1
|
He M, Wu H, Hu L, Liu N, Zhang G, Wang S. Regulatory mechanism of the Glabrene against non-small cell lung cancer by suppressing FGFR3. ENVIRONMENTAL TOXICOLOGY 2025; 40:412-428. [PMID: 38517198 DOI: 10.1002/tox.24235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a highly malignant tumor with limited effective treatment options. This study aimed to investigate the regulatory mechanism of Glabrene on NSCLC through its interaction with FGFR3. METHODS HCC827 cells were implanted into nude mice and treated with Glabrene. Tumor volume was monitored at 0, 3, 6, and 9 days after medical treatment. Tissue analysis included Hematoxylin and Eosin (HE) and Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) staining, as well as immunohistochemistry for Ki67, ERK1/2, and p-ERK1/2 expression. Cell viability was determined with the CCK8 method. We utilized immunofluorescence techniques to observe apoptosis, as well as the levels of E-cadherin and Vimentin expression. Cellular proliferation was determined via plate cloning assay and cellular mobility was determined via scratch assay. Cellular invasion ability was assessed via a transwell assay. mRNA and protein levels of FGFR3, MMP1, MMP9, vimentin, E-cadherin, ERK1/2, and p-ERK1/2 were detected via qPCR and Western blot. IGF-1, VEGF, and Estradiol (E2) levels were measured through Enzyme linked immunosorbent assay (ELISA). RESULTS This study verified that Glabrene was capable of suppressing tumor growth in NSCLC mice, reversing tumor tissue's pathological morphology, attenuating the capacities of cancerous cells' proliferation, migration, and invasion, and leading to apoptosis. Besides, Glabrene could reduce the FGFR3 expression in HCC827 cells. Over-expression of FGFR3 promotes the proliferation of HCC827 cells, increase both contents of IGF-1, VEGF, and E2, and expressions of MMP1, MMP9, vimentin, and p-ERK1/2, while Glabrene inhibited FGFR3. Glabrene, and inhibition of FGFR3 expression were capable of decreasing FGFR3, MMP1, MMP9, vimentin, and p-ERK1/2 expression, as well as contents of IGF-1, VEGF, and E2 in model mice and HCC827 cells, and promoting the expression of E-cadherin. CONCLUSION Glabrene has the potential as a therapeutic agent for NSCLC by reducing cancer invasion and migration through the inhibition of ERK1/2 phosphorylation and suppression of epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Miao He
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Huiling Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Bone and joint rehabilitation department, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjing Hu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Nan Liu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Guoduo Zhang
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shumei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhou C, Zhong R, Zhang L, Yang R, Luo Y, Lei H, Li L, Cao J, Yuan Z, Tan X, Xie M, Qu H, He Z. Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation. Discov Oncol 2025; 16:47. [PMID: 39812944 PMCID: PMC11735722 DOI: 10.1007/s12672-025-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD. METHODS Firstly, the network pharmacology was used to screen the RosA targets, and LUAD-related differential expressed genes (DEGs) were acquired from the GEO database. The intersection of LUAD regulated by RosA (RDEGs) was obtained through the Venn diagram. Secondly, GO and KEGG enrichment analysis of RDEGs were performed, and protein-protein interaction networks (PPIs) were constructed to identify and visualize hub RDEGs. Then, molecular docking between hub RDEGs and RosA was performed, and further evaluation was carried out by using bioinformatics for the predictive value of the hub RDEGs. Finally, the mechanism of RosA in the treatment of LUAD was verified by establishing a xenograft model of NSCLC in nude mouse. RESULTS Bioinformatics and other analysis showed that, compared with the control group, the expressions of MMP-1, MMP-9, IGFBP3 and PLAU in LUAD tissues were significantly up-regulated, and the expressions of PPARG and FABP4 were significantly down-regulated, and these hub RDEGs had potential predictive value for LUAD. In vivo experimental results showed that RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells. Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells. In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells. CONCLUSIONS This study demonstrated that RosA could induce apoptosis by regulating the PPAR signaling pathway and the expression of MMP-9, inhibit the proliferation, migration and invasion of lung cancer cells, thereby exerting anti-LUAD effects. This study provides new insight into the potential mechanism of RosA in treating LUAD and provides a new therapeutic avenue for treatment of LUAD.
Collapse
Affiliation(s)
- Chaowang Zhou
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Ruqian Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Lei Zhang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Renyi Yang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Yuxin Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Huijun Lei
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Liang Li
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Zhiying Yuan
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Xiaoning Tan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China
| | - Mengzhou Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Haoyu Qu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Zuomei He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
3
|
Varshini MS, Krishnamurthy PT, Reddy RA, Wadhwani A, Chandrashekar VM. Insights into the Emerging Therapeutic Targets of Triple-negative Breast Cancer. Curr Cancer Drug Targets 2025; 25:3-25. [PMID: 38385495 DOI: 10.2174/0115680096280750240123054936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Triple-negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, is characterized by the non-appearance of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Clinically, TNBC is marked by its low survival rate, poor therapeutic outcomes, high aggressiveness, and lack of targeted therapies. Over the past few decades, many clinical trials have been ongoing for targeted therapies in TNBC. Although some classes, such as Poly (ADP Ribose) Polymerase (PARP) inhibitors and immunotherapies, have shown positive therapeutic outcomes, however, clinical effects are not much satisfiable. Moreover, the development of drug resistance is the major pattern observed in many targeted monotherapies. The heterogeneity of TNBC might be the cause for limited clinical benefits. Hence,, there is a need for the potential identification of new therapeutic targets to address the above limitations. In this context, some novel targets that can address the above-mentioned concerns are emerging in the era of TNBC therapy, which include Hypoxia Inducible Factor (HIF-1α), Matrix Metalloproteinase 9 (MMP-9), Tumour Necrosis Factor-α (TNF-α), β-Adrenergic Receptor (β-AR), Voltage Gated Sodium Channels (VGSCs), and Cell Cycle Regulators. Currently, we summarize the ongoing clinical trials and discuss the novel therapeutic targets in the management of TNBC.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Ramakamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
- Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas, 73304, Mauritius
| | - V M Chandrashekar
- Department of Pharmacology, HSK College of Pharmacy, Bagalkot, 587101, Karnataka, India
| |
Collapse
|
4
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Oncu S, Becit-Kizilkaya M, Sen S, Ugur-Kaplan AB, Cetin M, Celik S. Daidzein nanosuspension in combination with cisplatin to enhance therapeutic efficacy against A549 non-small lung cancer cells: an in vitro evaluation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4871-4881. [PMID: 38159158 DOI: 10.1007/s00210-023-02924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Lung cancer is the most common cause of cancer-related mortality, chemo-resistance, and toxicity limit treatment. The focus is on innovative combined phytotherapy to improve treatment outcomes. Our aim was to investigate the potential effects of daidzein nanosuspension (DZ-NS) and its combination with cisplatin (CIS) on A549 non-small lung cancer cells. Cytotoxicity was investigated using MTT and Chou-Talalay methods. Oxidative, apoptotic, and inflammatory markers were analyzed by ELISA and qRT-PCR. The IC50 value for DZ-NS was 25.23 µM for 24 h and was lower than pure DZ (IC50 = 835 µM for pure DZ). DZ-NS (at IC50x2 and IC50 values) showed synergistic cytotoxicity with CIS. The cells treated with DZ-NS had low TOS and OSI levels. However, DZ-NS failed to regulate Cas3 and TGF-β1 activation in A549 cells. MMP-9 gene expression was significantly suppressed in DZ-NS-treated cells, especially in combination therapy. DZ represents a potential combination option for the treatment of lung cancer, and its poor toxicokinetic properties limit its clinical use. To overcome these limitations, the effects of the nanosuspension formulation were tested. DZ-NS showed a cytotoxic effect on A549 cells and optimized the therapeutic effect of CIS. This in vitro synergistic effect was mediated by suppression of MMP-9 and not by oxidative stress or Cas3-activated apoptosis. This study provides the basis for an in vivo and clinical trial of DZ-NS with concurrent chemotherapy.
Collapse
Affiliation(s)
- Seyma Oncu
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Merve Becit-Kizilkaya
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, 03030, Turkey.
| | - Serkan Sen
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Afife Busra Ugur-Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Meltem Cetin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Sefa Celik
- Department of Medical Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Gao E, Wang Y, Fan GL, Xu G, Wu ZY, Liu ZJ, Liu JC, Mao LF, Hou X, Li S. Discovery of gefitinib-1,2,3-triazole derivatives against lung cancer via inducing apoptosis and inhibiting the colony formation. Sci Rep 2024; 14:9223. [PMID: 38649732 PMCID: PMC11035632 DOI: 10.1038/s41598-024-60000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
A series of 20 novel gefitinib derivatives incorporating the 1,2,3-triazole moiety were designed and synthesized. The synthesized compounds were evaluated for their potential anticancer activity against EGFR wild-type human non-small cell lung cancer cells (NCI-H1299, A549) and human lung adenocarcinoma cells (NCI-H1437) as non-small cell lung cancer. In comparison to gefitinib, Initial biological assessments revealed that several compounds exhibited potent anti-proliferative activity against these cancer cell lines. Notably, compounds 7a and 7j demonstrated the most pronounced effects, with an IC50 value of 3.94 ± 0.17 µmol L-1 (NCI-H1299), 3.16 ± 0.11 µmol L-1 (A549), and 1.83 ± 0.13 µmol L-1 (NCI-H1437) for 7a, and an IC50 value of 3.84 ± 0.22 µmol L-1 (NCI-H1299), 3.86 ± 0.38 µmol L-1 (A549), and 1.69 ± 0.25 µmol L-1 (NCI-H1437) for 7j. These two compounds could inhibit the colony formation and migration ability of H1299 cells, and induce apoptosis in H1299 cells. Acute toxicity experiments on mice demonstrated that compound 7a exhibited low toxicity in mice. Based on these results, it is proposed that 7a and 7j could potentially be developed as novel drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- En Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, China.
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | - Ya Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, China
| | - Gao-Lu Fan
- Department of Pharmacy, Luoyang Third People' Hospital, Luoyang, 471000, China
| | - Guiqing Xu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, China
| | - Zi-Yuan Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471003, China
| | - Zi-Jun Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471003, China
| | - Jian-Cheng Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471003, China
| | - Long-Fei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471003, China.
| | - Xixi Hou
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Shouhu Li
- School of Pharmacy, Xinxiang University, Xinxiang, 453000, Henan, China
| |
Collapse
|
8
|
Gawargi FI, Mishra PK. Deciphering MMP9's dual role in regulating SOD3 through protein-protein interactions. Can J Physiol Pharmacol 2024; 102:196-205. [PMID: 37992301 DOI: 10.1139/cjpp-2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Although the collagenase enzyme activity of matrix metalloproteinase-9 (MMP9) is well-documented, its non-enzymatic functions remain less understood. The interaction between intracellular superoxide dismutase-1 (SOD1) and MMP9 is known, with SOD1 suppressing MMP9. However, the mechanism by which MMP9, a secretory protein, influences the extracellular antioxidant superoxide dismutase-3 (SOD3) is not yet clear. To explore MMP9's regulatory impact on SOD3, we employed human embryonic kidney-293 cells, transfecting them with MMP9 overexpresssion and catalytic-site mutant plasmids. Additionally, MMP9 overexpressing cells were treated with an MMP9 activator and inhibitor. Analyses of both cell lysates and culture medium provided insights into MMP9's intracellular and extracellular regulatory roles. In-silico analysis and experimental approaches like proximal ligation assay and co-immunoprecipitation were utilized to delineate the protein-protein interactions between MMP9 and SOD3. Our findings indicate that activated MMP9 enhances SOD3 levels, a regulation not hindered by MMP9 inhibitors. Intriguingly, catalytically inactive MMP9 appeared to reduce SOD3 levels, likely due to MMP9's binding with SOD3, leading to their proteolytic degradation. This MMP9 influence on SOD3 was consistent in both intracellular and extracellular environments, suggesting a parallel in MMP9-SOD3 interactions across these domains. Ultimately, this study unveils a novel interaction between MMP9 and SOD3, highlighting the unique regulatory role of catalytically inactive MMP9 in diminishing SOD3 levels, contrasting its usual upregulation by active MMP9.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
9
|
Liu Z, Liu J, Gao E, Mao L, Hu S, Li S. Synthesis and In Vitro Antitumor Activity Evaluation of Gefitinib-1,2,3-Triazole Derivatives. Molecules 2024; 29:837. [PMID: 38398589 PMCID: PMC10892142 DOI: 10.3390/molecules29040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, 14 structurally novel gefitinib-1,2,3-triazole derivatives were synthesized using a click chemistry approach and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry (HRMS). Preliminary cell counting kit-8 results showed that most of the compounds exhibit excellent antitumor activity against epidermal growth factor receptor wild-type lung cancer cells NCI-H1299, A549 and NCI-H1437. Among them, 4b and 4c showed the most prominent inhibitory effects. The half maximal inhibitory concentration (IC50) values of 4b were 4.42 ± 0.24 μM (NCI-H1299), 3.94 ± 0.01 μM (A549) and 1.56 ± 0.06 μM (NCI-1437). The IC50 values of 4c were 4.60 ± 0.18 µM (NCI-H1299), 4.00 ± 0.08 μM (A549) and 3.51 ± 0.05 μM (NCI-H1437). Furthermore, our results showed that 4b and 4c could effectively inhibit proliferation, colony formation and cell migration in a concentration-dependent manner, as well as induce apoptosis in H1299 cells. In addition, 4b and 4c exerted its anti-tumor effects by inducing cell apoptosis, upregulating the expression of cleaved-caspase 3 and cleaved-PARP and downregulating the protein levels of Bcl-2. Based on these results, it is suggested that 4b and 4c be developed as potential new drugs for lung cancer treatment.
Collapse
Affiliation(s)
- Zijun Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China; (Z.L.); (J.L.)
| | - Jiancheng Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China; (Z.L.); (J.L.)
| | - En Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China;
| | - Longfei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China; (Z.L.); (J.L.)
| | - Shu Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China; (Z.L.); (J.L.)
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China; (Z.L.); (J.L.)
| |
Collapse
|
10
|
Alonso A, de la Gala F, Vara E, Hortal J, Piñeiro P, Reyes A, Simón C, Garutti I. Lung and blood perioperative metalloproteinases in patients undergoing oncologic lung surgery: Prognostic implications. Thorac Cancer 2024; 15:307-315. [PMID: 38155459 PMCID: PMC10834222 DOI: 10.1111/1759-7714.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Metalloproteinases (MMPs) have been reported to be related to oncologic outcomes. The main goal of the study was to study the relationship between these proteins and the long-term prognosis of patients undergoing oncologic lung resection surgery. METHODS This was a substudy of the phase IV randomized control trial (NCT02168751). We analyzed MMP-2, -3, -7, and -9 in blood samples and bronchoalveolar lavage (LBA) and the relationship between MMPs and long postoperative outcomes (survival and disease-free time of oncologic recurrence). RESULTS Survival was longer in patients who had lower MMP-2 levels than those with higher MMP-2 in blood samples taken 6 h after surgery (6.8 vs. 5.22 years; p = 0.012) and MMP-3 (6.82 vs. 5.35 years; p = 0.03). In contrast, survival was longer when MMP-3 levels were higher in LBA from oncologic lung patients than those with lower MMP-3 (7.96 vs. 6.02 years; p = 0.005). Recurrence-free time was longer in patients who had lower MMP-3 levels in blood samples versus higher (5.97 vs. 4.23 years; p = 0.034) as well as lower MMP-7 (5.96 vs. 4.5 years; p = 0.041) or lower MMP-9 in LBA samples (6.21 vs. 4.18 years; p = 0.012). CONCLUSION MMPs were monitored during the perioperative period of oncologic lung resection surgery. These biomarkers were associated with mortality and recurrence-free time. The role of the different MMPs analyzed during the study do not have the same prognostic implications after this kind of surgery.
Collapse
Affiliation(s)
- Angel Alonso
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Francisco de la Gala
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Javier Hortal
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Pharmacology, Faculty of Medicine complutense University of Madrid, Madrid, Spain
| | - Patricia Piñeiro
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Almudena Reyes
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Carlos Simón
- Department of Thoracic Surgery, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ignacio Garutti
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Pharmacology, Faculty of Medicine complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Ray R, Goel S, Al Khashali H, Darweesh B, Haddad B, Wozniak C, Ranzenberger R, Khalil J, Guthrie J, Heyl D, Evans HG. Regulation of Soluble E-Cadherin Signaling in Non-Small-Cell Lung Cancer Cells by Nicotine, BDNF, and β-Adrenergic Receptor Ligands. Biomedicines 2023; 11:2555. [PMID: 37760996 PMCID: PMC10526367 DOI: 10.3390/biomedicines11092555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The ectodomain of the transmembrane protein E-cadherin can be cleaved and released in a soluble form referred to as soluble E-cadherin, or sE-cad, accounting for decreased E-cadherin levels at the cell surface. Among the proteases implicated in this cleavage are matrix metalloproteases (MMP), including MMP9. Opposite functions have been reported for full-length E-cadherin and sE-cad. In this study, we found increased MMP9 levels in the media of two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, treated with BDNF, nicotine, or epinephrine that were decreased upon cell treatment with the β-adrenergic receptor blocker propranolol. Increased MMP9 levels correlated with increased sE-cad levels in A549 cell media, and knockdown of MMP9 in A549 cells led to downregulation of sE-cad levels in the media. Previously, we reported that A549 and H1299 cell viability increased with nicotine and/or BDNF treatment and decreased upon treatment with propranolol. In investigating the function of sE-cad, we found that immunodepletion of sE-cad from the media of A549 cells untreated or treated with BDNF, nicotine, or epinephrine reduced activation of EGFR and IGF-1R, decreased PI3K and ERK1/2 activities, increased p53 activation, decreased cell viability, and increased apoptosis, while no effects were found using H1299 cells under all conditions tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (R.R.); (S.G.); (H.A.K.); (B.D.); (B.H.); (C.W.); (R.R.); (J.K.); (J.G.); (D.H.)
| |
Collapse
|
12
|
Wei C. The multifaceted roles of matrix metalloproteinases in lung cancer. Front Oncol 2023; 13:1195426. [PMID: 37766868 PMCID: PMC10520958 DOI: 10.3389/fonc.2023.1195426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Though the matrix metalloproteinases (MMPs) are widely investigated in lung cancer (LC), however, almost no review systematically clarify their multi-faced roles in LC. Methods We investigated the expression of MMPs and their effects on survival of patients with LC, the resistance mechanisms of MMPs in anti-tumor therapy, the regulatory networks of MMPs involved, the function of MMPs inducing CSCLs, MMPs-related tumor immunity, and effects of MMP polymorphisms on risk of LC. Results High expression of MMPs was mainly related to poor survival, high clinical stages and cancer metastasis. Role of MMPs in LC are multi-faced. MMPs are involved in drug resistance, induced CSCLs, participated in tumor immunity. Besides, MMPs polymorphisms may increase risk of LC. Conclusions MMPs might be promising targets to restore the anti-tumor immune response and enhance the killing function of nature immune cells in LC.
Collapse
Affiliation(s)
- Cui Wei
- Department of Emergency, The Third Hospital of Changsha, Changsha, China
| |
Collapse
|
13
|
Wen J, Qin X, Zhang J, Wu X, Yan X, Lu K, Yang P, Ji S, Zhao X, Wang Y. Clinical significance of matrix metalloproteinase-9 expression in papillary thyroid carcinoma: a meta-analysis. World J Surg Oncol 2023; 21:225. [PMID: 37496069 PMCID: PMC10369753 DOI: 10.1186/s12957-023-03101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the relationship between the expression of matrix metalloproteinase-9 (MMP-9) and pathological indexes in papillary thyroid carcinoma (PTC). EVIDENCE OBTAINED The database was searched in PubMed, Embase, CNKI, and Web of Science databases for relevant clinical trials. The odds ratio (OR) and 95% confidence interval (CI) show the effect of MMP-9 expression and age, tumour size, gender, lymph node metastasis (LNM), and TNM (tumour, lymph node, metastasis) stage. Statistical analysis of the data was performed using Stata 17.0. EVIDENCE SYNTHESIS A total of 1433 patients with PTC were included in this meta-analysis. MMP-9 expression was significantly correlated with LNM (OR = 3.92, 95% CI = 2.71-5.65, P = 0.000), tumour size (OR = 1.69, 95% CI = 1.13-2.52, P = 0.011), and TNM stage (OR = 2.95, 95% CI = 2.10-4.13, P = 0.000), but not with gender (OR = 0.90, 95% CI = 0.66-1.22, P = 0.487) and age (OR = 1.36, 95% CI = 0.93-1.98, P = 0.115). CONCLUSIONS Our meta-analysis showed that MMP-9 was significantly associated with LNM, tumour size, and TNM stage; therefore, MMP-9 may be a reliable prognostic biomarker for patients with PTC. However, more high-quality studies are needed to support these findings further.
Collapse
Affiliation(s)
- Jinxu Wen
- Hebei Medical University, Shijiazhuang, 050051, Hebei Province, China
| | - Xiaoru Qin
- Department of Thyroid and Breast Surgery, Hebei General Hospital, Shijiazhuang, 050051, Hebei Province, China
| | - Jiayi Zhang
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Xiaoyong Wu
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Xuemin Yan
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Kewen Lu
- Hebei Medical University, Shijiazhuang, 050051, Hebei Province, China
| | - Pei Yang
- Hebei Medical University, Shijiazhuang, 050051, Hebei Province, China
| | - Shuaichong Ji
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Xiangdong Zhao
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Yuexin Wang
- Department of Thyroid and Breast Surgery, Hebei General Hospital, Shijiazhuang, 050051, Hebei Province, China.
| |
Collapse
|
14
|
Jiang L, Wang Z, Wang Y, Liu S, Xu Y, Zhang C, Li L, Si S, Yao B, Dai W, Li H. Re-exposure of chitosan by an inhalable microsphere providing the re-education of TAMs for lung cancer treatment with assistant from sustained H 2S generation. Int J Pharm 2023; 642:123142. [PMID: 37328119 DOI: 10.1016/j.ijpharm.2023.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
The re-education of tumor-associated macrophages (TAMs) is an effective strategy to inhibit the growth and metastasis of lung cancer. We have reported that chitosan could re-educate the TAMs and then inhibit cancer metastasis; however, the re-exposure of chitosan from the chemical corona on their surface is critical for this effect. In this study, a strategy was proposed to re-expose the chitosan from chemical corona, and a sustained H2S generation was applied to enhance the immunotherapy of chitosan. To achieve this objective, an inhalable microsphere (namely F/Fm) was designed, which could be degraded by the matrix metalloproteinase in lung cancer, releasing two kinds of nanoparticles; in an external magnetic field, these nanoparticles can aggregate with each other, and β-cyclodextrin on the surface of one nanoparticle can be hydrolyzed by amylase on the surface of another nanoparticle, leading to the re-exposure of chitosan in the inner layer of β-cyclodextrin and the release of diallyl trisulfide for H2S generation. In vitro, the expression of CD86 and secretion of TNF-α by TAMs was increased by F/Fm, proving the re-education of TAMs, and the apoptosis of A549 cells was promoted with the migration and invasion being inhibited. In the Lewis lung carcinoma-bearing mouse, the F/Fm re-educated the TAMs and provided a sustained generation of H2S in the region of lung cancer, effectively inhibiting the growth and metastasis of lung cancer cells. This work provides a new strategy for the treatment of lung cancer in combination of re-education of TAMs by chitosan and the adjuvant chemotherapy by H2S.
Collapse
Affiliation(s)
- Liqun Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China.
| | - Ziyao Wang
- Wuxi Branch of Ruijin Hospital, People's Republic of China
| | - Yan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Shuo Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ya Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Cong Zhang
- Shanghai Frontier Health Pharmaceutical Technology Co., Ltd, People's Republic of China
| | - Lei Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Sujia Si
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Bingmei Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wenjin Dai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Huiyang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
15
|
Rachmadi L, Laelasari E, Susanto YDB, Kusmardi K. MMP-9 and CCR7 as Possible Predictors of Lymph Node Metastasis in Laryngeal Squamous Cell Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:156-164. [PMID: 37600570 PMCID: PMC10439748 DOI: 10.30699/ijp.2023.563014.2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2022] [Indexed: 08/22/2023]
Abstract
Background & Objective The expression of matrix metalloproteinase-9 (MMP-9) and chemokine receptor 7 (CCR7) is significantly associated with tumor invasion and metastasis. Little is known regarding the potential of these markers in predicting cancer metastasis in Laryngeal Squamous Cell Carcinoma (LSCC). Therefore, this study aimed to dissect the potential of these markers in predicting the lymph node metastasis in LSCC patients. Methods Sixty tissue samples were obtained from the patients diagnosed pathologically with LSCC who underwent partial or total laryngectomy. The expression of MMP-9 and CCR7 was measured using the immunohistochemistry staining in the tissue samples of LSCC patients. The ROC (receiver operating characteristic) curve was used to determine the most significant cut-off points of expression according to the highest sensitivity and specificity of both the markers to predict the lymph node metastasis in LSCC. Then, the relationship between the clinicopathology features and the expression of MMP-9 and CCR7 was evaluated. Results The expression of both MMP-9 and CCR7 was significantly correlated with the lymph node metastasis in LSCC (P<0.001). Furthermore, CCR7 expression exhibited the highest prediction accuracy (AUC 95.7%) and sensitivity (100%) in predicting the lymph node metastasis in LSCC compared to that of MMP-9 (AUC 92.9%, sensitivity 90%). We also found that patients with larger tumor size (> 4 cm) had significantly higher expression of MMP-9 and CCR7 (P<0.002 and P<0.001, respectively). The Elevated expression level of CCR7 statistically correlated with higher MMP-9 expression (P<0.001). Conclusion MMP-9 and CCR7 might be beneficial as predictors of lymph node metastasis in LSCC patients.
Collapse
Affiliation(s)
- Lisnawati Rachmadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | | | | |
Collapse
|
16
|
Kottmann P, Eildermann K, Murthi SR, Cleuziou J, Lemmer J, Vitanova K, von Stumm M, Lehmann L, Hörer J, Ewert P, Sigler M, Lange R, Lahm H, Dreßen M, Lichtner P, Wolf CM. EGFR and MMP-9 are associated with neointimal hyperplasia in systemic-to-pulmonary shunts in children with complex cyanotic heart disease. Mamm Genome 2023; 34:285-297. [PMID: 36867212 PMCID: PMC10290590 DOI: 10.1007/s00335-023-09982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
Systemic-to-pulmonary shunt malfunction contributes to morbidity in children with complex congenital heart disease after palliative procedure. Neointimal hyperplasia might play a role in the pathogenesis increasing risk for shunt obstruction. The aim was to evaluate the role of epidermal growth factor receptor (EGFR) and matrix-metalloproteinase 9 (MMP-9) in the formation of neointimal within shunts. Immunohistochemistry was performed with anti-EGFR and anti-MMP-9 on shunts removed at follow-up palliative or corrective procedure. Whole-genome single-nucleotide polymorphisms genotyping was performed on DNA extracted from patients´ blood samples and allele frequencies were compared between the group of patients with shunts displaying severe stenosis (≥ 40% of lumen) and the remaining group. Immunohistochemistry detected EGFR and MMP-9 in 24 of 31 shunts, located mainly in the luminal area. Cross-sectional area of EGFR and MMP-9 measured in median 0.19 mm2 (IQR 0.1-0.3 mm2) and 0.04 mm2 (IQR 0.03-0.09 mm2), respectively, and correlated positively with the area of neointimal measured on histology (r = 0.729, p < 0.001 and r = 0.0479, p = 0.018, respectively). There was a trend of inverse correlation between the dose of acetylsalicylic acid and the degree of EGFR, but not MMP-9, expression within neointima. Certain alleles in epidermal growth factor (EGF) and tissue inhibitor of metalloproteinases 1 (TIMP-1) were associated with increased stenosis and neointimal hyperplasia within shunts. EGFR and MMP-9 contribute to neointimal proliferation in SP shunts of children with complex cyanotic heart disease. SP shunts from patients carrying certain risk alleles in the genes encoding for EGF and TIMP-1 displayed increased neointima.
Collapse
Affiliation(s)
- Philip Kottmann
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Lazarettstrasse 36, 80636, Munich, Germany
| | - Katja Eildermann
- Department of Pediatrics and Adolescent Medicine-Paediatric Cardiology, Intensive Care Medicine and Pneumology, University Medical Center, Goettingen, Germany
| | - Sarala Raj Murthi
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Lazarettstrasse 36, 80636, Munich, Germany
| | - Julie Cleuziou
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilian University Munich, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Julia Lemmer
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Lazarettstrasse 36, 80636, Munich, Germany
| | - Keti Vitanova
- Institute for Translational Cardiac Surgery (INSURE), German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Department of Cardiovascular Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Maria von Stumm
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilian University Munich, Munich, Germany
| | - Luisa Lehmann
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Lazarettstrasse 36, 80636, Munich, Germany
| | - Jürgen Hörer
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilian University Munich, Munich, Germany
| | - Peter Ewert
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Lazarettstrasse 36, 80636, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Matthias Sigler
- Department of Pediatrics and Adolescent Medicine-Paediatric Cardiology, Intensive Care Medicine and Pneumology, University Medical Center, Goettingen, Germany
| | - Rüdiger Lange
- Institute for Translational Cardiac Surgery (INSURE), German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Department of Cardiovascular Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Harald Lahm
- Institute for Translational Cardiac Surgery (INSURE), German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Department of Cardiovascular Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Martina Dreßen
- Institute for Translational Cardiac Surgery (INSURE), German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Department of Cardiovascular Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Centrum Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Cordula M Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Lazarettstrasse 36, 80636, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
17
|
Saito J, Zao H, Wu L, Iwasaki M, Sun Q, Hu C, Ishikawa M, Hirota K, Ma D. "Anti-cancer" effect of ketamine in comparison with MK801 on neuroglioma and lung cancer cells. Eur J Pharmacol 2023; 945:175580. [PMID: 36758782 DOI: 10.1016/j.ejphar.2023.175580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, is commonly used to induce anaesthesia during cancer surgery and relieve neuropathic and cancer pain. This study was conducted to assess whether ketamine has any inhibiting effects on neuroglioma (H4) and lung cancer cells (A549) in vitro. The cultured H4 and A549 cells were treated with ketamine and MK801 (0.1, 1, 10, 100, or 1000 μM) for 24 h. The expressions of glutamate receptors on both types of cancer cells were assessed with qRT-PCR. In addition, cell proliferation and migration were assessed with cell counting Kit-8 and wound healing assays. Cyclin D1, matrix metalloproteinase 9 (MMP9), phosphorylation of extracellular signal-regulated kinase (pERK), and cleaved-caspase-3 expression together with reactive oxygen species (ROS) were also assessed with Western blot, immunostaining, and/or flowcytometry. NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors were expressed on both H4 and A549 cells. Ketamine inhibited cancer cell proliferation and migration in a dose-dependent manner by suppressing the cell cycle and inducing apoptosis. Ketamine decreased cyclin D1, pERK, and MMP9 expression. In addition, ketamine increased ROS and cleaved caspase-3 expression and induced apoptosis. The anti-cancer effect of ketamine was more pronounced in A549 cells when compared with H4 cells. MK801 showed similar effects to those of ketamine. Ketamine suppressed cell proliferation and migration in both neuroglioma and lung cancer cells, likely through the antagonization of NMDA receptors.
Collapse
Affiliation(s)
- Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Hailin Zao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; National Clinical Research Center for Child Health, Hangzhou, China.
| | | |
Collapse
|
18
|
Kowalczyk A, Nisiewicz MK, Bamburowicz-Klimkowska M, Kasprzak A, Ruzycka-Ayoush M, Koszytkowska-Stawińska M, Nowicka AM. Effective voltammetric tool for simultaneous detection of MMP-1, MMP-2, and MMP-9; important non-small cell lung cancer biomarkers. Biosens Bioelectron 2023; 229:115212. [PMID: 36958204 DOI: 10.1016/j.bios.2023.115212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Simultaneous detection of multiple biomarkers can allow to reduce the costs of medical diagnostics, and thus improve the accuracy and effectiveness of disease diagnosis and prognosis. Here, for the first time, we present a low-cost, simple, and rapid method for simultaneous detection of three matrix metalloproteinases (MMP-1, MMP-2, and MMP-9) that play important roles in the progression of lung cancer. The sensor matrix was constructed using a G2 polyamidoamine dendrimer (PAMAM) containing amino, carboxyl, and sulfhydryl groups. The recognition process was based on specific enzymatic cleavage of the Gly-Ile peptide bond by MMP-1, Gly-Leu bond by MMP-2, and Gly-Met bond by MMP-9, and monitoring was done by square wave voltammetry. The activity of metalloproteinases was detected based on the change of current signals of redox receptors (dipeptides labeled with electroactive compounds) covalently anchored onto the electrode surface. The conditions of the biosensor construction, including the concentration of receptors on the sensor surface and the time of interaction of the receptor with the analyte, were carefully optimized. Under optimal conditions, the linear response of the developed method ranged from 1.0⋅10-8 to 1.0 mg⋅L-1, and the limit of detection for MMP-1, MMP-2, and MMP-9 was 0.35, 0.62, and 1.10 fg⋅mL-1, respectively. The constructed biosensor enabled us to efficiently profile the levels of active forms of MMP-1, MMP-2, and MMP-9 in tissue samples (plasma and lung and tumor extracts). Thus, the developed biosensor can aid in the early detection and diagnosis of lung cancer.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Monika Ruzycka-Ayoush
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | | | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland.
| |
Collapse
|
19
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
20
|
Li X, Zha L, Li B, Sun R, Liu J, Zeng H. Clinical significance of MMP-9 overexpression in endometrial cancer: A PRISMA-compliant meta-analysis. Front Oncol 2022; 12:925424. [PMID: 36387161 PMCID: PMC9645803 DOI: 10.3389/fonc.2022.925424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Several studies have found that MMP-9, one of the extracellular matrix-degrading proteinases, was involved in EC's (endometrial cancer) clinical progression and prognosis. However, the results involving the associations of MMP-9 expression with risk, clinical features and prognosis of EC were conflicting. Therefore, we performed a systematic review and meta-analysis to clarify the correlation of MMP-9 expression with EC. METHODS Relative studies involving the associations between MMP-9 expression and EC were retrieved from PubMed, Embase, Web of Science and CNKI (China National Knowledge Infrastructure) electronic databases. OR (odds ratio) with 95% CI (confidence interval) was applied to evaluate the associations of MMP-9 expression with risk and clinical features of EC. Furthermore, we evaluated the role of MMP-9 expression in prognosis of EC using HR and 95% CI. The funnel plots and Begg test were used to assess the publication bias. RESULTS A total of 28 eligible studies were acquired from Pubmed, Embase, Web of science and CNKI databases. We found MMP-9 overexpression was significantly associated with the risk of EC (OR = 11.02, 95% CI = 7.51-16.16, P < 0.05). In the meantime, MMP-9 overexpression was significantly associated with the tumor grade, FIGO stage, lymph node metastasis and myometrial invasion (Tumor grade: OR = 1.68, 95% CI = 1.09-2.58, P < 0.05; FIGO stage: OR = 3.25, 95% CI = 1.73-6.08, P < 0.05; Lymph node metastasis: OR = 2.98, 95% CI = 1.27-7.03, P < 0.05; Myometrial invasion: OR = 2.42, 95% CI = 1.42-4.12, P < 0.05) in Asians. In addition, the overall results showed that MMP-9 overexpression predicted a worse prognosis of EC (OR = 1.82, 95% CI = 1.01-2.62, P < 0.05). CONCLUSIONS MMP-9 overexpression might be a potential predictor of poor clinical progression and prognosis of EC.
Collapse
Affiliation(s)
- Xia Li
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Zha
- Department of Gynaecology and Obstetrics, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Li
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Sun
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianhua Liu
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zeng
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
22
|
Nisiewicz MK, Kowalczyk A, Sikorska M, Kasprzak A, Bamburowicz-Klimkowska M, Koszytkowska-Stawińska M, Nowicka AM. Poly(amidoamine) dendrimer immunosensor for ultrasensitive gravimetric and electrochemical detection of matrix metalloproteinase-9. Talanta 2022; 247:123600. [PMID: 35659686 DOI: 10.1016/j.talanta.2022.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Monitoring the level of matrix metalloproteinase-9 (MMP-9) and inhibiting its expression is important for the diagnosis and treatment of various diseases. However, the analysis of MMP-9 is challenging owing to its very low content in the blood, especially at the early stages of diseases. Therefore, we developed an ultrasensitive and easy-to-use immunosensor based on a three-dimensional (3D) bioplatform for the determination of the total MMP-9 concentration in plasma. The used 3D bioplatform (G2 poly(amidoamine) dendrimer; PAMAM) improved the sensitivity of the determination by significantly expanding the surface area of the receptor layer. The antigen-antibody recognition process was controlled by quartz crystal microbalance with dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS). The effect of the orientation of antibody molecules in the sensing layer on the work parameters of the immunosensor was analyzed using unmodified PAMAM (PAMAM-NH2) and PAMAM functionalized with -COOH groups (PAMAM-COOH). The developed immunosensor based on PAMAM-NH2 was characterized by a lower detection limit (LOD = 2.0 pg⋅mL-1) and wider analytical range (1·10-4 - 5 μg⋅mL-1 for EIS and QCM-D) compared to PAMAM-COOH immunosensor (EIS: 1·10-4 - 0.5 μg⋅mL-1; QCM-D: 5·10-4 - 0.5 μg⋅mL-1). The functionality of the proposed device was verified in spiked plasma. The recoveries determined in commercial human and rat plasma and noncommercial rat plasma were very close to the value of 100% and in the range of 96-120% for Au/PAMAM-NH2/Ab and Au/PAMAM-COOH/Ab immunosensors, respectively. The designed analytical devices showed high selectivity and sensitivity without the use of any amplifiers such as metal nanoparticles or enzymes.
Collapse
Affiliation(s)
- Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664 Warsaw, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland
| | - Małgorzata Sikorska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664 Warsaw, Poland
| | | | | | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland.
| |
Collapse
|
23
|
Shang H, Niu X, Cui W, Sha Z, Wang C, Huang T, Guo P, Wang X, Gao P, Zhang S, Wei K, Zhu R. Anti-tumor activity of polysaccharides extracted from Pinus massoniana pollen in colorectal cancer- in vitro and in vivo studies. Food Funct 2022; 13:6350-6361. [PMID: 35612410 DOI: 10.1039/d1fo03908c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence and mortality rate of colorectal cancer (CRC) have been increasing dramatically worldwide. Pinus massoniana pollen, a well-known natural food, is one of the most commonly consumed traditional medicines in China. P. massoniana pollen polysaccharides (PPPS) have antitumor effects, but it remains unclear whether they can inhibit CRC. Here, we have demonstrated that PPPS inhibited CRC cell proliferation effectively, induced morphology changes, triggered apoptosis by upregulating key apoptosis-related proteins, and arrested the cell cycle at the G0/G1 phase. Moreover, PPPS markedly inhibited CRC cell metastasis by downregulating MMP-9 and inhibiting epithelial-mesenchymal transition. In vivo, PPPS exhibited potent antitumor activity and no observable toxicity in BALB/c nude mice bearing HCT-116 tumors. Most strikingly, PPPS pre-treatment dramatically inhibited the growth of incipient tumors, although not as effectively as in the PPPS-Ther group. Thus, our results suggest that PPPS can be a potential anti-CRC agent, paving the way for developing complex carbohydrates for tumor prevention and treatment.
Collapse
Affiliation(s)
- Hongqi Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Xiangyun Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Wenping Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Zhou Sha
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Cheng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Teng Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Ping Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Xiangkun Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Panpan Gao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Shuyu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| |
Collapse
|
24
|
Kato EE, Sampaio SC. Crotoxin Modulates Events Involved in Epithelial-Mesenchymal Transition in 3D Spheroid Model. Toxins (Basel) 2021; 13:toxins13110830. [PMID: 34822613 PMCID: PMC8618719 DOI: 10.3390/toxins13110830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) occurs in the early stages of embryonic development and plays a significant role in the migration and the differentiation of cells into various types of tissues of an organism. However, tumor cells, with altered form and function, use the EMT process to migrate and invade other tissues in the body. Several experimental (in vivo and in vitro) and clinical trial studies have shown the antitumor activity of crotoxin (CTX), a heterodimeric phospholipase A2 present in the Crotalus durissus terrificus venom. In this study, we show that CTX modulates the microenvironment of tumor cells. We have also evaluated the effect of CTX on the EMT process in the spheroid model. The invasion of type I collagen gels by heterospheroids (mix of MRC-5 and A549 cells constitutively prepared with 12.5 nM CTX), expression of EMT markers, and secretion of MMPs were analyzed. Western blotting analysis shows that CTX inhibits the expression of the mesenchymal markers, N-cadherin, α-SMA, and αv. This study provides evidence of CTX as a key modulator of the EMT process, and its antitumor action can be explored further for novel drug designing against metastatic cancer.
Collapse
Affiliation(s)
- Ellen Emi Kato
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, Brazil;
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, Brazil;
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
- Correspondence:
| |
Collapse
|
25
|
Wang LL, Zhang B, Zheng MH, Xie YZ, Wang CJ, Jin JY. Matrix Metalloproteinases (MMPs) in Targeted Drug Delivery: Synthesis of a Potent and Highly Selective Inhibitor against Matrix Metalloproteinase- 7. Curr Top Med Chem 2021; 20:2459-2471. [PMID: 32703131 DOI: 10.2174/1568026620666200722104928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that play a key role in both physiological and pathological tissue degradation. MMPs have reportedly shown great potentials in the degradation of the Extracellular Matrix (ECM), have shown great potentials in targeting bioactive and imaging agents in cancer treatment. MMPs could provoke Epithelial to Mesenchymal Transition (EMT) of cancer cells and manipulate their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Therefore, targeting and particularly inhibiting MMPs within the tumor microenvironment is an effective strategy for cancer treatment. Based on this idea, different MMP inhibitors (MMPIs) have been developed to manipulate the tumor microenvironment towards conditions appropriate for the actions of antitumor agents. Studies are ongoing to improve the selectivity and specificity of MMPIs. Structural optimization has facilitated the discovery of selective inhibitors of the MMPs. However, so far no selective inhibitor for MMP-7 has been proposed. AIMS This study aims to comprehensively review the potentials and advances in applications of MMPs particularly MMP-7 in targeted cancer treatment approaches with the main focus on targeted drug delivery. Different targeting strategies for manipulating and inhibiting MMPs for the treatment of cancer are discussed. MMPs are upregulated at all stages of expression in cancers. Different MMP subtypes have shown significant targeting applicability at the genetic, protein, and activity levels in both physiological and pathophysiological conditions in a variety of cancers. The expression of MMPs significantly increases at advanced cancer stages, which can be used for controlled release in cancers in advance stages. METHODS Moreover, this study presents the synthesis and characteristics of a new and highly selective inhibitor against MMP-7 and discusses its applications in targeted drug delivery systems for therapeutics and diagnostics modalities. RESULTS Our findings showed that the structure of the inhibitor P3' side chains play the crucial role in developing an optimized MMP-7 inhibitor with high selectivity and significant degradation activities against ECM. CONCLUSION Optimized NDC can serve as a highly potent and selective inhibitor against MMP-7 following screening and optimization of the P3' side chains, with a Ki of 38.6 nM and an inhibitory selectivity of 575 of MMP-7 over MMP-1.
Collapse
Affiliation(s)
- Ling-Li Wang
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China,National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| | - Bing Zhang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Ming-Hua Zheng
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Yu-Zhong Xie
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China,College of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chang-Jiang Wang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Jing-Yi Jin
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| |
Collapse
|
26
|
KLHL38 involvement in non-small cell lung cancer progression via activation of the Akt signaling pathway. Cell Death Dis 2021; 12:556. [PMID: 34050138 PMCID: PMC8163838 DOI: 10.1038/s41419-021-03835-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. KLHL38 has been reported to be upregulated during diapause but downregulated after androgen treatment during the reversal of androgen-dependent skeletal muscle atrophy. This study aimed to clarify the role of KLHL38 in non-small cell lung cancer (NSCLC). KLHL38 expression was evaluated in tumor and adjacent normal tissues from 241 patients with NSCLC using immunohistochemistry and real-time PCR, and its association with clinicopathological parameters was analyzed. KLHL38 levels positively correlated with tumor size, lymph node metastasis, and pathological tumor-node-metastasis stage (all P < 0.001). In NSCLC cell lines, KLHL38 overexpression promoted PTEN ubiquitination, thereby activating Akt signaling. It also promoted cell proliferation, migration, and invasion by upregulating the expression of genes encoding cyclin D1, cyclin B, c-myc, RhoA, and MMP9, while downregulating the expression of p21 and E-cadherin. In vivo experiments in nude mice further confirmed that KLHL38 promotes NSCLC progression through Akt signaling pathway activation. Together, these results indicate that KLHL38 is a valuable candidate prognostic biomarker and potential therapeutic target for NSCLC.
Collapse
|
27
|
OPALS: A New Osimertinib Adjunctive Treatment of Lung Adenocarcinoma or Glioblastoma Using Five Repurposed Drugs. Cells 2021; 10:cells10051148. [PMID: 34068720 PMCID: PMC8151869 DOI: 10.3390/cells10051148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pharmacological targeting aberrant activation of epidermal growth factor receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Osimertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have one of several common activating mutations in epidermal growth factor receptor. The emergence of resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen designed to increase osimertinib’s growth inhibition and thereby delay the development of resistance. Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is excellent. We have no data from humans on their tolerability when used as an ensemble. That there is no data from the individual drugs to suspect problematic interaction does not exclude the possibility. Data Sources: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophysiology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin, the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data showing they may be active in suppressing glioblastoma growth.
Collapse
|
28
|
Dorandish S, Williams A, Atali S, Sendo S, Price D, Thompson C, Guthrie J, Heyl D, Evans HG. Regulation of amyloid-β levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells. Sci Rep 2021; 11:9708. [PMID: 33958632 PMCID: PMC8102533 DOI: 10.1038/s41598-021-88574-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we set out to identify regulators of intact amyloid-β40/42 (Aβ) levels in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher Aβ levels were detected in the media of A549 than H1299 cells without or with treatment with 4-methylumbelliferone (4-MU) and/or the anti-CD44 antibody (5F12). Using inhibitors, we found that PI3K, AKT, and NFκB are likely involved in regulating Aβ levels in the media. However, increased Aβ levels that more closely resembled those found upon 4-MU co-treatment resulted from MMP2/9 inhibition, suggesting that MMP2/9 maybe the main contributors to regulation of Aβ levels in the media. Differences in Aβ levels might be accounted for, in part, by p53 since blocking p53 function in A549 cells resulted in decreased Aβ levels, increased MMP2/9 levels, increased PI3K/AKT activities and the phospho/total NFκB ratio. Using siRNA targeted against MMP2 or MMP9, we found increased Aβ levels in the media, however, MMP2 knockdown led to Aβ levels closely mimicking those detected by co-treatment with 4-MU. Cell viability or apoptosis upon treatment with either MMP2 or MMP9 siRNA along with Aβ immunodepletion, showed that MMP2 is the predominant regulator of the cytotoxic effects induced by Aβ in lung cancer cells.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sophia Sendo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Colton Thompson
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
29
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Poole AT, Sitko CA, Le C, Naus CC, Hill BM, Bushnell EAC, Chen VC. Examination of sulfonamide-based inhibitors of MMP3 using the conditioned media of invasive glioma cells. J Enzyme Inhib Med Chem 2020; 35:672-681. [PMID: 32156166 PMCID: PMC7144313 DOI: 10.1080/14756366.2020.1715387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest and the most common primary malignant brain tumour. The median survival for patients with GBM is around one year due to the nature of glioma cells to diffusely invade that make the complete surgical resection of tumours difficult. Based upon the connexin43 (Cx43) model of glioma migration we have developed a computational framework to evaluate MMP inhibition in materials relevant to GBM. Using the ilomastat Leu-Trp backbone, we have synthesised novel sulphonamides and monitored the performance of these compounds in conditioned media expressing MMP3. From the results discussed herein we demonstrate the performance of sulfonamide based MMPIs included AP-3, AP-6, and AP-7.
Collapse
Affiliation(s)
- Alisha T Poole
- Department of Chemistry, Brandon University, Brandon, Canada
| | | | - Caitlin Le
- Department of Chemistry, Brandon University, Brandon, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, Vancouver, Canada
| | - Bryan M Hill
- Department of Chemistry, Brandon University, Brandon, Canada
| | | | - Vincent C Chen
- Department of Chemistry, Brandon University, Brandon, Canada
| |
Collapse
|
31
|
Liu JF, Chen PC, Chang TM, Hou CH. Thrombospondin-2 stimulates MMP-9 production and promotes osteosarcoma metastasis via the PLC, PKC, c-Src and NF-κB activation. J Cell Mol Med 2020; 24:12826-12839. [PMID: 33021341 PMCID: PMC7686970 DOI: 10.1111/jcmm.15874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is an extremely common primary bone malignancy that is highly metastatic, with most deaths resulting from pulmonary metastases. The extracellular matrix protein thrombospondin‐2 (TSP‐2) is key to many biological processes, such as inflammation, wound repair and tissue remodelling. However, it is unclear as to what biological role TSP‐2 plays in human metastatic osteosarcoma. The immunochemistry analysis from osteosarcoma specimens identified marked up‐regulation of TSP‐2 in late‐stage osteosarcoma. Furthermore, we found that TSP‐2 increased the levels of matrix metallopeptidase 9 (MMP‐9) expression and thereby increased the migratory potential of human osteosarcoma cells. Osteosarcoma cells pre‐treated with an MMP‐9 monoclonal antibody (mAb), an MMP‐9 inhibitor, or transfected with MMP‐9 small interfering RNA (siRNA) reduced the capacity of TSP‐2 to potentiate cell migration. TSP‐2 treatment activated the PLCβ, PKCα, c‐Src and nuclear kappa factor B (NF‐κB) signalling pathways, while the specific siRNA, inhibitors and mutants of these cascades reduced TSP‐2‐induced stimulation of migration activity. Knockdown of TSP‐2 expression markedly reduced cell metastasis in cellular and animal experiments. It appears that an interaction between TSP‐2 and integrin αvβ3 activates the PLCβ, PKCα and c‐Src signalling pathways and subsequently activates NF‐κB signalling, increasing MMP‐9 expression and stimulating migratory activity amongst human osteosarcoma cells.
Collapse
Affiliation(s)
- Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan.,Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
32
|
Jafarian AH, Kooshki Forooshani M, Reisi H, Mohamadian Roshan N. Matrix metalloproteinase-9 (MMP-9) Expression in Non-Small Cell Lung Carcinoma and Its Association with Clinicopathologic Factors. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:326-333. [PMID: 32944046 PMCID: PMC7477682 DOI: 10.30699/ijp.2020.95177.1940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022]
Abstract
Background & Objective: Matrix metalloproteinases-9 (MMP-9) is one of the most important enzymes to breakdown extracellular matrix which plays a major role in tumor invasion and metastasis. This study aimed to determine tumor MMP-9 expression in non-small-cell lung carcinoma (NSCLC) and whether it is associated with histopathologic factors and has prognostic value to affect overall survival (OS). Methods: The specimens of 92 patients with NSCLC diagnosis were included. Tumor sections were stained by immunohistochemistry method. Using scores for the percentage of cells positively stained and the intensity of staining, MMP-9 expression total score was classified as low-score (scores of 0 to 2), moderate-score (scores of 3 to 5), or high-score (scores of 6 or 7). OS was defined as the time interval since the diagnosis of NSCLC to the status at the last follow-up (dead or alive). The follow up period was up to 70 months. Results: About 74% of undifferentiated specimens (grade III tumors) showed high scores for MMP-9 expression which was significantly higher than moderately differentiated tumors (25% had high scores for MMP-9 expression) and well differentiated ones which did not have high scores (P<0.001). A total of 74 patients (80.4%) died during the follow-up period. Of this, 36% had high scores for MMP-9 expression. In contrast, none of the patients who were alive at the last follow-up had high scores for MMP-9 expression (P<0.001). Median OS was significantly lower in high score group (6 months) compared to moderate score (9 months) and high score group (15 months) (P<0.001). Conclusion: MMP-9 expression may serve as a significant prognostic factor for mortality and overall survival in NSCLC. Undifferentiated tumors significantly express higher MMP-9 immunohistochemically.
Collapse
Affiliation(s)
- Amir Hossein Jafarian
- Pathology Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Reisi
- Pathology Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nema Mohamadian Roshan
- Pathology Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Liu YN, Guan Y, Shen J, Jia YL, Zhou JC, Sun Y, Jiang JX, Shen HJ, Shu Q, Xie QM, Xie Y. Shp2 positively regulates cigarette smoke-induced epithelial mesenchymal transition by mediating MMP-9 production. Respir Res 2020; 21:161. [PMID: 32586329 PMCID: PMC7318404 DOI: 10.1186/s12931-020-01426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Abstract
Cigarette smoke (CS) is a major risk factor for the development of lung cancer and chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) commonly coexists in lung cancer and COPD. CS triggers many factors including matrix metalloproteinases (MMPs) production, contributing to EMT progression in the lungs. Here, how Shp2 signaling regulates the CS-induced MMP-9 production and EMT progression were investigated in mouse lungs and in pulmonary epithelial cell cultures (NCI-H292) found CS induced MMP-9 production, EMT progression (increased vimentin and α-SMA; decreased E-cadherin) and collagen deposition in lung tissues; cigarette smoke extract (CSE) induced MMP-9 production and EMT-related phenotypes in NCI-H292 cells, which were partially prevented by Shp2 KO/KD or Shp2 inhibition. The CSE exposure induced EMT phenotypes were suppressed by MMP-9 inhibition. Recombinant MMP-9 induced EMT, which was prevented by MMP-9 inhibition or Shp2 KD/inhibition. Mechanistically, CS and CSE exposure resulted in ERK1/2, JNK and Smad2/3 phosphorylation, which were suppressed by Shp2 KO/KD/inhibition. Consequentially, the CSE exposure-induced MMP-9 production and EMT progression were suppressed by ERK1/2, JNK and Smad2/3 inhibitors. Thus, CS induced MMP-9 production and EMT resulted from activation of Shp2/ERK1/2/JNK/Smad2/3 signaling pathways. Our study contributes to the underlying mechanisms of pulmonary epithelial structural changes in response to CS, which may provide novel therapeutic solutions for treating associated diseases, such as COPD and lung cancer.
Collapse
Affiliation(s)
- Ya-Nan Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, Jiangsu, China
| | - Yan Guan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, Hangzhou, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- Breath Smooth Biotech Hangzhou Co, LTD., Zhejiang, 310012, Hangzhou, China
| | - Yong-Liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- Breath Smooth Biotech Hangzhou Co, LTD., Zhejiang, 310012, Hangzhou, China
| | - Jian-Cang Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, Hangzhou, China
| | - Yun Sun
- The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, Jiangsu, China
| | - Jun-Xia Jiang
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Hui-Juan Shen
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China
| | - Qiang-Min Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China.
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China.
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China.
| |
Collapse
|
34
|
Tsoyi K, Osorio JC, Chu SG, Fernandez IE, De Frias SP, Sholl L, Cui Y, Tellez CS, Siegfried JM, Belinsky SA, Perrella MA, El-Chemaly S, Rosas IO. Lung Adenocarcinoma Syndecan-2 Potentiates Cell Invasiveness. Am J Respir Cell Mol Biol 2020; 60:659-666. [PMID: 30562054 DOI: 10.1165/rcmb.2018-0118oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Juan C Osorio
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Isis E Fernandez
- 3 Comprehensive Pneumology Centre, Hospital of the Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Lynette Sholl
- 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, and
| | | | - Jill M Siegfried
- 6 Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, and.,7 Pulmonary Fibrosis Group, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| |
Collapse
|
35
|
Pai JT, Hsu CY, Hsieh YS, Tsai TY, Hua KT, Weng MS. Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6-mediated matrix metalloproteinase 9. Food Sci Nutr 2020; 8:1534-1545. [PMID: 32180962 PMCID: PMC7063368 DOI: 10.1002/fsn3.1439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the crucial mechanism to cause high mortality in lung cancer. Degradation of extracellular matrix (ECM) by proteolytic enzymes, especially matrix metalloproteinases (MMPs), is a key process for promoting cancer cell migration and invasion. Therefore, targeting MMPs might be a strategy for lung cancer metastasis suppression. Honokiol, a biological active component of Magnolia officinalis, has been indicated to suppress lung cancer tumorigenesis through epigenetic regulation. However, the regulation of MMPs‐mediated migration and invasion by honokiol through epigenetic regulation in lung cancer is still a mystery. In the present study, the migration and invasion ability of H1299 lung cancer was suppressed by noncytotoxic concentrations of honokiol treatment. The proteolytic activity of MMP‐9, rather than MMP‐2, was inhibited in honokiol‐treated H1299 cells. Honokiol‐inhibited MMP‐9 expression was through promoting MMP‐9 protein degradation rather than suppressing transcription mechanism. Furthermore, the expression of specific histone deacetylases 6 (HDAC6) substrate, acetyl‐α‐tubulin, was accumulated after honokiol incubation. The disassociation of MMP‐9 with hyper‐acetylated heat shock protein 90 (Hsp90) was observed resulting in MMP‐9 degradation after honokiol treatment. Meanwhile, honokiol‐suppressed MMP‐9 expression and invasion ability of H1299 lung cancer cells was rescued by HDAC6 overexpression. Accordingly, the results suggested that the suppression of migration and invasion activities by honokiol was through inhibiting HDAC6‐mediated Hsp90/MMP‐9 interaction and followed by MMP‐9 degradation in lung cancer.
Collapse
Affiliation(s)
- Jih-Tung Pai
- Division of Hematology and Oncology Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Chia-Yun Hsu
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| | - Yei-San Hsieh
- Department of Chest Surgery Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology College of Medicine National Taiwan University Taipei Taiwan
| | - Meng-Shih Weng
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| |
Collapse
|
36
|
GUO X, LIU G, XIE X, LI J, HOU Z, GU Y, YU L. Expressions of CD23, IL-17 and MMP-9 in Patients with Colorectal Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:257-266. [PMID: 32461933 PMCID: PMC7231695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We aimed to detect IL-17, MMP-9 and CD23 in serum of patients with colorectal cancer to provide some proper references for diagnosis and treatment of this disease. METHODS Overall, 287 patients with colorectal cancer were collected in the Digestive Surgery Department of Chinese PLA General Hospital, Beijing, China from January 2017 to November 2018 and were used as the study group, meanwhile, 200 people who took physical examination in the same period were used as the control group. They were retrospectively analyzed. The concentrations of IL-17, MMP-9 and CD23 in serum were detected by ELISA 10 d before and after treatment and 30 d after treatment. The relationship between IL-17, MMP-9 and CD23 concentration and clinicopathology was analyzed. RESULTS The concentrations of CD23, IL-17 and MMP-9 in peripheral blood of the patients in the study group were significantly higher than those in the control group (P<0.001). IL-17, MMP-9 and CD23 were negatively correlated with treatment time and pathological features in the study group (P<0.001). CONCLUSION The concentrations of IL-17, MMP-9 and CD23 obviously increased in peripheral blood of patients with colorectal cancer, the three were negatively correlated with treatment time and were significantly correlated with TNM staging and differentiation degree of colorectal cancer. It is expected to estimate the illness.
Collapse
Affiliation(s)
- Xueguang GUO
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Gang LIU
- Department of Hepatobiliary & Enteric Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping XIE
- Department of Gastroenterology Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing LI
- Department of Oncology, Zhongshan Hospital Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Zehui HOU
- Department of Gastrointestinal and Hernia Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhong GU
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Corresponding Author:
| | - Lijiang YU
- Department of Internal Medicine-Oncology, Jingjiang People’s Hospital, Jingjiang, China,Corresponding Author:
| |
Collapse
|
37
|
Jiang J, Ren H, Xu Y, Wudu M, Wang Q, Liu Z, Su H, Jiang X, Zhang Y, Zhang B, Qiu X. TRIM67 Promotes the Proliferation, Migration, and Invasion of Non-Small-Cell Lung Cancer by Positively Regulating the Notch Pathway. J Cancer 2020; 11:1240-1249. [PMID: 31956370 PMCID: PMC6959058 DOI: 10.7150/jca.38286] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/09/2019] [Indexed: 12/28/2022] Open
Abstract
Tripartite motif-containing 67 (TRIM67), an E3 ubiquitin ligase, belongs to the TRIM protein family. The relationship between TRIM67 and tumorigenesis is not fully clear. Here, we elucidated TRIM67 function in non-small cell lung cancer (NSCLC). TRIM67 immunostaining results were correlated with clinicopathological features. Moreover, the function of TRIM67 in cultured NSCLC cells was evaluated by MTT, colony formation, and Transwell assays. TRIM67 expression was associated with tumor size, lymph node metastasis, p-TNM stage, cancer cell differentiation, and poor prognosis. We altered TRIM67 expression in A549 and H1299 cell lines, and the results showed that TRIM67 promoted cell proliferation, migration, invasion and EMT by positively regulating the Notch pathway. Collectively, the results showed that TRIM67 promotes NSCLC progression through the Notch pathway and that TRIM67 expression is associated with clinicopathological features, indicating that TRIM67 may play an important role in promoting the development of NSCLC and could be applied as not only an important prognostic biomarker but also a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zongang Liu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao St., Heping District, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
38
|
Zhu J, Zhang X, Ai L, Yuan R, Ye J. Clinicohistopathological implications of MMP/VEGF expression in retinoblastoma: a combined meta-analysis and bioinformatics analysis. J Transl Med 2019; 17:226. [PMID: 31311559 PMCID: PMC6636009 DOI: 10.1186/s12967-019-1975-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND No in-depth systematic evidence is available for assessing retinoblastoma malignancy and eligibility for subsequent treatment. METHODS The Cochrane Library, EMBASE, PubMed, Web of Science, and China Biology Medicine databases were searched, and 16 studies comprising 718 retinoblastoma patients were included. Pooled odds ratios (ORs) and summary correlation coefficients (r) with 95% confidence intervals (CIs) in random-effects, fixed-effects or quality-effects models were calculated using Review Manager 5.3 and MetaXL. GO functional annotation and KEGG pathway analysis were performed using the GO and STRING databases. RESULTS We observed significant associations between high levels of MMP-1 (OR, 4.21; 95% CI 1.86-9.54), MMP-2 (OR, 11.18; 95% CI 4.26-29.30), MMP-9 (OR, 10.41, 95% CI 4.26-25.47), and VEGF (OR, 8.09; 95% CI 4.03-16.20) with tumor invasion; high levels of MMP-1 (OR, 3.58; 95% CI 1.48-8.71), MMP-2 (OR, 2.96; 95% CI 1.32-6.64), MMP-9 (OR, 5.49; 95% CI 3.55-8.48) and VEGF (OR, 5.30; 95% CI 2.93-9.60) with poor differentiation; and overexpression of MMP-9 (OR, 5.17; 95% CI 2.85-9.38) with advanced clinical stages. Moreover, MMP-9 and VEGF expression were positively correlated (r, 0.61; 95% CI 0.38-0.77). Multiple GO terms were enriched associated with MMP-1, MMP-2, MMP-9 and VEGF, and they are closely associated with pathways, proteoglycans and microRNAs related to cancer. CONCLUSIONS MMP-1, MMP-2, MMP-9 and VEGF play important roles in the development and progression of retinoblastoma. High levels of MMP-1, MMP-2, MMP-9 and VEGF are credible implications for increased malignancy, thus the need for more aggressive treatments.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xi Zhang
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liqianyu Ai
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400042, China.
| | - Jian Ye
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
39
|
Dong H, Diao H, Zhao Y, Xu H, Pei S, Gao J, Wang J, Hussain T, Zhao D, Zhou X, Lin D. Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Prolif 2019; 52:e12633. [PMID: 31264317 PMCID: PMC6797518 DOI: 10.1111/cpr.12633] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Matrix metalloproteinase 9 (MMP-9) has been frequently noticed in the breast cancers. In this study, we aim to investigate the associations of MMP-9 with the activation of transforming growth factor beta (TGF-β)/SMAD signalling and the malignancy of breast malignant tumour cells. MATERIALS AND METHODS The distributions of MMP-9 and TGF-β in the tissues of canine breast cancers were screened by immunohistochemical assays. A recombinant plasmid expressing mouse MMP-9 was generated and transiently transfected into three different breast cancer cell lines. Cell Counting Kit-8 and colony formation assay were used to study cell viability. Migration and invasion ability were analysed by wound assay and transwell filters. Western blot and quantitative real-time PCR were used to determine the protein and mRNA expression. RESULT Remarkable strong MMP-9 and TGF-β signals were observed in the malignant tissues of canine breast cancers. In the cultured three cell lines receiving recombinant plasmid expressing mouse MMP-9, the cell malignancy was markedly increased, including the cell colony formation, migration and epithelial-mesenchymal transition. The levels of activated TGF-β, as well as SMAD4, SMAD2/3 and phosphorylation of SMAD2, were increased, reflecting an activation of TGF-β/SMAD signalling. We also demonstrated that the inhibitors specific for MMP-9 and TGF-β sufficiently blocked the overexpressing MMP-9 induced the activation of SMAD signalling and enhancement on invasion in the tested breast cancer cell lines. CONCLUSION Overexpression of MMP-9 increases the malignancy of breast cancer cell lines, largely via activation of the TGF-β/SMAD signalling.
Collapse
Affiliation(s)
- Haodi Dong
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongxiu Diao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Zhao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huihao Xu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shimin Pei
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Weng MC, Li MH, Chung JG, Liu YC, Wu JY, Hsu FT, Wang HE. Apoptosis induction and AKT/NF-κB inactivation are associated with regroafenib-inhibited tumor progression in non-small cell lung cancer in vitro and in vivo. Biomed Pharmacother 2019; 116:109032. [PMID: 31163381 DOI: 10.1016/j.biopha.2019.109032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/11/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant lung cancer type with poor prognosis. NF-κB, the oncogenic transcription factor, has been recognized as an important mediator in progression of NSCLC. Regorafenib, a multikinase inhibitor, was demonstrated to inhibit tumor progression through suppression of ERK/NF-κB signaling in hepatocellular carcinoma cells in vitro and in vivo. However, whether regorafenib inhibit progression of NSCLC is ambiguous. Thus, the major purpose of present study was to evaluate anticancer efficacy and underlying mechanism of regorafenib on tumor progression in NSCLC in vitro and in vivo. CL-1-5-F4 cells were treated with regorafenib, NF-κB (QNZ) or AKT (LY294002) inhibitor for 24 or 48 h. Then, we performed cell viability assay, NF-κB reporter gene assay, transwell invasion assay and apoptosis related flow cytometry assay on cellular level to verify anti-cancer effect and mechanism of regorafenib. CL-1-5-F4 bearing animal model was treated with vehicle or regorafenib for 28 days. The therapeutic efficacy and mechanism of regorafenib in CL-1-5-F4 bearing animal model were investigated by tumor size evaluation, whole body computer tomography (CT) scan, Haemotoxylin and Eosin (H&E) stain and immunohistochemistry (IHC) stain. Our results demonstrated regorafenib significantly inhibited tumor growth and induced apoptosis through extrinsic/intrinsic pathways in NSCLC in vitro and in vivo. Furthermore, we also found the suppression of AKT/NF-κB signaling was required for regorafenib inhibited expression of progression-related and invasion-related proteins. Our finding indicated apoptosis induction and suppression of AKT/NF-κB signaling were associated with regorafenib-inhibited progression of NSCLC in vitro and in vivo.
Collapse
Affiliation(s)
- Mao-Chi Weng
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan
| | - Ming-Hsin Li
- Isotope Application Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan
| | - Jing Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Chang Liu
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jeng-Yuan Wu
- Department of Thoracic Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan.
| |
Collapse
|
41
|
Evaluation of Matrix Metalloproteinase 9 Serum Concentration as a Biomarker in Malignant Mesothelioma. DISEASE MARKERS 2019; 2019:1242964. [PMID: 31191742 PMCID: PMC6525906 DOI: 10.1155/2019/1242964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Background Malignant mesothelioma (MM) is a rare, but fatal disease with few treatment options. The diagnosis and treatment response are challenging in MM. Therefore, the search for novel diagnostic and prognostic biomarkers is ongoing. The aim of our study was to investigate matrix metalloproteinase 9 (MMP9) as a potential serum biomarker of treatment response and survival in MM. We also investigated the influence of genetic polymorphisms on MMP9 serum levels. Methods We included 110 patients with MM that have been previously genotyped for common MMP9 polymorphisms. Serum samples were collected before treatment, at the end of chemotherapy, and at the time of progression. MMP9 serum levels were measured using enzyme-linked immunosorbent assay kits. The role of serum MMP9 and MMP9 polymorphisms in treatment response was determined using the nonparametric tests and logistic or Cox regression. Results Median serum MMP9 was 706.7 (499.6-1224.9) ng/ml before treatment, 440.5 (255.9-685.2) ng/ml after chemotherapy, and 502.8 (307.2-851.4) ng/ml at disease progression. After chemotherapy, 87 (79.8%) patients had lower serum MMP9, with the median change of -286.3 (-607.3 to -70.2) ng/ml (P < 0.001). At disease progression, 47 (65.3%) patients had lower serum MMP9 compared to pretreatment values, with the median change of -163.7 (-466.6 to 108.6) ng/ml (P = 0.001). Patients with higher performance status had higher serum MMP9 before treatment (P = 0.010). Among investigated polymorphisms, only rs17576 was associated with serum MMP9 levels before treatment (P = 0.041). Conclusion Median serum MMP9 levels differed significantly before and after treatment of MM, but failed to reach significance as a standalone biomarker. The contribution of MMP9 serum levels and MMP9 polymorphisms to a composite diagnostic and prognostic biomarker should be further tested.
Collapse
|
42
|
Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front Cell Dev Biol 2019; 7:60. [PMID: 31106200 PMCID: PMC6492564 DOI: 10.3389/fcell.2019.00060] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells reside in a highly complex and heterogeneous tumor microenvironment (TME), which is composed of a myriad of genetically stable non-cancer cells, including fibroblasts, immune cells, endothelial cells, and epithelial cells, and a tumor-specific extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs), as an abundant and active stromal cell population in the TME, function as the signaling center and remodeling machine to aid the creation of a desmoplastic tumor niche. Although there is no denial that the TME and CAFs may have anti-tumor effects as well, a great deal of findings reported in recent years have convincingly revealed the tumor-promoting effects of CAFs and CAF-derived ECM proteins, enzymes, chemical factors and other downstream effectors. While there is growing enthusiasm for the development of CAF-targeting therapies, a better understanding of the complexities of CAF-ECM and CAF-cancer cell interactions is necessary before novel therapeutic strategies targeting the malignant tumor “soil” can be successfully implemented in the clinic.
Collapse
Affiliation(s)
- Tianyi Liu
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Danni Li
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
43
|
Aftab Q, Mesnil M, Ojefua E, Poole A, Noordenbos J, Strale PO, Sitko C, Le C, Stoynov N, Foster LJ, Sin WC, Naus CC, Chen VC. Cx43-Associated Secretome and Interactome Reveal Synergistic Mechanisms for Glioma Migration and MMP3 Activation. Front Neurosci 2019; 13:143. [PMID: 30941001 PMCID: PMC6433981 DOI: 10.3389/fnins.2019.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix (ECM) remodeling, degradation and glioma cell motility are critical aspects of glioblastoma multiforme (GBM). Despite being a rich source of potential biomarkers and targets for therapeutic advance, the dynamic changes occurring within the extracellular environment that are specific to GBM motility have yet to be fully resolved. The gap junction protein connexin43 (Cx43) increases glioma migration and invasion in a variety of in vitro and in vivo models. In this study, the upregulation of Cx43 in C6 glioma cells induced morphological changes and the secretion of proteins associated with cell motility. Demonstrating the selective engagement of ECM remodeling networks, secretome analysis revealed the near-binary increase of osteopontin and matrix metalloproteinase-3 (MMP3), with gelatinase and NFF-3 assays confirming the proteolytic activities. Informatic analysis of interactome and secretome downstream of Cx43 identifies networks of glioma motility that appear to be synergistically engaged. The data presented here implicate ECM remodeling and matrikine signals downstream of Cx43/MMP3/osteopontin and ARK1B10 inhibition as possible avenues to inhibit GBM.
Collapse
Affiliation(s)
- Qurratulain Aftab
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marc Mesnil
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Emmanuel Ojefua
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Alisha Poole
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Jenna Noordenbos
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Pierre-Olivier Strale
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chris Sitko
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Caitlin Le
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Nikolay Stoynov
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Wun-Chey Sin
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Christian C Naus
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Vincent C Chen
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| |
Collapse
|
44
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
45
|
Thorlacius-Ussing J, Kehlet SN, Rønnow SR, Karsdal MA, Willumsen N. Non-invasive profiling of protease-specific elastin turnover in lung cancer: biomarker potential. J Cancer Res Clin Oncol 2019; 145:383-392. [PMID: 30467633 DOI: 10.1007/s00432-018-2799-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Elastin is a signature protein of lungs. Increased elastin turnover driven by altered proteolytic activity is an important part of lung tumorigenesis. Elastin-derived fragments have been shown to be pro-tumorigenic, however, little is known regarding the biomarker potential of such elastin fragments. Here, we present an elastin turnover profile by non-invasively quantifying five specific elastin degradation fragments generated by different proteases. METHODS Elastin fragments were assessed in serum from patients with stage I-IV non-small cell lung cancer (NSCLC) (n = 40) and healthy controls (n = 30) using competitive ELISAs targeting different protease-generated fragments of elastin: ELM12 (generated by matrix metalloproteinase MMP-9 and -12), ELM7 (MMP-7), EL-NE (neutrophil elastase), EL-CG (cathepsin G) and ELP-3 (proteinase 3). RESULTS ELM12, ELM7, EL-NE and EL-CG were all significantly elevated in NSCLC patients (n = 40) when compared to healthy controls (n = 30) (ELM12, p = 0.0191; ELM7, p < 0.0001; EL-NE, p < 0.0001; EL-CG, p < 0.0001). ELP-3 showed no significant difference between patients and controls (p = 0.8735). All fragments correlated positively (Spearman, r: 0.69-0.81) when compared pairwise, except ELM12 (Spearman, r: 0.042-0.097). In general, all fragments were detectable across all stages of the disease. CONCLUSIONS Elastin fragments generated by different proteases are elevated in lung cancer patients compared to healthy controls but differ in their presence. This demonstrates non-invasive biomarker potential of elastin fragments in serum from lung cancer patients and suggests that different pathological mechanisms may be responsible for the elastin turnover, warranting further validation in clinical trials.
Collapse
Affiliation(s)
- Jeppe Thorlacius-Ussing
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Stephanie Nina Kehlet
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Sarah Rank Rønnow
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten Asser Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
46
|
Selvaraj G, Kaliamurthi S, Lin S, Gu K, Wei DQ. Prognostic Impact of Tissue Inhibitor of Metalloproteinase-1 in Non- Small Cell Lung Cancer: Systematic Review and Meta-Analysis. Curr Med Chem 2019; 26:7694-7713. [PMID: 30182835 DOI: 10.2174/0929867325666180904114455] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/06/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) is a multifunctional natural matrixin inhibitor that is generally considered a negative regulator of cancer metastasis. Clinical studies reporting the prognostic value of TIMP-1 in Non-small Cell Lung Cancer (NSCLC) are inconsistent. Therefore, the present study aimed to determine the prognostic impact of TIMP-1 expression in NSCLC. METHODS Appropriate studies with full-text articles were identified in searches of the China National Knowledge Infrastructure (CNKI), Cochrane Library, PubMed, and Web of Science databases up to March 7, 2018. The pooled Hazard Ratio (HR) of overall survival with a 95% confidence interval (95% CI) was employed to assess the relationship between the expression of TIMP-1 and NSCLC patient survival. RESULTS The meta-analysis comprised 40 studies including 3,194 patients. Study outcomes indicated that high TIMP-1 expression is independently associated with poor overall survival (HR: 1.60; 95% CI: 1.50, 1.69; P < 0.00001) with 61% of heterogeneity. In addition, we analyzed subgroups, including ethnicities, histological types, percentage of TIMP-1 expression levels, specimens, and tumor stage. All results were statistically significant. The outcome of our meta-analysis indicates that high expression levels of TIMP-1 are correlated with poor prognosis in patients with NSCLC. CONCLUSION Expression levels of TIMP-1 represent a potential prognostic biomarker in NSCLC patients in addition to being a possible therapeutic target.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Shuhuang Lin
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Keren Gu
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| |
Collapse
|
47
|
Hohn M, Chang M, Meisel JE, Frost E, Schwegmann K, Hermann S, Schäfers M, Riemann B, Haufe G, Breyholz H, Wagner S. Synthesis and Preliminary In Vitroand In VivoEvaluation of Thiirane‐Based Slow‐Binding MMP Inhibitors as Potential Radiotracers for PET Imaging. ChemistrySelect 2018. [DOI: 10.1002/slct.201803093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Michael Hohn
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
- Organic Chemistry InstituteUniversity of Münster Corrensstr. 40 D-48149 Münster Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, 354 McCourtney HallUniversity of Notre Dame Notre Dame IN 46556–5710 USA
| | - Jayda E. Meisel
- Chemical, BiologicalRadiological, Nuclearand Explosive DefenseBattelle Memorial Institute 505 King Avenue Columbus Ohio 43201 USA
| | - Emma Frost
- Department of Chemistry and Biochemistry, 354 McCourtney HallUniversity of Notre Dame Notre Dame IN 46556–5710 USA
| | - Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
| | - Michael Schäfers
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
- Cells in Motion (CiM) Cluster of ExcellenceUniversity of Münster D-48149 Münster Germany
| | - Burkhard Riemann
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| | - Günter Haufe
- Organic Chemistry InstituteUniversity of Münster Corrensstr. 40 D-48149 Münster Germany
- Cells in Motion (CiM) Cluster of ExcellenceUniversity of Münster D-48149 Münster Germany
| | - Hans‐Jörg Breyholz
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| | - Stefan Wagner
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| |
Collapse
|
48
|
Zhang Y, Wang G. MicroRNA-183 inhibits A375 human melanoma cell migration and invasion by targeting Ezrin and MMP-9. Oncol Lett 2018; 17:548-554. [PMID: 30655800 DOI: 10.3892/ol.2018.9603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
To assess the influence of microRNA-183 (miR-183) on the migration and invasion of A375 human melanoma cells, an A375 cell line with stable miR-183 overexpression or knockdown was constructed using lentiviral transfection. The change of miR-183 expression in these cells and in non-transfected controls was verified using reverse transcription-quantitative polymerase chain reaction. The impact of miR-183 on experimental A375 cell migration and invasion was assessed using a scratch and Transwell assay. The expression of Ezrin and matrix metalloprotease-9 (MMP-9), which are two mediator proteins that serve roles in tumor cell migration and invasion, were analyzed in each cell group via western blotting. The results of the present study indicated that miR-183 overexpression significantly inhibits A375 cell migration and invasion, which may be facilitated by miR-183 knockdown. Furthermore, Ezrin and MMP-9 protein levels were negatively associated with miR-183 expression, indicating that miR-183 may function as a tumor suppressor by inhibiting the expression of these two proteins. Additionally, miR-183 downregulation may be associated with the progression of melanoma.
Collapse
Affiliation(s)
- Yusen Zhang
- Department of Plastic Surgery, People's Hospital of Zhengzhou, Henan Agricultural University, Zhengzhou, Henan 450000, P.R. China
| | - Guoqiang Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
49
|
Wang X, Chen Q, Zhang X, Ren X, Zhang X, Meng L, Liang H, Sha X, Fang X. Matrix metalloproteinase 2/9-triggered-release micelles for inhaled drug delivery to treat lung cancer: preparation and in vitro/in vivo studies. Int J Nanomedicine 2018; 13:4641-4659. [PMID: 30147314 PMCID: PMC6095127 DOI: 10.2147/ijn.s166584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Improvement in drug accumulation in the lungs through inhalation administration and high expression of MMP2 and MMP9 in lung tumors have both been widely reported. Methods MMP2/9-triggered-release micelles were constructed and in vitro and in vivo studies of inhalation administration against lung tumor carried out. Pluronic P123 (P123) was modified with GPLGIAGQ-NH2 (GQ8) peptide to obtain P123-GQ8 (PG). MMP2/9-triggered-release micelles were constructed using PG and succinylated gelatin (SG) and loading paclitaxel (Ptx). To study biodistribution of micelles, DiR encapsulated in micelles was dosed to rats via intravenous injection or inhalation before ex vivo imaging for detecting DiR quantity in lungs. And B16F10 lung cancer-bearing nude mice were chosen as animal models to evaluate in vivo efficacy of MMP2/9-triggered-release micelles. Results Ptx-release efficiency from PG-SG-Ptx micelles was MMP2/9-concentration-dependent. For A549 cells, PG-SG-Ptx cytotoxicity was significantly greater (P<0.001) compared to P123-Ptx. Aerosol inhalation was chosen as the method of administration. In biodistribution experiment, DiR quantity in lungs was 5.8%±0.4% of that in major organs, while the ratio was 38.8%±0.5% for inhalation. For B16F10 lung cancer-bearing nude mice, the efficacy of inhalation of PG-SG-Ptx was significantly higher (P<0.001) than Taxol inhalation and injected PG-SG-Ptx. Inhaled PG-SG-Ptx also significantly inhibited the expression of Pgp in lung cancer. Conclusion Inhalation of MMP2/9-triggered-release micelles increased tumor sensitivity to chemotherapeutics and reduced the toxicity of chemotherapy to healthy lung cells, which has great potential in lung cancer therapy.
Collapse
Affiliation(s)
- Xiaofei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ; .,Shanghai Omni Pharmaceuticall Co., Ltd., Shanghai, People's Republic of China
| | - Qinyue Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoyan Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoqing Ren
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiulei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Lin Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Huihui Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| |
Collapse
|
50
|
Hugenberg V, Behrends M, Wagner S, Hermann S, Schäfers M, Kolb HC, Szardenings K, Walsh JC, Gomez LF, Kopka K, Haufe G. Synthesis, radiosynthesis, in vitro and first in vivo evaluation of a new matrix metalloproteinase inhibitor based on γ-fluorinated α-sulfonylaminohydroxamic acid. EJNMMI Radiopharm Chem 2018; 3:10. [PMID: 30101186 PMCID: PMC6063323 DOI: 10.1186/s41181-018-0045-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022] Open
Abstract
Background To study MMP activity in vivo in disease, several radiolabeled MMP inhibitors functioning as radiotracers have been evaluated by means of SPECT and PET. Unfortunately, most of them suffer from metabolic instability, mainly hepatobiliary clearance and insufficient target binding. The introduction of a fluorine atom into MMPIs could contribute to target binding, enhance the metabolic stability and might shift the clearance towards more renal elimination. Recently developed α-sulfonylaminohydroxamic acid based γ-fluorinated inhibitors of MMP-2 and -9 provide promising fluorine interactions with the enzyme active site and high MMP inhibition potencies. The aim of this study is the (radio)synthesis of a γ-fluorinated MMP-2 and -9 inhibitor to evaluate its potential as a radiotracer to image MMP activity in vivo. Results Two new fluorine-containing, enantiomerically pure inhibitors for MMP-2 and -9 were synthesized in a six step sequence. Both enantiomers exhibited equal inhibition potencies in the low nanomolar and subnanomolar range. LogD value indicated better water solubility compared to the CGS 25966 based analog. The most potent inhibitor was successfully radiofluorinated. In vivo biodistribution in wild type mice revealed predominantly hepatobiliary clearance. Two major radioactive metabolites were found in different organs. Defluorination of the radiotracer was not observed. Conclusion (Radio)synthesis of a CGS based γ-fluorinated MMP inhibitor was successfully accomplished. The (S)-enantiomer, which normally shows no biological activity, also exhibited high MMP inhibition potencies, which may be attributed to additional interactions of fluorine with enzyme’s active site. Despite higher hydrophilicity no significant differences in the clearance characteristics compared to non-fluorinated MMPIs was observed. Metabolically stabilizing effect of the fluorine was not monitored in vivo in wild type mice. Electronic supplementary material The online version of this article (10.1186/s41181-018-0045-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Verena Hugenberg
- 1European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany.,2Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.,Present Address: Institute for Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center North Rhine Westphalia, University Hospital, Ruhr University Bochum, Georgstraße 11, D-32545 Bad Oeynhausen, Germany
| | - Malte Behrends
- 3Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - Stefan Wagner
- 2Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| | - Sven Hermann
- 1European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany.,4Cells in Motion' Cluster of Excellence, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Michael Schäfers
- 1European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany.,2Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.,4Cells in Motion' Cluster of Excellence, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Hartmuth C Kolb
- 5Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, California, 90230 USA
| | - Katrin Szardenings
- 5Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, California, 90230 USA
| | - Joseph C Walsh
- 5Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, California, 90230 USA
| | - Luis F Gomez
- 5Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, California, 90230 USA
| | - Klaus Kopka
- 2Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.,Present Address: German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Günter Haufe
- 1European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany.,3Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany.,4Cells in Motion' Cluster of Excellence, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| |
Collapse
|