1
|
Pessoa VFDS, Hecht M, Nitz N, Hagström L. Adipose Tissue in Chagas Disease: A Neglected Component of Pathogenesis. Pathogens 2025; 14:339. [PMID: 40333112 PMCID: PMC12030347 DOI: 10.3390/pathogens14040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025] Open
Abstract
Chagas disease (CD), caused by the protozoan T. cruzi, is a serious public health issue with high morbidity and mortality rates. Approximately 7 million people are infected, mostly in Latin America. The pathogenesis is multifactorial and poorly elucidated, particularly regarding the role of adipose tissue (AT). This review aims to explore the complex relationship between T. cruzi and AT, focusing on the possible role of this tissue in CD, as well as to explore the impact of diet on the progression of the disease. T. cruzi infects adipocytes, affecting their function. Chronic infection alters adipose physiology, contributing to systemic inflammation and metabolic disturbances. Adipokines are dysregulated, while markers of inflammation and oxidative stress increase within AT during CD. Additionally, the immune response and clinical aspects of CD may be influenced by the host's diet. High-fat diets (HFDs) impact parasite burden and cardiac pathology in murine models. The complex interaction among T. cruzi infection, AT dysfunction, and dietary factors underscore the complexity of CD pathogenesis. Despite accumulating evidence suggesting the role of AT in CD, further research is needed to elucidate its clinical implications. Understanding the bidirectional relationship between AT and T. cruzi infection may offer insights into disease progression and potential therapeutic targets, highlighting the importance of considering adipose physiology in CD management strategies.
Collapse
Affiliation(s)
- Vitória França dos Santos Pessoa
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil; (V.F.d.S.P.); (M.H.); (N.N.)
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil; (V.F.d.S.P.); (M.H.); (N.N.)
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil; (V.F.d.S.P.); (M.H.); (N.N.)
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil; (V.F.d.S.P.); (M.H.); (N.N.)
- Faculty of Physical Education, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
2
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Cerdeira CD, Brigagão MRPL. Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest 2024; 53:1030-1091. [PMID: 38913937 DOI: 10.1080/08820139.2024.2367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation. METHODS This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses. RESULTS AND DISCUSSION It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
Collapse
|
4
|
Moreira LR, Silva AC, da Costa-Oliveira CN, da Silva-Júnior CD, Oliveira KKDS, Torres DJL, Barros MD, Rabello MCDS, de Lorena VMB. Interaction between peripheral blood mononuclear cells and Trypanosoma cruzi-infected adipocytes: implications for treatment failure and induction of immunomodulatory mechanisms in adipose tissue. Front Immunol 2024; 15:1280877. [PMID: 38533504 PMCID: PMC10963431 DOI: 10.3389/fimmu.2024.1280877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Background/Introduction Adipose tissue (AT) has been highlighted as a promising reservoir of infection for viruses, bacteria and parasites. Among them is Trypanosoma cruzi, which causes Chagas disease. The recommended treatment for the disease in Brazil is Benznidazole (BZ). However, its efficacy may vary according to the stage of the disease, geographical origin, age, immune background of the host and sensitivity of the strains to the drug. In this context, AT may act as an ally for the parasite survival and persistence in the host and a barrier for BZ action. Therefore, we investigated the immunomodulation of T. cruzi-infected human AT in the presence of peripheral blood mononuclear cells (PBMC) where BZ treatment was added. Methods We performed indirect cultivation between T. cruzi-infected adipocytes, PBMC and the addition of BZ. After 72h of treatment, the supernatant was collected for cytokine, chemokine and adipokine assay. Infected adipocytes were removed to quantify T. cruzi DNA, and PBMC were removed for immunophenotyping. Results Our findings showed elevated secretion of interleukin (IL)-6, IL-2 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in the AT+PBMC condition compared to the other controls. In contrast, there was a decrease in tumor necrosis factor (TNF) and IL-8/CXCL-8 in the groups with AT. We also found high adipsin secretion in PBMC+AT+T compared to the treated condition (PBMC+AT+T+BZ). Likewise, the expression of CD80+ and HLA-DR+ in CD14+ cells decreased in the presence of T. cruzi. Discussion Thus, our findings indicate that AT promotes up-regulation of inflammatory products such as IL-6, IL-2, and MCP-1/CCL2. However, adipogenic inducers may have triggered the downregulation of TNF and IL-8/CXCL8 through the peroxisome proliferator agonist gamma (PPAR-g) or receptor expression. On the other hand, the administration of BZ only managed to reduce inflammation in the microenvironment by decreasing adipsin in the infected culture conditions. Therefore, given the findings, we can see that AT is an ally of the parasite in evading the host's immune response and the pharmacological action of BZ.
Collapse
Affiliation(s)
- Leyllane Rafael Moreira
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | - Ana Carla Silva
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | | | - Claudeir Dias da Silva-Júnior
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | | | - Diego José Lira Torres
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | | | | | | |
Collapse
|
5
|
Zhang QZ, Liu JH, Gao YR, Liang J, Tang CL. Effect of macrophage polarization on parasitic protection against type 1 diabetes mellitus. Exp Parasitol 2024; 256:108649. [PMID: 37914152 DOI: 10.1016/j.exppara.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Qi-Zhi Zhang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jun-Hui Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Yan-Ru Gao
- Basic Medical Science Teaching Center, Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China.
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
6
|
Goulart A, Anchieta NF, Sampaio PA, Brazão V, Silva JLD, Portapilla GB, Duarte A, Tezuca DY, Providello MV, Stabile AM, Prado JCD. Cafeteria diet-induced obesity remodels immune response in acute Trypanosoma cruzi infection. Immunobiology 2023; 228:152747. [PMID: 37774598 DOI: 10.1016/j.imbio.2023.152747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Obesity is a global problem associated with several conditions, including hypertension, diabetes, arthritis and cardiovascular diseases. With the increase in the prevalence of obesity in recent years, mostly in developing countries, it is important to study its impact on various diseases, including infectious illnesses, such as Chagas disease, caused by the protozoan Trypanosoma cruzi. Considering that a diet rich in salt, sugar, and fat is associated with obesity, this study aimed to evaluate the influence of cafeteria diet (CAF)-induced obesity on immune responses in T. cruzi-infected rats. METHODS Male Wistar Hannover rats were provided with water and food ad libitum (chow group). The CAF-fed groups received a normal rodent diet or CAF. The animals were intraperitoneally infected with 105 trypomastigote forms of the Y strain of T. cruzi present in the whole blood from a previously infected mouse. RESULTS CAF-fed rats showed a significant increase in visceral adipose tissue weight compared to chow-fed rats. A significant reduction in CD3+ CD4+ helper splenic T cells was observed in obese-infected rats compared to non-obese-infected rats, as well as CD11b and macrophages. In addition, macrophages from obese animals displayed reduced RT1b levels compared to those from control animals. Moreover, INF-γ, an important factor in macrophage activation, was reduced in obese-infected rats compared with their counterparts. CONCLUSIONS These results indicate that a CAF can impair the cell-mediated immune response against T. cruzi.
Collapse
Affiliation(s)
- Amanda Goulart
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | - Naira Ferreira Anchieta
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | | | - Vânia Brazão
- Ribeirão Preto College of Nursing - University of São Paulo, Brazil.
| | - Jefferson Luiz Da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | - Gisele Bulhões Portapilla
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | - Andressa Duarte
- Ribeirão Preto Medical School - University of São Paulo, Department of Pathology and Legal Medicine, Brazil
| | | | - Maiara Voltarelli Providello
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | | | - José Clóvis do Prado
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| |
Collapse
|
7
|
Moreira LR, Silva AC, da Costa Oliveira CN, da Silva Júnior CD, Nascimento AV, Oliveira KKDS, Soares AKDA, Saraiva KLA, de Paiva Cavalcanti M, de Lorena VMB. Benznidazole treatment decreases IL-6 levels in Trypanosoma cruzi-infected human adipocytes differentiated from adipose tissue-derived stem cells. Mem Inst Oswaldo Cruz 2023; 118:e220295. [PMID: 37878830 PMCID: PMC10599316 DOI: 10.1590/0074-02760220295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.
Collapse
Affiliation(s)
- Leyllane Rafael Moreira
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em
Medicina Tropical, Recife, PE, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Laboratório de Imunoparasitologia, Recife, PE, Brasil
| | - Ana Carla Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Laboratório de Imunoparasitologia, Recife, PE, Brasil
| | | | - Claudeir Dias da Silva Júnior
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em
Medicina Tropical, Recife, PE, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Laboratório de Imunoparasitologia, Recife, PE, Brasil
| | | | | | | | | | - Milena de Paiva Cavalcanti
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Departamento de Microbiologia, Recife, PE, Brasil
| | | |
Collapse
|
8
|
Oliveira FMS, Cruz RE, Pinheiro GRG, Caliari MV. Comorbidities involving parasitic diseases: A look at the benefits and complications. Exp Biol Med (Maywood) 2022; 247:1819-1826. [PMID: 35876147 PMCID: PMC9679356 DOI: 10.1177/15353702221108387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parasitic infections acquired by the population cause substantial morbidity worldwide, with individuals from developing countries being most affected. Some parasites remain in the host for long periods, settling in different organs, manipulating the flow of nutrients and metabolites, and influencing the immune response, favoring their adaptation. The host attempts to counteract the metabolic and immunological alterations and the possible damage caused by infection. These metabolic and immunological changes experienced by the host can influence the progression of other existing morbidities or those that will be acquired in the future. Cancer and metabolic diseases are also frequent causes of morbidity in the world population. The large numbers of individuals affected by cancer and metabolic diseases and the high prevalence of morbidity caused by parasitic diseases favor the development of comorbidity involving these pathologies. This review provides an overview of major advances in research on cancer and metabolic diseases associated with parasitic infections. Information about hosts and parasites such as alterations of the immune response, metabolism and adaptation mechanisms of the parasites, and parasitic molecules with therapeutic potential is provided, as well as the beneficial results or complications related to the comorbidities discussed herein. We emphasize the need to conduct additional studies addressing comorbidities associated with parasitic infections to improve the understanding of the impact of this association on the progression of morbidities, as well as the possibility of the therapeutic use of and therapeutic approaches involving parasites.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ruth Elizabeth Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil,Marcelo Vidigal Caliari.
| |
Collapse
|
9
|
Abstract
Adipose tissue is a complex dynamic organ with whole-body immunometabolic influence. Much of the work into understanding the role of immune cells in adipose tissue has been in the context of obesity. These investigations have also uncovered a range of typical (immune) and non-typical functions exerted by adipose tissue leukocytes. Here we provide an overview of the adipose tissue immune system, including its role as an immune reservoir in the whole-body response to infection and as a site of parasitic and viral infections. We also describe the functional roles of specialized immunological structures found within adipose tissue. However, our main focus is on the recently discovered 'non-immune' functions of adipose tissue immune cells, which include the regulation of adipocyte homeostasis, as well as responses to changing nutrient status and body temperature. In doing so, we outline the therapeutic potential of the adipose tissue immune system in health and disease.
Collapse
|
10
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
11
|
Machado H, Bizarra-Rebelo T, Costa-Sequeira M, Trindade S, Carvalho T, Rijo-Ferreira F, Rentroia-Pacheco B, Serre K, Figueiredo LM. Trypanosoma brucei triggers a broad immune response in the adipose tissue. PLoS Pathog 2021; 17:e1009933. [PMID: 34525131 PMCID: PMC8476018 DOI: 10.1371/journal.ppat.1009933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is one of the major reservoirs of Trypanosoma brucei parasites, the causative agent of sleeping sickness, a fatal disease in humans. In mice, the gonadal adipose tissue (AT) typically harbors 2–5 million parasites, while most solid organs show 10 to 100-fold fewer parasites. In this study, we tested whether the AT environment responds immunologically to the presence of the parasite. Transcriptome analysis of T. brucei infected adipose tissue revealed that most upregulated host genes are involved in inflammation and immune cell functions. Histochemistry and flow cytometry confirmed an increasingly higher number of infiltrated macrophages, neutrophils and CD4+ and CD8+ T lymphocytes upon infection. A large proportion of these lymphocytes effectively produce the type 1 effector cytokines, IFN-γ and TNF-α. Additionally, the adipose tissue showed accumulation of antigen-specific IgM and IgG antibodies as infection progressed. Mice lacking T and/or B cells (Rag2-/-, Jht-/-), or the signature cytokine (Ifng-/-) displayed a higher parasite load both in circulation and in the AT, demonstrating the key role of the adaptive immune system in both compartments. Interestingly, infections of C3-/- mice showed that while complement system is dispensable to control parasite load in the blood, it is necessary in the AT and other solid tissues. We conclude that T. brucei infection triggers a broad and robust immune response in the AT, which requires the complement system to locally reduce parasite burden. African trypanosomiasis is a neglected disease with significant socio-economic burden in sub-Saharan Africa. The protozoan parasite Trypanosoma brucei, a causative agent of African trypanosomiasis, can be found in the blood and extra-vascular spaces of the infected host. For an unknown reason, T. brucei accumulates in adipose tissue (AT) in very high numbers. Here we used a multidisciplinary approach to assess whether an immune response was mounted in AT during a T. brucei infection. We found that as infection progresses, a broad variety of immune cells and antibodies accumulate in the AT. We also found that this broad immune response is partially able to control parasite numbers in the AT. Our study provides evidence that T. brucei parasites present in the AT are subjected to immune surveillance. The reason why T. brucei accumulates to such a high extent in AT remains to be elucidated.
Collapse
Affiliation(s)
- Henrique Machado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Bizarra-Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Costa-Sequeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Barbara Rentroia-Pacheco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail: (KS); (LMF)
| | - Luisa M. Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail: (KS); (LMF)
| |
Collapse
|
12
|
Resende BAM, Beleigoli AMR, Ribeiro ALP, Duncan B, Schmidt MI, Mill JG, Goulart AC, Pereira ADC, Barreto SM, Diniz MDFHS. Chagas disease is not associated with diabetes, metabolic syndrome, insulin resistance and beta cell dysfunction at baseline of Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Parasitol Int 2021; 85:102440. [PMID: 34411740 DOI: 10.1016/j.parint.2021.102440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/12/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022]
Abstract
Chagas disease (ChD) affects millions of people worldwide, being endemic in Latin America and emerging in the United States and Europe. Classically described as targeting the heart and gastrointestinal tract, Trypanosoma cruzi parasitism leads to structural and pro-inflammatory changes in the adipose tissue and pancreas. The effects of these changes on insulin resistance (IR), beta cell dysfunction, diabetes mellitus (DM),and metabolic syndrome (MS) are unclear. We aim to evaluate the association of ChD with DM, IR, beta cell dysfunction and MS in the baseline of multi-centric cohort study 'Brazilian Longitudinal Study of Adult Health' (ELSA-Brasil). This cross-sectional analysis included 14,922 (98%) participants of ELSA-Brasil at baseline. To investigate the associations of ChD with DM, IR (assessed by HOMA-IR) and beta cell dysfunction (assessed by HOMA beta), and MS we fitted logistic regression models including socio-demographic and anthropometric variables, health-related conditions and laboratory results. ChD, defined by positive serology, was prevalent in 1.9% (n = 283) of the sample, 17.3% (n = 49) of whom had cardiomyopathy. DM prevalence was 17.25% (n = 2574) and was not different among those with and without ChD (20.5% vs 17.2%; p = 0.28). Fasting and 2 h-blood glucose after a 75 g anhydrous glucose were slightly higher among participants positive for ChD, when compared with those with negative serology (102 mg/dL versus 100 mg/dL, respectively; and 127 mg/dL versus 124 mg/dL, respectively), only in univariate analysis. There was no significant association between these variables and ChD after adjustments. In addition, there was no significant association between DM, IR, beta cell dysfunction or MS and ChD (without and with cardiomyopathy). Our results showed that ChD, regardless of the presence of cardiomyopathy, is not associated with DM, IR, beta cell dysfunction or MS. These findings suggest the parasitism of the adipose tissue and pancreas in Chagas disease do not translate into clinically relevant glucose abnormalities.
Collapse
Affiliation(s)
- Bruna A M Resende
- Internal Medicine Department, Faculty of Medicine, Faculdade Atenas, Sete Lagoas, Minas Gerais, Brazil
| | - Alline M R Beleigoli
- College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Antonio Luiz Pinho Ribeiro
- Internal Medicine Department, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruce Duncan
- Postgraduate Program in Epidemiology and Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Inês Schmidt
- Postgraduate Program in Epidemiology and Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espírito Santo, Brazil
| | | | - Alexandre da Costa Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Sandhi Maria Barreto
- Public Health Department, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
13
|
Boeckmans J, Rombaut M, Demuyser T, Declerck B, Piérard D, Rogiers V, De Kock J, Waumans L, Magerman K, Cartuyvels R, Rummens JL, Rodrigues RM, Vanhaecke T. Infections at the nexus of metabolic-associated fatty liver disease. Arch Toxicol 2021; 95:2235-2253. [PMID: 34027561 PMCID: PMC8141380 DOI: 10.1007/s00204-021-03069-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease that affects about a quarter of the world population. MAFLD encompasses different disease stadia ranging from isolated liver steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Although MAFLD is considered as the hepatic manifestation of the metabolic syndrome, multiple concomitant disease-potentiating factors can accelerate disease progression. Among these risk factors are diet, lifestyle, genetic traits, intake of steatogenic drugs, male gender and particular infections. Although infections often outweigh the development of fatty liver disease, pre-existing MAFLD could be triggered to progress towards more severe disease stadia. These combined disease cases might be underreported because of the high prevalence of both MAFLD and infectious diseases that can promote or exacerbate fatty liver disease development. In this review, we portray the molecular and cellular mechanisms by which the most relevant viral, bacterial and parasitic infections influence the progression of fatty liver disease and steatohepatitis. We focus in particular on how infectious diseases, including coronavirus disease-19, hepatitis C, acquired immunodeficiency syndrome, peptic ulcer and periodontitis, exacerbate MAFLD. We specifically underscore the synergistic effects of these infections with other MAFLD-promoting factors.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium.
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Baptist Declerck
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Luc Waumans
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Koen Magerman
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
- Department of Immunology and Infection, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Reinoud Cartuyvels
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Jean-Luc Rummens
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
14
|
de Souza DMS, Silva MC, Farias SEB, Menezes APDJ, Milanezi CM, Lúcio KDP, Paiva NCN, de Abreu PM, Costa DC, Pinto KMDC, Costa GDP, Silva JS, Talvani A. Diet Rich in Lard Promotes a Metabolic Environment Favorable to Trypanosoma cruzi Growth. Front Cardiovasc Med 2021; 8:667580. [PMID: 34113663 PMCID: PMC8185140 DOI: 10.3389/fcvm.2021.667580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/15/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Trypanosoma cruzi is a protozoan parasite that causes Chagas disease and affects 6-7 million people mainly in Latin America and worldwide. Here, we investigated the effects of hyperlipidic diets, mainly composed of olive oil or lard on experimental T. cruzi infection. C57BL/6 mice were fed two different dietary types in which the main sources of fatty acids were either monounsaturated (olive oil diet) or saturated (lard diet). Methods: After 60 days on the diet, mice were infected with 50 trypomastigote forms of T. cruzi Colombian strain. We evaluated the systemic and tissue parasitism, tissue inflammation, and the redox status of mice after 30 days of infection. Results: Lipid levels in the liver of mice fed with the lard diet increased compared with that of the mice fed with olive oil or normolipidic diets. The lard diet group presented with an increased parasitic load in the heart and adipose tissues following infection as well as an increased expression of Tlr2 and Tlr9 in the heart. However, no changes were seen in the survival rates across the dietary groups. Infected mice receiving all diets presented comparable levels of recruited inflammatory cells at 30 days post-infection but, at this time, we observed lard diet inducing an overproduction of CCL2 in the cardiac tissue and its inhibition in the adipose tissue. T. cruzi infection altered liver antioxidant levels in mice, with the lard diet group demonstrating decreased catalase (CAT) activity compared with that of other dietary groups. Conclusions: Our data demonstrated that T. cruzi growth is more favorable on tissue of mice subjected to the lard diet. Our findings supported our hypothesis of a relationship between the source of dietary lipids and parasite-induced immunopathology.
Collapse
Affiliation(s)
- Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Biological Science Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Maria Cláudia Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Silvia Elvira Barros Farias
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ana Paula de J Menezes
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Cristiane Maria Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karine de P Lúcio
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Nívia Carolina N Paiva
- Center of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Paula Melo de Abreu
- Biological Science Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Kelerson Mauro de Castro Pinto
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,School of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health Science, Infectology and Tropical Medicine Post-graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Salem DA, Salem NA, Hendawy SR. Association between Toxoplasma gondii infection and metabolic syndrome in obese adolescents: A possible immune-metabolic link. Parasitol Int 2021; 83:102343. [PMID: 33831579 DOI: 10.1016/j.parint.2021.102343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 01/22/2023]
Abstract
Background Toxoplasmosis as a global disease is considered as a triggering factor responsible for development of several clinical diseases. However, Toxoplasma gondii (T. gondii) is an understudied parasite of potential interest in obesity research. The current study aimed to explore the role of latent T. gondii infection in the pathogenesis of metabolic syndrome (MetS) in obese adolescents through studying the relationship between serum interferon-gamma [IFN-γ] and serum chemerin in context of MetS components. Methods Eighty-three obese adolescents were serologically screened for T. gondii-IgG antibodies and compared to 35 age-matched healthy T. gondii-seronegative controls. Participants were evaluated for anthropometric measurements, total-fat mass [FM], trunk-FM, serum lipid profile, IFN-γ, and chemerin levels. Homeostatic Model Assessment of insulin resistance (HOMA-IR) was calculated. Results The prevalence of MetS was significantly higher within obese T. gondii-seropositive group compared to obese T. gondii-seronegative group (P = 0.033). Seropositive obese MetS group displayed significantly higher trunk-FM, HOMA-IR, chemerin, and IFN-γ compared to seronegative obese MetS group. Serum chemerin and IFN-γ were strongly correlated (P < 0.001) and were positively correlated with BMI, WC, total-FM, trunk-FM, HOMA-IR, cholesterol, triglycerides and negatively correlated with HDLC. HOMA-IR was a common predictor for serum chemerin (P = 0.030) and IFN-γ (P < 0.001). Conclusions The study results suggest that T. gondii infection may exert an immune-metabolic effect that may have a potential role in the development of MetS among obese adolescents.
Collapse
Affiliation(s)
- Doaa A Salem
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, Egypt.
| | - Nanees A Salem
- Department of Pediatrics, Pediatric Endocrinology Unit, Faculty of Medicine, Mansoura University, Egypt
| | - Shimaa R Hendawy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
16
|
González-Espinoza G, Arce-Gorvel V, Mémet S, Gorvel JP. Brucella: Reservoirs and Niches in Animals and Humans. Pathogens 2021; 10:pathogens10020186. [PMID: 33572264 PMCID: PMC7915599 DOI: 10.3390/pathogens10020186] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is an intracellular bacterium that causes abortion, reproduction failure in livestock and leads to a debilitating flu-like illness with serious chronic complications if untreated in humans. As a successful intracellular pathogen, Brucella has developed strategies to avoid recognition by the immune system of the host and promote its survival and replication. In vivo, Brucellae reside mostly within phagocytes and other cells including trophoblasts, where they establish a preferred replicative niche inside the endoplasmic reticulum. This process is central as it gives Brucella the ability to maintain replicating-surviving cycles for long periods of time, even at low bacterial numbers, in its cellular niches. In this review, we propose that Brucella takes advantage of the environment provided by the cellular niches in which it resides to generate reservoirs and disseminate to other organs. We will discuss how the favored cellular niches for Brucella infection in the host give rise to anatomical reservoirs that may lead to chronic infections or persistence in asymptomatic subjects, and which may be considered as a threat for further contamination. A special emphasis will be put on bone marrow, lymph nodes, reproductive and for the first time adipose tissues, as well as wildlife reservoirs.
Collapse
|
17
|
Rodeles LM, Castro M, Zamora MAG, Savarino R, Peverengo LM, Prochetto ES, Marcipar I, Arias P, Vicco MH. Increased epicardial adipose tissue thickness associated with increased metabolic risk and the presence of heart failure in patients with Chronic Chagas disease. Trans R Soc Trop Med Hyg 2021; 115:1054-1060. [PMID: 33503657 DOI: 10.1093/trstmh/traa189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It has been described that Trypanosoma cruzi is capable of promoting metabolic disturbances currently considered as cardiovascular risk factors. Moreover, it has been observed that the protozoa can remain in adipose tissue and alter its immune endocrine functions. The aim of this study was to characterize the thickness of epicardial adipose tissue (EAT) in patients with chronic Chagas disease (CCD) concerning their cardiovascular metabolic risk profile compared with those without CCD. METHODS A cross-sectional study was performed including T. cruzi seropositive individuals categorized according to a standard CCD classification and a matched seronegative control group. Complete clinical examination, metabolic laboratory tests and transthoracic echocardiography to assess cardiac function and to quantify EAT were performed. RESULTS Fifty-five individuals aged 46.7±11.9 y, 34 with CCD and 21 in the control group, were included. The CCD group presented higher EAT thickness in relation to controls (4.54±1.28 vs 3.22±0.99 mm; p=0.001), which was significantly associated with the presence of insulin resistance (OR=3, 95% CI 1.58 to 5.73; p<0.001). This group presented lower levels of plasmatic adiponectin than controls, especially in those patients with EAT ≥4.5 mm (p=0.005) who also presented with heart failure more frequently (p=0.01). CONCLUSION In patients with CCD, a higher EAT thickness is observed and is associated with an increased metabolic risk profile indicated mainly by insulin resistance.
Collapse
Affiliation(s)
- Luz María Rodeles
- Centro de Estudios en Salud Global, Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Ruta Nacional 168, Santa Fe, Argentina
| | - Maximiliano Castro
- Hospital J. B. Iturraspe, Provincia de Santa Fe, Av Blas Parera 8301, Santa Fe, Argentina
| | - María Ayelen Gaitán Zamora
- Centro de Estudios en Salud Global, Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Ruta Nacional 168, Santa Fe, Argentina
| | - Roberto Savarino
- Hospital J. B. Iturraspe, Provincia de Santa Fe, Av Blas Parera 8301, Santa Fe, Argentina
| | - Luz María Peverengo
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímicas y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Ruta Nacional 168, Santa Fe, Argentina
| | - Estefanía Soledad Prochetto
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímicas y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Ruta Nacional 168, Santa Fe, Argentina
| | - Iván Marcipar
- Centro de Estudios en Salud Global, Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Ruta Nacional 168, Santa Fe, Argentina.,Laboratorio de Tecnología Inmunológica, Facultad de Bioquímicas y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Ruta Nacional 168, Santa Fe, Argentina
| | - Pablo Arias
- Cátedra de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, Santa Fe, Argentina
| | - Miguel Hernán Vicco
- Centro de Estudios en Salud Global, Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Ruta Nacional 168, Santa Fe, Argentina
| |
Collapse
|
18
|
Cerbán FM, Stempin CC, Volpini X, Carrera Silva EA, Gea S, Motran CC. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165707. [DOI: 10.1016/j.bbadis.2020.165707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
19
|
Myocardial Involvement in Chagas Disease and Insulin Resistance: A Non-Metabolic Model of Cardiomyopathy. Glob Heart 2020; 15:36. [PMID: 32489809 PMCID: PMC7218788 DOI: 10.5334/gh.793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Heart failure (HF) and type 2 Diabetes Mellitus (T2DM) represent two chronic interrelated conditions accounting for significant morbidity and mortality worldwide. Insulin resistance (IR) has been identified as a risk factor for HF; however, the risk of IR that HF confers has not been well elucidated. The present study aims to analyze the association between myocardial involvement in Chronic Chagas Cardiomyopathy (CCM) and IR, taking advantage of this non-metabolic model of the disease. Methods: Cross-sectional study performed during the period 2015–2016. Adults with a serological diagnosis of Chagas disease were included, being divided into two groups: CCM and non-CCM. IR was determined by HOMA-IR index. Bivariate analysis and multivariate logistic regression were performed to determine the association between IR as an outcome and CCM as primary exposure. Results: 200 patients were included in the study, with a mean age of 54.7 years and a female predominance (53.5%). Seventy-four (37.0%) patients were found to have IR, with a median HOMA-IR index of 3.9 (Q1 = 3.1; Q3 = 5.1). Multiple metabolic variables were significantly associated with IR. In a model analyzing only individuals with an altered HWI, an evident association between CCM and IR was observed (OR 4.08; 95% CI 1.55–10.73, p = 0.004). Conclusion: CCM was significantly associated with IR in patients with an altered HWI. The presence of this association in a non-metabolic model of HF (in which the myocardial involvement is expected to be mediated mostly by the parasitic infection) may support the evidence of a direct unidirectional correlation between this last and IR.
Collapse
|
20
|
Zaki P, Domingues EL, Amjad FM, Narde MB, Gonçalves KR, Viana ML, de Paula H, de Lima WG, Huang H, Bahia MT, Sherer PE, Dos Santos FM, Weiss LM, Tanowitz HB. The role of fat on cardiomyopathy outcome in mouse models of chronic Trypanosoma cruzi infection. Parasitol Res 2020; 119:1829-1843. [PMID: 32206887 DOI: 10.1007/s00436-020-06645-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
The underlying pathogenic mechanisms of cardiomyopathy in Chagas disease are still unsolved. In order to better clarify the role of fat on the evolution of cardiomyopathy, the present study employed three murine models of chronic Trypanosoma cruzi infection: (1) aP2-RIDα/β transgenic mice (RID mice; an adipose tissue model which express a gain-of-function potent anti-inflammatory activity), (2) allograft inflammatory factor-1 knockout mice (Aif1-/-), and (3) a Swiss outbred mice. RID mice and non-transgenic mice (wild type, WT) were infected with blood trypomastigotes of Brazil strain. During the acute stage of infection, RID mice had lower parasitemia, lower heart inflammation, and a decrease in the relative distribution of parasite load from cardiac muscle tissue toward epididymal fat. Nevertheless, comparable profiles of myocardial inflammatory infiltrates and relative distribution of parasite load were observed among RID and WT at the chronic stage of infection. Aif1-/- and Aif1+/+ mice were infected with bloodstream trypomastigotes of Tulahuen strain and fed with high-fat diet (HFD) or regular diet (RD). Interestingly, Aif1+/+ HFD infected mice showed the highest mortality. Swiss mice infected with blood trypomastigotes of Berenice-78 strain on a HFD had higher levels of TNFα and more inflammation in their heart tissue than infected mice fed a RD. These various murine models implicate adipocytes in the pathogenesis of chronic Chagas disease and suggest that HFD can lead to a significant increase in the severity of parasite-induced chronic cardiac damage. Furthermore, these data implicate adipocyte TLR4-, TNFα-, and IL-1β-mediated signaling in pro-inflammatory pathways and Aif-1 gene expression in the development of chronic Chagas disease.
Collapse
Affiliation(s)
- Paul Zaki
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Elisa Lbc Domingues
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Guararema, Alegre, ES, 29500-000, Brazil
| | - Farhad M Amjad
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maiara B Narde
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Guararema, Alegre, ES, 29500-000, Brazil
| | - Karolina R Gonçalves
- School of Medicine, Federal University of Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Mirelle L Viana
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Guararema, Alegre, ES, 29500-000, Brazil
| | - Heberth de Paula
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Guararema, Alegre, ES, 29500-000, Brazil
| | - Wanderson G de Lima
- Department of Biological Sciences, Federal University of Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maria T Bahia
- School of Medicine, Federal University of Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.,Department of Biological Sciences, Federal University of Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Philipp E Sherer
- The Touchstone Diabetes Center, UT Southwestern Medical Center, 5323 Harry Blvd, Dallas, TX, 75390, USA
| | - Fabiane M Dos Santos
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Guararema, Alegre, ES, 29500-000, Brazil
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
21
|
Wan X, Belanger K, Widen SG, Kuyumcu-Martinez MN, Garg NJ. Genes of the cGMP-PKG-Ca 2+ signaling pathway are alternatively spliced in cardiomyopathy: Role of RBFOX2. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165620. [PMID: 31778749 PMCID: PMC6954967 DOI: 10.1016/j.bbadis.2019.165620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
Aberrations in the cGMP-PKG-Ca2+ pathway are implicated in cardiovascular complications of diverse etiologies, though involved molecular mechanisms are not understood. We performed RNA-Seq analysis to profile global changes in gene expression and exon splicing in Chagas disease (ChD) murine myocardium. Ingenuity-Pathway-Analysis of transcriptome dataset identified 26 differentially expressed genes associated with increased mobilization and cellular levels of Ca2+ in ChD hearts. Mixture-of-isoforms and Enrichr KEGG pathway analyses of the RNA-Seq datasets from ChD (this study) and diabetic (previous study) murine hearts identified alternative splicing (AS) in eleven genes (Arhgef10, Atp2b1, Atp2a3, Cacna1c, Itpr1, Mef2a, Mef2d, Pde2a, Plcb1, Plcb4, and Ppp1r12a) of the cGMP-PKG-Ca2+ pathway in diseased hearts. AS of these genes was validated by an exon exclusion-inclusion assay. Further, Arhgef10, Atp2b1, Mef2a, Mef2d, Plcb1, and Ppp1r12a genes consisted RBFOX2 (RNA-binding protein) binding-site clusters, determined by analyzing the RBFOX2 CLIP-Seq dataset. H9c2 rat heart cells transfected with Rbfox2 (vs. scrambled) siRNA confirmed that expression of Rbfox2 is essential for proper exon splicing of genes of the cGMP-PKG-Ca2+ pathway. We conclude that changes in gene expression may influence the Ca2+ mobilization pathway in ChD, and AS impacts the genes involved in cGMP/PKG/Ca2+ signaling pathway in ChD and diabetes. Our findings suggest that ChD patients with diabetes may be at increased risk of cardiomyopathy and heart failure and provide novel ways to restore cGMP-PKG regulated signaling networks via correcting splicing patterns of key factors using oligonucleotide-based therapies for the treatment of cardiovascular complications.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America
| | - KarryAnne Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| |
Collapse
|
22
|
Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: New clues for understanding Chagas disease pathology. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165642. [PMID: 31866417 DOI: 10.1016/j.bbadis.2019.165642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.
Collapse
|
23
|
Lucchetti BFC, Boaretto N, Lopes FNC, Malvezi AD, Lovo-Martins MI, Tatakihara VLH, Fattori V, Pereira RS, Verri WA, de Almeida Araujo EJ, Pinge-Filho P, Martins-Pinge MC. Metabolic syndrome agravates cardiovascular, oxidative and inflammatory dysfunction during the acute phase of Trypanosoma cruzi infection in mice. Sci Rep 2019; 9:18885. [PMID: 31827186 PMCID: PMC6906468 DOI: 10.1038/s41598-019-55363-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
We evaluated the influence of metabolic syndrome (MS) on acute Trypanosoma cruzi infection. Obese Swiss mice, 70 days of age, were subjected to intraperitoneal infection with 5 × 102 trypomastigotes of the Y strain. Cardiovascular, oxidative, inflammatory, and metabolic parameters were evaluated in infected and non-infected mice. We observed higher parasitaemia in the infected obese group (IOG) than in the infected control group (ICG) 13 and 15 days post-infection. All IOG animals died by 19 days post-infection (dpi), whereas 87.5% of the ICG survived to 30 days. Increased plasma nitrite levels in adipose tissue and the aorta were observed in the IOG. Higher INF-γ and MCP-1 concentrations and lower IL-10 concentrations were observed in the IOG compared to those in the ICG. Decreased insulin sensitivity was observed in obese animals, which was accentuated after infection. Higher parasitic loads were found in adipose and hepatic tissue, and increases in oxidative stress in cardiac, hepatic, and adipose tissues were characteristics of the IOG group. Thus, MS exacerbates experimental Chagas disease, resulting in greater damage and decreased survival in infected animals, and might be a warning sign that MS can influence other pathologies.
Collapse
Affiliation(s)
- Bruno Fernando Cruz Lucchetti
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Department of Physiotherapy, University Center of Araguaia Valley, Barra do Garças, MT, Brazil
| | - Natalia Boaretto
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Aparecida Donizette Malvezi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Maria Isabel Lovo-Martins
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rito Santo Pereira
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
24
|
Eberhardt N, Sanmarco LM, Bergero G, Theumer MG, García MC, Ponce NE, Cano RC, Aoki MP. Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165592. [PMID: 31678157 DOI: 10.1016/j.bbadis.2019.165592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Damaged cells release the pro-inflammatory signal ATP, which is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine (ADO). The balance between ATP/ADO is known to determine the outcome of inflammation/infection. However, modulation of the local immune response in different tissues due to changes in the balance of purinergic metabolites has yet to be investigated. Here, we explored the contribution of CD73-derived ADO on the acute immune response against Trypanosoma cruzi parasite, which invades and proliferates within different target tissues. Deficiency of CD73 activity led to an enhanced cardiac microbicidal immune response with an augmented frequency of macrophages with inflammatory phenotype and increased CD8+ T cell effector functions. The increment of local inducible nitric oxide (NO) synthase (iNOS)+ macrophages and the consequent rise of myocardial NO production in association with reduced ADO levels induced protection against T. cruzi infection as observed by the diminished cardiac parasite burden compared to their wild-type (WT) counterpart. Unexpectedly, parasitemia was substantially raised in CD73KO mice in comparison with WT mice, suggesting the existence of tissue reservoir/s outside myocardium. Indeed, CD73KO liver and visceral adipose tissue (VAT) showed increased parasite burden associated with a reduced ATP/ADO ratio and the lack of substantial microbicidal immune response. These data reveal that the purinergic system has a tissue-dependent impact on the host immune response against T. cruzi infection.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Liliana Maria Sanmarco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Mónica Cristina García
- Unidad de Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Nicolas Eric Ponce
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina.
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina.
| | - Maria Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
25
|
Nagajyothi JF, Weiss LM. Advances in understanding the role of adipose tissue and mitochondrial oxidative stress in Trypanosoma cruzi infection. F1000Res 2019; 8. [PMID: 31354939 PMCID: PMC6652099 DOI: 10.12688/f1000research.19190.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 01/25/2023] Open
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, causes a latent infection that results in cardiomyopathy. Infection with this pathogen is a major socio-economic burden in areas of endemic infection throughout Latin America. The development of chagasic cardiomyopathy is dependent on the persistence of this parasite in host tissues. Pathogenesis of this cardiomyopathy is multifactorial and research indicates that it includes microvascular dysfunction, immune responses to host and parasite antigens, and various vasoactive and lipid mediators produced by both the host and parasite. It has been demonstrated that
T. cruzi persists in adipose tissue and uses fat as a nutritional niche in infected hosts. This chronic infection of adipose tissue plays an important role in the pathogenesis and persistence of this infection and involves mitochondrial stress responses as well as the production of various anti-inflammatory adipokines and pro-inflammatory cytokines by both white and brown adipose tissue. The changes in diet in endemic regions of infection have resulted in an epidemic of obesity that has significant implications for the pathogenesis of
T. cruzi infection and the development of chagasic cardiomyopathy in infected humans.
Collapse
Affiliation(s)
- Jyothi F Nagajyothi
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, 225 Warren Street, Newark, NJ, 07103, USA
| | - Louis M Weiss
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, NY, 10461, USA
| |
Collapse
|
26
|
Isolation and Phenotypic Characterization of Inflammatory Cells from Clinical Samples: Purification of Macrophages from Trypanosoma cruzi-Infected Hearts. Methods Mol Biol 2019; 1955:381-395. [PMID: 30868542 DOI: 10.1007/978-1-4939-9148-8_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trypanosoma cruzi, the causal agent of chronic Chagas cardiomyopathy, exhibits an important tropism for cardiac tissue. In consequence, T. cruzi experimental infection represents a unique model to study cardiac macrophage behavior and effector functions during either acute or chronic immune response. In this chapter we describe a protocol to isolate immune cells from T. cruzi-infected murine cardiac tissue and to determine the percentage, absolute number, phenotype, and functionality of monocytes and macrophages by using flow cytometry. Moreover, we describe the parameters to discriminate between resident and infiltrating mononuclear phagocytic cells within infected hearts. The investigations in this field will provide mechanistic insights about the roles of these innate immune cells in the context of a clinically relevant target tissue.
Collapse
|
27
|
Lidani KCF, Sandri TL, Andrade FA, Bavia L, Nisihara R, Messias-Reason IJ. Complement Factor H as a potential atherogenic marker in chronic Chagas’ disease. Parasite Immunol 2018; 40:e12537. [DOI: 10.1111/pim.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 02/03/2023]
Affiliation(s)
- K. C. F. Lidani
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - T. L. Sandri
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
- Institute of Tropical Medicine; University of Tübingen; Tübingen Germany
| | - F. A. Andrade
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - L. Bavia
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - R. Nisihara
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - I. J. Messias-Reason
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
28
|
Bobade D, Khandare AV, Deval M, Shastry P, Deshpande P. Hemozoin-induced activation of human monocytes toward M2-like phenotype is partially reversed by antimalarial drugs-chloroquine and artemisinin. Microbiologyopen 2018; 8:e00651. [PMID: 29877619 PMCID: PMC6436431 DOI: 10.1002/mbo3.651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum malaria is the most severe form of malaria with several complications. The malaria pigment‐hemozoin (Hz) is associated with severe anemia, cytokine dysfunction, and immunosuppression, thus making it an interesting target for developing new strategies for antimalarial therapy. Monocytes (MO) in circulation actively ingest Hz released by Plasmodium parasites and secrete pro‐ and anti‐inflammatory cytokines. M1 and M2 types represent the two major forms of MO/macrophages (MQ) with distinct phenotypes and opposing functions. Imbalance in the polarization of these types is reported in many infectious diseases. Though the association of Hz with immunosuppression is well documented, its role in activation of MO in context of M1/M2 phenotypes remains to be addressed. We report here that natural Hz drives human MO toward M2‐like phenotype as evidenced by the expression of M2 signature markers. Hz‐fed MO showed elevated transcript and secreted level of IL‐10, CCL17, CCL1, expression of mannose‐binding lectin receptor (CD206), and arginase activity. Hz attenuated HLA‐DR expression, nitric oxide, and reactive oxygen species production, which are the features of M1 phenotype. Our data also implicate the involvement of p38 MAPK, PI3K/AKT, and NF‐κB signaling pathways in skewing of Hz‐fed MO toward M2‐like type and suppression of mitogen‐stimulated lymphocyte proliferation. Importantly, antimalarial drugs—chloroquine and artemisinin—partially reversed activation of Hz‐induced MO toward M2‐like phenotype. Considering the limitations in the current therapeutic options for malaria, we propose that these drugs may be re‐examined for their potential as immunomodulators and candidates for adjunctive treatment in malaria.
Collapse
Affiliation(s)
| | | | - Mangesh Deval
- National Centre for Cell Science (NCCS), Pune, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Pune, India
| | | |
Collapse
|
29
|
Chlamydia pneumoniae Infection Exacerbates Atherosclerosis in ApoB100only/LDLR -/- Mouse Strain. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8325915. [PMID: 29770337 PMCID: PMC5889898 DOI: 10.1155/2018/8325915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/31/2018] [Accepted: 02/18/2018] [Indexed: 11/25/2022]
Abstract
Aims Hyperlipidaemia model animals have been used to elucidate the role of Chlamydia pneumoniae (Cpn) infection in atherosclerosis. The aims of this study were to investigate the proatherogenic effect of multiple Cpn infections in ApoB100only/LDLR−/− mice which based on lipid profile can be regarded as the most suitable mouse model of human hypercholesterolemia and to compare the lesion development to that in a major atherosclerosis model ApoE−/− mice. Methods and Results Aorta samples of ApoB100only/LDLR−/− mice infected three times with Cpn were subjected to morphometric analyses. Morphometric evaluation disclosed that Cpn infections exacerbated atherosclerosis development in the aortic root and descending aorta of the mice fed with normal diet. Viable Cpn was detected in the ascending aorta by RT-PCR. Chlamydial 16SrRNA expression showed the presence of viable Cpn in the aorta of infected animals. A similar rate of acceleration of atherosclerosis was observed when the infection protocol was applied in ApoB100only/LDLR−/− and in ApoE−/− mice. Conclusion Similar to ApoE−/− mice, ApoB100only/LDLR−/− mice with more human-relevant serum lipoprotein composition develop increased atherosclerosis after Cpn infections; thus this mouse strain can be used as a model of infection-related atherosclerosis enhancement and can provide further evidence for the proatherogenic influence of Cpn in mice.
Collapse
|
30
|
Fresno M, Gironès N. Regulatory Lymphoid and Myeloid Cells Determine the Cardiac Immunopathogenesis of Trypanosoma cruzi Infection. Front Microbiol 2018; 9:351. [PMID: 29545782 PMCID: PMC5838393 DOI: 10.3389/fmicb.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023] Open
Abstract
Chagas disease is a multisystemic disorder caused by the protozoan parasite Trypanosoma cruzi, which affects ~8 million people in Latin America, killing 7,000 people annually. Chagas disease is one of the main causes of death in the endemic area and the leading cause of infectious myocarditis in the world. T. cruzi infection induces two phases, acute and chronic, where the infection is initially asymptomatic and the majority of patients will remain clinically indeterminate for life. However, over a period of 10–30 years, ~30% of infected individuals will develop irreversible, potentially fatal cardiac syndromes (chronic chagasic cardiomyopathy [CCC]), and/or dilatation of the gastro-intestinal tract (megacolon or megaesophagus). Myocarditis is the most serious and frequent manifestation of chronic Chagas heart disease and appears in about 30% of infected individuals several years after infection occurs. Myocarditis is characterized by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic phase is thought to be dependent on an immune-inflammatory reaction to a low-grade replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells are able to control infection. However, the role that infiltrating lymphoid and myeloid cells may play in experimental and natural Chagas disease pathogenesis has not been completely elucidated, and several reports indicate that it depends on the mouse genetic background and parasite strain and/or inoculum. Here, we review the role that T cell CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play in the immunopathogenesis of Chagas disease with special focus on myocarditis, by comparing results obtained with different experimental animal models.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
31
|
Lu P, Ji X, Wan J, Xu H. Activity of Group 2 Innate Lymphoid Cells is Associated with Chronic Inflammation and Dysregulated Metabolic Homoeostasis in Type 2 Diabetic Nephropathy. Scand J Immunol 2018; 87:99-107. [DOI: 10.1111/sji.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- P. Lu
- Department of Immunology; School of Medicine; Jiangsu University; Zhenjiang China
- Department of Nephrology; the First People's Hospital of Zhenjiang; Zhenjiang China
| | - X. Ji
- Department of Immunology; School of Medicine; Jiangsu University; Zhenjiang China
| | - J. Wan
- Department of Immunology; School of Medicine; Jiangsu University; Zhenjiang China
| | - H. Xu
- Department of Immunology; School of Medicine; Jiangsu University; Zhenjiang China
| |
Collapse
|
32
|
Pérez AR, Morrot A, Carvalho VF, de Meis J, Savino W. Role of Hormonal Circuitry Upon T Cell Development in Chagas Disease: Possible Implications on T Cell Dysfunctions. Front Endocrinol (Lausanne) 2018; 9:334. [PMID: 29963015 PMCID: PMC6010535 DOI: 10.3389/fendo.2018.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
T cell response plays an essential role in the host resistance to infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. This infection is often associated with multiple manifestations of T cell dysfunction, both during the acute and the chronic phases of disease. Additionally, the normal development of T cells is affected. As seen in animal models of Chagas disease, there is a strong thymic atrophy due to massive death of CD4+CD8+ double-positive cells by apoptosis and an abnormal escape of immature and potentially autoreactive thymocytes from the organ. Furthermore, an increase in the release of corticosterone triggered by T. cruzi-driven systemic inflammation is strongly associated with the alterations seen in the thymus of infected animals. Moreover, changes in the levels of other hormones, including growth hormone, prolactin, and testosterone are also able to contribute to the disruption of thymic homeostasis secondary to T. cruzi infection. In this review, we discuss the role of hormonal circuits involved in the normal T cell development and trafficking, as well as their role on the thymic alterations likely related to the peripheral T cell disturbances largely reported in both chagasic patients and animal models of Chagas disease.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
- *Correspondence: Ana Rosa Pérez, ,
| | - Alexandre Morrot
- Faculty of Medicine, Tuberculosis Research Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic Crosstalk Between Host and Parasitic Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:421-458. [PMID: 30535608 DOI: 10.1007/978-3-319-74932-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.
Collapse
Affiliation(s)
- Diana Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
34
|
Wang H, Feng Y, Jin X, Xia R, Cheng Y, Liu X, Zhu N, Zhou X, Yin L, Guo J. Augmentation of hypoxia-inducible factor-1-alpha in reinfused blood cells enhances diabetic ischemic wound closure in mice. Oncotarget 2017; 8:114251-114258. [PMID: 29371983 PMCID: PMC5768400 DOI: 10.18632/oncotarget.23214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetes-associated dysfunction in angiogenesis predominantly contributes to impairment of wound closure, but a role of hypoxia-inducible factor 1 alpha (HIF-1a) in the process remain poorly understood. Here, we examined whether expression of HIF-1a in re-infused blood cells may improve the diabetic wound closure in mice. We found that that expression of HIF-1a in re-infused isogeneic blood cells significantly improved diabetic wound healing in mice, seemingly through augmentation of wound-associated angiogenesis. Mechanistically, expression of HIF-1a in re-infused blood cells significantly increased macrophage infiltration at the wound site, and macrophages produced vascular endothelial growth factor A (VEGF-A) to promote wound-associated angiogenesis. Together, our data suggest that augmentation of HIF-1a in reinfused blood cells may enhance diabetic ischemic wound closure.
Collapse
Affiliation(s)
- Huan Wang
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Yufeng Feng
- Department of Anesthesiology,The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiaoju Jin
- Department of Anesthesiology, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, China
| | - Rong Xia
- Transfusion Department, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yong Cheng
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Xiaoqian Liu
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Nana Zhu
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Xun Zhou
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Lei Yin
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Jianrong Guo
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
35
|
Yao F, Zhang M, Chen L. Adipose Tissue-Specialized Immunologic Features Might Be the Potential Therapeutic Target of Prospective Medicines for Obesity. J Diabetes Res 2017; 2017:4504612. [PMID: 28466023 PMCID: PMC5390594 DOI: 10.1155/2017/4504612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Excessive lipid accumulation in adipose tissue is either the source of obesity or the cause and result of chronic local inflammation, and recent studies indicate that the accumulation may induce many other specialized immunologic features with macrophages and epidemic diseases. We analyze the effective stages of immune cells in adipose tissue, including macrophage recruitment, macrophage polarization, and macrophage-like phenotype preadipocyte possession to find optimal sites as drug targets. Subsequently, some main signaling pathways are summarized in this review, including the AMP-activated protein kinase (AMPK) pathway, the JNK signaling pathway, and a novel one, the Notch signaling pathway. We illustrate all these points in order to determine the general pathogenesis of chronic low-grade local inflammation in adipose tissue and the related signaling pathways. In addition, signal-associated prospective compounds, such as berberine, are summarized and discussed with potential targets in pathogenesis. This might provide some possible thoughts and novel therapies for studying chronic inflammatory diseases, such as insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Fan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- School of Nursing, Jilin University, Changchun 130021, China
- *Li Chen:
| |
Collapse
|
36
|
Alterations in pancreatic β cell function and Trypanosoma cruzi infection: evidence from human and animal studies. Parasitol Res 2016; 116:827-838. [PMID: 28013375 DOI: 10.1007/s00436-016-5350-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/11/2016] [Indexed: 01/04/2023]
Abstract
The parasite Trypanosoma cruzi causes a persistent infection, Chagas disease, affecting millions of persons in endemic areas of Latin America. As a result of immigration, this disease has now been diagnosed in non-endemic areas worldwide. Although, the heart and gastrointestinal tract are the most studied, the insulin-secreting β cell of the endocrine pancreas is also a target of infection. In this review, we summarize available clinical and laboratory evidence to determine whether T. cruzi-infection-mediated changes of β cell function is likely to contribute to the development of hyperglycemia and diabetes. Our literature survey indicates that T. cruzi infection of humans and of experimental animals relates to altered secretory behavior of β cells. The mechanistic basis of these observations appears to be a change in stimulus-secretion pathway function rather than the loss of insulin-producing β cells. Whether this attenuated insulin release ultimately contributes to the pathogenesis of diabetes in human Chagas disease, however, remains to be determined. Since the etiologies of diabetes are multifactorial including genetic and lifestyle factors, the use of cell- and animal-based investigations, allowing direct manipulation of these factors, are important tools in testing if reduced insulin secretion has a causal influence on diabetes in the setting of Chagas disease. Long-term clinical investigations will be required to investigate this link in humans.
Collapse
|
37
|
Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM. Adipose Tissue: A Safe Haven for Parasites? Trends Parasitol 2016; 33:276-284. [PMID: 28007406 DOI: 10.1016/j.pt.2016.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
Adipose tissue (AT) is no longer regarded as an inert lipid storage, but as an important central regulator in energy homeostasis and immunity. Three parasite species are uniquely associated with AT during part of their life cycle: Trypanosoma cruzi, the causative agent of Chagas disease; Trypanosoma brucei, the causative agent of African sleeping sickness; and Plasmodium spp., the causative agents of malaria. In AT, T. cruzi resides inside adipocytes, T. brucei is found in the interstitial spaces between adipocytes, while Plasmodium spp. infect red blood cells, which may adhere to the blood vessels supplying AT. Here, we discuss how each parasite species adapts to this tissue environment and what the implications are for pathogenesis, clinical manifestations, and therapy.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8549, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
38
|
Moganti K, Li F, Schmuttermaier C, Riemann S, Klüter H, Gratchev A, Harmsen MC, Kzhyshkowska J. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology 2016; 222:952-959. [PMID: 27492721 DOI: 10.1016/j.imbio.2016.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
Abstract
Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications.
Collapse
Affiliation(s)
- Kondaiah Moganti
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Feng Li
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Christina Schmuttermaier
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Sarah Riemann
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, D-68167 Mannheim, Germany
| | - Alexei Gratchev
- Institute of Carcinogenesis, N.N.Blokhin Russian Cancer Research Center, Moscow, Russian Federation; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russian Federation
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Dept. Pathology and Medical Biology, The Netherlands
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, D-68167 Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russian Federation.
| |
Collapse
|