 2050, Australia
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (M.G.)
| | - Kaitao Lai
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
| | - Kamila A. Marzec
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
| | - Marina Kennerson
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (M.G.)
| | - Glen Reid
- Department of Pathology, The University of Otago, Dunedin 9054, New Zealand;
- The Maurice Wilkins Centre, University of Otago, Dunedin 9054, New Zealand
| | - Andrew Burgess
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
| |
Collapse
|
15
|
Li F, Zhao S, Cui Y, Guo T, Qiang J, Xie Q, Yu W, Guo W, Deng W, Gu C, Wu T. α1,6-Fucosyltransferase (FUT8) regulates the cancer-promoting capacity of cancer-associated fibroblasts (CAFs) by modifying EGFR core fucosylation (CF) in non-small cell lung cancer (NSCLC). Am J Cancer Res 2020; 10:816-837. [PMID: 32266093 PMCID: PMC7136908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the main cancer-promoting component in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). α1,6-Fucosyltransferase (FUT8), the key enzyme catalyzing core α1,6-fucosylation (CF), plays a promoting role in multiple malignancies. In the current study, we investigated the function of FUT8 in CAFs and elucidated the mechanism through which FUT8 regulates the cancer-promoting capacity of CAFs in NSCLC. A bioinformatics analysis was performed to reveal the relationship between FUT8 and CAFs. Resected specimens from NSCLC patients were analyzed to assess the expression of FUT8 in CAFs. Primary CAFs and normal lung fibroblasts (NLFs) were extracted from NSCLC patient specimens and were co-cultured with NSCLC cell lines in a novel 3D-printed non-contact co-culture device. An In vivo CAF/NSCLC co-injection tumorigenesis assay was performed using nude mice to study the function of FUT8/CF in TME formation. The current study revealed that FUT8-mediated CF in CAFs plays a positive role in the cancer-promoting capacity of these cells. FUT8 overexpression was observed in CAFs isolated from some lung adenocarcinoma cases. Further investigation showed that FUT8/CF in CAFs promoted the formation of an invasive and malignant TME in vivo and in vitro, and the resulting NSCLC cells exhibited faster proliferation and increased invasiveness. EGFR signaling exerts a catalytic effect on the cancer-promoting capacity of CAFs and is regulated by the CF modification of the EGFR protein.
Collapse
Affiliation(s)
- Fengzhou Li
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Shilei Zhao
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Yanwei Cui
- Zhongshan Hospital, Dalian UniversityDalian, China
| | - Tao Guo
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Jiaqi Qiang
- Dalian Municipal Central Hospital Affiliated to Dalian Medical UniversityDalian, China
| | - Qiang Xie
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Lab of Oncology in South ChinaGuangzhou, China
| | - Chundong Gu
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Taihua Wu
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
16
|
Bansal T, Tanveer N, Singh UR, Sharma S, Kaur N. Y-Box binding protein 1 expression in breast cancer and its correlation with hormone receptors and other prognostic markers. J Lab Physicians 2020; 10:420-425. [PMID: 30498315 PMCID: PMC6210848 DOI: 10.4103/jlp.jlp_58_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION: The present histologic and immunohistochemical prognostic markers of breast carcinoma do not effectively identify the subset of patients with poor prognosis. Y-Box binding protein 1 (YB1) is a novel biomarker which may identify and aid in targeted personalized therapy for such patients. MATERIALS AND METHODS: The study was conducted on histopathology specimens of 74 patients of breast carcinoma who had undergone modified radical mastectomy. YB1 immunohistochemistry (IHC) was performed on manual tissue microarray blocks (each having 15 cores). The YB1 expression was quantified in terms of “immunoreactive score” which was correlated with clinical parameters, hormone receptor status, and Her2neu overexpression by IHC. The Her2neu status of the equivocal cases was further evaluated by fluorescent in situ hybridization (FISH). RESULTS: YB1 was positive in 36/74 (48.6%) cases. On IHC and analysis by FISH, 25/74 (34%) cases had Her2neu overexpression. Estrogen receptor (ER) and progesterone receptor (PR) positivity was found in 42% and 36.5% cases, respectively. YB1 immunopositivity was negatively correlated with ER and PR expression, but showed a significant positive correlation with Her2neu expression. No correlation was found with other clinical parameters, tumor stage, and grade, except lymph node involvement, which showed a positive association with YB1 expression. Triple-negative breast carcinoma constituted 25.6% of the total cases, out of which 73.6% were YB1 positive. CONCLUSION: This study found that YB1 has an association with Her2neu expression. It may in future provide a therapeutic target in Her2neu overexpressing tumors.
Collapse
Affiliation(s)
- Taruna Bansal
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Nadeem Tanveer
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Usha Rani Singh
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, Cui Q, Wang C, Chen R, Yu Y, Niu Y, Yue D. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis. J Exp Clin Cancer Res 2019; 38:386. [PMID: 31481087 PMCID: PMC6720408 DOI: 10.1186/s13046-019-1347-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a deadly urological tumor that remains largely incurable. Our limited understanding of key molecular mechanisms underlying RCC invasion and metastasis has hampered efforts to identify molecular drivers with therapeutic potential. With evidence from our previous study revealing that nuclear overexpression of YBX1 is associated with RCC T stage and metastasis, we investigated the effects of YBX1 in RCC migration, invasion, and adhesion, and then characterized its interaction with RCC-associated proteins G3BP1 and SPP1. Methods Renal cancer cell lines, human embryonic kidney cells, and clinical samples were analyzed to investigate the functional role of YBX1 in RCC metastasis. YBX1 knockdown cells were established via lentiviral infection and subjected to adhesion, transwell migration, and invasion assay. Microarray, immunoprecipitation, dual-luciferase reporter assay, and classical biochemical assays were applied to characterize the mechanism of YBX1 interaction with RCC-associated proteins G3BP1 and SPP1. Results Knockdown of YBX1 in RCC cells dramatically inhibited cell adhesion, migration, and invasion. Mechanistic investigations revealed that YBX1 interaction with G3BP1 upregulated their downstream target SPP1 in vitro and in vivo, which led to an activated NF-κB signaling pathway. Meanwhile, knockdown of SPP1 rescued the YBX1/G3BP1-mediated activation of NF-κB signaling pathway, and RCC cell migration and invasion. We further showed that YBX1 expression was positively correlated with G3BP1 and SPP1 expression levels in clinical RCC samples. Conclusions YBX1 interacts with G3BP1 to promote metastasis of RCC by activating the YBX1/G3BP1–SPP1–NF-κB signaling axis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1347-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Su
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China.,Department of Laboratory Medicine, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China
| | - Yiting Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Donghe Fu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Justin E Ideozu
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Chicago, IL, 60614, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.,Department of Pediatrics, Feinberg School of Medicine at Northwestern University Chicago, Chicago, IL, 60611, USA
| | - Qiqi Cui
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yixi Yu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Yue
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China. .,Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
19
|
Holmes TR, Dindu S, Hansen LA. Aberrant localization of signaling proteins in skin cancer: Implications for treatment. Mol Carcinog 2019; 58:1631-1639. [PMID: 31062427 DOI: 10.1002/mc.23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Aberrant subcellular localization of signaling proteins can provide cancer cells with advantages such as resistance to apoptotic cell death, increased invasiveness and more rapid proliferation. Nuclear to cytoplasmic shifts in tumor-promoting proteins can lead to worse patient outcomes, providing opportunities to target cancer-specific processes. Herein, we review the significance of dysregulated protein localization with a focus on skin cancer. Altered localization of signaling proteins controlling cell cycle progression or cell death is a common feature of cancer. In some instances, aberrant subcellular localization results in an acquired prosurvival function. Taking advantage of this knowledge reveals novel targets useful in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Thomas R Holmes
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Shravya Dindu
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| |
Collapse
|
20
|
Qin H, Liu W. MicroRNA‐99a‐5p suppresses breast cancer progression and cell‐cycle pathway through downregulating
CDC25A. J Cell Physiol 2018; 234:3526-3537. [PMID: 30443946 DOI: 10.1002/jcp.26906] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hongzhen Qin
- Department of General Surgery 305 Hospital of PLA Beijing China
| | - Wenfei Liu
- Department of General Surgery 305 Hospital of PLA Beijing China
| |
Collapse
|
21
|
Wang D, Xu Y, Feng L, Yin P, Song SS, Wu F, Yan P, Liang Z. RGS5 decreases the proliferation of human ovarian carcinoma‑derived primary endothelial cells through the MAPK/ERK signaling pathway in hypoxia. Oncol Rep 2018; 41:165-177. [PMID: 30365142 PMCID: PMC6278583 DOI: 10.3892/or.2018.6811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Regulator of G-protein signaling 5 (RGS5), a tissue-specific signal-regulating molecule, plays a key role in the development of the vasculature. It was recently found that RGS5 is abundantly expressed in epithelial ovarian cancer (EOC) compared with the normal ovaries. However, the distribution of RGS5 in EOC and its significance require further investigation. The aim of the present study was to investigate the expression of RGS5 in EOC, as well as its association with cancer differentiation, metastasis and clinicopathological parameters. Immunohistochemistry (IHC), western blotting, RT-PCR, wound-healing, cell proliferation and flow cytometric assays were the methods used in the present study. RGS5 was highly expressed in the cytoplasm of ovarian carcinoma cells and in microvascular structures. The expression of RGS5 in EOC was negatively associated with peritoneal metastasis (P=0.004), but it was not found to be associated with age, tumor size, clinical stage or lymph node metastasis (P>0.05). EOC patients with high RGS5 expression had a prolonged progression-free survival (72.34±8.41 vs. 43.56±5.41 months, P<0.001). High expression of RGS5 was correlated with significantly lower microvascular density (MVD) as indicated by the expression of CD34, whereas the opposite was observed in tissues with low RGS5 expression (P<0.05). Hypoxia increased RGS5 expression in ovarian carcinoma-derived endothelial cells (ODMECs), whereas the proliferative capacity of ODMECs exhibited a significant increase following RNAi-mediated reduction of RGS5 expression. These data indicated that RGS5 plays a key role in angiogenesis in ovarian carcinoma. In addition, RGS5 downregulated the expression of the downstream proteins CDC25A, CDK2 and cyclin E, which are mediated by the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, causing ODMEC arrest in the G1 phase of the cell cycle under hypoxic conditions. Collectively, our data indicated that RGS5 is crucial for the occurrence and development of ovarian cancer, and that RGS5 and its signaling pathway may serve as anti-angiogenesis targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yan Xu
- 77103rd troops, PLA, Chongqing 400038, P.R. China
| | - Lu Feng
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Pin Yin
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shuang Shuang Song
- Department of Geriatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Feng Wu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ping Yan
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
22
|
Hu J, Liu L, Gong Y, Zhang L, Gan X, Luo X, Yu T, Zhong X, Deng X, Hu L, Zhang Z, Dong X. Linc02527 promoted autophagy in Intrahepatic cholestasis of pregnancy. Cell Death Dis 2018; 9:979. [PMID: 30250023 PMCID: PMC6155230 DOI: 10.1038/s41419-018-1013-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022]
Abstract
LncRNA plays a crucial role in human disease. However, the expression and function of LncRNA in ICP(Intrahepatic cholestasis of pregnancy) is still not fully elucidated. In this study, we found Linc02527 was increased expression in placenta and serum of ICP patients. Ectopically expression of Linc02527 promoted autophagy and proliferate in HTR8 cells. Silencing Linc02527 suppressed the autophagy and proliferate in HTR8 cells. Mechanically study revealed that Linc02527 regulated the expression of ATG5 and ATG7 by sponging miR-3185. Linc02527 directly binding to YBX1 and activated P21. The growth of C57 mouse was retarded when autophagy was activated. In normal condition, inhibited autophagy using chloroquine did not affect the growth of C57 mouse. However, in the condition of autophagy was activated, inhibited autophagy using chloroquine can improve the growth of C57 mouse. Overall, the results of this study identified Linc02527 as a candidate biomarker in ICP and a potential target for ICP therapy. Chloroquine was a potential drug for ICP therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yangyang Gong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoling Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaodong Luo
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaocui Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinru Deng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhanyu Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
23
|
Guo T, Zhao S, Wang P, Xue X, Zhang Y, Yang M, Li N, Li Z, Xu L, Jiang L, Zhao L, Ma PC, Rosell R, Li J, Gu C. YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget 2018. [PMID: 28624808 PMCID: PMC5564630 DOI: 10.18632/oncotarget.18262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aberrant overexpression of the transcription/translation factor Y-box-binding protein (YB-1) is associated with poor prognosis of lung adenocarcinoma, however the underlying mechanism by which YB-1 acts has not been fully elucidated. Here, we reported that inhibition of YB-1 diminished proliferation, migration and invasion of lung adenocarcinoma cells. Interestingly, we identified metastasis associated in colon cancer-1 (MACC1) as a target of YB-1. Depletion of YB-1 markedly decreased MACC1 promoter activity and suppressed the MACC1/c-Met signaling pathway in lung adenocarcinoma cells. Additionally, chromatin immunoprecipitation (ChIP) assay demonstrated that YB-1 bound to the MACC1 promoter. Moreover, YB-1 was positively correlated with MACC1, and both proteins were over-expressed in lung adenocarcinoma tissues. The Cox-regression analysis indicated that high YB-1 expression was an independent risk factor for prognosis in enrolled patients. Furthermore, depletion of YB-1 attenuated tumorigenesis in a xenograft mouse model and reduced MACC1 expression in tumor tissues. Collectively, our data suggested that targeting YB-1 suppressed lung adenocarcinoma progression through the MACC1/c-Met pathway and that the high expression of YB-1/MACC1 is a potential prognostic marker in lung adenocarcinoma.
Collapse
Affiliation(s)
- Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoyuan Xue
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yan Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Nan Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lingzhi Xu
- The Second Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Lei Jiang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230000, China
| | - Lei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Patrick C Ma
- Aerodigestive Oncology Translational Research THOR, Department of Solid Tumor Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rafael Rosell
- Breakthrough Cancer Research Unit, Pangaea Biotech, Dexeus University Institute, Catalan Institute of Oncology, Badalona 08916, Spain
| | - Jinxiu Li
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
24
|
Zhao X, Zhang W, Ji W. YB-1 promotes laryngeal squamous cell carcinoma progression by inducing miR-155 expression via c-Myb. Future Oncol 2018. [PMID: 29517281 DOI: 10.2217/fon-2018-0058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM In this study, we investigated the role of Y-box binding protein-1 (YB-1), c-Myb and miR-155 in human laryngeal squamous cell carcinoma (LSCC) progression. MATERIALS & METHODS Quantitative real-time PCR, western blot, MTT and Transwell were conducted to determine the expression and function of YB-1/miR-155 pathway. Univariate and multivariate analyses were used to determine the prognostic factors. RESULTS Expression of YB-1, c-Myb and miR-155 was higher in LSCC tissues. YB-1 promoted proliferation, invasiveness and migration of Hep-2 cells in vitro. Patients with higher YB-1 correlated with advanced T stage, poor differentiation and cervical metastasis. LSCC patients with high YB-1 expression showed poor overall survival. CONCLUSION YB-1 promotes LSCC progression by increasing miR-155 levels via c-Myb and acts as a prognostic factor.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, 110004, PR China
| | - Wei Zhang
- Department of Endocrinology Shengjing Hospital, China Medical University, Shenyang, 110004, PR China
| | - Wenyue Ji
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, 110004, PR China
| |
Collapse
|
25
|
Kim KY, Zhang X, Cha IH. Identifying a combined biomarker for bisphosphonate-related osteonecrosis of the jaw. Clin Implant Dent Relat Res 2017; 20:191-198. [PMID: 29266738 DOI: 10.1111/cid.12569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND For this study, the aim was to identify combined biomarkers associated with bisphosphonate-related osteonecrosis of the jaw (BRONJ). MATERIALS AND METHODS Microarray data for GSE7116 were downloaded from the Gene Expression Omnibus database, which contains 26 samples, including without ONJ, and 5 healthy volunteers. The combined biomarkers were identified using principal component analysis, and the pathway enrichment analyses were performed using the DAVID online tool. RESULTS Two hundred differently expressed genes between groups were detected according to the significances. From functional annotation, Y-box binding protein 1 and heterogeneous nuclear ribonucleoprotein C were found to be included in the most significant 10 pathways. Ten combined gene sets were identified that were effective in classifying multiple myeloma (MM) with ONJ and MM without ONJ. CONCLUSION Identifying combined gene expression profiles is expected to contribute to more personalized management of BRONJ and to improve existing therapies, and it will be helpful in finding new therapies by identifying more predictive biomarkers.
Collapse
Affiliation(s)
- Ki-Yeol Kim
- Dental Education Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Xianglan Zhang
- Department of Pathology, Yanbian University Medical College, Yanji City, Jilin Province, China
| | - In-Ho Cha
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
26
|
High YBX1 expression indicates poor prognosis and promotes cell migration and invasion in nasopharyngeal carcinoma. Exp Cell Res 2017; 361:126-134. [PMID: 29024700 DOI: 10.1016/j.yexcr.2017.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Y-box binding protein-1 (YBX1) is a multifunctional protein and often acts as an indicator of poor prognosis in cancers. Increasing evidence has shown that the levels of YBX1 protein were closely associated with multidrug resistance, relapse, metastasis and poor prognosis in cancers. However, its role in nasopharyngeal carcinoma (NPC) metastasis remains unknown. In our study, we discovered that the expression of YBX1 was increased in nasopharyngeal carcinoma tissues. YBX1 protein levels positively correlated with T stage and metastasis of NPC patients. Moreover, expression of YBX1 was negatively correlated with membrane E-cadherin levels and positively correlated with Vimentin expression. In vitro, the expression of YBX1 was closely related to the invasive and migratory ability of nasopharyngeal carcinoma cells. Knockdown of YBX1 inhibited migration and invasion in 5-8F cells, and over-expression of YBX1 promoted CNE1 cells migration and invasion. Transforming growth factor-β1 (TGF-β1) treatment led to epithelial-to-mesenchymal transition (EMT) in CNE1 cells accompanied by elevated YBX1 expression. On the contrary, knockdown of YBX1 partially inhibited the TGF-β1-induced CNE1 cell migration, together with changes of EMT-associated markers. Our study revealed that TGF-β1/YBX1 signaling might be one of novel mechanisms mediating EMT in NPC, providing a new target for the treatment of nasopharyngeal carcinoma.
Collapse
|
27
|
Xu L, Li H, Wu L, Huang S. YBX1 promotes tumor growth by elevating glycolysis in human bladder cancer. Oncotarget 2017; 8:65946-65956. [PMID: 29029484 PMCID: PMC5630384 DOI: 10.18632/oncotarget.19583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Aerobic glycolysis, also known as Warburg effect, is a key hallmark of cancers. The Y-box-binding protein 1 (YBX1) is a well-known oncoprotein implicated in multiple malignant phenotypes of cancers. Meanwhile, little is known about the oncogenic functions and mechanisms of YBX1 in bladder cancer. Based on gene set enrichment analysis (GSEA) of TCGA RNAseq data, we find that YBX1 was profoundly involved in the glycolysis part of glucose metabolism. Loss- and gain-of-function studies show that YBX1 can enhance glycolysis as revealed by expression of glycolytic enzymes, glucose uptake, lactate secretion and extracellular acidification rate (ECAR). Inhibition of glycolysis completely compromises the tumor-promoting effect of YBX1 on tumor growth. Mechanistically, YBX1 regulates the expression of c-Myc and HIF1α, which further upregulate glycolytic enzymes to facilitate glycolysis. Moreover, in vivo study further confirms that genetic silencing of YBX1 markedly attenuates tumor growth and this tumor-suppressive effect is largely dependent on reduced glycolysis. Taken together, these results, as a proof of principle, provide a novel insight into the oncogenic role of YBX1 in glycolysis and suggest the potential therapeutic strategy by targeting YBX1 in bladder cancer.
Collapse
Affiliation(s)
- Liuyu Xu
- Department of Urology, QianFoShan Hospital Affiliated to Shandong University, Jinan 250014, P. R. China
| | - Hongyun Li
- Department of Urology, QianFoShan Hospital Affiliated to Shandong University, Jinan 250014, P. R. China
| | - Longchao Wu
- Department of Urology, Penglai People's Hospital of Shandong, Penglai 265600, P. R. China
| | - Shiming Huang
- Department of Urology, QianFoShan Hospital Affiliated to Shandong University, Jinan 250014, P. R. China
| |
Collapse
|
28
|
Yu M, Xue Y, Zheng J, Liu X, Yu H, Liu L, Li Z, Liu Y. Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol Cancer 2017; 16:110. [PMID: 28651608 PMCID: PMC5485714 DOI: 10.1186/s12943-017-0677-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioma is one of the most frequent intracranial malignant tumors. LncRNAs have been identified as new modulators in the origination and progression of glioma. METHODS Quantitative real-time PCR were conducted to evaluate the expression of linc00152 and miRNA-103a-3p in glioma tissues and cells. Western blot were used to determine the expression of FEZF1 and CDC25A in glioma tissues and cells. Stable knockdown of linc00152 or over-expression of miR-103a-3p in glioma stem cells (GSCs) were established to explore the function of linc00152 and miR-103a-3p in GSCs. Further, luciferase reports were used to investigate the correlation between linc00152 and miR-103a-3p. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate the function of linc00152 and miR-103a-3p in GSC malignant biological behaviors. ChIP assays were employed to ascertain the correlations between FEZF1 and CDC25A. RESULTS Linc00152 was up-regulated in glioma tissues as well as in GSCs. Knockdown of linc00152 inhibited cell proliferation, migration and invasion, while promoted GSC apoptosis. Linc00152 regulated the malignant behavior of GSCs by binding to miR-103a-3p, which functions as a tumor suppressor. In addition, knockdown of linc00152 down-regulated forebrain embryonic zinc finger protein 1 (FEZF1), a direct target of miR-103a-3p which played an oncogenic role in GSCs. FEZF1 elevated promoter activities and up-regulated expression of the oncogenic gene cell division cycle 25A (CDC25A). CDC25A over-expression activated the PI3K/AKT pathways, which regulated the malignant behavior of GSCs. CONCLUSIONS Linc00152/miR-103a-3p/FEZF1/CDC25A axis plays a novel role in regulating the malignant behavior of GSCs, which may be a new potential therapeutic strategy for glioma therapy.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Hai Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
29
|
Guo T, Kong J, Liu Y, Li Z, Xia J, Zhang Y, Zhao S, Li F, Li J, Gu C. Transcriptional activation of NANOG by YBX1 promotes lung cancer stem-like properties and metastasis. Biochem Biophys Res Commun 2017; 487:153-159. [PMID: 28400280 DOI: 10.1016/j.bbrc.2017.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/11/2023]
Abstract
Aberrant overexpression of the transcription/translation factor Y-box-binding protein-1 (YBX1) is associated with non-small cell lung cancer (NSCLC) aggressiveness. Cancer stem cells (CSCs) contribute to the tumorigenesis and metastasis of NSCLC. Hitherto, the mechanism by which YBX1 regulates CSCs and metastasis in NSCLC remains unclear. Here, we demonstrated that YBX1 levels were elevated in NSCLC tissues and cell lines. Enforced expression of YBX1 promoted NSCLC cells invasion, sphere forming ability and ALDH1+ population. Conversely, reduced YBX1 impaired CSC properties of NSCLC cells in vitro and tumor-initiating frequencies, as well as metastasis in vivo. Importantly, we described a mechanism whereby YBX1 directly promoted NANOG, a transcription factor, transcriptional activation. Depletion of NANOG abolished the enhanced ability of invasion and sphere formation in YBX1 elevated-A549 cells. Collectively, these findings demonstrate a novel role of YBX1 in maintaining the stemness of CSCs and metastasis, unveiling YBX1 as promising therapeutic target for NSCLC treatments.
Collapse
Affiliation(s)
- Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jing Kong
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Yang Liu
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jianglong Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yan Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250000, China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jinxiu Li
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
30
|
Jiang L, Yuan GL, Liang QL, Zhang HJ, Huang J, Cheng SA, Peng XX. Positive expression of Y-box binding protein 1 and prognosis in non-small cell lung cancer: a meta-analysis. Oncotarget 2017; 8:55613-55621. [PMID: 28903448 PMCID: PMC5589687 DOI: 10.18632/oncotarget.14732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Background Y-box binding protein 1 (YB-1) belongs to the cold shock domain protein family involved in transcription and translation. We conducted a meta-analysis of the association between YB-1 expression and the survival and clinicopathological features in NSCLC. Methods PubMed and Embase were searched to identify studies that evaluated the YB-1 expression (by immunohistochemistry) and overall survival (OS) in NSCLC. Hazard ratios (HRs) and 95% confidence intervals (CI) of OS were pooled. Odds ratios (ORs) of clinicopathological features were computed. Meta-analysis was performed using STATA 12.0 software. Results Data on 692 NSCLC patients were collected from six eligible studies. Meta-analysis revealed that YB-1 was associated with worse OS (HR = 1.59, 95% CI [1.27, 2.00], P < 0.001, fixed effect), tumor stage (OR = 0.43, 95% CI [0.22-0.82], P = 0.01, random effect), and depth of invasion (OR = 0.37, 95%CI [0.22-0.63], P < 0.001, fixed effect). A subgroup was analyzed by IHC staining to determine the location of YB-1 positive expression. Poor OS was observed in nucleus staining (pooled HR = 1.86, 95% CI [1.41, 2.45], P < 0.001). However, no statistical significance was observed in combined cytoplasmic and nuclear staining (pooled HR = 1.14, 95% CI [0.76, 1.72], P = 0.536). Conclusions Meta-analysis indicated that YB-1 overexpression is correlated with worse OS and clinicopathological features in NSCLC. Subgroup analysis revealed that the nucleus expression of YB-1 may be more closely associated with NSCLC prognosis than cytoplasmic expression.
Collapse
Affiliation(s)
- Liang Jiang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gao-Le Yuan
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi-Lian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui-Jie Zhang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jie Huang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shao-Ang Cheng
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Xia Peng
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|