1
|
Röscheise J, Klimpel M, Govindarajan P, Otte K, Laux H. Unveiling molecular secrets: Analysis of stable lentiviral packaging cell lines enables identification of novel viral gene functions. Gene Ther 2025; 32:266-276. [PMID: 40234566 DOI: 10.1038/s41434-025-00533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Lentiviral vectors (LVVs) are widely used in gene therapy due to their ability to infect both dividing and non-dividing cells. For LVV production, the creation of stable packaging cell lines with integrated genes necessary for viral replication offer a more consistent and scalable alternative to transient plasmid transfection approach. Although the development of such stable LVV packaging cell lines has been reported, the molecular changes induced by stable and inducible viral gene expression and the impact of genome integrated viral genes on cellular pathways remain poorly characterized. For better insight, we investigated the molecular characteristics of a stable LVV packaging cell line and its host cell line (HEK293T/17) by comparing differential expressed genes. This pathway analysis revealed significant changes in pathway usage between packaging and host cell lines, influenced by different viral transgenes. Gag-pol expression was found to suppress host translational machinery, while rev and VSV-G expression modulated mitochondrial pathways, including oxidative phosphorylation. HIV-1 tat expression, on the other hand, activated histone-related genes. These regulatory shifts suggest a strategic reprogramming of host cellular states to favor viral replication, curbing protein synthesis and energy production to levels that support viral assembly but impair the host's immune defense and the production of immune-related proteins. Our findings provide a deeper understanding of the molecular changes associated with stable viral gene expression, which can inform the optimization of LVV production in gene therapy applications.
Collapse
Affiliation(s)
- Jona Röscheise
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.
| | - Maximilian Klimpel
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | | | - Kerstin Otte
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| | - Holger Laux
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| |
Collapse
|
2
|
Fisher BM, Cevaal PM, Roche M, Lewin SR. HIV Tat as a latency reversing agent: turning the tables on viral persistence. Front Immunol 2025; 16:1571151. [PMID: 40292298 PMCID: PMC12021871 DOI: 10.3389/fimmu.2025.1571151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The 'shock and kill' approach to an HIV cure involves the use of latency reversing agents (LRAs) to reactivate latent HIV, with the aim to induce death of infected cells through virus induced cytolysis or immune mediated clearance. Most LRAs tested to date have been unable to overcome the blocks to transcription elongation and splicing that persist in resting CD4+ T cells. Furthermore, most LRAs target host factors and therefore have associated toxicities. Therefore, there remains a high need for HIV-specific LRAs that can also potently upregulate expression of multiply-spliced HIV RNA and viral protein. The HIV Transactivator of Transcription (Tat) protein plays an important role in viral replication - amplifying transcription from the viral promoter - but it is present at low to negligible levels in latently infected cells. As such, it has been hypothesized that providing Tat in trans could result in efficient HIV reactivation from latency. Recent studies exploring different types of Tat-based LRAs have used different nanoparticles for Tat delivery and describe potent, HIV-specific induction of multiply-spliced HIV RNA and protein ex vivo. However, there are several potential challenges to using Tat as a therapeutic, including the ability of Tat to cause systemic toxicities in vivo, limited delivery of Tat to the HIV reservoir due to poor uptake of nucleic acid by resting cells, and challenges in activating truly transcriptionally silent viruses. Identifying ways to mitigate these challenges will be critical to developing effective Tat-based LRA approaches towards an HIV cure.
Collapse
Affiliation(s)
- Bridget M. Fisher
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paula M. Cevaal
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- ATRACT Research Centre, Infectious and Inflammatory Diseases Theme, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
4
|
Kummet N, Mishra N, Diaz A, Cusick N, Klotz S, Ahmad N. Genetic Characterization of HIV-1 tat Gene from Virologically Controlled Aging Individuals with HIV on Long-Term Antiretroviral Therapy. AIDS Res Hum Retroviruses 2025; 41:143-154. [PMID: 39723946 DOI: 10.1089/aid.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4+ T-cells. We, therefore, characterized the tat gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV+) on long-term ART and improved CD4+ T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV+ were used to amplify tat gene by polymerase chain reaction followed by nucleotide sequencing and analysis. Phylogenetic analysis showed that each HIV+ tat sequences were confined to their own subtrees and well discriminated from other HIV+ sequences. Moreover, there was a low degree of viral heterogeneity and lower estimates of genetic diversity within these individuals' tat sequences, which decreased with increasing CD4 T counts in these HIV+. Most HIV+ Tat deduced amino acid sequences showed intact open reading frames and maintained the important functional domains for Tat functions, including transactivation, TAR binding, and nuclear localization. Furthermore, Tat-deduced amino acid sequences showed variation in previously characterized cytotoxic T lymphocytes (CTL) epitopes, suggesting escape mutants. In conclusion, a low degree of genetic variability and conservation of functional domains and variations in CTL epitopes were the features of tat sequences that may be contributing to viral persistence in these 20 aging individuals with HIV on long-term ART.
Collapse
Affiliation(s)
- Nathan Kummet
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Neha Mishra
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Adela Diaz
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nicholas Cusick
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stephen Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Tugizov S. HIV-1 Tat-induced disruption of epithelial junctions and epithelial-mesenchymal transition of oral and genital epithelial cells lead to increased invasiveness of neoplastic cells and the spread of herpes simplex virus and cytomegalovirus. Front Immunol 2025; 16:1541532. [PMID: 40018040 PMCID: PMC11866325 DOI: 10.3389/fimmu.2025.1541532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Human immunodeficiency virus (HIV-1) transactivator Tat is a unique multi-functional viral protein secreted by infected cells. Although its primary function is to promote HIV-1 transcription, secreted Tat interacts with neighboring cells and induces numerous disease-associated pathological changes. Despite the substantial reduction of viral load and disease burden, Tat expression and secretion persist in people living with HIV who are undergoing treatment with highly effective combination antiretroviral therapy (cART). Tat interacts with both oral and genital epithelial cells and impairs their mucosal barrier functions, which facilitates the entry of other pathogenic viruses. Tat-mediated interactions with both human papillomavirus (HPV) -infected and HPV-negative neoplastic epithelial cells lead to epithelial-mesenchymal transition and increased invasiveness of malignant cells. Likewise, Tat-induced disruption of oral epithelial cell junctions leads to herpes simplex virus-1 (HSV-1) infection and spread via exposure of its receptor, nectin-1. HIV-1 Tat facilitates infection and spread of human cytomegalovirus (HCMV) by activating mitogen-activated protein kinases (MAPK) and promoting NF-κB signaling, both critical for the replication and production of progeny virions. HIV extracellular Tat also plays a critical role in human herpesvirus 8 (HHV8) -caused Kaposi sarcoma (KS) pathogenesis by synergizing with HHV-8 lytic proteins and promoting the proliferation, angiogenesis, and migration of endothelial cells. Collectively, these findings emphasize the critical impact of HIV-1 Tat on HIV/AIDS pathogenesis during the cART era and highlight the need for further research on the molecular mechanisms underlying Tat-mediated interactions with oral and genital mucosal epithelial cells.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Mielcarska MB, Rouse BT. Viruses and the Brain-A Relationship Prone to Trouble. Viruses 2025; 17:203. [PMID: 40006958 PMCID: PMC11860391 DOI: 10.3390/v17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurological disorders, some of which are associated with viral infections, are growing due to the aging and expanding population. Despite strong defenses of the central nervous system, some viruses have evolved ways to breach them, which often result in dire consequences. In this review, we recount the various ways by which different viruses can enter the CNS, and we describe the consequences of such invasions. Consequences may manifest as acute disease, such as encephalitis, meningitis, or result in long-term effects, such as neuromuscular dysfunction, as occurs in poliomyelitis. We discuss evidence for viral involvement in the causation of well-known chronic neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as vascular dementia in the elderly. We also describe the approaches currently available to control a few of the neural viral infections. These include antivirals that are effective against human immunodeficiency virus and herpes simplex virus, as well as vaccines valuable for controlling rabies virus, poliomyelitis virus, and some flavivirus infections. There is an urgent need to better understand, at a molecular level, how viruses contribute to acute and, especially, chronic neurological diseases and to develop more precise and effective vaccines and therapies.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Giraldo-Ocampo S, Valiente-Echeverría F, Soto-Rifo R. Host RNA-Binding Proteins as Regulators of HIV-1 Replication. Viruses 2024; 17:43. [PMID: 39861832 PMCID: PMC11768693 DOI: 10.3390/v17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs. However, novel approaches aimed at identifying all the proteins bound to specific RNAs (RBPome), such as RNA interactome capture, have also contributed to expanding our understanding of the HIV-1 replication cycle, allowing the identification of RBPs with functions not only in viral RNA metabolism but also in cellular metabolism. Strikingly, several of the RBPs found through interactome capture are not canonical RBPs, meaning that they do not have conventional RNA-binding domains and are therefore not readily predicted as being RBPs. Further studies on the different cellular targets of HIV-1, such as subtypes of T cells or myeloid cells, or on the context (active replication versus reactivation from latency) are needed to fully elucidate the host RBPome bound to the viral RNA, which will allow researchers and clinicians to discover new therapeutic targets during active replication and provirus reactivation from latency.
Collapse
Affiliation(s)
- Sebastian Giraldo-Ocampo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| |
Collapse
|
8
|
Allen R, Yokota T. Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids. Molecules 2024; 29:5997. [PMID: 39770086 PMCID: PMC11677605 DOI: 10.3390/molecules29245997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy. Upon administration, TNAs primarily enter cells through endocytosis, becoming trapped inside membrane-bound vesicles known as endosomes. Studies estimate that only 1-2% of TNAs successfully escape endosomal compartments to reach the cytosol, and in some cases the nucleus, where they bind target mRNA and exert their therapeutic effect. Endosomal entrapment and inefficient nuclear localization are therefore critical bottlenecks in the therapeutic application of TNAs. This review explores the current understanding of TNA endosomal escape and nuclear transport along with strategies aimed at overcoming these challenges, including the use of endosomal escape agents, peptide-TNA conjugates, non-viral delivery vehicles, and nuclear localization signals. By improving both endosomal escape and nuclear localization, significant advances in TNA-based therapeutics can be realized, ultimately expanding their clinical utility.
Collapse
Affiliation(s)
- Randall Allen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
9
|
Scott H, Martin PE, Graham SV. Modulation of connexin 43 in viral infections. Tumour Virus Res 2024; 18:200296. [PMID: 39522757 PMCID: PMC11607658 DOI: 10.1016/j.tvr.2024.200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Connexins are essential for intercellular communication through gap junctions and the maintenance of cellular and tissue homeostasis. Connexin 43 (Cx43) is the most ubiquitously expressed connexin. As well as regulating homeostasis, Cx43 hemichannels and gap junctions play important roles in inflammation and the immune response. This, coupled with a range of non-channel functions performed by Cx43 makes it an attractive target for viruses. Recently, several groups have begun to explore the relationship between Cx43 and viral infection, with a diverse array of viruses being found to alter Cx43 hemichannels/gap junctions. Importantly, this includes several small DNA tumour viruses, which may target Cx43 to promote tumorigenesis. This review focuses on the ability of selected RNA/DNA viruses and retroviruses to either positively or negatively regulate Cx43 hemichannels and gap junctions in order to carry out their lifecycles. The role of Cx43 regulation by tumour viruses is also discussed in relation to tumour progression.
Collapse
Affiliation(s)
- Harry Scott
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| | - Patricia E Martin
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| |
Collapse
|
10
|
Lazar M, Moroti R, Barbu EC, Chitu-Tisu CE, Tiliscan C, Erculescu TM, Rosca RR, Frasila S, Schmilevschi ET, Simion V, Duca GT, Padiu IF, Andreescu DI, Anton AN, Pacurar CG, Perdun PM, Petre AM, Oprea CA, Popescu AM, Maria E, Ion DA, Olariu MC. The Impact of HIV on Early Brain Aging-A Pathophysiological (Re)View. J Clin Med 2024; 13:7031. [PMID: 39685490 DOI: 10.3390/jcm13237031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: This review aims to provide a comprehensive understanding of how HIV alters normal aging trajectories in the brain, presenting the HIV-related molecular mechanisms and pathophysiological pathways involved in brain aging. The review explores the roles of inflammation, oxidative stress, and viral persistence in the brain, highlighting how these factors contribute to neuronal damage and cognitive impairment and accelerate normal brain aging. Additionally, it also addresses the impact of antiretroviral therapy on brain aging and the biological markers associated with its occurrence. Methods: We extensively searched PubMed for English-language articles published from 2000 to 2024. The following keywords were used in the search: "HIV", "brain", "brain aging", "neuroinflammation", "HAART", and "HAND". This strategy yielded 250 articles for inclusion in our review. Results: A combination of blood-brain barrier dysfunction, with the direct effects of HIV on the central nervous system, chronic neuroinflammation, telomere shortening, neurogenesis impairments, and neurotoxicity associated with antiretroviral treatment (ART), alters and amplifies the mechanisms of normal brain aging. Conclusions: Current evidence suggests that HIV infection accelerates neurodegenerative processes of normal brain aging, leading to cognitive decline and structural brain changes at an earlier age than typically observed in the general population.
Collapse
Affiliation(s)
- Mihai Lazar
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| | - Ruxandra Moroti
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| | - Ecaterina Constanta Barbu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Emilia Chitu-Tisu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Catalin Tiliscan
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Teodora Maria Erculescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Ruxandra Raluca Rosca
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Stefan Frasila
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Emma Teodora Schmilevschi
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Vladimir Simion
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - George Theodor Duca
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Isabela Felicia Padiu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Darie Ioan Andreescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Nicoleta Anton
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cosmina Georgiana Pacurar
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Patricia Maria Perdun
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Alexandru Mihai Petre
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Constantin Adrian Oprea
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Adelina Maria Popescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Enachiuc Maria
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Daniela Adriana Ion
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Mihaela Cristina Olariu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| |
Collapse
|
11
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
12
|
Vélez-López O, Carrasquillo-Carrión K, Cantres-Rosario YM, Machín-Martínez E, Álvarez-Ríos ME, Roche-Lima A, Tosado-Rodríguez EL, Meléndez LM. Analysis of Sigma-1 Receptor Antagonist BD1047 Effect on Upregulating Proteins in HIV-1-Infected Macrophages Exposed to Cocaine Using Quantitative Proteomics. Biomedicines 2024; 12:1934. [PMID: 39335448 PMCID: PMC11428496 DOI: 10.3390/biomedicines12091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 infects monocyte-derived macrophages (MDM) that migrate into the brain and secrete virus and neurotoxic molecules, including cathepsin B (CATB), causing cognitive dysfunction. Cocaine potentiates CATB secretion and neurotoxicity in HIV-infected MDM. Pretreatment with BD1047, a sigma-1 receptor antagonist, before cocaine exposure reduces HIV-1, CATB secretion, and neuronal apoptosis. We aimed to elucidate the intracellular pathways modulated by BD1047 in HIV-infected MDM exposed to cocaine. We hypothesized that the Sig1R antagonist BD1047, prior to cocaine, significantly deregulates proteins and pathways involved in HIV-1 replication and CATB secretion that lead to neurotoxicity. MDM culture lysates from HIV-1-infected women treated with BD1047 before cocaine were compared with untreated controls using TMT quantitative proteomics, bioinformatics, Lima statistics, and pathway analyses. Results demonstrate that pretreatment with BD1047 before cocaine dysregulated eighty (80) proteins when compared with the infected cocaine group. We found fifteen (15) proteins related to HIV-1 infection, CATB, and mitochondrial function. Upregulated proteins were related to oxidative phosphorylation (SLC25A-31), mitochondria (ATP5PD), ion transport (VDAC2-3), endoplasmic reticulum transport (PHB, TMED10, CANX), and cytoskeleton remodeling (TUB1A-C, ANXA1). BD1047 treatment protects HIV-1-infected MDM exposed to cocaine by upregulating proteins that reduce mitochondrial damage, ER transport, and exocytosis associated with CATB-induced neurotoxicity.
Collapse
Affiliation(s)
- Omar Vélez-López
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Yadira M. Cantres-Rosario
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| | - Eraysy Machín-Martínez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Manuel E. Álvarez-Ríos
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| |
Collapse
|
13
|
Harshithkumar R, Shah P, Jadaun P, Mukherjee A. ROS Chronicles in HIV Infection: Genesis of Oxidative Stress, Associated Pathologies, and Therapeutic Strategies. Curr Issues Mol Biol 2024; 46:8852-8873. [PMID: 39194740 DOI: 10.3390/cimb46080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Reactive oxygen species (ROS) are widely regarded as signaling molecules and play essential roles in various cellular processes, but when present in excess, they can lead to oxidative stress (OS). Growing evidence suggests that the OS plays a critical role in the pathogenesis of HIV infection and is associated with several comorbidities in HIV-infected individuals. ROS, generated both naturally during mitochondrial oxidative metabolism and as a response to various cellular processes, can trigger host antiviral responses but can also promote viral replication. While the multifaceted roles of ROS in HIV pathophysiology clearly need more investigation, this review paper unravels the mechanisms of OS generation in the context of HIV infections, offering insights into HIV viral protein-mediated and antiretroviral therapy-generated OS. Though the viral protein Tat is significantly attributed to the endogenous cellular increase in ROS post HIV infection, this paper sums up the contribution of other viral proteins in HIV-mediated elicitation of ROS. Given the investigations recognizing the significant role of ROS in the onset and progression of diverse pathologies, the paper also explores the critical function of ROS in the mediation of an of array of pathologies associated with HIV infection and retroviral therapy. HIV patients are observed with disruption to the antioxidant defense system, the antioxidant therapy is gaining focus as a potential therapeutic intervention and is well discussed. While ROS play a significant role in the HIV scenario, further exploratory studies are imperative to identifying alternative therapeutic strategies that could mitigate the toxicities and pathologies associated with ART-induced OS.
Collapse
Affiliation(s)
- R Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Prachibahen Shah
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Pratiksha Jadaun
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| |
Collapse
|
14
|
Gudivada IP, Amajala KC. Integrative Bioinformatics Analysis for Targeting Hub Genes in Hepatocellular Carcinoma Treatment. Curr Genomics 2024; 26:48-80. [PMID: 39911278 PMCID: PMC11793067 DOI: 10.2174/0113892029308243240709073945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 06/11/2024] [Indexed: 02/07/2025] Open
Abstract
Background The damage in the liver and hepatocytes is where the primary liver cancer begins, and this is referred to as Hepatocellular Carcinoma (HCC). One of the best methods for detecting changes in gene expression of hepatocellular carcinoma is through bioinformatics approaches. Objective This study aimed to identify potential drug target(s) hubs mediating HCC progression using computational approaches through gene expression and protein-protein interaction datasets. Methodology Four datasets related to HCC were acquired from the GEO database, and Differentially Expressed Genes (DEGs) were identified. Using Evenn, the common genes were chosen. Using the Fun Rich tool, functional associations among the genes were identified. Further, protein-protein interaction networks were predicted using STRING, and hub genes were identified using Cytoscape. The selected hub genes were subjected to GEPIA and Shiny GO analysis for survival analysis and functional enrichment studies for the identified hub genes. The up-regulating genes were further studied for immunohistopathological studies using HPA to identify gene/protein expression in normal vs HCC conditions. Drug Bank and Drug Gene Interaction Database were employed to find the reported drug status and targets. Finally, STITCH was performed to identify the functional association between the drugs and the identified hub genes. Results The GEO2R analysis for the considered datasets identified 735 upregulating and 284 downregulating DEGs. Functional gene associations were identified through the Fun Rich tool. Further, PPIN network analysis was performed using STRING. A comparative study was carried out between the experimental evidence and the other seven data evidence in STRING, revealing that most proteins in the network were involved in protein-protein interactions. Further, through Cytoscape plugins, the ranking of the genes was analyzed, and densely connected regions were identified, resulting in the selection of the top 20 hub genes involved in HCC pathogenesis. The identified hub genes were: KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Further, GEPIA and Shiny GO analyses provided insights into survival ratios and functional enrichment studied for the hub genes. The HPA database studies further found that upregulating genes were involved in changes in protein expression in Normal vs HCC tissues. These findings indicated that hub genes were certainly involved in the progression of HCC. STITCH database studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, could be used as leads to identify novel drugs, and identified hub genes could also be considered as potential and promising drug targets as they are involved in the gene-chemical interaction networks. Conclusion The present study involved various integrated bioinformatics approaches, analyzing gene expression and protein-protein interaction datasets, resulting in the identification of 20 top-ranked hubs involved in the progression of HCC. They are KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Gene-chemical interaction network studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, can be used as leads to identify novel drugs, and the identified hub genes can be promising drug targets. The current study underscores the significance of targeting these hub genes and utilizing existing molecules to generate new molecules to combat liver cancer effectively and can be further explored in terms of drug discovery research to develop treatments for HCC.
Collapse
Affiliation(s)
- Indu Priya Gudivada
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Krishna Chaitanya Amajala
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| |
Collapse
|
15
|
Park SY, Shin D, Yoon YS, Park S, Im SS, Kim Y, Kim YS, Choi C, Hur MW. TAT38 and TAT38 mimics potently inhibit adipogenesis by repressing C/EBPα, PPARγ, Pi-PPARγ, and SREBP1 expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195030. [PMID: 38670485 DOI: 10.1016/j.bbagrm.2024.195030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Antiretroviral therapy-naive people living with HIV possess less fat than people without HIV. Previously, we found that HIV-1 transactivator of transcription (TAT) decreases fat in ob/ob mice. The TAT38 (a.a. 20-57) is important in the inhibition of adipogenesis and contains three functional domains: Cys-ZF domain (a.a. 20-35 TACTNCYCAKCCFQVC), core-domain (a.a. 36-46, FITKALGISYG), and protein transduction domain (PTD)(a.a. 47-57, RAKRRQRRR). Interestingly, the TAT38 region interacts with the Cyclin T1 of the P-TEFb complex, of which expression increases during adipogenesis. The X-ray crystallographic structure of the complex showed that the Cys-ZF and the core domain bind to the Cyclin T1 via hydrophobic interactions. To prepare TAT38 mimics with structural and functional similarities to TAT38, we replaced the core domain with a hydrophobic aliphatic amino acid (from carbon numbers 5 to 8). The TAT38 mimics with 6-hexanoic amino acid (TAT38 Ahx (C6)) and 7-heptanoic amino acid (TAT38 Ahp (C7)) inhibited adipogenesis of 3T3-L1 potently, reduced cellular triglyceride content, and decreased body weight of diet-induced obese (DIO) mice by 10.4-11 % in two weeks. The TAT38 and the TAT38 mimics potently repressed the adipogenic transcription factors genes, C/EBPα, PPARγ, and SREBP1. Also, they inhibit the phosphorylation of PPARγ. The TAT peptides may be promising candidates for development into a drug against obesity or diabetes.
Collapse
Affiliation(s)
- Sun-Young Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 134, ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Republic of Korea
| | - Dongyoon Shin
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam, Republic of Korea; Department of Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Young So Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 134, ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Republic of Korea
| | - Sujin Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 134, ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Yeongshin Kim
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam, Republic of Korea; Department of Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Young-Soo Kim
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam, Republic of Korea; Department of Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - CheolSoo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Division of Endocrinology & Metabolism, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Man-Wook Hur
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 134, ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Republic of Korea.
| |
Collapse
|
16
|
Selvam D, D'silva A, Panchapakesan A, Gohil Y, Singh J, Hanna LE, Ranga U. The expression of HIV-1 tat in Lactococcus lactis. Protein Expr Purif 2024; 217:106443. [PMID: 38360084 DOI: 10.1016/j.pep.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Efficient expression of functional proteins in heterologous hosts has become the pivotal focus of modern biotechnology and biomedical research. To this end, multiple alternatives to E. coli are being explored for recombinant protein expression. L. lactis, being a gram-positive organism, circumvents the need for an endotoxin removal step during protein purification. We report here the optimisation of the expression of HIV-1 Tat, a notoriously difficult protein, in Lactococcus lactis system. We evaluated five different promoters in two different Lactococcus lactis strains and examined the effect of pH, glucose, and induction time on the yield and purity of Tat. Finally, the recombinant Tat was functionally competent in transactivating the HIV-1 promoter in HLM-1 reporter cells. Our work provides a scaffold for future work on the expression of toxic proteins in Lactococcus lactis.
Collapse
Affiliation(s)
- Deepak Selvam
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India; National Institute for Research in Tuberculosis, Chennai, India
| | - Anish D'silva
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Arun Panchapakesan
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Yuvrajsinh Gohil
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Jayendra Singh
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | | - Udaykumar Ranga
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
| |
Collapse
|
17
|
Apetroaei MM, Velescu BȘ, Nedea MI(I, Dinu-Pîrvu CE, Drăgănescu D, Fâcă AI, Udeanu DI, Arsene AL. The Phenomenon of Antiretroviral Drug Resistance in the Context of Human Immunodeficiency Virus Treatment: Dynamic and Ever Evolving Subject Matter. Biomedicines 2024; 12:915. [PMID: 38672269 PMCID: PMC11048092 DOI: 10.3390/biomedicines12040915] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) is a significant global health issue that affects a substantial number of individuals across the globe, with a total of 39 million individuals living with HIV/AIDS. ART has resulted in a reduction in HIV-related mortality. Nevertheless, the issue of medication resistance is a significant obstacle in the management of HIV/AIDS. The unique genetic composition of HIV enables it to undergo rapid mutations and adapt, leading to the emergence of drug-resistant forms. The development of drug resistance can be attributed to various circumstances, including noncompliance with treatment regimens, insufficient dosage, interactions between drugs, viral mutations, preexposure prophylactics, and transmission from mother to child. It is therefore essential to comprehend the molecular components of HIV and the mechanisms of antiretroviral medications to devise efficacious treatment options for HIV/AIDS.
Collapse
Affiliation(s)
- Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Cristina Elena Dinu-Pîrvu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Anca Ionela Fâcă
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
- Marius Nasta Institute of Pneumophthisiology, 90 Viilor Street, 050159 Bucharest, Romania
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
- Marius Nasta Institute of Pneumophthisiology, 90 Viilor Street, 050159 Bucharest, Romania
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
- Marius Nasta Institute of Pneumophthisiology, 90 Viilor Street, 050159 Bucharest, Romania
| |
Collapse
|
18
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Mitra A, Dasgupta A, Mitra D. Cellular HSF1 expression is induced during HIV-1 infection by activation of its promoter mediated through the cooperative interaction of HSF1 and viral Nef protein. Arch Biochem Biophys 2024; 754:109947. [PMID: 38417690 DOI: 10.1016/j.abb.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The Human Immunodeficiency Virus-1 (HIV-1) tends to activate cellular promoters driving expression of pro-viral genes by complex host-virus interactions for productive infection. We have previously demonstrated that expression of such a positive host factor HSF1 (heat shock factor 1) is elevated during HIV-1 infection; however, the mechanism remains to be elucidated. In the present study, we therefore examined whether HSF1 promoter is induced during HIV-1 infection leading to up-regulation of hsf1 gene expression. We mapped the putative transcription start site (TSS) predicted by Eukaryotic promoter database and deletion constructs of the predicted promoter region were tested through luciferase assay to identify the active promoter. The 347 bp upstream to 153 bp downstream region around the putative TSS displayed the highest activity and both Sp1 (stimulating protein 1) and HSF1 itself were identified to be important for its basal activation. Activity of HSF1 promoter was further stimulated during HIV-1 infection in CD4+ T cells, where interestingly the HSF1-site itself seems to play a major role. In addition, HIV-1 protein Nef (negative factor) was also observed to be responsible for the virus-mediated induction of hsf1 gene expression. Chromatin-immunoprecipitation assays further demonstrate that Nef and HSF1 are co-recruited to the HSF1-binding site and cooperatively act on this promoter. The interplay between host HSF1 and viral Nef on HSF1 promoter eventually leads to increase in HSF1 expression during HIV-1 infection. Understanding the mechanism of HSF1 up-regulation during HIV-1 infection might contribute to future antiviral strategies as HSF1 is a positive regulator of virus replication.
Collapse
Affiliation(s)
- Alapani Mitra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| | - Anindita Dasgupta
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| | - Debashis Mitra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| |
Collapse
|
20
|
Patarca R, Haseltine WA. Bioinformatics Insights on Viral Gene Expression Transactivation: From HIV-1 to SARS-CoV-2. Int J Mol Sci 2024; 25:3378. [PMID: 38542351 PMCID: PMC10970485 DOI: 10.3390/ijms25063378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
21
|
Mallorson R, Miyagi E, Kao S, Sukegawa S, Saito H, Fabryova H, Morellatto Ruggieri L, Mediouni S, Valente ST, Strebel K. Transcriptional regulation of the HIV-1 inhibitory factor human mannose receptor 1 by the myeloid-specific transcription factor PU.1. J Virol 2024; 98:e0170223. [PMID: 38078733 PMCID: PMC10804955 DOI: 10.1128/jvi.01702-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
HIV-1 infection of human macrophages leads to the downmodulation of human mannose receptor 1 (hMRC1), a cell-surface glycoprotein that is involved in the host innate immune response. We previously reported that downmodulation of hMRC1 involves the transactivator of transcription (Tat)-dependent transcriptional silencing of the hMRC1 promoter. However, the inhibitory effect of Tat on hMRC1 transcription was indirect and involved inhibition of the transcriptional activator PU.1, which normally upregulates hMRC1 expression in macrophages and other myeloid cells. We cloned a 284-bp fragment of the hMRC1 promoter, and within it, we identified four PU.1 box elements. We assessed the relative contribution of each of the four PU.1 boxes to PU.1-dependent transcriptional regulation and, surprisingly, found that only one of the four PU.1 boxes [PU.1(b)] was critically required for PU.1-mediated upregulation of luciferase expression. Transfer of this PU.1 box to a heterologous promoter conferred PU.1 responsiveness to an otherwise PU.1 insensitive promoter. Electrophoretic mobility shift assays identified this PU.1 box as a direct binding site for PU.1 both in the context of the hMRC1 promoter and the heterologous promoter. Furthermore, mutational analysis of the PU.1 protein identified the C-terminal DNA-binding domain in PU.1 as the region responsible for interaction with the PU.1 box. Recombinant HIV-1 Tat protein did not bind to the hMRC1 promoter element but efficiently interfered with the binding of PU.1 protein to the hMRC1 promoter. Thus, Tat is likely to inhibit the formation of active PU.1 transcription complexes, presumably by binding to and depleting common transcriptional cofactors.IMPORTANCEHIV-1 infection of cells results in the modulation of cellular gene expression by virus-encoded proteins in a manner that benefits the virus. We reported that HIV-1 transactivator of transcription (Tat) dysregulates the expression of the human mannose receptor 1 (hMRC1). hMRC1 is involved in the innate immune response of macrophages to foreign pathogens. Tat does not act directly on the hMRC1 promoter but instead inhibits PU.1, a cellular transcription factor regulating hMRC1 gene expression. Here, we characterize the PU.1-dependent regulation of hMRC1 expression. We identified four potential PU.1 binding sites in the hMRC1 promoter region but found that only one, PU.1(b), functioned as a true binding site for PU.1. Transfer of the PU.1(b) box to a heterologous promoter did not activate this promoter per se but rendered it responsive to PU.1. Our results support the view that PU.1 acts as a transcriptional co-factor whose activity can be regulated by HIV-1 Tat.
Collapse
Affiliation(s)
- Rosa Mallorson
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Eri Miyagi
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sandra Kao
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sayaka Sukegawa
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideki Saito
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Helena Fabryova
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Sonia Mediouni
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
23
|
Kuznetsova A, Kim K, Tumanov A, Munchak I, Antonova A, Lebedev A, Ozhmegova E, Orlova-Morozova E, Drobyshevskaya E, Pronin A, Prilipov A, Kazennova E. Features of Tat Protein in HIV-1 Sub-Subtype A6 Variants Circulating in the Moscow Region, Russia. Viruses 2023; 15:2212. [PMID: 38005889 PMCID: PMC10675479 DOI: 10.3390/v15112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Tat, the trans-activator of transcription, is a multifunctional HIV-1 protein that can induce chronic inflammation and the development of somatic diseases in HIV-infected patients. Natural polymorphisms in Tat can impact the propagation of the inflammatory signal. Currently, Tat is considered an object for creating new therapeutic agents. Therefore, the identification of Tat protein features in various HIV-1 variants is a relevant task. The purpose of the study was to characterize the genetic variations of Tat-A6 in virus variants circulating in the Moscow Region. The authors analyzed 252 clinical samples from people living with HIV (PLWH) with different stages of HIV infection. Nested PCR for two fragments (tat1, tat2) with subsequent sequencing, subtyping, and statistical analysis was conducted. The authors received 252 sequences for tat1 and 189 for tat2. HIV-1 sub-subtype A6 was identified in 250 samples. The received results indicated the features of Tat1-A6 in variants of viruses circulating in the Moscow Region. In PLWH with different stages of HIV infection, C31S in Tat1-A6 was detected with different occurrence rates. It was demonstrated that Tat2-A6, instead of a functional significant 78RGD80 motif, had a 78QRD80 motif. Herewith, G79R in Tat2-A6 was defined as characteristic amino acid substitution for sub-subtype A6. Tat2-A6 in variants of viruses circulating in the Moscow Region demonstrated high conservatism.
Collapse
Affiliation(s)
- Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Kristina Kim
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Alexander Tumanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Iana Munchak
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Aleksey Lebedev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
- Mechnikov Scientific Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Elena Orlova-Morozova
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (E.O.-M.); (E.D.); (A.P.)
| | - Elena Drobyshevskaya
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (E.O.-M.); (E.D.); (A.P.)
| | - Alexander Pronin
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (E.O.-M.); (E.D.); (A.P.)
| | - Aleksey Prilipov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Elena Kazennova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| |
Collapse
|
24
|
Yandrapally S, Agarwal A, Chatterjee A, Sarkar S, Mohareer K, Banerjee S. Mycobacterium tuberculosis EspR modulates Th1-Th2 shift by transcriptionally regulating IL-4, steering increased mycobacterial persistence and HIV propagation during co-infection. Front Immunol 2023; 14:1276817. [PMID: 37928551 PMCID: PMC10621737 DOI: 10.3389/fimmu.2023.1276817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) and HIV are known to mutually support each other during co-infection by multiple mechanisms. This synergistic influence could be either by direct interactions or indirectly through secreted host or pathogen factors that work in trans. Mtb secretes several virulence factors to modulate the host cellular environment for its persistence and escaping cell-intrinsic immune responses. We hypothesized that secreted Mtb transcription factors that target the host nucleus can directly interact with host DNA element(s) or HIV LTR during co-infection, thereby modulating immune gene expression, or driving HIV transcription, helping the synergistic existence of Mtb and HIV. Here, we show that the Mtb-secreted protein, EspR, a transcription regulator, increased mycobacterial persistence and HIV propagation during co-infection. Mechanistically, EspR localizes to the nucleus of the host cells during infection, binds to its putative cognate motif on the promoter region of the host IL-4 gene, activating IL-4 gene expression, causing high IL-4 titers that induce a Th2-type microenvironment, shifting the macrophage polarization to an M2 state as evident from CD206 dominant population over CD64. This compromised the clearance of the intracellular mycobacteria and enhanced HIV propagation. It was interesting to note that EspR did not bind to HIV LTR, although its transient expression increased viral propagation. This is the first report of an Mtb transcription factor directly regulating a host cytokine gene. This augments our understanding of the evolution of Mtb immune evasion strategies and unveils how Mtb aggravates comorbidities, such as HIV co-infection, by modulating the immune microenvironment.
Collapse
|
25
|
Eren E, Watts NR, Randazzo D, Palmer I, Sackett DL, Wingfield PT. Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev. Structure 2023; 31:1233-1246.e5. [PMID: 37572662 PMCID: PMC10592302 DOI: 10.1016/j.str.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
HIV-1 Rev is an essential regulatory protein that transports unspliced and partially spliced viral mRNAs from the nucleus to the cytoplasm for the expression of viral structural proteins. During its nucleocytoplasmic shuttling, Rev interacts with several host proteins to use the cellular machinery for the advantage of the virus. Here, we report the 3.5 Å cryo-EM structure of a 4.8 MDa Rev-tubulin ring complex. Our structure shows that Rev's arginine-rich motif (ARM) binds to both the acidic surfaces and the C-terminal tails of α/β-tubulin. The Rev-tubulin interaction is functionally homologous to that of kinesin-13, potently destabilizing microtubules at sub-stoichiometric levels. Expression of Rev in astrocytes and HeLa cells shows that it can modulate the microtubule cytoskeleton within the cellular environment. These results show a previously undefined regulatory role of Rev.
Collapse
Affiliation(s)
- Elif Eren
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira Palmer
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
27
|
Anastasopoulou S, Georgakopoulos T, Mouzaki A. HIV-1 Transcriptional Activator Tat Inhibits IL2 Expression by Preventing the Presence of Pol II on the IL2 Promoter. Biomolecules 2023; 13:881. [PMID: 37371461 DOI: 10.3390/biom13060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-1 infection leads to a gradual loss of T helper cells, chronic immune activation, and eventual immune system breakdown. HIV-1 causes deregulation of the expression of IL-2, a cytokine important for T helper cell growth and survival, which is downregulated in HIV-1 patients. The present study addresses the regulation of IL2 expression via HIV-1 Tat transcriptional activator. We used J-LAT cells, a T cell line that serves as a latency model for studies of HIV-1 expression in T cells, and as controls a T cell line lacking HIV-1 elements and a T cell line with a stably integrated copy of the HIV-1-LTR promoter. We show that endogenously expressed Tat inhibits IL2 transcription in J-Lat cells via its presence in the ARRE-1/2 elements of the IL2 promoter and that the inhibition of IL2 expression is mediated by Tat inhibiting Pol II activity at the IL2 promoter, which is mediated by preventing the presence of Pol II at the ARRE-1/2 elements. Overall, Tat is present at the IL2 promoter, apart from its cognate HIV-1 LTR target. This supports our current knowledge of how HIV-1 affects the host transcriptional machinery and reflects the potential of Tat to disrupt transcriptional regulation of host genes to manipulate cell responses.
Collapse
Affiliation(s)
- Spyridoula Anastasopoulou
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26500 Patras, Greece
| | - Tassos Georgakopoulos
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26500 Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26500 Patras, Greece
| |
Collapse
|
28
|
Adolph RS, Beck E, Schweimer K, Di Fonzo A, Weyand M, Rösch P, Wöhrl BM, Steegborn C. Molecular Mechanism of Sirtuin 1 Inhibition by Human Immunodeficiency Virus 1 Tat Protein. Life (Basel) 2023; 13:life13040949. [PMID: 37109478 PMCID: PMC10144703 DOI: 10.3390/life13040949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Sirtuins are NAD+-dependent protein lysine deacylases implicated in metabolic regulation and aging-related dysfunctions. The nuclear isoform Sirt1 deacetylates histones and transcription factors and contributes, e.g., to brain and immune cell functions. Upon infection by human immunodeficiency virus 1 (HIV1), Sirt1 deacetylates the viral transactivator of transcription (Tat) protein to promote the expression of the viral genome. Tat, in turn, inhibits Sirt1, leading to the T cell hyperactivation associated with HIV infection. Here, we describe the molecular mechanism of Tat-dependent sirtuin inhibition. Using Tat-derived peptides and recombinant Tat protein, we mapped the inhibitory activity to Tat residues 34–59, comprising Tat core and basic regions and including the Sirt1 deacetylation site Lys50. Tat binds to the sirtuin catalytic core and inhibits Sirt1, Sirt2, and Sirt3 with comparable potencies. Biochemical data and crystal structures of sirtuin complexes with Tat peptides reveal that Tat exploits its intrinsically extended basic region for binding to the sirtuin substrate binding cleft through substrate-like β-strand interactions, supported by charge complementarity. Tat Lys50 is positioned in the sirtuin substrate lysine pocket, although binding and inhibition do not require prior acetylation and rely on subtle differences to the binding of regular substrates. Our results provide mechanistic insights into sirtuin regulation by Tat, improving our understanding of physiological sirtuin regulation and the role of this interaction during HIV1 infection.
Collapse
Affiliation(s)
- Ramona S. Adolph
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Eileen Beck
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Kristian Schweimer
- Department of Biopolymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Andrea Di Fonzo
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Michael Weyand
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Paul Rösch
- Department of Biopolymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Birgitta M. Wöhrl
- Department of Biopolymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
29
|
Decle-Carrasco S, Rodríguez-Piña AL, Rodríguez-Zapata LC, Castano E. Current research on viral proteins that interact with fibrillarin. Mol Biol Rep 2023; 50:4631-4643. [PMID: 36928641 PMCID: PMC10018631 DOI: 10.1007/s11033-023-08343-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
The nucleolus is a multifunctional nuclear domain primarily dedicated to ribosome biogenesis. Certain viruses developed strategies to manipulate host nucleolar proteins to facilitate their replication by modulating ribosomal RNA (rRNA) processing. This association interferes with nucleolar functions resulting in overactivation or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and affecting stress response. The nucleolar protein fibrillarin (FBL) is an important target of some plant and animal viruses. FBL is an essential and highly conserved S-adenosyl methionine (SAM) dependent methyltransferase, capable of rRNA degradation by its intrinsically disordered region (IDR), the glycine/arginine-rich (GAR) domain. It forms a ribonucleoprotein complex that directs 2'-O-methylations in more than 100 sites of pre-rRNAs. It is involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. The interaction with animal viruses, including human viruses, triggered its redistribution to the nucleoplasm and cytoplasm, interfering with its role in pre-rRNA processing. Viral-encoded proteins with IDRs as nucleocapsids, matrix, Tat protein, and even a viral snoRNA, can associate with FBL, forcing the nucleolar protein to undergo atypical functions. Here we review the molecular mechanisms employed by animal and human viruses to usurp FBL functions and the effect on cellular processes, particularly in ribosome biogenesis.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Alma Laura Rodríguez-Piña
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
30
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
31
|
Ghanam RH, Eastep GN, Saad JS. Structural Insights into the Mechanism of HIV-1 Tat Secretion from the Plasma Membrane. J Mol Biol 2023; 435:167880. [PMID: 36370804 PMCID: PMC9822876 DOI: 10.1016/j.jmb.2022.167880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) is a small, intrinsically disordered basic protein that plays diverse roles in the HIV-1 replication cycle, including promotion of efficient viral RNA transcription. Tat is released by infected cells and subsequently absorbed by healthy cells, thereby contributing to HIV-1 pathogenesis including HIV-associated neurocognitive disorder. It has been shown that, in HIV-1-infected primary CD4 T-cells, Tat accumulates at the plasma membrane (PM) for secretion, a mechanism mediated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural basis for Tat interaction with the PM and thereby secretion is lacking. Herein, we employed NMR and biophysical methods to characterize Tat86 (86 amino acids) interactions with PI(4,5)P2 and lipid nanodiscs (NDs). Our data revealed that Arg49, Lys50 and Lys51 (RKK motif) constitute the PI(4,5)P2 binding site, that Tat86 interaction with lipid NDs is dependent on PI(4,5)P2 and phosphatidylserine (PS), and that the arginine-rich motif (RRQRRR) preferentially interacts with PS. Furthermore, we show that Trp11, previously implicated in Tat secretion, penetrates deeply in the membrane; substitution of Trp11 severely reduced Tat86 interaction with membranes. Deletion of the entire highly basic region and Trp11 completely abolished Tat86 binding to lipid NDs. Our data support a mechanism by which HIV-1 Tat secretion from the PM is mediated by a tripartite signal consisting of binding of the RKK motif to PI(4,5)P2, arginine-rich motif to PS, and penetration of Trp11 in the membrane. Altogether, these findings provide new insights into the molecular requirements for Tat binding to membranes during secretion.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gunnar N Eastep
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
32
|
Iyer K, Mitra A, Mitra D. Identification of 5' upstream sequence involved in HSPBP1 gene transcription and its downregulation during HIV-1 infection. Virus Res 2023; 324:199034. [PMID: 36581045 DOI: 10.1016/j.virusres.2022.199034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
The Human Immunodeficiency Virus-1 (HIV-1) is known to modulate the host environment for successful replication and propagation like other viruses. The virus utilises its proteins to interact with or modulate host factors and host signalling pathways that may otherwise restrict the virus. A previous study from our lab has shown that the host heat shock protein 70 (HSP70) binding protein (HSPBP1) is a co-chaperone that inhibits viral replication. We have also shown that the virus downregulates HSPBP1 during infection. However, the mechanism of downregulation remains to be elucidated. In the present study, we hypothesized that the HSPBP1 promoter may be repressed during infection leading to its downmodulation at the RNA and protein levels. The 5' upstream region of the HSPBP1 gene was first mapped and it was identified that a fragment comprising of a ∼600 bp upstream region of the transcription start site show the highest promoter-like activity. Further, the Sp1 transcription factor was shown to be essential for normal promoter activation. Our results further demonstrate that HIV-1 downregulates the activity of the identified promoter. It was seen that the viral transactivator protein, Tat, was responsible for the downmodulation of the HSPBP1 promoter. HIV-1 Tat is known to bind and regulate several cellular promoters during infection, thereby making the environment conducive for establishment of the virus. Our results further show that Tat is recruited to the HSPBP1 promoter and in the presence of Tat, recruitment of Sp1 on HSPBP1 promoter was decreased, which explains the suppression of HSPBP1 during HIV-1 infection. Therefore, this study further adds to the list of cellular promoters that are modulated by Tat during HIV-1 infection either directly or indirectly.
Collapse
Affiliation(s)
- Kruthika Iyer
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Alapani Mitra
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Debashis Mitra
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India.
| |
Collapse
|
33
|
Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas Cure for HIV/AIDS. Int J Mol Sci 2023; 24:1563. [PMID: 36675077 PMCID: PMC9863116 DOI: 10.3390/ijms24021563] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections and HIV-induced acquired immunodeficiency syndrome (AIDS) continue to represent a global health burden. There is currently no effective vaccine, nor any cure, for HIV infections; existing antiretroviral therapy can suppress viral replication, but only as long as antiviral drugs are taken. HIV infects cells of the host immune system, and it can establish a long-lived viral reservoir, which can be targeted and edited through gene therapy. Gene editing platforms based on the clustered regularly interspaced palindromic repeat-Cas system (CRISPR-Cas) have been recognized as promising tools in the development of gene therapies for HIV infections. In this review, we evaluate the current landscape of CRISPR-Cas-based therapies against HIV, with an emphasis on the infection biology of the virus as well as the activity of host restriction factors. We discuss the potential of a combined CRISPR-Cas approach that targets host and viral genes to activate antiviral host factors and inhibit viral replication simultaneously. Lastly, we focus on the challenges and potential solutions of CRISPR-Cas gene editing approaches in achieving an HIV cure.
Collapse
Affiliation(s)
| | | | | | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
34
|
Ju X, Wang Z, Cai D, Xu H, Bello SF, Zhang S, Zhu W, Ji C, Nie Q. TAT gene polymorphism and its relationship with production traits in Muscovy ducks (Cairina Moschata). Poult Sci 2023; 102:102551. [PMID: 36972669 PMCID: PMC10050636 DOI: 10.1016/j.psj.2023.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
In a previous study, the laying pattern of Muscovy duck was explored by macro-fitting the laying curve of Muscovy duck, and transcriptome sequencing technique of the ovarian tissues was used to screen the egg-related gene "TAT." Moreover, recent results have shown that TAT is expressed in organs such as oviduct, ovary, and testis. The objective of this study is to examine the effect of TAT gene on egg production traits of Muscovy ducks. First, the expression levels of TAT gene in highest producing (HP) and lowest producing (LP) in 3 tissues related to reproduction were examined, and the results indicated that the expression of TAT gene in hypothalamus was significantly different between HP and LP groups. Then, 6 SNP loci (g. 120G>T, g, 122G>A, g, 254G> A, g. 270C >T, g, 312G>A, and g. 341C>A) were detected in TAT gene. Further, association analysis between the six SNP loci of TAT gene and egg production traits of 652 individual Muscovy ducks was done. The results showed that g. 254G>A and g. 270C>T were significantly correlated (P < 0.05 or 0.001) with the egg production traits of Muscovy ducks. This study elucidated the molecular mechanism that TAT gene might be regulating the egg production traits of Muscovy ducks.
Collapse
|
35
|
Jie W, Rui-Fen Z, Zhong-Xiang H, Yan W, Wei-Na L, Yong-Ping M, Jing S, Jing-Yi C, Wan-Hong L, Xiao-Hua H, Zhi L, Yan S. Inhibition of cell proliferation by Tas of foamy viruses through cell cycle arrest or apoptosis underlines the different mechanisms of virus-host interactions. Virulence 2022; 13:342-354. [PMID: 35132916 PMCID: PMC8837258 DOI: 10.1080/21505594.2022.2029329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses belong to the Spumaretrovirinae subfamily member of the Retroviridae family and produce nonpathogenic infection to hosts in the natural conditions. However, infections of foamy viruses can dramatically cause severe cytopathic effects in vitro. To date, the exact molecular mechanism has remained unclear which implied the tremendous importance of virus-host cell immune reactions. In this study, we found that the transactivator Tas in two foamy viruses isolated from Old World Monkey (OWM) induced obvious inhibition of cell proliferation via the upregulation of Foxo3a expression. It was mediated by the generation of ROS and the initiation of ER stress, and ultimately, the mitochondrial apoptosis pathway was triggered. Notably, PFV Tas contributed to the accumulation of G0/G1 phase cycle arrest induced by the activation of the p53 signaling pathway and the nuclear transportation of HDAC4 via upregulating PPM1E expression. Together, these results demonstrated the different survival strategies by which foamy virus can hijack host cell cytokines and regulate virus-host cell interactions.
Collapse
Affiliation(s)
- Wei Jie
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Zhang Rui-Fen
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Hu Zhong-Xiang
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Wu Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wei-Na
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Ma Yong-Ping
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Song Jing
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Chen Jing-Yi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wan-Hong
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - He Xiao-Hua
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - Li Zhi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Sun Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| |
Collapse
|
36
|
Singh A, Kumar V, Mishra A, Singh VK. Targeting the HIV-1 Tat and Human Tat Protein Complex through Natural
Products: An In Silico Docking and Molecular Dynamics Simulation
Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220330122542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Tat protein is considered essential for substantial HIV-1 replication, and is also
required to break HIV-1 latency, resulting in productive HIV replication. The multifaceted regulatory role
of HIV Tat and the fact that it is expressed in the early stages of HIV infection justify its potential as an
anti-HIV drug target.
Objective:
The present study was undertaken with the aim to target HIV-1 Tat protein with natural compounds
which could help in identifying potential inhibitors against HIV-1 Tat.
Methods:
In this study, we compared the binding of Tat protein and Human P-TEFb Tat protein complex
(TPC) with phyto-steroids and terpenes to evaluate their potential for HIV-1 treatment. The docking ability
of plant products with HIV-1 Tat and TPC was studied with respect to dissociation constant, geometric
shape complementary score, approximate interface area, and binding energy using Patch dock and
YASARA. Molecular dynamics simulation was set up to investigate the interactions of the natural compounds
with Tat protein and human tat protein complex (TPC).
Results:
The binding energy and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A
with Tat and TPC were comparable to antiretroviral drugs, Maraviroc and Emtricitabine. The natural
products, Diosgenin, Ginkgolide A and Catharanthine, showed the highest binding energy and were stable
with Tat protein and TPC in the entire MD simulation run.
Conclusion:
The natural products, Diosgenin, Ginkgolide A and Catharanthine, showed highest binding
energy and were stable with Tat protein and TPC in the entire MD simulation run. The binding energy
and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A with Tat and TPC were comparable
to antiretroviral drugs, Maraviroc and Emtricitabine.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Vipin Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Vinay Kumar Singh
- Centre for
Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
37
|
The Myeloid-Specific Transcription Factor PU.1 Upregulates Mannose Receptor Expression but Represses Basal Activity of the HIV-LTR Promoter. J Virol 2022; 96:e0065222. [PMID: 35766490 PMCID: PMC9327697 DOI: 10.1128/jvi.00652-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human mannose receptor 1 (MRC1) is a cell surface receptor expressed in macrophages and other myeloid cells that inhibits human immunodeficiency virus type 1 (HIV-1) particle release by tethering virions to producer cell membranes. HIV-1 counteracts MRC1 expression by inhibiting mrc1 transcription. Here, we investigated the mechanism of MRC1 downregulation in HIV-1-infected macrophages. We identified the myeloid cell-specific transcription factor PU.1 as critical for regulating MRC1 expression. In the course of our study, we recognized a complex interplay between HIV-1 Tat and PU.1 transcription factors: Tat upregulated HIV-1 gene expression but inhibited mrc1 transcription, whereas PU.1 inhibited HIV-1 transcription but activated MRC1 expression. Disturbing this equilibrium by silencing PU.1 resulted in increased HIV-1 gene expression and reduced MRC1 promoter activity. Our study identified PU.1 as a central player in transcriptional control, regulating a complex interplay between viral and host gene expression in HIV-infected macrophages. IMPORTANCE HIV-1 replication in primary human cells depends on the activity of virus-encoded proteins but also involves cellular factors that can either promote (viral dependency factors) or inhibit (host restriction factors) virus replication. In previous work, we identified human MRC1 as a macrophage-specific host restriction factor that inhibits the detachment of viral particles from infected cells. Here, we report that HIV-1 counteracts this effect of MRC1 by imposing a transcriptional block on cellular MRC1 gene expression. The transcriptional inhibition of the MRC1 gene is accomplished by Tat, an HIV-1 factor whose best-described function actually is the enhancement of HIV-1 gene expression. Thus, HIV-1 has evolved to use the same protein for (i) activation of its own gene expression while (ii) inhibiting expression of MRC1 and other host factors.
Collapse
|
38
|
T-cell evasion and invasion during HIV-1 infection: The role of HIV-1 Tat protein. Cell Immunol 2022; 377:104554. [DOI: 10.1016/j.cellimm.2022.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
39
|
Cafaro A, Ensoli B. HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Rev Vaccines 2022; 21:1243-1253. [PMID: 35695268 DOI: 10.1080/14760584.2022.2089119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Upon the introduction of the combination antiretroviral therapy (cART), HIV infection has become a chronic disease. However, cART is unable to eradicate the virus and fails to restore the CD4 counts in about 30% of the treated individuals. Furthermore, treatment is life-long, and it does not protect from morbidities typically observed in the elderly. Therapeutic vaccines represent the most cost-effective intervention to intensify or replace cART. AREAS COVERED Here, we briefly discuss the obstacles to the development and evaluation of the efficacy of therapeutic vaccines and review recent approaches evaluated in clinical trials. EXPERT OPINION Although vaccines were generally safe and immunogenic, evidence of efficacy was negligible or marginal in most trials. A notable exception is the therapeutic Tat vaccine approach showing promising results of cART intensification, with CD4 T-cell increase and proviral load reduction beyond those afforded by cART alone. Rationale and evidence in support of choosing Tat as the vaccine target are thoroughly discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
40
|
Khan N, Halcrow PW, Afghah Z, Baral A, Geiger J, Chen X. HIV-1 Tat endocytosis and retention in endolysosomes affects HIV-1 Tat-induced LTR transactivation in astrocytes. FASEB J 2022; 36:e22184. [PMID: 35113458 PMCID: PMC9627655 DOI: 10.1096/fj.202101722r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Peter W. Halcrow
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Zahra Afghah
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Aparajita Baral
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Xuesong Chen
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| |
Collapse
|
41
|
Abstract
Genetically-characterizing full-length HIV-1 RNA is critical for identifying genetically-intact genomes and for comparing these RNA genomes to proviral DNA. We have developed a method for sequencing plasma-derived RNA using long-range sequencing (PRLS assay; ∼8.3 kb from gag to the 3′ end or ∼5 kb from integrase to the 3′ end). We employed the gag-3′ PRLS assay to sequence HIV-1 RNA genomes from ART-naive participants during acute/early infection (n = 6) or chronic infection (n = 2). On average, only 65% of plasma-derived genomes were genetically-intact. Defects were found in all genomic regions but were concentrated in env and pol. We compared these genomes to near-full-length proviral sequences from paired peripheral blood mononuclear cell (PBMC) samples for the acute/early group and found that near-identical (>99.98% identical) sequences were identified only during acute infection. For three participants who initiated therapy during acute infection, we used the int-3′ PRLS assay to sequence plasma-derived genomes from an analytical treatment interruption and identified 100% identical genomes between pretherapy and rebound time points. The PRLS assay provides a new level of sensitivity for understanding the genetic composition of plasma-derived HIV-1 RNA from viremic individuals either pretherapy or after treatment interruption, which will be invaluable in assessing possible HIV-1 curative strategies. IMPORTANCE We developed novel plasma-derived RNA using long-range sequencing assays (PRLS assay; 8.3 kb, gag-3′, and 5.0 kb, int-3′). Employing the gag-3′ PRLS assay, we found that 26% to 51% of plasma-derived genomes are genetically-defective, largely as a result of frameshift mutations and deletions. These genetic defects were concentrated in the env region compared to gag and pol, likely a reflection of viral immune escape in env during untreated HIV-1 infection. Employing the int-3′ PRLS assay, we found that analytical treatment interruption (ATI) plasma-derived sequences were identical and genetically-intact. Several sequences from the ATI plasma samples were identical to viral sequences from pretherapy plasma and PBMC samples, indicating that HIV-1 reservoirs established prior to therapy contribute to viral rebound during an ATI. Therefore, near-full-length sequencing of HIV-1 particles is required to gain an accurate picture of the genetic landscape of plasma HIV-1 virions in studies of HIV-1 replication and persistence.
Collapse
|
42
|
Kuznetsova AI, Gromov KB, Kireev DE, Shlykova AV, Lopatukhin AE, Kazennova EV, Lebedev AV, Tumanov AS, Kim KV, Bobkova MR. [Analysis of Tat protein characteristics in human immunodeficiency virus type 1 sub-subtype A6 (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1)]. Vopr Virusol 2022; 66:452-464. [PMID: 35019252 DOI: 10.36233/0507-4088-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tat protein is a major factor of HIV (human immunodeficiency virus) transcription regulation and has other activities. Tat is characterized by high variability, with some amino acid substitutions, including subtypespecific ones, being able to influence on its functionality. HIV type 1 (HIV-1) sub-subtype A6 is the most widespread in Russia. Previous studies of the polymorphisms in structural regions of the A6 variant have shown numerous characteristic features; however, Tat polymorphism in A6 has not been studied.Goals and tasks. The main goal of the work was to analyze the characteristics of Tat protein in HIV-1 A6 variant, that is, to identify substitutions characteristic for A6 and A1 variants, as well as to compare the frequency of mutations in functionally significant domains in sub-subtype A6 and subtype B. MATERIAL AND METHODS The nucleotide sequences of HIV-1 sub-subtypes A6, A1, A2, A3, A4, subtype B and the reference nucleotide sequence were obtained from the Los Alamos international database. RESULTS AND DISCUSSION Q54H and Q60H were identified as characteristic substitutions. Essential differences in natural polymorphisms between sub-subtypes A6 and A1 have been demonstrated. In the CPP-region, there were detected mutations (R53K, Q54H, Q54P, R57G) which were more common in sub-subtype A6 than in subtype B. CONCLUSION Tat protein of sub-subtype A6 have some characteristics that make it possible to reliably distinguish it from other HIV-1 variants. Mutations identified in the CPP region could potentially alter the activity of Tat. The data obtained could form the basis for the drugs and vaccines development.
Collapse
Affiliation(s)
- A I Kuznetsova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - K B Gromov
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia; FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D E Kireev
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A V Shlykova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A E Lopatukhin
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E V Kazennova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - A V Lebedev
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - A S Tumanov
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - K V Kim
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - M R Bobkova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| |
Collapse
|
43
|
HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules 2021; 26:molecules26247488. [PMID: 34946571 PMCID: PMC8705413 DOI: 10.3390/molecules26247488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Collapse
|
44
|
Mompeán M, Treviño MÁ, Laurents DV. Partial structure, dampened mobility, and modest impact of a His tag in the SARS-CoV-2 Nsp2 C-terminal region. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:1129-1137. [PMID: 34633480 PMCID: PMC8503394 DOI: 10.1007/s00249-021-01575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) play essential roles in regulating physiological processes in eukaryotic cells. Many viruses use their own IDPs to "hack" these processes to deactivate host defenses and promote viral growth. Thus, viral IDPs are attractive drug targets. While IDPs are hard to study by X-ray crystallography or cryo-EM, atomic level information on their conformational preferences and dynamics can be obtained using NMR spectroscopy. SARS-CoV-2 Nsp2, whose C-terminal region (CtR) is predicted to be disordered, interacts with human proteins that regulate translation initiation and endosome vesicle sorting. Molecules that block these interactions could be valuable leads for drug development. The 13Cβ and backbone 13CO, 1HN, 13Cα, and 15N nuclei of Nsp2's 45-residue CtR were assigned and used to characterize its structure and dynamics in three contexts; namely: (1) retaining an N-terminal His tag, (2) without the His tag and with an adventitious internal cleavage, and (3) lacking both the His tag and the internal cleavage. Two five-residue segments adopting a minor extended population were identified. Overall, the dynamic behavior is midway between a completely rigid and a fully flexible chain. Whereas the presence of an N-terminal His tag and internal cleavage stiffen and loosen, respectively, neighboring residues, they do not affect the tendency of two regions to populate extended conformations.
Collapse
Affiliation(s)
- Miguel Mompeán
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Miguel Á Treviño
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
45
|
Abstract
Future HIV-1 curative therapies require a thorough understanding of the distribution of genetically-intact HIV-1 within T-cell subsets during antiretroviral therapy (ART) and the cellular mechanisms that maintain this reservoir. Therefore, we sequenced near-full-length HIV-1 genomes and identified genetically-intact and genetically-defective genomes from resting naive, stem-cell memory, central memory, transitional memory, effector memory, and terminally-differentiated CD4+ T-cells with known cellular half-lives from 11 participants on ART. We find that a higher infection frequency with any HIV-1 genome was significantly associated with a shorter cellular half-life, such as transitional and effector memory cells. A similar enrichment of genetically-intact provirus was observed in these cells with relatively shorter half-lives. We found that effector memory and terminally-differentiated cells also had significantly higher levels of expansions of genetically-identical sequences, while only transitional and effector memory cells contained genetically-intact proviruses that were part of a cluster of identical sequences. Expansions of identical sequences were used to infer cellular proliferation from clonal expansion. Altogether, this indicates that specific cellular mechanisms such as short half-life and proliferative potential contribute to the persistence of genetically-intact HIV-1. IMPORTANCE The design of future HIV-1 curative therapies requires a more thorough understanding of the distribution of genetically-intact HIV-1 within T-cell subsets as well as the cellular mechanisms that maintain this reservoir. These genetically-intact and presumably replication-competent proviruses make up the latent HIV-1 reservoir. Our investigations into the possible cellular mechanisms maintaining the HIV-1 reservoir in different T-cell subsets have revealed a link between the half-lives of T-cells and the level of proviruses they contain. Taken together, we believe our study shows that more differentiated and proliferative cells, such as transitional and effector memory T-cells, contain the highest levels of genetically-intact proviruses, and the rapid turnover rate of these cells contributes to the expansion of genetically-intact proviruses within them. Therefore, our study delivers an in-depth assessment of the cellular mechanisms, such as cellular proliferation and half-life, that contribute to and maintain the latent HIV-1 reservoir.
Collapse
|
46
|
Khan N, Halcrow PW, Lakpa LK, Rehan M, Chen X, Geiger JD. Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression. J Neurovirol 2021; 27:755-773. [PMID: 34550543 PMCID: PMC8602775 DOI: 10.1007/s13365-021-01016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Peter W Halcrow
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Leo K Lakpa
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
47
|
Dutta RK, Chinnapaiyan S, Santiago MJ, Rahman I, Unwalla HJ. Gene-specific MicroRNA antagonism protects against HIV Tat and TGF-β-mediated suppression of CFTR mRNA and function. Biomed Pharmacother 2021; 142:112090. [PMID: 34463266 PMCID: PMC9100877 DOI: 10.1016/j.biopha.2021.112090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND MicroRNAs play an important role in health and disease. TGF-β signaling, upregulated by HIV Tat, and in chronic airway diseases and smokers upregulates miR-145-5p to suppress cystic fibrosis transmembrane conductance regulator (CFTR). CFTR suppression in chronic airway diseases like Cystic Fibrosis, COPD and smokers has been associated with suppressed MCC and recurrent lung infections and inflammation. This can explain the emergence of recurrent lung infections and inflammation in people living with HIV. METHODS Tat-induced aberrant microRNAome was identified by miRNA expression analysis. microRNA mimics and antagomirs were used to validate the identified miRNAs involved in Tat mediated CFTR mRNA suppression. CRISPR-based editing of the miRNA target sites in CFTR 3'UTR was used to determine rescue of CFTR mRNA and function in airway epithelial cell lines and in primary human bronchial epithelial cells exposed to TGF-β and Tat. FINDINGS HIV Tat upregulates miR-145-5p and miR-509-3p. The two miRNAs demonstrate co-operative effects in suppressing CFTR. CRISPR-based editing of the miRNA target site preserves CFTR mRNA and function in airway epithelial cells INTERPRETATION: Given the important roles of TGF-β signaling and the multitude of genes regulated by miRNAs, we demonstrate that CRISPR-based gene-specific microRNA antagonism approach can preserve CFTR mRNA and function in the context of HIV Tat and TGF-β signaling without suppressing expression of other genes regulated by miR-145-5p.
Collapse
Affiliation(s)
- R K Dutta
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - S Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M J Santiago
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - I Rahman
- University of Rochester Medical Center, Departments of Environmental Medicine and Pulmonary Medicine, Rochester, NY 14642, USA
| | - H J Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
48
|
Shytaj IL, Procopio FA, Tarek M, Carlon‐Andres I, Tang H, Goldman AR, Munshi M, Kumar Pal V, Forcato M, Sreeram S, Leskov K, Ye F, Lucic B, Cruz N, Ndhlovu LC, Bicciato S, Padilla‐Parra S, Diaz RS, Singh A, Lusic M, Karn J, Alvarez‐Carbonell D, Savarino A. Glycolysis downregulation is a hallmark of HIV-1 latency and sensitizes infected cells to oxidative stress. EMBO Mol Med 2021; 13:e13901. [PMID: 34289240 PMCID: PMC8350904 DOI: 10.15252/emmm.202013901] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.
Collapse
Affiliation(s)
- Iart Luca Shytaj
- Department of Infectious DiseasesItalian Institute of HealthRomeItaly
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Francesco Andrea Procopio
- Service of Immunology and AllergyLausanne University HospitalUniversity of LausanneLausanneSwitzerland
| | - Mohammad Tarek
- Bioinformatics DepartmentArmed Forces College of Medicine (AFCM)CairoEgypt
| | - Irene Carlon‐Andres
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Infectious DiseasesFaculty of Life Sciences & MedicineKing’s College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
| | | | | | | | | | - Mattia Forcato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sheetal Sreeram
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Konstantin Leskov
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Fengchun Ye
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Bojana Lucic
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Nicolly Cruz
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Lishomwa C Ndhlovu
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Silvio Bicciato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sergi Padilla‐Parra
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Infectious DiseasesFaculty of Life Sciences & MedicineKing’s College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
| | - Ricardo Sobhie Diaz
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Amit Singh
- Indian Institute of ScienceBangaloreIndia
| | - Marina Lusic
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Jonathan Karn
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - David Alvarez‐Carbonell
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Andrea Savarino
- Department of Infectious DiseasesItalian Institute of HealthRomeItaly
| |
Collapse
|
49
|
Ali A, Mishra R, Kaur H, Chandra Banerjea A. HIV-1 Tat: An update on transcriptional and non-transcriptional functions. Biochimie 2021; 190:24-35. [PMID: 34242726 DOI: 10.1016/j.biochi.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Over the past decades, much have been learned about HIV-1 virus and its molecular strategies for pathogenesis. However, HIV-1 still remains an enigmatic virus, particularly because of its unique proteins. Establishment of latency and reactivation is still a puzzling question and various temporal and spatial dynamics between HIV-1 proteins itself have given us new way of thinking about its pathogenesis. HIV-1 replication depends on Tat which is a small unstructured protein and subjected to various post-translational modifications for its myriad of functions. HIV-1 Tat protein modulates the functions of various strategic cellular pathways like proteasomal machinery and inflammatory pathways to aid in HIV-1 pathogenesis. Many of the recent findings have shown that Tat is associated with exosomes, cleared from HIV-1 infected cells through its degradation by diverse routes ranging from lysosomal to proteasomal pathways. HIV-1 Tat was also found to be associated with other HIV-1 proteins including Vpr, Nef, Nucleocapsid (NC) and Rev. Interaction of Tat with Vpr and Nef increases its transactivation function, whereas, interaction of Tat with NC or Rev leads to Tat protein degradation and hence suppression of Tat functions. Research in the recent years has established that Tat is not only important for HIV-1 promoter transactivation and virus replication but also modulating multiple cellular and molecular functions leading to HIV-1 pathogenicity. In this review we discussed various transcriptional and non-transcriptional HIV-1 Tat functions which modulate host cell metabolism during HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Amjad Ali
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Ritu Mishra
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Harsimrut Kaur
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India.
| | - Akhil Chandra Banerjea
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
50
|
Bourgeois C, Gorwood J, Olivo A, Le Pelletier L, Capeau J, Lambotte O, Béréziat V, Lagathu C. Contribution of Adipose Tissue to the Chronic Immune Activation and Inflammation Associated With HIV Infection and Its Treatment. Front Immunol 2021; 12:670566. [PMID: 34220817 PMCID: PMC8250865 DOI: 10.3389/fimmu.2021.670566] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (AT) contributes significantly to inflammation – especially in the context of obesity. Several of AT’s intrinsic features favor its key role in local and systemic inflammation: (i) large distribution throughout the body, (ii) major endocrine activity, and (iii) presence of metabolic and immune cells in close proximity. In obesity, the concomitant pro-inflammatory signals produced by immune cells, adipocytes and adipose stem cells help to drive local inflammation in a vicious circle. Although the secretion of adipokines by AT is a prime contributor to systemic inflammation, the lipotoxicity associated with AT dysfunction might also be involved and could affect distant organs. In HIV-infected patients, the AT is targeted by both HIV infection and antiretroviral therapy (ART). During the primary phase of infection, the virus targets AT directly (by infecting AT CD4 T cells) and indirectly (via viral protein release, inflammatory signals, and gut disruption). The initiation of ART drastically changes the picture: ART reduces viral load, restores (at least partially) the CD4 T cell count, and dampens inflammatory processes on the whole-body level but also within the AT. However, ART induces AT dysfunction and metabolic side effects, which are highly dependent on the individual molecules and the combination used. First generation thymidine reverse transcriptase inhibitors predominantly target mitochondrial DNA and induce oxidative stress and adipocyte death. Protease inhibitors predominantly affect metabolic pathways (affecting adipogenesis and adipocyte homeostasis) resulting in insulin resistance. Recently marketed integrase strand transfer inhibitors induce both adipocyte adipogenesis, hypertrophy and fibrosis. It is challenging to distinguish between the respective effects of viral persistence, persistent immune defects and ART toxicity on the inflammatory profile present in ART-controlled HIV-infected patients. The host metabolic status, the size of the pre-established viral reservoir, the quality of the immune restoration, and the natural ageing with associated comorbidities may mitigate and/or reinforce the contribution of antiretrovirals (ARVs) toxicity to the development of low-grade inflammation in HIV-infected patients. Protecting AT functions appears highly relevant in ART-controlled HIV-infected patients. It requires lifestyle habits improvement in the absence of effective anti-inflammatory treatment. Besides, reducing ART toxicities remains a crucial therapeutic goal.
Collapse
Affiliation(s)
- Christine Bourgeois
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Anaelle Olivo
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Laura Le Pelletier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Jacqueline Capeau
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Olivier Lambotte
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France.,AP-HP, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Claire Lagathu
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| |
Collapse
|