1
|
Jia BB, Sun BK, Lee EY, Ren B. Emerging Techniques in Spatial Multiomics: Fundamental Principles and Applications to Dermatology. J Invest Dermatol 2025; 145:1017-1032. [PMID: 39503694 DOI: 10.1016/j.jid.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 04/25/2025]
Abstract
Molecular pathology, such as high-throughput genomic and proteomic profiling, identifies precise disease targets from biopsies but require tissue dissociation, losing valuable histologic and spatial context. Emerging spatial multi-omic technologies now enable multiplexed visualization of genomic, proteomic, and epigenomic targets within a single tissue slice, eliminating the need for labeling multiple adjacent slices. Although early work focused on RNA (spatial transcriptomics), spatial technologies can now concurrently capture DNA, genome accessibility, histone modifications, and proteins with spatially-resolved single-cell resolution. This review outlines the principles, advantages, limitations, and potential for spatial technologies to advance dermatologic research. By jointly profiling multiple molecular channels, spatial multiomics enables novel studies of copy number variations, clonal heterogeneity, and enhancer dysregulation, replete with spatial context, illuminating the skin's complex heterogeneity.
Collapse
Affiliation(s)
- Bojing B Jia
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, California, USA
| | - Bryan K Sun
- Department of Dermatology, University of California, Irvine, Irvine, California, USA
| | - Ernest Y Lee
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA; Institute of Genomic Medicine, Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Zhang Z, Hu R, Liu J, Yang X, Xiao Y, Xu X, Liu X, Zeng W, Zhang S, Wang L. Antitumor activity of gilteritinib, an inhibitor of AXL, in human solid tumors. Cell Death Discov 2025; 11:124. [PMID: 40157901 PMCID: PMC11954984 DOI: 10.1038/s41420-025-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/25/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
AXL, a receptor tyrosine kinase, has recently emerged as a potential therapeutic target against various types of cancer. Gilteritinib, a FDA-approved small-molecule inhibitor, is used for the treatment of patients with FLT3-mutated acute myeloid leukemia. However, the antitumor activity of gilteritinib in solid tumors remains poorly elucidated. In this study, we explored the antitumor activity of gilteritinib in AXL-expressing esophageal cancer (EC), ovarian cancer (OC), and gastric cancer (GC), along with the underlying molecular mechanisms. Our data demonstrated that gilteritinib significantly inhibited cell proliferation and spheroid formation by triggering apoptosis and cell cycle arrest in AXL-positive EC, OC, and GC cells. Moreover, we found that gilteritinib treatment repressed EC, OC, and GC cell migration and invasion. Mechanistically, RNA-seq analysis revealed that gilteritinib significantly downregulated multiple cancer-related pathways, including those related to apoptosis, the cell cycle, the mTOR pathway, the AMPK pathway, the p53 pathway, the FOXO pathway, the Hippo pathway, and the Wnt pathway. Gilteritinib inhibited a unique set of E2F- and MYC target-associated genes in EC, OC, and GC cells. Intriguingly, interrogation of the EC, OC, and GC cohort demonstrated that these genes were overexpressed and associated with poor prognosis. Gilteritinib also displayed strong antitumor effects on AXL-positive PDX-derived explants (PDXEs) and PDX-derived organoids (PDXOs) ex vivo and PDXs in vivo. Collectively, these findings reveal that gilteritinib represents a potent therapeutic agent for the treatment of AXL-positive solid tumors. Zhang et al. demonstrate superior therapeutic efficacy of Gilteritinib, a FDA-approved small-molecule inhibitor, in the AXL-expressing esophageal cancer, ovarian cancer and gastric cancer cell lines, PDXOs and PDXs models. This work highlights Gilteritinib as a novel and potent therapeutic approach for the treatment of AXL-positive solid tumors.
Collapse
Affiliation(s)
- Zuxiong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
| | - Ruxia Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jie Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaohan Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Youban Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xi Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xinxin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wen Zeng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China
- Department of Surgical Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, China
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China.
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
3
|
Kaster C, Yang S, Adamus G. Correlation of Anti-TULP1 Autoantibodies with Breast Cancer and Autoimmune Retinopathy. Int J Mol Sci 2025; 26:2569. [PMID: 40141211 PMCID: PMC11942007 DOI: 10.3390/ijms26062569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Autoantibodies have been implicated in the pathogenesis of autoimmune diseases, including autoimmune retinopathies. Our study aimed to identify retinal autoantigens recognized by serum autoantibodies (AAbs) in patients with visual disturbance. We evaluated 2453 serum samples for anti-retinal AAbs from patients with or without cancer and complaints of visual loss. Anti-TULP1 AAbs were more prevalent in the subset of women with breast cancer and vision loss. Epitope mapping was determined by ELISA using peptides covering the conservative carboxy terminal of TULP1, revealing major lineal epitopes within the sequences 334-341 and 480-488. We found no significant difference in the main epitope recognition between sera from patients with or without breast cancer. Although we show a correlation of anti-TULP1 AAbs with breast cancer, we found no TULP1 protein expression in breast cells, making this association unclear. In the retina, anti-TULP1 AAbs can disrupt the transport of proteins to outer segments and be involved in the degeneration of photoreceptors in a similar fashion to the degeneration induced by TULP1 gene mutation. Nevertheless, the strong association of detectable anti-TULP1 AAbs in breast cancer patients with vision problems indicates its potential as a biomarker for cancer-associated autoimmune retinopathy.
Collapse
Affiliation(s)
| | | | - Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA; (C.K.); (S.Y.)
| |
Collapse
|
4
|
Purohit S, Mandal G, Biswas S, Dalui S, Gupta A, Chowdhury SR, Bhattacharyya A. AXL/GAS6 signaling governs differentiation of tumor-associated macrophages in breast cancer. Exp Cell Res 2025; 444:114324. [PMID: 39510154 DOI: 10.1016/j.yexcr.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Most epithelial cancers are infiltrated by prognostically relevant myelomonocytic cells. Immunosuppressive tumor associated macrophages (TAMs) and their precursor monocytic myeloid-derived suppressor cells (MDSCs) have previously been associated with worse outcomes in human breast cancer (BCa), yet the mechanism of immunosuppressive TAMs-polarization from myelomonocytic precursors is not completely understood. In this study, we show that persuaded AXL/GAS6 pathway alters macrophage phenotype from HLA-DRhighCD206lowCD163low classical phagocytic into HLA-DRlowCD206highCD163high immunosuppressive ones with accelerated BCa progression, and increased angiogenesis signature and invasion ability of cancer cells at tumor beds. Notably, both AXL and GAS6 expressions are upregulated in human invasive breast carcinoma, with maximum expression in triple negative histology type. Mechanistically, we demonstrate that AXL/GAS6 signaling drives immunosuppression by governing increased immunosuppressive IL10 production while dampening IL-1β expression within the tumor microenvironment (TME) of BCa. Further, AXL/GAS6 signaling promotes angiogenesis through the activation of PI3K/AKT and NF-κB signaling pathways. Our results unveil role of AXL/GAS6 axis in the differentiation of TAMs, which governs malignant growth, and suggest that therapies that uncouple AXL/GAS6 axis may exhibit therapeutic opportunity for otherwise undruggable Triple Negative Breast Cancer (TNBC) patients.
Collapse
Affiliation(s)
- Suman Purohit
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Department of Zoology, Gurudas College, 1/1, Suren Sarkar Road, Phool Bagan, Kolkata, 700054, West Bengal, India
| | - Gunjan Mandal
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Division of Cancer Biology, DBT-Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Subir Biswas
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, Maharashtra, India
| | - Shauryabrota Dalui
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arnab Gupta
- Department of Surgical Oncology, Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Kolkata, 700063, West Bengal, India
| | - Sougata Roy Chowdhury
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Translational Immunology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
5
|
Hu W, Peng X, Ji Y, Duan W, Ai J, Zhan Z. Incorporation of a rigid 1,3-diketone-containing fragment led to significantly improved AXL inhibitory activity: design, synthesis, and SAR of the anilinopyrimidine AXL inhibitors. Mol Divers 2024:10.1007/s11030-024-11071-9. [PMID: 39731692 DOI: 10.1007/s11030-024-11071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 12/30/2024]
Abstract
Overexpressed AXL kinase is involved in various human malignancies, which incurs tumor progression, poor prognosis, and drug resistance. Suppression of the aberrant AXL axis with genetic tools or small-molecule inhibitors has achieved valid antitumor efficacies in both preclinical studies and clinical antitumor campaigns. Herein we will report the design, synthesis, and structure-activity relationship (SAR) exploration of a series of anilinopyrimidine type II AXL inhibitors. Among these inhibitors, 4l exhibited the enzymatic AXL and cellular BaF3/TEL-AXL IC50 values of 0.5 nM and less than 0.2 nM, respectively. Western blot analysis displayed that 4l dose-dependently inhibited the phosphorylation of AXL and its downstream cascade Akt, which was better than that of the reference control R428. Moreover, 4l markedly suppressed the AXL/GAS6-mediated migration in NCI-H1299 cells.
Collapse
Affiliation(s)
- Wenyi Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, Jiangsu, People's Republic of China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, Jiangsu, People's Republic of China
| | - Wenhu Duan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 1000449, People's Republic of China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, Jiangsu, People's Republic of China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 1000449, People's Republic of China.
| | - Zhengsheng Zhan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 1000449, People's Republic of China.
| |
Collapse
|
6
|
Noguchi R, Osaki J, Ono T, Adachi Y, Iwata S, Yoshimatsu Y, Sasaki K, Kawai A, Kondo T. Pharmacoproteogenomic approach identifies on-target kinase inhibitors for cancer drug repositioning. In Vitro Cell Dev Biol Anim 2024; 60:1200-1214. [PMID: 39422823 DOI: 10.1007/s11626-024-00983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 10/19/2024]
Abstract
Drug repositioning of approved drugs offers advantages over de novo drug development for a rare type of cancer. To efficiently identify on-target drugs from clinically successful kinase inhibitors in cancer drug repositioning, drug screening and molecular profiling of cell lines are essential to exclude off-targets. We developed a pharmacoproteogenomic approach to identify on-target kinase inhibitors, combining molecular profiling of genomic features and kinase activity, and drug screening of patient-derived cell lines. This study examined eight patient-derived giant cell tumor of the bone (GCTB) cell lines, all of which harbored a signature mutation of H3-3A but otherwise without recurrent copy number variants and mutations. Kinase activity profiles of 100 tyrosine kinases with a three-dimensional substrate peptide array revealed that nine kinases were highly activated. Pharmacological screening of 60 clinically used kinase inhibitors found that nine drugs directed at 29 kinases strongly suppressed cell viability. We regarded ABL1, EGFR, and LCK as on-target kinases; among the two corresponding on-target kinase inhibitors, osimertinib and ponatinib emerged as on-target drugs whose target kinases were significantly activated. The remaining 26 kinases and seven kinase inhibitors were excluded as off-targets. Our pharmacoproteomic approach enabled the identification of on-target kinase inhibitors that are useful for drug repositioning.
Collapse
Affiliation(s)
- Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Kazuki Sasaki
- Department of Oncopeptidomics, Tochigi Cancer Center; 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
7
|
Cheng L, Hu Z, Gu J, Li Q, Liu J, Liu M, Li J, Bi X. Exploring COX-Independent Pathways: A Novel Approach for Meloxicam and Other NSAIDs in Cancer and Cardiovascular Disease Treatment. Pharmaceuticals (Basel) 2024; 17:1488. [PMID: 39598398 PMCID: PMC11597362 DOI: 10.3390/ph17111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
As a fundamental process of innate immunity, inflammation is associated with the pathologic process of various diseases and constitutes a prevalent risk factor for both cancer and cardiovascular disease (CVD). Studies have indicated that several non-steroidal anti-inflammatory drugs (NSAIDs), including Meloxicam, may prevent tumorigenesis, reduce the risk of carcinogenesis, improve the efficacy of anticancer therapies, and reduce the risk of CVD, in addition to controlling the body's inflammatory imbalances. Traditionally, most NSAIDs work by inhibiting cyclooxygenase (COX) activity, thereby blocking the synthesis of prostaglandins (PGs), which play a role in inflammation, cancer, and various cardiovascular conditions. However, long-term COX inhibition and reduced PGs synthesis can result in serious side effects. Recent studies have increasingly shown that some selective COX-2 inhibitors and NSAIDs, such as Meloxicam, may exert effects beyond COX inhibition. This emerging understanding prompts a re-evaluation of the mechanisms by which NSAIDs operate, suggesting that their benefits in cancer and CVD treatment may not solely depend on COX targeting. In this review, we will explore the potential COX-independent mechanisms of Meloxicam and other NSAIDs in addressing oncology and cardiovascular health.
Collapse
Affiliation(s)
- Lixia Cheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Zhenghui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiawei Gu
- Department of Precision Genomics, Intermountain Healthcare, 5121 Cottonwood St., Murray, UT 84107, USA;
| | - Qian Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiahao Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Meiling Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jie Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
8
|
Pilch J, Potęga A, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Nowicka AM. In vitro biological evaluation of a novel folic acid-targeted receptor quantum dot-β-cyclodextrin carrier for C-2028 unsymmetrical bisacridine in the treatment of human lung and prostate cancers. Pharmacol Rep 2024; 76:823-837. [PMID: 38888724 PMCID: PMC11294431 DOI: 10.1007/s43440-024-00606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Traditional small-molecule chemotherapeutics usually do not distinguish tumors from healthy tissues. However, nanotechnology creates nanocarriers that selectively deliver drugs to their site of action. This work is the next step in the development of the quantum dot-β-cyclodextrin-folic acid (QD-β-CD-FA) platform for targeted and selected delivery of C-2028 unsymmetrical bisacridine in cancer therapy. METHODS Herein, we report an initial biological evaluation (using flow cytometry and light microscopy) as well as cell migration analysis of QD-β-CD(C-2028)-FA nanoconjugate and its components in the selected human lung and prostate cancer cells, as well as against their respective normal cells. RESULTS C-2028 compound induced apoptosis, which was much stronger in cancer cells compared to normal cells. Conjugation of C-2028 with QDgreen increased cellular senescence, while the introduction of FA to the conjugate significantly decreased this process. C-2028 nanoencapsulation also reduced cell migration. Importantly, QDgreen and QDgreen-β-CD-FA themselves did not induce any toxic responses in studied cells. CONCLUSIONS In conclusion, the results demonstrate the high potential of a novel folic acid-targeted receptor quantum dot-β-cyclodextrin carrier (QDgreen-β-CD-FA) for drug delivery in cancer treatment. Nanoplatforms increased the amount of delivered compounds and demonstrated high suitability.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland.
| | - Agnieszka Potęga
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland
| | - Patrycja Kowalik
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| | | | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland
| | | |
Collapse
|
9
|
Wu H, Jiang W, Pang P, Si W, Kong X, Zhang X, Xiong Y, Wang C, Zhang F, Song J, Yang Y, Zeng L, Liu K, Jia Y, Wang Z, Ju J, Diao H, Bian Y, Yang B. m 6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation. Front Med 2024; 18:499-515. [PMID: 38806989 DOI: 10.1007/s11684-023-1052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024]
Abstract
Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-β (TGF-β)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-β-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weitao Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ping Pang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Kong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jinglun Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Linghua Zeng
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Kuiwu Liu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingqiong Jia
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongtao Diao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
10
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
11
|
Yeo XH, Sundararajan V, Wu Z, Phua ZJC, Ho YY, Peh KLE, Chiu YC, Tan TZ, Kappei D, Ho YS, Tan DSP, Tam WL, Huang RYJ. The effect of inhibition of receptor tyrosine kinase AXL on DNA damage response in ovarian cancer. Commun Biol 2023; 6:660. [PMID: 37349576 PMCID: PMC10287694 DOI: 10.1038/s42003-023-05045-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
AXL is a receptor tyrosine kinase that is often overexpressed in cancers. It contributes to pathophysiology in cancer progression and therapeutic resistance, making it an emerging therapeutic target. The first-in-class AXL inhibitor bemcentinib (R428/BGB324) has been granted fast track designation by the U.S. Food and Drug Administration (FDA) in STK11-mutated advanced metastatic non-small cell lung cancer and was also reported to show selective sensitivity towards ovarian cancers (OC) with a Mesenchymal molecular subtype. In this study, we further explored AXL's role in mediating DNA damage responses by using OC as a disease model. AXL inhibition using R428 resulted in the increase of DNA damage with the concurrent upregulation of DNA damage response signalling molecules. Furthermore, AXL inhibition rendered cells more sensitive to the inhibition of ATR, a crucial mediator for replication stress. Combinatory use of AXL and ATR inhibitors showed additive effects in OC. Through SILAC co-immunoprecipitation mass spectrometry, we identified a novel binding partner of AXL, SAM68, whose loss in OC cells harboured phenotypes in DNA damage responses similar to AXL inhibition. In addition, AXL- and SAM68-deficiency or R428 treatment induced elevated levels of cholesterol and upregulated genes in the cholesterol biosynthesis pathway. There might be a protective role of cholesterol in shielding cancer cells against DNA damage induced by AXL inhibition or SMA68 deficiency.
Collapse
Affiliation(s)
- Xun Hui Yeo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Zhengwei Wu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Zi Jin Cheryl Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Yin Ying Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - Kai Lay Esther Peh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - Yi-Chia Chiu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - David Shao Peng Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Ruby Yun-Ju Huang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
12
|
Mohammadzadeh P, Amberg GC. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis. Front Endocrinol (Lausanne) 2023; 14:1212104. [PMID: 37396176 PMCID: PMC10310921 DOI: 10.3389/fendo.2023.1212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
AXL is a receptor tyrosine kinase commonly associated with a variety of human cancers. Along with its ligand Gas6 (growth arrest-specific protein 6), AXL is emerging as an important regulator of neuroendocrine development and function. AXL signaling in response to Gas6 binding impacts neuroendocrine structure and function at the level of the brain, pituitary, and gonads. During development, AXL has been identified as an upstream inhibitor of gonadotropin receptor hormone (GnRH) production and also plays a key role in the migration of GnRH neurons from the olfactory placode to the forebrain. AXL is implicated in reproductive diseases including some forms of idiopathic hypogonadotropic hypogonadism and evidence suggests that AXL is required for normal spermatogenesis. Here, we highlight research describing AXL/Gas6 signaling mechanisms with a focus on the molecular pathways related to neuroendocrine function in health and disease. In doing so, we aim to present a concise account of known AXL/Gas6 signaling mechanisms to identify current knowledge gaps and inspire future research.
Collapse
|
13
|
Zhai X, Pu D, Wang R, Zhang J, Lin Y, Wang Y, Zhai N, Peng X, Zhou Q, Li L. Gas6/AXL pathway: immunological landscape and therapeutic potential. Front Oncol 2023; 13:1121130. [PMID: 37265798 PMCID: PMC10231434 DOI: 10.3389/fonc.2023.1121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
Cancer is a disease with ecological and evolutionary unity, which seriously affects the survival and quality of human beings. Currently, many reports have suggested Gas6 plays an important role in cancer. Binding of gas6 to TAM receptors is associated with the carcinogenetic mechanisms of multiple malignancies, such as in breast cancer, chronic lymphocytic leukemia, non-small cell lung cancer, melanoma, prostate cancer, etc., and shortened overall survival. It is accepted that the Gas6/TAM pathway can promote the malignant transformation of various types of cancer cells. Gas6 has the highest affinity for Axl, an important member of the TAM receptor family. Knockdown of the TAM receptors Axl significantly affects cell cycle progression in tumor cells. Interestingly, Gas6 also has an essential function in the tumor microenvironment. The Gas6/AXL pathway regulates angiogenesis, immune-related molecular markers and the secretion of certain cytokines in the tumor microenvironment, and also modulates the functions of a variety of immune cells. In addition, evidence suggests that the Gas6/AXL pathway is involved in tumor therapy resistance. Recently, multiple studies have begun to explore in depth the importance of the Gas6/AXL pathway as a potential tumor therapeutic target as well as its broad promise in immunotherapy; therefore, a timely review of the characteristics of the Gas6/AXL pathway and its value in tumor treatment strategies is warranted. This comprehensive review assessed the roles of Gas6 and AXL receptors and their associated pathways in carcinogenesis and cancer progression, summarized the impact of Gas6/AXL on the tumor microenvironment, and highlighted the recent research progress on the relationship between Gas6/AXL and cancer drug resistance.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Pu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rulan Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UT Health, Houston, TX, United States
| | - Yuqing Wang
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Ni Zhai
- Neurosurgery Intensive Care Unit, The 987th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Baoji, Shanxi, China
| | - Xuan Peng
- Department of Pathophysiology, Hubei Minzu University, Enshi, Hubei, China
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
The First-In-Class Anti-AXL×CD3ε Pronectin™-Based Bispecific T-Cell Engager Is Active in Preclinical Models of Human Soft Tissue and Bone Sarcomas. Cancers (Basel) 2023; 15:cancers15061647. [PMID: 36980534 PMCID: PMC10046451 DOI: 10.3390/cancers15061647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Sarcomas are heterogeneous malignancies with limited therapeutic options and a poor prognosis. We developed an innovative immunotherapeutic agent, a first-in-class Pronectin™-based Bispecific T-Cell Engager (pAXL×CD3ε), for the targeting of AXL, a TAM family tyrosine kinase receptor highly expressed in sarcomas. AXL expression was first analyzed by flow cytometry, qRT-PCR, and Western blot on a panel of sarcoma cell lines. The T-cell-mediated pAXL×CD3ε cytotoxicity against sarcoma cells was investigated by flow cytometry, luminescence assay, and fluorescent microscopy imaging. The activation and degranulation of T cells induced by pAXL×CD3ε were evaluated by flow cytometry. The antitumor activity induced by pAXL×CD3ε in combination with trabectedin was also investigated. In vivo activity studies of pAXL×CD3ε were performed in immunocompromised mice (NSG), engrafted with human sarcoma cells and reconstituted with human peripheral blood mononuclear cells from healthy donors. Most sarcoma cells showed high expression of AXL. pAXL×CD3ε triggered T-lymphocyte activation and induced dose-dependent T-cell-mediated cytotoxicity. The combination of pAXL×CD3ε with trabectedin increased cytotoxicity. pAXL×CD3ε inhibited the in vivo growth of human sarcoma xenografts, increasing the survival of treated mice. Our data demonstrate the antitumor efficacy of pAXL×CD3ε against sarcoma cells, providing a translational framework for the clinical development of pAXL×CD3ε in the treatment of human sarcomas, aggressive and still-incurable malignancies.
Collapse
|
15
|
Zito Marino F, Della Corte CM, Ciaramella V, Erra S, Ronchi A, Fiorelli A, Vicidomini G, Santini M, Scognamiglio G, Morgillo F, Ciardiello F, Franco R, Accardo M. AXL and MET Tyrosine Kinase Receptors Co-Expression as a Potential Therapeutic Target in Malignant Pleural Mesothelioma. J Pers Med 2022; 12:jpm12121993. [PMID: 36556214 PMCID: PMC9783837 DOI: 10.3390/jpm12121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal malignancy that unfortunately cannot benefit from molecularly targeted therapies. Although previous results showed the pivotal role of various receptor tyrosine kinases (RTKs) in MPM tumorigenesis, the treatment with a single inhibitor targeting one specific RTK has been shown to be ineffective in MPM patients. The main aim of the present study was to investigate the potential role of AXL and MET receptors in MPM and the possible efficacy of treatment with AXL and MET multitarget inhibitors. Immunohistochemical and FISH analyses were performed in a wide series of formalin-fixed paraffin-embedded MPM samples to detect the expression of two receptors and the potential gene amplification. In vitro studies were performed to evaluate putative correlations between the target's expression and the cell sensitivity to AXL-MET multitarget inhibitors. In our series, 10.4% of cases showed a co-expression of AXL and MET, regardless of their ligand expression, and the gene amplification. Furthermore, our in vitro results suggest that the concomitant pharmacological inhibition of AXL and MET may affect the proliferative and aggressiveness of MPM cells. In conclusion, the subset of MPM patients with AXL-MET co-activation could benefit from treatment with specific multitarget inhibitors.
Collapse
Affiliation(s)
- Federica Zito Marino
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (F.Z.M.); (C.M.D.C.)
| | - Carminia Maria Della Corte
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
- Correspondence: (F.Z.M.); (C.M.D.C.)
| | - Vincenza Ciaramella
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
| | - Stefania Erra
- Pathology Unit, ASL AL, 15033 Casale Monferrato, Italy
| | - Andrea Ronchi
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Fiorelli
- Translational Medical and Surgical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Vicidomini
- Translational Medical and Surgical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mario Santini
- Translational Medical and Surgical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine “F. Magrassi e A. Lanzara”, Institute of Medical Oncology, 80138 Naples, Italy
| | - Renato Franco
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marina Accardo
- Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
16
|
Sekino Y, Teishima J, Liang G, Hinata N. Molecular mechanisms of resistance to tyrosine kinase inhibitor in clear cell renal cell carcinoma. Int J Urol 2022; 29:1419-1428. [PMID: 36122306 PMCID: PMC10087189 DOI: 10.1111/iju.15042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Loss of von Hippel-Lindau tumor suppressor gene is frequently observed in ccRCC and increases the expression of hypoxia-inducible factors and their targets, including epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor. Tyrosine kinase inhibitors (TKIs) offer a survival benefit in metastatic renal cell carcinoma (mRCC). Recently, immune checkpoint inhibitors have been introduced in mRCC. Combination therapy with TKIs and immune checkpoint inhibitors significantly improved patient outcomes. Therefore, TKIs still play an essential role in mRCC treatment. However, the clinical utility of TKIs is compromised when primary and acquired resistance are encountered. The mechanism of resistance to TKI is not fully elucidated. Here, we comprehensively reviewed the molecular mechanisms of resistance to TKIs and a potential strategy to overcome this resistance. We outlined the involvement of angiogenesis, non-angiogenesis, epithelial-mesenchymal transition, activating bypass pathways, lysosomal sequestration, non-coding RNAs, epigenetic modifications and tumor microenvironment factors in the resistance to TKIs. Deep insight into the molecular mechanisms of resistance to TKIs will help to better understand the biology of RCC and can ultimately help in the development of more effective therapies.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Wu S, Liao M, Li M, Sun M, Xi N, Zeng Y. Structure-based discovery of potent inhibitors of Axl: design, synthesis, and biological evaluation. RSC Med Chem 2022; 13:1246-1264. [PMID: 36325401 PMCID: PMC9579923 DOI: 10.1039/d2md00153e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 07/22/2023] Open
Abstract
Commonly overexpressed in many cancers and associated with tumor growth, metastasis, drug resistance, and poor overall survival, Axl has emerged as a promising target for cancer therapy. However, the availability of new chemical forms for Axl inhibition is limited. Herein, we present the development and characterization of novel Axl inhibitors, including the design, synthesis, and structure-activity relationships (SARs) of a series of diphenylpyrimidine-diamine derivatives. Most of these compounds exhibited remarkable activity against the Axl kinase. In particular, the promising compound m16 showed the highest enzymatic inhibitory potency (IC50 = 5 nM) and blocked multiple tumor cells' proliferation potencies (the CC50 of 4 out of 42 cancer cell lines <100 nM). Furthermore, compound m16 also possessed preferable pharmacokinetic profiles and liver microsome stability. All these favorable results make m16 a good leading therapeutic candidate for further development.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University Changsha 410081 PR China
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Min Liao
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
- School of Chemistry & Chemical Engineering, Guangxi University Nanning 530004 China
| | - Minxiong Li
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Mingming Sun
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Ning Xi
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University Changsha 410081 PR China
| |
Collapse
|
18
|
HR-LCMS assisted phytochemical screening and an assessment of anticancer activity of Sargassum Squarrossum and Dictyota Dichotoma using in vitro and molecular docking approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Huang J, Huo H, Lu R. A Novel Signature of Necroptosis-Associated Genes as a Potential Prognostic Tool for Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:907985. [PMID: 35754840 PMCID: PMC9218670 DOI: 10.3389/fgene.2022.907985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) arises from squamous cells in the oral cavity, pharynx and larynx. Although HNSCC is sensitive to radiotherapy, patient prognosis is poor. Necroptosis is a novel programmed form of necrotic cell death. The prognostic value of necroptosis-associated gene expression in HNSCC has not been explored. Material and Methods: We downloaded mRNA expression data of HNSCC patients from TCGA databases and Gene Expression Omnibus (GEO) databases, and compared gene expression between tumor tissues and adjacent normal tissues to identify differentially expressed genes (DEGs) and necroptosis-related prognostic genes. A model with necroptosis-related genes was established to predict patient prognosis via LASSO method and Kaplan-Meier analysis. GSE65858 data set (n = 270) from GEO was used to verify the model's predictive ability. Gene set enrichment analyses, immune microenvironment analysis, principal component analysis, and anti-tumor compound IC50 prediction were also performed. Results: We identified 49 DEGs and found 10 DEGs were associated with patient survival (p < 0.05). A risk model of 6-gene signature was constructed using the TCGA training data set and further validated with the GEO data set. Patients in the low-risk group survived longer than those in the high-risk group (p < 0.05) in the GEO validation sets. Functional analysis showed the two patient groups were associated with distinct immunity conditions and IC50. Conclusion: We constructed a prognostic model with 6 necroptosis-associated genes for HNSCC. The model has potential usage to guide treatment because survival was different between the two groups.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Hongqi Huo
- Nuclear Medicine Department, Handan Central Hospital, Handan, China
| | - Rong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Vanli N, Sheng J, Li S, Xu Z, Hu GF. Ribonuclease 4 is associated with aggressiveness and progression of prostate cancer. Commun Biol 2022; 5:625. [PMID: 35752711 PMCID: PMC9233706 DOI: 10.1038/s42003-022-03597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Prostate specific antigen screening has resulted in a decrease in prostate cancer-related deaths. However, it also has led to over-treatment affecting the quality of life of many patients. New biomarkers are needed to distinguish prostate cancer from benign prostate hyperplasia (BPH) and to predict aggressiveness of the disease. Here, we report that ribonuclease 4 (RNASE4) serves as such a biomarker as well as a therapeutic target. RNASE4 protein level in the plasma is elevated in prostate cancer patients and is positively correlated with disease stage, grade, and Gleason score. Plasma RNASE4 level can be used to predict biopsy outcome and to enhance diagnosis accuracy. RNASE4 protein in prostate cancer tissues is enhanced and can differentiate prostate cancer and BPH. RNASE4 stimulates prostate cancer cell proliferation, induces tumor angiogenesis, and activates receptor tyrosine kinase AXL as well as AKT and S6K. An RNASE4-specific monoclonal antibody inhibits the growth of xenograft human prostate cancer cell tumors in athymic mice.
Collapse
Affiliation(s)
- Nil Vanli
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Jinghao Sheng
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuping Li
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
21
|
Zammarchi F, Havenith KEG, Chivers S, Hogg P, Bertelli F, Tyrer P, Janghra N, Reinert HW, Hartley JA, van Berkel PH. Preclinical Development of ADCT-601, a Novel Pyrrolobenzodiazepine Dimer-based Antibody-drug Conjugate Targeting AXL-expressing Cancers. Mol Cancer Ther 2022; 21:582-593. [PMID: 35086955 PMCID: PMC9377743 DOI: 10.1158/1535-7163.mct-21-0715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
AXL, a tyrosine kinase receptor that is overexpressed in many solid and hematologic malignancies, facilitates cancer progression and is associated with poor clinical outcomes. Importantly, drug-induced expression of AXL results in resistance to conventional chemotherapy and targeted therapies. Together with its presence on multiple cell types in the tumor immune microenvironment, these features make it an attractive therapeutic target for AXL-expressing malignancies. ADCT-601 (mipasetamab uzoptirine) is an AXL-targeted antibody-drug conjugate (ADC) comprising a humanized anti-AXL antibody site specifically conjugated using GlycoConnect technology to PL1601, which contains HydraSpace, a Val-Ala cleavable linker and the potent pyrrolobenzodiazepine (PBD) dimer cytotoxin SG3199. This study aimed to validate the ADCT-601 mode of action and evaluate its efficacy in vitro and in vivo, as well as its tolerability and pharmacokinetics. ADCT-601 bound to both soluble and membranous AXL, and was rapidly internalized by AXL-expressing tumor cells, allowing release of PBD dimer, DNA interstrand cross-linking, and subsequent cell killing. In vivo, ADCT-601 had potent and durable antitumor activity in a wide variety of human cancer xenograft mouse models, including patient-derived xenograft models with heterogeneous AXL expression where ADCT-601 antitumor activity was markedly superior to an auristatin-based comparator ADC. Notably, ADCT-601 had antitumor activity in a monomethyl auristatin E-resistant lung-cancer model and synergized with the PARP inhibitor olaparib in a BRCA1-mutated ovarian cancer model. ADCT-601 was well tolerated at doses of up to 6 mg/kg and showed excellent stability in vivo. These preclinical results warrant further evaluation of ADCT-601 in the clinic.
Collapse
Affiliation(s)
- Francesca Zammarchi
- ADC Therapeutics (UK) Limited, London, United Kingdom.,Corresponding Author: Francesca Zammarchi, Imperial College White City Campus, ADC Therapeutics (UK) Limited, London W12 0BZ, United Kingdom. E-mail:
| | | | - Simon Chivers
- ADC Therapeutics (UK) Limited, London, United Kingdom
| | - Paul Hogg
- ADC Therapeutics (UK) Limited, London, United Kingdom
| | | | - Peter Tyrer
- AstraZeneca (MedImmune/Spirogen), Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Majumder A, Hosseinian S, Stroud M, Adhikari E, Saller JJ, Smith MA, Zhang G, Agarwal S, Creixell M, Meyer BS, Kinose F, Bowers K, Fang B, Stewart PA, Welsh EA, Boyle TA, Meyer AS, Koomen JM, Haura EB. Integrated Proteomics-Based Physical and Functional Mapping of AXL Kinase Signaling Pathways and Inhibitors Define Its Role in Cell Migration. Mol Cancer Res 2022; 20:542-555. [PMID: 35022314 PMCID: PMC8983558 DOI: 10.1158/1541-7786.mcr-21-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.
Collapse
Affiliation(s)
- Anurima Majumder
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Sina Hosseinian
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mia Stroud
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Emma Adhikari
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - James J. Saller
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Matthew A. Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shruti Agarwal
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - Benjamin S. Meyer
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kiah Bowers
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric A. Welsh
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Theresa A. Boyle
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
23
|
Zdżalik-Bielecka D, Kozik K, Poświata A, Jastrzębski K, Jakubik M, Miączyńska M. Bemcentinib and Gilteritinib Inhibit Cell Growth and Impair the Endo-Lysosomal and Autophagy Systems in an AXL-Independent Manner. Mol Cancer Res 2022; 20:446-455. [PMID: 34782372 DOI: 10.1158/1541-7786.mcr-21-0444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting. In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Jakubik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
24
|
Nagamalla L, Shanmukha Kumar J, Sanjay C, Alsamhan AM, Shaik MR. In-silico study of seaweed secondary metabolites as AXL kinase inhibitors. Saudi J Biol Sci 2022; 29:689-701. [PMID: 35197734 PMCID: PMC8848138 DOI: 10.1016/j.sjbs.2021.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
AXL kinase is an attractive cancer target for drug design and it is involved in different cancers. A set of molecule databases with 1072 secondary metabolites from seaweeds were screened against the AXL kinase active site and eight molecules were shortlisted for further studies. From the docking analysis of the complexes, four molecules GA011, BE005, BC010, and BC005 are showing prominent binging. From the 100 ns of molecular dynamics simulations and ligand-bound complex MM-PBSA free energy analysis, two molecules BC010 (ΔG = −135.38 kJ/mol) and BE005 (ΔG = −141.72 kJ/mol) are showing molecule stability in the active site also showing very strong binding free energies. It suggests these molecules could be the potent molecules for AXL kinase.
Collapse
Affiliation(s)
- Lavanya Nagamalla
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., India
| | - J.V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., India
- Corresponding authors.
| | - Chintakindi Sanjay
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box. 800, Riyadh 11451, Saudi Arabia
| | - Ali M Alsamhan
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box. 800, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| |
Collapse
|
25
|
Inoue C, Yasuma T, D’Alessandro-Gabazza CN, Toda M, Fridman D’Alessandro V, Inoue R, Fujimoto H, Kobori H, Tharavecharak S, Takeshita A, Nishihama K, Okano Y, Wu J, Kobayashi T, Yano Y, Kawagishi H, Gabazza EC. The Fairy Chemical Imidazole-4-Carboxamide Inhibits the Expression of Axl, PD-L1, and PD-L2 and Improves Response to Cisplatin in Melanoma. Cells 2022; 11:cells11030374. [PMID: 35159184 PMCID: PMC8834508 DOI: 10.3390/cells11030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of death worldwide is cancer. Many reports have proved the beneficial effect of mushrooms in cancer. However, the precise mechanism is not completely clear. In the present study, we focused on the medicinal properties of biomolecules released by fairy ring-forming mushrooms. Fairy chemicals generally stimulate or inhibit the growth of surrounding vegetation. In the present study, we evaluated whether fairy chemicals (2-azahypoxanthine, 2-aza-8-oxohypoxanthine, and imidazole-4-carboxamide) exert anticancer activity by decreasing the expression of Axl and immune checkpoint molecules in melanoma cells. We used B16F10 melanoma cell lines and a melanoma xenograft model in the experiments. Treatment of melanoma xenograft with cisplatin combined with imidazole-4-carboxamide significantly decreased the tumor volume compared to untreated mice or mice treated cisplatin alone. In addition, mice treated with cisplatin and imidazole-4-carboxamide showed increased peritumoral infiltration of T cells compared to mice treated with cisplatin alone. In vitro studies showed that all fairy chemicals, including imidazole-4-carboxamide, inhibit the expression of immune checkpoint molecules and Axl compared to controls. Imidazole-4-carboxamide also significantly blocks the cisplatin-induced upregulation of PD-L1. These observations point to the fairy chemical imidazole-4-carboxamide as a promising coadjuvant therapy with cisplatin in patients with cancer.
Collapse
Affiliation(s)
- Chisa Inoue
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Ryo Inoue
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Hajime Kobori
- Iwade—Research Institute of Mycology Co., Ltd., Tsu 514-0012, Japan;
| | - Suphachai Tharavecharak
- Department of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Yuko Okano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Correspondence:
| |
Collapse
|
26
|
Hamidi AA, Zangoue M, Kashani D, Zangouei AS, Rahimi HR, Abbaszadegan MR, Moghbeli M. MicroRNA-217: a therapeutic and diagnostic tumor marker. Expert Rev Mol Diagn 2021; 22:61-76. [PMID: 34883033 DOI: 10.1080/14737159.2022.2017284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer as one of the most common causes of death has always been one of the major health challenges globally. Since, the identification of tumors in the early tumor stages can significantly reduce mortality rates; it is required to introduce novel early detection tumor markers. MicroRNAs (miRNAs) have pivotal roles in regulation of cell proliferation, migration, apoptosis, and tumor progression. Moreover, due to the higher stability of miRNAs than mRNAs in body fluids, they can be considered as non-invasive diagnostic or prognostic markers in cancer patients. AREAS COVERED In the present review we have summarized the role of miR-217 during tumor progressions. The miR-217 functions were categorized based on its target molecular mechanisms and signaling pathways. EXPERT OPINION It was observed that miR-217 mainly exerts its function by regulation of the transcription factors during tumor progressions. The WNT, MAPK, and PI3K/AKT signaling pathways were also important molecular targets of miR-217 in different cancers. The present review clarifies the molecular biology of miR-217 and paves the way of introducing miR-217 as a non-invasive diagnostic marker and therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Daniel Kashani
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Zwernik SD, Adams BH, Raymond DA, Warner CM, Kassam AB, Rovin RA, Akhtar P. AXL receptor is required for Zika virus strain MR-766 infection in human glioblastoma cell lines. Mol Ther Oncolytics 2021; 23:447-457. [PMID: 34901388 PMCID: PMC8626839 DOI: 10.1016/j.omto.2021.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Recent reports have shown that Zika virus (ZIKV) has oncolytic potential against human glioblastoma (GBM); however, the mechanisms underlying its tropism and cell entry are not completely understood. The receptor tyrosine kinase AXL has been identified as an entry receptor for ZIKV in a cell-type-specific manner. Interestingly, AXL is frequently overexpressed in GBM patients. Using commercially available GBM cell lines, we first show that cells expressing AXL are permissive for ZIKV infection, while cells that do not express AXL are not. Furthermore, inhibition of AXL kinase using R428 and antibody blockade of AXL receptor strongly attenuated virus entry in GBM cell lines. Additionally, CRISPR knockout of the AXL gene in GBM cell lines completely abolished ZIKV infection, significantly inhibited viral replication, and significantly reduced apoptosis compared with parental lines. Lastly, introduction of AXL receptor into non-expressing cell lines renders the cells susceptible to ZIKV infection. Together, these findings demonstrate that ZIKV entry into GBM cells in vitro is mediated by the AXL receptor and that following cell entry, productive infection is cytotoxic. Thus, ZIKV is a potential oncolytic virus for GBM.
Collapse
Affiliation(s)
- Samuel D Zwernik
- Advocate Aurora Research Institute, Advocate Aurora Health, Milwaukee, WI 53233, USA
| | - Beau H Adams
- Advocate Aurora Research Institute, Advocate Aurora Health, Milwaukee, WI 53233, USA
| | - Daniel A Raymond
- Advocate Aurora Research Institute, Advocate Aurora Health, Milwaukee, WI 53233, USA
| | - Catherine M Warner
- Advocate Aurora Research Institute, Advocate Aurora Health, Milwaukee, WI 53233, USA
| | - Amin B Kassam
- Aurora Neuroscience Innovation Institute, Advocate Aurora Health, Milwaukee, WI 53215, USA
| | - Richard A Rovin
- Aurora Neuroscience Innovation Institute, Advocate Aurora Health, Milwaukee, WI 53215, USA
| | - Parvez Akhtar
- Advocate Aurora Research Institute, Advocate Aurora Health, Milwaukee, WI 53233, USA
| |
Collapse
|
28
|
Chen TJ, Mydel P, Benedyk‐Machaczka M, Kamińska M, Kalucka U, Blø M, Furriol J, Gausdal G, Lorens J, Osman T, Marti H. AXL targeting by a specific small molecule or monoclonal antibody inhibits renal cell carcinoma progression in an orthotopic mice model. Physiol Rep 2021; 9:e15140. [PMID: 34877810 PMCID: PMC8652404 DOI: 10.14814/phy2.15140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
AXL tyrosine kinase activation enhances cancer cell survival, migration, invasiveness, and promotes drug resistance. AXL overexpression is typically detected in a high percentage of renal cell carcinomas (RCCs) and is strongly associated with poor prognosis. Therefore, AXL inhibition represents an attractive treatment option in these cancers. In this preclinical study, we investigated the antitumor role of a highly selective small molecule AXL inhibitor bemcentinib (BGB324, BerGenBio), and a newly developed humanized anti-AXL monoclonal function blocking antibody tilvestamab, (BGB149, BerGenBio), in vitro and an orthotopic RCC mice model. The 786-0-Luc human RCC cells showed high AXL expression. Both bemcentinib and tilvestamab significantly inhibited AXL activation induced by Gas6 stimulation in vitro. Furthermore, tilvestamab inhibited the downstream AKT phosphorylation in these cells. The 786-0-Luc human RCC cells generated tumors with high Ki67 and vimentin expression upon orthotopic implantation in athymic BALB/c nude mice. Most importantly, both bemcentinib and tilvestamab inhibited the progression of tumors induced by the orthotopically implanted 786-0 RCC cells. Remarkably, their in vivo antitumor effectiveness was not significantly enhanced by concomitant administration of a multi-target tyrosine kinase inhibitor. Bemcentinib and tilvestamab qualify as compounds of potentially high clinical interest in AXL overexpressing RCC.
Collapse
Affiliation(s)
- Tony J. Chen
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Piotr Mydel
- Department of Clinical ScienceUniversity of BergenBergenNorway
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | | | - Marta Kamińska
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | - Urszula Kalucka
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | | | - Jessica Furriol
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - James Lorens
- Department of BiomedicineCentre for Cancer BiomarkersNorwegian Centre of ExcellenceUniversity of BergenBergenNorway
| | - Tarig Osman
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| |
Collapse
|
29
|
Chen Y, Zhang Y, Chen S, Liu W, Lin Y, Zhang H, Yu F. NSAIDs Sensitize Melanoma Cells to MEK Inhibition and Inhibit Metastasis and Relapse by Inducing Degradation of AXL. Pigment Cell Melanoma Res 2021; 35:238-251. [PMID: 34748282 DOI: 10.1111/pcmr.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Melanoma is highly heterogeneous with diverse genomic alterations and partial therapeutic responses. Emergence of drug-resistant tumor cell clones accompanied with high AXL expression level is one of the major challenges for anti-tumor clinical care. Recent studies have demonstrated that high AXL expression in melanoma cells mediated drug-resistance, epithelial-mesenchymal transition (EMT) and elevated survival of cancer stem cells (CSCs). Given that we have identified several non-steroidal anti-inflammatory drugs (NSAIDs) including Aspirin potently induce the degradation of AXL, we questioned whether NSAIDs could counteract the AXL-mediated neoplastic phenotypes. Here we found NSAIDs downregulate PKA activity via the PGE2 /EP2/cAMP/PKA signaling pathway and interrupt the PKA-dependent interaction between CDC37 and HSP90, resulting in an incorrect AXL protein folding and finally AXL degradation through the ubiquitination-proteasome system (UPS) pathway. Furthermore, NSAIDs not only sensitized the MEK inhibitor treatment, but also reduced EMT and relapse mediate by AXL in tumor tissue. Our findings suggest that the combination of inhibitors and NSAIDs, especially Aspirin, could be a simple but efficient modality to treat melanoma in which AXL is a key factor for drug-resistance, metastasis, and relapse.
Collapse
Affiliation(s)
- Yingshi Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Siqi Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiwei Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hui Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Fei Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorg Med Chem 2021; 49:116437. [PMID: 34600239 DOI: 10.1016/j.bmc.2021.116437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022]
Abstract
AXL is a member of the TAM (TYRO3, AXL, MER) subfamily of receptor tyrosine kinases. It is upregulated in a variety of cancers and its overexpression is associated with poor disease prognosis and acquired drug resistance. Utilizing a fragment-based lead discovery approach, a new indazole-based AXL inhibitor was obtained. The indazole fragment hit 11, identified through a high concentration biochemical screen, was expeditiously improved to fragment 24 by screening our in-house expanded library of fragments (ELF) collection. Subsequent fragment optimization guided by docking studies provided potent inhibitor 54 with moderate exposure levels in mice. X-ray crystal structure of analog 50 complexed with the I650M mutated kinase domain of Mer revealed the key binding interactions for the scaffold. The good potency coupled with reasonable kinase selectivity, moderate in vivo exposure levels, and availability of structural information for the series makes it a suitable starting point for further optimization efforts.
Collapse
|
31
|
Novoyatleva T, Rai N, Kojonazarov B, Veeroju S, Ben-Batalla I, Caruso P, Shihan M, Presser N, Götz E, Lepper C, Herpel S, Manaud G, Perros F, Gall H, Ghofrani HA, Weissmann N, Grimminger F, Wharton J, Wilkins M, Upton PD, Loges S, Morrell NW, Seeger W, Schermuly RT. Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Commun Biol 2021; 4:1002. [PMID: 34429509 PMCID: PMC8385080 DOI: 10.1038/s42003-021-02531-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), is a fatal disease characterized by a pseudo-malignant phenotype. We investigated the expression and the role of the receptor tyrosine kinase Axl in experimental (i.e., monocrotaline and Su5416/hypoxia treated rats) and clinical PAH. In vitro Axl inhibition by R428 and Axl knock-down inhibited growth factor-driven proliferation and migration of non-PAH and PAH PASMCs. Conversely, Axl overexpression conferred a growth advantage. Axl declined in PAECs of PAH patients. Axl blockage inhibited BMP9 signaling and increased PAEC apoptosis, while BMP9 induced Axl phosphorylation. Gas6 induced SMAD1/5/8 phosphorylation and ID1/ID2 increase were blunted by BMP signaling obstruction. Axl association with BMPR2 was facilitated by Gas6/BMP9 stimulation and diminished by R428. In vivo R428 aggravated right ventricular hypertrophy and dysfunction, abrogated BMPR2 signaling, elevated pulmonary endothelial cell apoptosis and loss. Together, Axl is a key regulator of endothelial BMPR2 signaling and potential determinant of PAH.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany.
| | - Nabham Rai
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Swathi Veeroju
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paola Caruso
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mazen Shihan
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Nadine Presser
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Elsa Götz
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Carina Lepper
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sebastian Herpel
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Grégoire Manaud
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Henning Gall
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - John Wharton
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Martin Wilkins
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
32
|
Yasuma T, Toda M, Kobori H, Tada N, D’Alessandro-Gabazza CN, Gabazza EC. Subcritical Water Extracts from Agaricus blazei Murrill's Mycelium Inhibit the Expression of Immune Checkpoint Molecules and Axl Receptor. J Fungi (Basel) 2021; 7:jof7080590. [PMID: 34436128 PMCID: PMC8397183 DOI: 10.3390/jof7080590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Agaricus blazei Murrill or Himematsutake is an edible and medicinal mushroom. Agaricus blazei Murrill’s fruiting body extracts have anticancer properties, although the mechanism is unknown. Basic or organic solvents, which are hazardous for human health, are generally used to prepare Agaricus blazei Murrill’s extracts. The inhibition of immune checkpoint molecules and Axl receptor is an effective therapy in cancer. This study assessed whether subcritical water extracts of the Agaricus blazei Murrill’s fruiting body or mycelium affect the expression of Axl and immune checkpoint molecules in lung cancer cells. We used A549 cells and mouse bone marrow-derived dendritic cells in the experiments. We prepared subcritical water extracts from the Agaricus blazei Murrill’s fruiting body or mycelium. The subcritical water extracts from the Agaricus blazei Murrill’s fruiting body or mycelium significantly inhibited the expression of immune checkpoint molecules and Axl compared to saline-treated cells. Additionally, the hot water extract, subcritical water extract, and the hot water extraction residue subcritical water extract from the Agaricus blazei Murrill’s mycelium significantly enhanced the expression of maturation markers in dendritic cells. These observations suggest that the subcritical water extract from Agaricus blazei Murrill’s mycelium is a promising therapeutic tool for stimulating the immune response in cancer.
Collapse
Affiliation(s)
- Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
| | - Hajime Kobori
- Iwade Research Institute of Mycology Co., Ltd., Tsu 514-0012, Mie, Japan; (H.K.); (N.T.)
| | - Naoto Tada
- Iwade Research Institute of Mycology Co., Ltd., Tsu 514-0012, Mie, Japan; (H.K.); (N.T.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (T.Y.); (M.T.); (C.N.D.-G.)
- Correspondence: ; Tel.: +81-59-231-5037
| |
Collapse
|
33
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
34
|
Safaric Tepes P, Pal D, Lindsted T, Ibarra I, Lujambio A, Jimenez Sabinina V, Senturk S, Miller M, Korimerla N, Huang J, Glassman L, Lee P, Zeltsman D, Hyman K, Esposito M, Hannon GJ, Sordella R. An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi-resistant cells by modulating miR-335 expression. eLife 2021; 10:e66109. [PMID: 34254585 PMCID: PMC8285107 DOI: 10.7554/elife.66109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/10/2021] [Indexed: 01/15/2023] Open
Abstract
Despite current advancements in research and therapeutics, lung cancer remains the leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that patients develop against chemotherapeutic agents over the course of treatment. In the context of non-small cell lung cancers (NSCLC) harboring EGFR-oncogenic mutations, augmented levels of AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as Erlotinib and Osimertinib in certain tumors with mesenchymal-like features. By studying the ontogeny of AXL-positive cells, we have identified a novel non-genetic mechanism of drug resistance based on cell-state transition. We demonstrate that AXL-positive cells are already present as a subpopulation of cancer cells in Erlotinib-naïve tumors and tumor-derived cell lines and that the expression of AXL is regulated through a stochastic mechanism centered on the epigenetic regulation of miR-335. The existence of a cell-intrinsic program through which AXL-positive/Erlotinib-resistant cells emerge infers the need of treating tumors harboring EGFR-oncogenic mutations upfront with combinatorial treatments targeting both AXL-negative and AXL-positive cancer cells.
Collapse
Affiliation(s)
- Polona Safaric Tepes
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Faculty of Pharmacy University of LjubljanaLjubljanaSlovenia
| | - Debjani Pal
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Molecular and Cellular Biology, Stony Brook UniversityStony Brook, New YorkUnited States
| | - Trine Lindsted
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Ingrid Ibarra
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Amaia Lujambio
- Icahn School of Medicine at Mount Sinai, Hess Center for Science and MedicineNew YorkUnited States
| | | | - Serif Senturk
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Madison Miller
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Navya Korimerla
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Biomedical Engineering, Stony Brook UniversityNew YorkUnited States
| | - Jiahao Huang
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Lawrence Glassman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Paul Lee
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - David Zeltsman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Kevin Hyman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Michael Esposito
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Gregory J Hannon
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Cancer Research UK – Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Raffaella Sordella
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Watson School of Biological Sciences, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
35
|
Su CM, Hsu TW, Sung SY, Huang MT, Chen KC, Huang CY, Chiang CY, Su YH, Chen HA, Liao PH. AXL is crucial for E1A-enhanced therapeutic efficiency of EGFR tyrosine kinase inhibitors through NFI in breast cancer. ENVIRONMENTAL TOXICOLOGY 2021; 36:1278-1287. [PMID: 33734566 DOI: 10.1002/tox.23125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
AXL which is a chemosensitizer protein for breast cancer cells in response to epidermal growth factor receptor-tyrosine kinase inhibitor and suppresses tumor growth. The clinical information show nuclear factor I (NFI)-C and NFI-X expression correlate with AXL expression in breast cancer patients. Following, we establish serial deletions of AXL promoter to identify regions required for Adenovirus-5 early region 1A (E1A)-mediated AXL suppression. All of the NFI family members were extensively studied for their expression and functions in regulating AXL. Moreover, E1A post-transcriptionally downregulates AXL expression through NFI. NFI-C and NFI-X, not NFI-A and NFI-B, resulting in cell death in response to EGFR-TKI. Our finding suggests that NFI-C and NFI-X are crucial regulators for AXL and significantly correlated with poor survival of breast cancer patients.
Collapse
Affiliation(s)
- Chih-Ming Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Tung-Wei Hsu
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
| | - Ming-Te Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Kuan-Chou Chen
- Department of sport and physical education, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chien Yi Chiang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yen-Hao Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Hsin-An Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
36
|
Maiques O, Sanz-Moreno V. Location, location, location: Melanoma cells "living at the edge". Exp Dermatol 2021; 31:82-88. [PMID: 34185923 DOI: 10.1111/exd.14423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
Abnormal cell migration and invasion underlie metastatic dissemination, one of the major challenges for cancer treatment. Melanoma is one of the deadliest and most aggressive forms of skin cancer due in part to its migratory and metastatic potential. Cancer cells use a variety of migratory strategies regulated by cytoskeletal remodelling. In particular, we discuss the importance of amoeboid invasive melanoma strategies, since they have been identified at the edge of human melanomas. We hypothesize that the presence of amoeboid melanoma cells will favour tumor progression since they are invasive and metastatic; they support immunosuppression; they harbour cancer stem cell properties and they are involved in therapy resistance. The Rho-ROCK-Myosin II pathway is key to maintain amoeboid melanoma invasion but this pathway is further regulated by pro-tumorigenic/pro-metastatic/pro-survival signalling pathways such as JAK-STAT3, TGFβ-SMAD, NF-κB, Wnt11/5-FDZ7 and BRAFV600E -MEK-ERK. These pathways support amoeboid behaviour and are actionable in the clinic. After melanoma wide surgical margin removal, we propose that possible remaining melanoma cells should be eradicated using anti-amoeboid therapies.
Collapse
Affiliation(s)
- Oscar Maiques
- Barts Cancer Institute, John Vane Science Building, Queen Mary University of London, London, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, John Vane Science Building, Queen Mary University of London, London, UK
| |
Collapse
|
37
|
Akgül M, Baykan Ö, Çağman Z, Özyürek M, Tinay İ, Akbal C, Uras F, Türkeri L. Gas6 expression and Tyrosine kinase Axl Sky receptors: Their relation with tumor stage and grade in patients with bladder cancer. Arch Ital Urol Androl 2021; 93:148-152. [PMID: 34286546 DOI: 10.4081/aiua.2021.2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES It has been shown that the dysregulation of tyrosine kinase Axl receptor and its ligand growth arrest-specific gene (Gas6) are associated with poor prognosis in various types of tumors but there is not enough study about their importance in bladder cancer (BC). We evaluated the relation of Gas6 gene expression and tyrosine- kinase Axl and Sky (Tyro 3) receptors with tumor stage and grade in patients with BC. MATERIAL AND METHODS The study group consists of 55 patients whose transurethral resection of bladder (TUR-B) has been performed due to BC and the control group consists of 12 patients with normal bladder mucosa. In tissues mRNAs of Gas6, Axl, and Sky receptors were examined by quantitative (Real-Time) PCR (qPCR). Protein expression was measured by immunohistochemistry. Plasma Gas6 protein levels were compared with control group by ELISA method. RESULTS Patients with BC were grouped as Ta low (n=17), Ta high (n=5), T1 low (n=9), T1 high (n=8) and T2 (n=16) according to their TUR-B pathologies. The qPCR analysis showed that the expression of Gas6 gene and Axl receptor is higher in the tumor-positive group and the immune-histochemical showed that the bladder samples of the tumor-positive group stained significantly positive. When the patients are grouped according to the TUR-B pathologies, a statistical significant difference was observed among groups in the qPCR analysis ratios of Gas6 gene and Axl receptor by (p < 0.05) but no significance was found for Sky receptor (p > 0.05). When Gas6 protein levels in plasma samples were compared by ELISA method, a statistical significance was determined among groups (p = 0.001). CONCLUSIONS Our findings indicate that mRNAs of Gas6 and Axl receptor are closely related to tumor stage and grade in patients with BC. Further studies are needed for understanding the role of Gas6 and its receptors on the neoplastic transformation in terms of novel biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Murat Akgül
- Department of Urology, Tekirdag Namık Kemal University Medical School, Tekirdag.
| | - Özgür Baykan
- Department of Biochemistry, Balıkesir University Medical School, Balıkesir.
| | - Zeynep Çağman
- Department of Biochemistry, Bezmialem University, School of Pharmacy, Istanbul.
| | - Mustafa Özyürek
- Department of Physiology, Marmara University, School of Medicine, Istanbul.
| | | | - Cem Akbal
- Department of Urology, Acıbadem University, School of Medicine, Istanbul.
| | - Fikriye Uras
- Department of Biochemistry, Marmara University, School of Pharmacy, Istanbul.
| | - Levent Türkeri
- Department of Urology, Acıbadem University, School of Medicine, Istanbul.
| |
Collapse
|
38
|
Giorello MB, Borzone FR, Labovsky V, Piccioni FV, Chasseing NA. Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment. J Mammary Gland Biol Neoplasia 2021; 26:135-155. [PMID: 33398516 DOI: 10.1007/s10911-020-09475-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Years of investigation have shed light on a theory in which breast tumor epithelial cells are under the effect of the stromal microenvironment. This review aims to discuss recent findings concerning the phenotypic and functional characteristics of cancer associated fibroblasts (CAFs) and their involvement in tumor evolution, as well as their potential implications for anti-cancer therapy. In this manuscript, we reviewed that CAFs play a fundamental role in initiation, growth, invasion, and metastasis of breast cancer, and also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of this disease.
Collapse
Affiliation(s)
- María Belén Giorello
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vivian Labovsky
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Valeria Piccioni
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos (IBYME) y Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Karimdadi Sariani O, Eghbalpour S, Kazemi E, Rafiei Buzhani K, Zaker F. Pathogenic and therapeutic roles of cytokines in acute myeloid leukemia. Cytokine 2021; 142:155508. [PMID: 33810945 DOI: 10.1016/j.cyto.2021.155508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with high mortality that accounts for the most common acute leukemia in adults. Despite all progress in the therapeutic strategies and increased rate of complete remission, many patients will eventually relapse and die from the disease. Cytokines as molecular messengers play a pivotal role in the immune system. The imbalance release of cytokine has been shown to exert a significant influence on the progression of hematopoietic malignancies including acute myeloid leukemia. This article aimed to summarize current knowledge about cytokines and their critical roles in the pathogenesis, treatment, and survival of AML patients.
Collapse
Affiliation(s)
- Omid Karimdadi Sariani
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Sara Eghbalpour
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Elahe Kazemi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Tanaka M, Dykes SS, Siemann DW. Inhibition of the Axl pathway impairs breast and prostate cancer metastasis to the bones and bone remodeling. Clin Exp Metastasis 2021; 38:321-335. [PMID: 33791875 PMCID: PMC8179919 DOI: 10.1007/s10585-021-10093-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Approximately 90% of cancer-related deaths result from cancer metastasis. In prostate and breast cancers, bone is the most common site of cancer cell dissemination. Key steps in the metastatic cascade are promoted through upregulation of critical cell signaling pathways in neoplastic cells. The present study assessed the role of the receptor tyrosine kinase Axl in prostate and breast cancer cell metastasis to bones using (i) Axl knockdown neoplastic cells and osteoclast progenitor cells in vitro, (ii) intracardiac injection of Axl knockdown tumor cells in vivo, and (iii) selective Axl inhibitor BGB324. Axl inhibition in neoplastic cells significantly decreased their metastatic potential, and suppression of Axl signaling in osteoclast precursor cells also reduced the formation of mature osteoclasts. In vivo, Axl knockdown in prostate and breast cancer cells significantly suppressed the formation and progression of bone metastases. Hence, therapeutic targeting of Axl may impair tumor metastasis to the bones through neoplastic and host cell signaling axes.
Collapse
Affiliation(s)
- Mai Tanaka
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Samantha S Dykes
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,GenCure, a Subsidiary of BioBridge Global, San Antonio, TX, 78201, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
41
|
Msaouel P, Genovese G, Gao J, Sen S, Tannir NM. TAM kinase inhibition and immune checkpoint blockade- a winning combination in cancer treatment? Expert Opin Ther Targets 2021; 25:141-151. [PMID: 33356674 DOI: 10.1080/14728222.2021.1869212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICI) have shown great promise in a wide spectrum of malignancies. However, responses are not always durable, and this mode of treatment is only effective in a subset of patients. As such, there exists an unmet need for novel approaches to bolster ICI efficacy.Areas covered: We review the role of the Tyro3, Axl, and Mer (TAM) receptor tyrosine kinases in promoting tumor-induced immune suppression and discuss the benefits that may be derived from combining ICI with TAM kinase-targeted tyrosine kinase inhibitors. We searched the MEDLINE Public Library of Medicine (PubMed) and EMBASE databases and referred to ClinicalTrials.gov for relevant ongoing studies.Expert opinion: Targeting of TAM kinases may improve the efficacy of immune checkpoint blockade. However, it remains to be determined whether this effect will be better achieved by the selective targeting of each TAM receptor, depending on the context, or by multi-receptor TAM inhibitors. Triple inhibition of all TAM receptors is more likely to be associated with an increased risk for adverse events. Clinical trial designs should use high-resolution clinical endpoints and proper control arms to determine the synergistic effects of combining TAM inhibition with immune checkpoint blockade.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Yılmaz Y, Batur T, Korhan P, Öztürk M, Atabey N. Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. LIVER CANCER IN THE MIDDLE EAST 2021:333-364. [DOI: 10.1007/978-3-030-78737-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Lim D, Cho JG, Yun E, Lee A, Ryu HY, Lee YJ, Yoon S, Chang W, Lee MS, Kwon BS, Kim J. MicroRNA 34a-AXL Axis Regulates Vasculogenic Mimicry Formation in Breast Cancer Cells. Genes (Basel) 2020; 12:genes12010009. [PMID: 33374832 PMCID: PMC7823537 DOI: 10.3390/genes12010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Targeting the tumor vasculature is an attractive strategy for cancer treatment. However, the tumor vasculature is heterogeneous, and the mechanisms involved in the neovascularization of tumors are highly complex. Vasculogenic mimicry (VM) refers to the formation of vessel-like structures by tumor cells, which can contribute to tumor neovascularization, and is closely related to metastasis and a poor prognosis. Here, we report a novel function of AXL receptor tyrosine kinase (AXL) in the regulation of VM formation in breast cancer cells. MDA-MB-231 cells exhibited VM formation on Matrigel cultures, whereas MCF-7 cells did not. Moreover, AXL expression was positively correlated with VM formation. Pharmacological inhibition or AXL knockdown strongly suppressed VM formation in MDA-MB-231 cells, whereas the overexpression of AXL in MCF-7 cells promoted VM formation. In addition, AXL knockdown regulated epithelial–mesenchymal transition (EMT) features, increasing cell invasion and migration in MDA-MB-231 cells. Finally, the overexpression of microRNA-34a (miR-34a), which is a well-described EMT-inhibiting miRNA and targets AXL, inhibited VM formation, migration, and invasion in MDA-MB 231 cells. These results identify a miR-34a–AXL axis that is critical for the regulation of VM formation and may serve as a therapeutic target to inhibit tumor neovascularization.
Collapse
Affiliation(s)
- Dansaem Lim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
| | - Jin Gu Cho
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
| | - Eunsik Yun
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Young Joo Lee
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, 23, Seoul 02447, Korea;
| | - Sukjoon Yoon
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea;
| | - Myeong-Sok Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, 23, Seoul 02447, Korea;
- Correspondence: (B.S.K.); (J.K.); Tel.: + 82-2958-8837 (B.S.K.); +82-2710-9553 (J.K.); Fax: +82-2958-8835 (B.S.K.); +82-2-2077-7322 (J.K.)
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (B.S.K.); (J.K.); Tel.: + 82-2958-8837 (B.S.K.); +82-2710-9553 (J.K.); Fax: +82-2958-8835 (B.S.K.); +82-2-2077-7322 (J.K.)
| |
Collapse
|
44
|
AXL Receptor in Breast Cancer: Molecular Involvement and Therapeutic Limitations. Int J Mol Sci 2020; 21:ijms21228419. [PMID: 33182542 PMCID: PMC7696061 DOI: 10.3390/ijms21228419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.
Collapse
|
45
|
Cai P, Yang W, He Z, Jia H, Wang H, Zhao W, Gao L, Zhang Z, Gao F, Gao X. A chlorin-lipid nanovesicle nucleus drug for amplified therapeutic effects of lung cancer by internal radiotherapy combined with the Cerenkov radiation-induced photodynamic therapy. Biomater Sci 2020; 8:4841-4851. [PMID: 32776056 DOI: 10.1039/d0bm00778a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditional photodynamic therapy (PDT) requires external light excitation to produce reactive oxygen species (ROSs) for the treatment of tumors. Due to problems of light penetration, traditional PDT is limited by the location and depth of the tumor. In this study, we rationally designed and constructed a novel strategy to amplify the therapeutic effect of PDT. We prepared a chlorin-lipid nanovesicle based on the conjugates of chlorin e6 (Ce 6) and phospholipids, with the surface conjugating the aptamer for lung cancer targeting, GLT21.T. 131I-labeled bovine serum albumin (131I-BSA) was loaded into the chlorin-lipid nanovesicle cavity (131I-BSA@LCN-Apt). 131I not only plays a role in radiotherapy, but its Cerenkov radiation (CR), as an internal light source, can also stimulate Ce6 to produce ROSs without external light excitation. The in vitro and in vivo therapeutic effects in subcutaneous lung tumor models and orthotopic lung tumor models indicated that 131I-BSA@LCN-Apt produced a powerful anti-tumor effect through synergistic radiotherapy and CR-PDT, which almost caused complete tumor growth regression. After treatment, the survival time of the mice was significantly prolonged. During the treatment, no obvious side effects were found by histopathology of important organs, hematology and biochemistry analysis except the decrease of the white blood cell count (WBC). The study provides a major tool for deep-seated tumors to obtain amplified therapeutic effects by synergistic radiotherapy and CR-PDT without the use of any external light source.
Collapse
Affiliation(s)
- Pengju Cai
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kelly K, West AB. Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics. Front Neurosci 2020; 14:807. [PMID: 32903744 PMCID: PMC7438883 DOI: 10.3389/fnins.2020.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have identified variants in the LRRK2 gene as important components of Parkinson's disease (PD) pathobiology. Biochemical and emergent biomarker studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense oligonucleotides, have recently advanced to the clinic. Historically, there have been few successes in the development of therapies that might slow or halt the progression of neurodegenerative diseases. Over the past few decades of biomedical research, retrospective analyses suggest the broad integration of informative biomarkers early in development tends to distinguish successful pipelines from those that fail early. Herein, we discuss the biomarker regulatory process, emerging LRRK2 biomarker candidates, assays, underlying biomarker biology, and clinical integration.
Collapse
Affiliation(s)
- Kaela Kelly
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| |
Collapse
|
47
|
Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, Rodman C, Leeson R, Su MJ, Shah P, Iwanicki M, Walker SR, Kanodia A, Melms JC, Mei S, Lin JR, Porter CBM, Slyper M, Waldman J, Jerby-Arnon L, Ashenberg O, Brinker TJ, Mills C, Rogava M, Vigneau S, Sorger PK, Garraway LA, Konstantinopoulos PA, Liu JF, Matulonis U, Johnson BE, Rozenblatt-Rosen O, Rotem A, Regev A. A single-cell landscape of high-grade serous ovarian cancer. Nat Med 2020; 26:1271-1279. [PMID: 32572264 PMCID: PMC7723336 DOI: 10.1038/s41591-020-0926-0] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 05/07/2020] [Indexed: 01/04/2023]
Abstract
Malignant abdominal fluid (ascites) frequently develops in women with advanced high-grade serous ovarian cancer (HGSOC) and is associated with drug resistance and a poor prognosis1. To comprehensively characterize the HGSOC ascites ecosystem, we used single-cell RNA sequencing to profile ~11,000 cells from 22 ascites specimens from 11 patients with HGSOC. We found significant inter-patient variability in the composition and functional programs of ascites cells, including immunomodulatory fibroblast sub-populations and dichotomous macrophage populations. We found that the previously described immunoreactive and mesenchymal subtypes of HGSOC, which have prognostic implications, reflect the abundance of immune infiltrates and fibroblasts rather than distinct subsets of malignant cells2. Malignant cell variability was partly explained by heterogeneous copy number alteration patterns or expression of a stemness program. Malignant cells shared expression of inflammatory programs that were largely recapitulated in single-cell RNA sequencing of ~35,000 cells from additionally collected samples, including three ascites, two primary HGSOC tumors and three patient ascites-derived xenograft models. Inhibition of the JAK/STAT pathway, which was expressed in both malignant cells and cancer-associated fibroblasts, had potent anti-tumor activity in primary short-term cultures and patient-derived xenograft models. Our work contributes to resolving the HSGOC landscape3-5 and provides a resource for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Benjamin Izar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ludwig Center for Cancer Research at Harvard, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, NY, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth H Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isaac Wakiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Idan Alter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachel Leeson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mei-Ju Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Parin Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marcin Iwanicki
- Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Sarah R Walker
- Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Abhay Kanodia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johannes C Melms
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shaolin Mei
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Livnat Jerby-Arnon
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Caitlin Mills
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Meri Rogava
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sébastien Vigneau
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ursula Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Asaf Rotem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ludwig Center for Cancer Research at MIT, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
48
|
Rocha-Brito KJP, Fonseca EMB, Oliveira BGDF, Fátima ÂD, Ferreira-Halder CV. Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency. Bioorg Chem 2020; 100:103881. [PMID: 32388429 DOI: 10.1016/j.bioorg.2020.103881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is a challenging malignancy, mainly due to aggressive regional involvement, early systemic dissemination, high recurrence rate, and subsequent low patient survival. Scientific advances have contributed in particular by identification of molecular targets as well as the definition of the mechanism of action of the drug candidate in the cellular microenvironment. Previously, we have reported the identification of the molecular mechanisms by which calix[6]arene (CLX6) reduces the viability and proliferation of pancreatic cancer cells. Now, we show the biochemical mechanisms by which CLX6 decreases the aggressiveness of Panc-1 cells, focusing specifically on receptor tyrosine kinases (RTK). The results show that clathrin-mediated endocytosis is involved in CLX6-induced AXL receptor tyrosine kinase degradation in Panc-1 cells. This response may be related to the interaction of CLX6 with the tyrosine kinase receptor binding site (such as AXL). As a result, RTK is internalized and degraded by endocytosis, a condition that negatively impacts events dependent on its signaling. Additionally, CLX6 inhibits migration and invasion of Panc-1 cells by downregulating FAK (downstream mediator of AXL) activity and reducing expression levels of MMP2 and MMP9, directly related to the metastatic profile of these cells. It is noteworthy that according to the mechanism proposed here, CLX6 appears as a candidate to be used in therapeutic protocols of patients that display high expression of AXL and consequently, poor diagnosis.
Collapse
Affiliation(s)
- Karin Juliane Pelizzaro Rocha-Brito
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Department of Medicine, Health Sciences Center, University Center of Maringá, Maringá, Paraná, Brazil
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Federal Institute of Education, Science and Technology of São Paulo, São Roque, São Paulo, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
49
|
Farschtschi S, Kluwe L, Park SJ, Oh SJ, Mah N, Mautner VF, Kurtz A. Upregulated immuno-modulator PD-L1 in malignant peripheral nerve sheath tumors provides a potential biomarker and a therapeutic target. Cancer Immunol Immunother 2020; 69:1307-1313. [PMID: 32193699 PMCID: PMC7303069 DOI: 10.1007/s00262-020-02548-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/10/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are rare aggressive sarcomas with poor prognosis. More than half of MPNSTs develop from benign precursor tumors associated with neurofibromatosis type 1 (NF1) which is a tumor suppressor gene disorder. Early detection of malignant transformation in NF1 patients is pivotal to improving survival. The primary aim of this study was to evaluate the role of immuno-modulators as candidate biomarkers of malignant transformation in NF1 patients with plexiform neurofibromas as well as predictors of response to immunotherapeutic approaches. METHODS Sera from a total of 125 NF1 patients with quantified internal tumor load were included, and 25 of them had MPNSTs. A total of six immuno-modulatory factors (IGFBP-1, PD-L1, IFN-α, GM-CSF, PGE-2, and AXL) were measured in these sera using respective ELISA. RESULTS NF1 patients with MPNSTs had significantly elevated PD-L1 levels in their sera compared to NF1 patients without MPNSTs. By contrast, AXL concentrations were significantly lower in sera of NF1-MPNST patients. IGFBP-1 and PGE2 serum levels did not differ between the two patient groups. IFN-α and GM-CSF were below the detectable level in most samples. CONCLUSION The immuno-modulator PD-L1 is upregulated in MPNST patients and therefore may provide as a potential biomarker of malignant transformation in patients with NF1 and as a response predictor for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Su-Jin Park
- BIH Center for Regenerative Therapies, Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Su-Jun Oh
- BIH Center for Regenerative Therapies, Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nancy Mah
- BIH Center for Regenerative Therapies, Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies, Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
50
|
Role of Non-Coding RNAs in the Development of Targeted Therapy and Immunotherapy Approaches for Chronic Lymphocytic Leukemia. J Clin Med 2020; 9:jcm9020593. [PMID: 32098192 PMCID: PMC7074107 DOI: 10.3390/jcm9020593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
In the past decade, novel targeted therapy approaches, such as BTK inhibitors and Bcl2 blockers, and innovative treatments that regulate the immune response against cancer cells, such as monoclonal antibodies, CAR-T cell therapy, and immunomodulatory molecules, have been established to provide support for the treatment of patients. However, drug resistance development and relapse are still major challenges in CLL treatment. Several studies revealed that non-coding RNAs have a main role in the development and progression of CLL. Specifically, microRNAs (miRs) and tRNA-derived small-RNAs (tsRNAs) were shown to be outstanding biomarkers that can be used to diagnose and monitor the disease and to possibly anticipate drug resistance and relapse, thus supporting physicians in the selection of treatment regimens tailored to the patient needs. In this review, we will summarize the most recent discoveries in the field of targeted therapy and immunotherapy for CLL and discuss the role of ncRNAs in the development of novel drugs and combination regimens for CLL patients.
Collapse
|