1
|
Strohm AO, Oldfield S, Hernady E, Johnston CJ, Marples B, O'Banion MK, Majewska AK. Biological sex, microglial signaling pathways, and radiation exposure shape cortical proteomic profiles and behavior in mice. Brain Behav Immun Health 2025; 43:100911. [PMID: 39677060 PMCID: PMC11634995 DOI: 10.1016/j.bbih.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Patients receiving cranial radiation therapy experience tissue damage and cognitive deficits that severely decrease their quality of life. Experiments in rodent models show that these adverse neurological effects are in part due to functional changes in microglia, the resident immune cells of the central nervous system. Increasing evidence suggests that experimental manipulation of microglial signaling can regulate radiation-induced changes in the brain and behavior. Furthermore, many studies show sex-dependent neurological effects of radiation exposure. Despite this, few studies have used both males and females to explore how sex and microglial function interact to influence radiation effects on the brain. Here, we used a system levels approach to examine how deficiencies in purinergic and fractalkine signaling, two important microglial signaling pathways, impact brain proteomic and behavioral profiles in irradiated and control male and female mice. We performed a comprehensive analysis of the cortical proteomes from irradiated and control C57BL/6J, P2Y12-/-, and CX3CR1-/- mice of both sexes using multiple bioinformatics methods. We identified distinct proteins and biological processes, as well as behavioral profiles, regulated by sex, genotype, radiation exposure, and their interactions. Disrupting microglial signaling, had the greatest impact on proteomic expression, with CX3CR1-/- mice showing the most distinct proteomic profile characterized by upregulation of CX3CL1. Surprisingly, radiation exposure caused relatively smaller proteomic changes in glial and synaptic proteins, including Rgs10, Crybb1, C1qa, and Hexb. While we observed some radiation effects on locomotor behavior, biological sex as well as loss of P2Y12 and CX3CR1 signaling had a stronger influence on locomotor outcomes in our model. Lastly, loss of P2Y12 and CX3CR1 strongly regulated exploratory behaviors. Overall, our findings provide novel insights into the molecular pathways and proteins that are linked to P2Y12 and CX3CR1 signaling, biological sex, radiation exposure, and their interactions.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Sadie Oldfield
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eric Hernady
- Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Carl J. Johnston
- Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian Marples
- Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M. Kerry O'Banion
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ania K. Majewska
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
2
|
Rodina AV, Vysotskaya OV, Zhirnik AS, Smirnova OD, Parfenova AA, Strepetov AN, Semochkina YP, Nesterenko MV, Moskaleva EY. Features of Brain Damage after Neutron Irradiation of the Head and Modification of the Damage by Lactoferrin. DOKL BIOCHEM BIOPHYS 2024; 519:556-563. [PMID: 39480633 DOI: 10.1134/s1607672924701205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE The purpose of the study was to investigate the effect of γ,n-irradiation of the mouse head on the brain cells damage, behavior, and cognition and to examine the possibility of using lactoferrin (LF) to alleviate radiation-induced impairments. MATERIALS AND METHODS Mouse heads were irradiated in a beam of neutrons and gamma rays from the IR-8 nuclear reactor. The brain cells of control and irradiated mice were isolated using Percoll. Neurons and resting and activated microglial cells were analyzed using the fluorescently labeled antibodies and flow cytometry. The level of DNA double-strand breaks in neurons was determined by γH2AX histone content. Cytokine gene expression in the hippocampus was studied by RT-PCR. Behavior and cognitive functions were studied using the open field, Morris water maze, and novel object recognition tests. LF was isolated from female colostrum by preparative ion-exchange chromatography and purified by affinity chromatography on heparin-Sepharose. RESULTS γ,n-Irradiation of the mouse head at a dose of 1.5 Gy led to an increase in the level of DNA double-strand breaks in neurons. Twenty-four hours after irradiation the total number of cells and the number of neurons in the isolated fraction of brain cells decreased, but the number of microglial cells remained unchanged. The number of resting and activated microglia did not change within 3-72 h after γ,n-irradiation. The expression level of the TNFα, IL-1β, and IL-6 genes increased 2 months after γ,n-irradiation of the mouse head at a dose of 1.5 Gy, indicating the development of neuroinflammation. At this time, irradiated mice demonstrated the anxiety-like behavior and impaired spatial and episodic memory. A single i.p. administration of human LF to mice immediately after γ,n-irradiation of the head did not affect the observed radiation-induced disturbances, but decreased the gene expression levels of TNFα, IL-1β, and IL-6 pro-inflammatory cytokines and increased the gene expression level of TGFβ anti-inflammatory cytokine in the hippocampus 2 months after radiation exposure. The obtained results indicate a partial decrease in the level of hippocampal neuroinflammation of irradiated animals treated with LF. CONCLUSIONS γ,n-Irradiation of the mouse head at a dose of 1.5 Gy leads to DNA damage of neurons and the decrease in the number of neurons. Microglia cells are more resistant to such radiation exposure. Late after head-only γ,n-irradiation, mice develop neuroinflammation, which is detected by an increase in the pro-inflammatory cytokine gene expression in the hippocampus and also by anxiety-like behavior and impaired cognitive functions. A single LF administration leads to a partial decrease in the neuroinflammation level, but does not affect the other studied parameters. The optimal dosing regimen of LF remains to be determined to preserve cognitive functions after γ,n-irradiation of the brain.
Collapse
Affiliation(s)
- A V Rodina
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - O V Vysotskaya
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - A S Zhirnik
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - O D Smirnova
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - A A Parfenova
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - A N Strepetov
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - Yu P Semochkina
- National Research Center "Kurchatov Institute", Moscow, Russia
| | | | - E Yu Moskaleva
- National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
3
|
Hinkle JJ, Olschowka JA, Williams JP, O'Banion MK. Pharmacologic Manipulation of Complement Receptor 3 Prevents Dendritic Spine Loss and Cognitive Impairment After Acute Cranial Radiation. Int J Radiat Oncol Biol Phys 2024; 119:912-923. [PMID: 38142839 DOI: 10.1016/j.ijrobp.2023.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
PURPOSE Cranial irradiation induces healthy tissue damage that can lead to neurocognitive complications, negatively affecting patient quality of life. One damage indicator associated with cognitive impairment is loss of neuronal spine density. We previously demonstrated that irradiation-mediated spine loss is microglial complement receptor 3 (CR3) and sex dependent. We hypothesized that these changes are associated with late-delayed cognitive deficits and amenable to pharmacologic intervention. METHODS AND MATERIALS Our model of cranial irradiation (acute, 10 Gy gamma) used male and female CR3-wild type and CR3-deficient Thy-1 YFP mice of C57BL/6 background. Forty-five days after irradiation and behavioral testing, we quantified spine density and markers of microglial reactivity in the hippocampal dentate gyrus. In a separate experiment, male Thy-1 YFP C57BL/6 mice were treated with leukadherin-1, a modulator of CR3 function. RESULTS We found that male mice demonstrate irradiation-mediated spine loss and cognitive deficits but that female and CR3 knockout mice do not. These changes were associated with greater reactivity of microglia in male mice. Pharmacologic manipulation of CR3 with LA1 prevented spine loss and cognitive deficits in irradiated male mice. CONCLUSIONS This work improves our understanding of irradiation-mediated mechanisms and sex dependent responses and may help identify novel therapeutics to reduce irradiation-induced cognitive decline and improve patient quality of life.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Department of Neuroscience and Del Monte Neuroscience Institute
| | | | | | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute; Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
4
|
Strohm AO, Johnston C, Hernady E, Marples B, O'Banion MK, Majewska AK. Cranial irradiation disrupts homeostatic microglial dynamic behavior. J Neuroinflammation 2024; 21:82. [PMID: 38570852 PMCID: PMC10993621 DOI: 10.1186/s12974-024-03073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Cranial irradiation causes cognitive deficits that are in part mediated by microglia, the resident immune cells of the brain. Microglia are highly reactive, exhibiting changes in shape and morphology depending on the function they are performing. Additionally, microglia processes make dynamic, physical contacts with different components of their environment to monitor the functional state of the brain and promote plasticity. Though evidence suggests radiation perturbs homeostatic microglia functions, it is unknown how cranial irradiation impacts the dynamic behavior of microglia over time. Here, we paired in vivo two-photon microscopy with a transgenic mouse model that labels cortical microglia to follow these cells and determine how they change over time in cranial irradiated mice and their control littermates. We show that a single dose of 10 Gy cranial irradiation disrupts homeostatic cortical microglia dynamics during a 1-month time course. We found a lasting loss of microglial cells following cranial irradiation, coupled with a modest dysregulation of microglial soma displacement at earlier timepoints. The homogeneous distribution of microglia was maintained, suggesting microglia rearrange themselves to account for cell loss and maintain territorial organization following cranial irradiation. Furthermore, we found cranial irradiation reduced microglia coverage of the parenchyma and their surveillance capacity, without overtly changing morphology. Our results demonstrate that a single dose of radiation can induce changes in microglial behavior and function that could influence neurological health. These results set the foundation for future work examining how cranial irradiation impacts complex cellular dynamics in the brain which could contribute to the manifestation of cognitive deficits.
Collapse
Affiliation(s)
- Alexandra O Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Carl Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
6
|
Alhawamdeh M, Almajali B, Hourani W, Al-Jamal HAN, Al-Wajeeh AS, Mwafi NR, Al-Hajaya Y, Saad HKM, Anderson D, Odeh M, Tarawneh IA. Effect of IFN‑γ encapsulated liposomes on major signal transduction pathways in the lymphocytes of patients with lung cancer. Oncol Lett 2024; 27:8. [PMID: 38028180 PMCID: PMC10664063 DOI: 10.3892/ol.2023.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, lung cancer affected 2.2 million individuals and caused 1.8 million deaths in 2021. Lung cancer is caused by smoking, genetics and other factors. IFN-γ has anticancer activity. However, the mechanism by which IFN-γ has an effect on lung cancer is not fully understood. The present study aimed to assess the effect of IFN-γ on the peripheral lymphocytes of patients with lung cancer compared with healthy controls. The efficacy of IFN-γ against oxidative stress was assessed using a comet repair assay and the effects of IFN-γ on p53, PARP1 and OGG1 genes and protein levels in lymphocytes was evaluated by RT-qPCR and western blotting. DNA damage was significantly reduced in the lymphocytes of patients treated with IFN-γ. However, there was no effect in the cells of healthy individuals after treatment with naked IFN-γ [IFN-γ (N)] and liposomal IFN-γ [IFN-γ (L)]. Following treatment with IFN-γ (N) and IFN-γ (L), the p53, PARP1 and OGG1 protein and gene expression levels were significantly increased (P<0.001). It has been suggested that IFN-γ may induce p53-mediated cell cycle arrest and DNA repair in patients. These findings supported the idea that IFN-γ (N) and IFN-γ (L) may serve a significant role in the treatment of lung cancer, via cell cycle arrest of cancer cells and repair mechanisms.
Collapse
Affiliation(s)
- Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | - Belal Almajali
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan
| | - Wafa Hourani
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | | | - Nesrin Riad Mwafi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | - Yousef Al-Hajaya
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | - Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Mahmoud Odeh
- Business Faculty, Zarqa University, Zarqa 13110, Jordan
| | - Ibraheam A. Tarawneh
- School of Graduate Studies, Management and Science University, Shah Alam, Selangor 40100, Malaysia
| |
Collapse
|
7
|
Shaposhnikova DA, Moskaleva EY, Syomochkina YP, Vysotskaya OV, Komova OV, Nasonova EA, Koshlan IV. Characteristics of SIM-A9 Microglia Cells: New Data. CELL AND TISSUE BIOLOGY 2023; 17:503-516. [DOI: 10.1134/s1990519x23050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/15/2022] [Accepted: 12/03/2022] [Indexed: 01/03/2025]
|
8
|
Gan C, Li W, Xu J, Pang L, Tang L, Yu S, Li A, Ge H, Huang R, Cheng H. Advances in the study of the molecular biological mechanisms of radiation-induced brain injury. Am J Cancer Res 2023; 13:3275-3299. [PMID: 37693137 PMCID: PMC10492106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
Radiation therapy is one of the most commonly used treatments for head and neck cancers, but it often leads to radiation-induced brain injury. Patients with radiation-induced brain injury have a poorer quality of life, and no effective treatments are available. The pathogenesis of this condition is unknown. This review summarizes the molecular biological mechanism of radiation-induced brain injury and provides research directions for future studies. The molecular mechanisms of radiation-induced brain injury are diverse and complex. Radiation-induced chronic neuroinflammation, destruction of the blood-brain barrier, oxidative stress, neuronal damage, and physiopathological responses caused by specific exosome secretion lead to radiation-induced brain injury.
Collapse
Affiliation(s)
- Chen Gan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
9
|
Shaposhnikova DA, Moskaleva EY, Semochkina YP, Vysotskaya OV, Komova OV, Nasonova EA, Koshlan IV. Microglia Cell Line SIM-A9 Features – New Data. ЦИТОЛОГИЯ 2023; 65:259-272. [DOI: 10.31857/s0041377123030082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
SIM-A9 is a line of spontaneously immortalized mouse microglia cells obtained from newborn C57BL/6 mice’s cerebrum. The aim of this work is to characterize SIM-A9 line by the ratio of cells with the resting and activated microglia phenotype, to analyze the expression of stem/progenitor cell markers CD133 and nestin, growth factors receptors CSF-1R and EGFR, and the karyotype of this line. The light microscopy, immunocytochemistry, flow cytometry and RT/PCR were used to analyze the morphology, phenotype, and gene expression levels of pro-inflammatory cytokines, and the mFISH method was used to analyze the karyotype. It was shown for the first time that SIM-A9 cells express a high level of TSPO protein, CD68, CD11b and CD45 markers on the surface membrane of cells, which corresponds to the phenotype of activated microglia. Despite this, the cells of this line respond with additional activation to LPS stimulation, which leads to an increase in the pro-inflammatory cytokine genes IL-1β, TNFα, IL-6 expression and a high level of active oxygen and nitrogen metabolites formation. It was shown that SIM-A9 cells express stem and progenitor cells markers, CD133+ and nestin, which allows us to consider the cells of this line as early poorly differentiated progenitor cells, despite their phenotype corresponding to activated microglia. It was also found that SIM-A9 cells express receptors of two growth factors CSF-1 and EGF, CSF-1R and EGFR, which indicates the possibility of SIM-A9 cells proliferation stimulation by two alternative mechanisms under the action of the corresponding factors. SIM-A9 cells have a hypotetraploid karyotype with a large number of structural and quantitative chromosome anomalies.
Collapse
|
10
|
Rodina AV, Semochkina YP, Vysotskaya OV, Parfenova AA, Moskaleva EY. Radiation-induced neuroinflammation monitoring by the level of peripheral blood monocytes with high expression of translocator protein. Int J Radiat Biol 2023; 99:1364-1377. [PMID: 36821843 DOI: 10.1080/09553002.2023.2177765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Currently there are no effective diagnostic methods for the control of neuroinflammation before manifestation of cognitive impairment after head irradiation. The translocator protein (TSPO) is highly expressed in glial cells upon brain damage, therefore we compared the changes in the number of cells with high TSPO expression in the brain and peripheral blood during radiation-induced neuroinflammation. MATERIALS AND METHODS Hippocampal cytokines mRNA expression and the content of cells with high TSPO expression in the brain and peripheral blood monocytes were analyzed up to eight months after mice head γ-irradiation at a dose of 2 Gy or 8Gy. RESULTS Mice irradiation at a dose of 8 Gy causes neuroinflammation, accompanied by an increase of M1 microglia and TSPOhigh cells in the brain, elevated gene expression of pro-inflammatory and decreased of anti-inflammatory cytokines along with an increased number of microglia and astrocytes in the hippocampus. The content of TSPOhigh cells in the brain correlates with the level TSPOhigh monocytes in three days, one month and two months after exposure. CONCLUSIONS An increase in the level of the monocytes with high expression of TSPO may be considered as a marker for an early diagnostics of post-radiation brain damage leading to cognitive impairment.
Collapse
Affiliation(s)
- Alla V Rodina
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Yulia P Semochkina
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Olga V Vysotskaya
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Anna A Parfenova
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Elizaveta Y Moskaleva
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| |
Collapse
|
11
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
12
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
13
|
Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron 2022; 110:2215-2241. [PMID: 35523175 DOI: 10.1016/j.neuron.2022.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments. We further emphasize the potential of neuroimaging as a key component of cross-translation to contextualize laboratory research within broader clinical findings. This cross-translational approach has the potential to accelerate discovery to improve pediatric cancer survivors' long-term quality of life.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
14
|
Gomez-Arboledas A, Acharya MM, Tenner AJ. The Role of Complement in Synaptic Pruning and Neurodegeneration. Immunotargets Ther 2021; 10:373-386. [PMID: 34595138 PMCID: PMC8478425 DOI: 10.2147/itt.s305420] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The complement system, an essential part of the innate immune system, is composed of a group of secreted and membrane proteins that collectively participate in maintaining the function of the healthy and diseased brain. However, an inappropriate activation of the complement system has been related to an inflammatory response in multiple diseases, such as stroke, traumatic brain injury, multiple sclerosis, and Alzheimer's disease, as well as Zika infection and radiotherapy. In addition, C1q and C3 (initial activation components of the complement cascade) have been shown to play a key beneficial role in the refinement of synaptic circuits during developmental stages and adult plasticity. Nevertheless, excessive synaptic pruning in the adult brain can be detrimental and has been associated with synaptic loss in several pathological conditions. In this brief review, we will discuss the role of the complement system in synaptic pruning as well as its contribution to neurodegeneration and cognitive deficits. We also mention potential therapeutic approaches to target the complement system to treat several neuroinflammatory diseases and unintended consequences of radiotherapy.
Collapse
Affiliation(s)
- Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
15
|
Montay-Gruel P, Markarian M, Allen BD, Baddour JD, Giedzinski E, Jorge PG, Petit B, Bailat C, Vozenin MC, Limoli C, Acharya MM. Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiat Res 2021; 194:636-645. [PMID: 32853387 DOI: 10.1667/rade-20-00067.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Encephalic radiation therapy delivered at a conventional dose rate (CONV, 0.1-2.0 Gy/min) elicits a variety of temporally distinct damage signatures that invariably involve persistent indications of neuroinflammation. Past work has shown an involvement of both the innate and adaptive immune systems in modulating the central nervous system (CNS) radiation injury response, where elevations in astrogliosis, microgliosis and cytokine signaling define a complex pattern of normal tissue toxicities that never completely resolve. These side effects constitute a major limitation in the management of CNS malignancies in both adult and pediatric patients. The advent of a novel ultra-high dose-rate irradiation modality termed FLASH radiotherapy (FLASH-RT, instantaneous dose rates ≥106 Gy/s; 10 Gy delivered in 1-10 pulses of 1.8 µs) has been reported to minimize a range of normal tissue toxicities typically concurrent with CONV exposures, an effect that has been coined the "FLASH effect." Since the FLASH effect has now been found to significantly limit persistent inflammatory signatures in the brain, we sought to further elucidate whether changes in astrogliosis might account for the differential dose-rate response of the irradiated brain. Here we report that markers selected for activated astrogliosis and immune signaling in the brain (glial fibrillary acidic protein, GFAP; toll-like receptor 4, TLR4) are expressed at reduced levels after FLASH irradiation compared to CONV-irradiated animals. Interestingly, while FLASH-RT did not induce astrogliosis and TLR4, the expression level of complement C1q and C3 were found to be elevated in both FLASH and CONV irradiation modalities compared to the control. Although functional outcomes in the CNS remain to be cross-validated in response to the specific changes in protein expression reported, the data provide compelling evidence that distinguishes the dose-rate response of normal tissue injury in the irradiated brain.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Mineh Markarian
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Jabra D Baddour
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Patrik Goncalves Jorge
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoît Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claude Bailat
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| |
Collapse
|
16
|
Markarian M, Krattli RP, Baddour JD, Alikhani L, Giedzinski E, Usmani MT, Agrawal A, Baulch JE, Tenner AJ, Acharya MM. Glia-Selective Deletion of Complement C1q Prevents Radiation-Induced Cognitive Deficits and Neuroinflammation. Cancer Res 2020; 81:1732-1744. [PMID: 33323383 DOI: 10.1158/0008-5472.can-20-2565] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
The adverse neurocognitive sequelae following clinical radiotherapy (RT) for central nervous system (CNS) malignancies are often long-lasting without any clinical recourse. Despite recent progress, the cellular mechanisms mediating RT-induced cognitive deficits (RICD) are poorly understood. The complement system is an immediate sensor of a disturbed inflammatory environment and a potent mediator of gliosis with a range of nonimmune functions in the CNS, including synaptic pruning, which is detrimental if dysregulated. We hypothesize that complement-mediated changes in glial cell function significantly contribute to RICD. The underlying alterations in CNS complement cascade proteins (C1q, C3), TLR4, and colabeling with glia (IBA1, GFAP) were examined using gene expression, immunofluorescence, and in silico modeling approaches in the adult mouse brain following 9 Gy cranial RT. Three-dimensional volumetric quantification showed elevated molecular signatures of gliosis at short- and long-term post-RT times. We found significant elevations in complement C1q, C3, and TLR4 post-RT accompanied by increased colabeling of astrocytes and microglia. To address the mechanism of RT-induced complement cascade activation, neuroinflammation, and cognitive dysfunction, we used a genetic approach-conditional, microglia-selective C1q (Flox) knockdown mice-to determine whether a glia-specific, upstream complement cascade contributes to RICD. C1q-Flox mice exposed to cranial RT showed no cognitive deficits compared with irradiated WT mice. Further, irradiated C1q-Flox mice were protected from RT-induced microglial activation and synaptic loss, elevation of anaphylatoxin C5a receptor, astrocytic-C3, and microglial-TLR4 expression in the brain. Our findings demonstrate for the first time a microglia-specific mechanism of RICD involving an upstream complement cascade component, C1q. SIGNIFICANCE: Clinically-relevant radiotherapy induces aberrant complement activation, leading to brain injury. Microglia-selective genetic deletion of CNS complement C1q ameliorates radiation-induced cognitive impairments, synaptic loss, and neuroinflammation, highlighting the potential for C1q as a novel therapeutic target.See related commentary by Korimerla and Wahl, p. 1635.
Collapse
Affiliation(s)
- Mineh Markarian
- Department of Radiation Oncology, University of California, Irvine, California
| | - Robert P Krattli
- Department of Radiation Oncology, University of California, Irvine, California
| | - Jabra D Baddour
- Department of Radiation Oncology, University of California, Irvine, California
| | - Leila Alikhani
- Department of Radiation Oncology, University of California, Irvine, California
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, California
| | - Manal T Usmani
- Department of Radiation Oncology, University of California, Irvine, California
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, California
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, California.
| |
Collapse
|
17
|
Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, Lipp HP, Kaczmarek L. IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behav Brain Res 2020; 388:112620. [PMID: 32302617 DOI: 10.1016/j.bbr.2020.112620] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Since the 1980s, we have witnessed the rapid development of genetically modified mouse models of human diseases. A large number of transgenic and knockout mice have been utilized in basic and applied research, including models of neurodegenerative and neuropsychiatric disorders. To assess the biological function of mutated genes, modern techniques are critical to detect changes in behavioral phenotypes. We review the IntelliCage, a high-throughput system that is used for behavioral screening and detailed analyses of complex behaviors in mice. The IntelliCage was introduced almost two decades ago and has been used in over 150 studies to assess both spontaneous and cognitive behaviors. We present a critical analysis of experimental data that have been generated using this device.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Janusz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Zglinicki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emir Turkes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, Irving Medical Center, New York, NY, USA
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
18
|
Hinkle JJ, Olschowka JA, Love TM, Williams JP, O'Banion MK. Cranial irradiation mediated spine loss is sex-specific and complement receptor-3 dependent in male mice. Sci Rep 2019; 9:18899. [PMID: 31827187 PMCID: PMC6906384 DOI: 10.1038/s41598-019-55366-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Cranial irradiation is the main therapeutic treatment for primary and metastatic malignancies in the brain. However, cranial radiation therapy produces long-term impairment in memory, information processing, and attention that contribute to a decline in quality of life. The hippocampal neural network is fundamental for proper storage and retrieval of episodic and spatial memories, suggesting that hippocampal signaling dysfunction could be responsible for the progressive memory deficits observed following irradiation. Previous rodent studies demonstrated that irradiation induces significant loss in dendritic spine number, alters spine morphology, and is associated with behavioral task deficits. Additionally, the literature suggests a common mechanism in which synaptic elimination via microglial-mediated phagocytosis is complement dependent and associated with cognitive impairment in aging as well as disease. We demonstrate sexual dimorphisms in irradiation-mediated alterations of microglia activation markers and dendritic spine density. Further, we find that the significant dendritic spine loss observed in male mice following irradiation is microglia complement receptor 3 (CR3)-dependent. By identifying sex-dependent cellular and molecular factors underlying irradiation-mediated spine loss, therapies can be developed to counteract irradiation-induced cognitive decline and improve patient quality of life.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - John A Olschowka
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - Tanzy M Love
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA.
- Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA.
| |
Collapse
|
19
|
Sato Y, Shinjyo N, Sato M, Nilsson MKL, Osato K, Zhu C, Pekna M, Kuhn HG, Blomgren K. Grafting Neural Stem and Progenitor Cells Into the Hippocampus of Juvenile, Irradiated Mice Normalizes Behavior Deficits. Front Neurol 2018; 9:715. [PMID: 30254600 PMCID: PMC6141740 DOI: 10.3389/fneur.2018.00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
The pool of neural stem and progenitor cells (NSPCs) in the dentate gyrus of the hippocampus is reduced by ionizing radiation. This explains, at least partly, the learning deficits observed in patients after radiotherapy, particularly in pediatric cases. An 8 Gy single irradiation dose was delivered to the whole brains of postnatal day 9 (P9) C57BL/6 mice, and BrdU-labeled, syngeneic NSPCs (1.0 × 105 cells/injection) were grafted into each hippocampus on P21. Three months later, behavior tests were performed. Irradiation impaired novelty-induced exploration, place learning, reversal learning, and sugar preference, and it altered the movement pattern. Grafting of NSPCs ameliorated or even normalized the observed deficits. Less than 4% of grafted cells survived and were found in the dentate gyrus 5 months later. The irradiation-induced loss of endogenous, undifferentiated NSPCs in the dentate gyrus was completely restored by grafted NSPCs in the dorsal, but not the ventral, blade. The grafted NSPCs did not exert appreciable effects on the endogenous NSPCs; however, more than half of the grafted NSPCs differentiated. These results point to novel strategies aimed at ameliorating the debilitating late effects of cranial radiotherapy, particularly in children.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Noriko Shinjyo
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Machiko Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Narita Hospital, Nagoya, Japan
| | - Marie K L Nilsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Kazuhiro Osato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Hans G Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Eriksson Y, Boström M, Sandelius Å, Blennow K, Zetterberg H, Kuhn G, Kalm M. The anti-asthmatic drug, montelukast, modifies the neurogenic potential in the young healthy and irradiated brain. Cell Death Dis 2018; 9:775. [PMID: 29991719 PMCID: PMC6039496 DOI: 10.1038/s41419-018-0783-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/18/2022]
Abstract
Brain tumors are the most common form of solid tumors in children. Due to the increasing number of survivors, it is of importance to prevent long-term treatment-induced side effects. Montelukast, a leukotriene receptor antagonist, may have the desired neuroprotective properties. The aim of the study was to determine whether montelukast could reduce adverse effects of cranial irradiation (CIR) to the young brain. Daily injections of montelukast or vehicle was given to young mice for 4 or 14 days in combination with CIR or under normal conditions. Montelukast treatment for 4 days protected against cell death with 90% more cell death in the vehicle group compared to the montelukast group 24 h after CIR. It also resulted in less microglia activation 6 h after CIR, where montelukast lowered the levels of CD68 compared to the vehicle groups. Interestingly, the animals that received montelukast for 14 days had 50% less proliferating cells in the hippocampus irrespective of receiving CIR or not. Further, the total number of neurons in the granule cell layer was altered during the sub-acute phase. The number of neurons was decreased by montelukast treatment in control animals (15%), but the opposite was seen after CIR, where montelukast treatment increased the number of neurons (15%). The results show beneficial effects by montelukast treatment after CIR in some investigated parameters during both the acute phase and with longer drug treatment. However, it also resulted in lower proliferation in the hippocampus under normal conditions, indicating that the effects of montelukast can be either beneficial or unfavorable, depending on the circumstances.
Collapse
Affiliation(s)
- Yohanna Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Boström
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Sandelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, UCL, London, UK
| | - Georg Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Stroke Research Berlin, Charité - Universitätsmedizin, Berlin, Germany
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
21
|
Coulthard LG, Hawksworth OA, Woodruff TM. Complement: The Emerging Architect of the Developing Brain. Trends Neurosci 2018; 41:373-384. [PMID: 29606485 DOI: 10.1016/j.tins.2018.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 01/11/2023]
Abstract
Complement activation products have long been associated with roles in the innate immune system, linking the humoral and cellular responses. However, among their recently described non-inflammatory roles, complement proteins also have multiple emerging novel functions in brain development. Within this context, separate proteins and pathways of complement have carved out physiological niches in the formation, development, and refinement of neurons. They demonstrate actions that are both reminiscent of peripheral immune actions and removed from them. We review here three key roles for complement proteins in the developing brain: progenitor proliferation, neuronal migration, and synaptic pruning.
Collapse
Affiliation(s)
- Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Boström M, Kalm M, Eriksson Y, Bull C, Ståhlberg A, Björk-Eriksson T, Hellström Erkenstam N, Blomgren K. A role for endothelial cells in radiation-induced inflammation. Int J Radiat Biol 2018; 94:259-271. [PMID: 29359989 DOI: 10.1080/09553002.2018.1431699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To unravel the role of the vasculature in radiation-induced brain tissue damage. MATERIALS AND METHODS Postnatal day 14 mice received a single dose of 10 Gy cranial irradiation and were sacrificed 6 h, 24 h or 7 days post-irradiation. Endothelial cells were isolated from the hippocampus and cerebellum using fluorescence-activated cell sorting, followed by cell cycle analysis and gene expression profiling. RESULTS Flow cytometric analysis revealed that irradiation increased the percentage of endothelial cells, relative to the whole cell population in both the hippocampus and the cerebellum. This change in cell distribution indicates that other cell types are more susceptible to irradiation-induced cell death, compared to endothelial cells. This was supported by data showing that genes involved in endothelial cell-specific apoptosis (e.g. Smpd1) were not induced at any time point investigated but that genes involved in cell-cycle arrest (e.g. Cdkn1a) were upregulated at all investigated time points, indicating endothelial cell repair. Inflammation-related genes, on the other hand, were strongly induced, such as Ccl2, Ccl11 and Il6. CONCLUSIONS We conclude that endothelial cells are relatively resistant to ionizing radiation but that they play an active, hitherto unknown, role in the inflammatory response after irradiation. In the current study, this was shown in both the hippocampus, where neurogenesis and extensive cell death after irradiation occurs, and in the cerebellum, where neurogenesis no longer occurs at this developmental age.
Collapse
Affiliation(s)
- Martina Boström
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden.,c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Marie Kalm
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Yohanna Eriksson
- c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Cecilia Bull
- b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Anders Ståhlberg
- d Department of Pathology and Genetics , Sahlgrenska Cancer Centre, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Thomas Björk-Eriksson
- b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Nina Hellström Erkenstam
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Klas Blomgren
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,e Department of Pediatric Oncology , Karolinska University Hospital , Stockholm , Sweden.,f Department of Women's and Children's Health , Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|